Standard conjectures in model theory, and categoricity of comparison isomorphisms. A model theory perspective.
Misha GAVRILOVICH - 2019-03-22 (M/19/03)

On Phases Of Melonic Quantum Mechanics
Frank FERRARI, Fidel I. SCHAPOSNIK MASSOLO - 2019-03-18 (P/19/02)
We explore in detail the properties of two melonic quantum mechanical theories which can be formulated either as fermionic matrix quantum mechanics in the new large D limit, or as disordered models. Both models have a mass parameter m and the transition from the perturbative large m region to the strongly coupled "black-hole" small m region is associated with several interesting phenomena. One model, with U(n)^2 symmetry and equivalent to complex SYK, has a line of first-order phase transitions terminating, for a strictly positive temperature, at a critical point having non-trivial, non-mean-field critical exponents for standard thermodynamical quantities. Quasi-normal frequencies, as well as Lyapunov exponents associated with out-of-time-ordered four-point functions, are also singular at the critical point, leading to interesting new critical exponents. The other model, with reduced U(n) symmetry, has a quantum critical point at strictly zero temperature and positive critical mass m∗. For 0
The lure of conformal symmetry
Ivan TODOROV - 2019-01-22 (P/19/01)
The Clifford algebra ${\rm Cl} (4,1) \simeq {\mathbb C} [4]$, generated by the real (Majorana) $\gamma$-matrices and by a hermitian $\gamma_5$, gives room to the reductive Lie algebra $u(2,2)$ of the conformal group extended by the $u(1)$ helicity operator. Its unitary positive energy ladder representations, constructed by Gerhard Mack and the author 50 years ago, opened the way to a better understanding of zero-mass particles and fields and their relation to the space of bound states of the hydrogen atom. They became a prototypical example of a minimal representation of a non-compact reductive group introduced during the subsequent decade by Joseph.