Crystal Volumes and Monopole Dynamics
Sergey CHERKIS, Rebekah CROSS - 2019-06-08 (P/19/06)



Third Kind Elliptic Integrals and 1-Motives
Cristiana BERTOLIN - 2019-05-21 (M/19/05)
In [5] we have showed that the Generalized Grothendieck's Conjecture of Periods applied to 1-motives, whose underlying semi-abelian variety is a product of elliptic curves and of tori, is equivalent to a transcendental conjecture involving elliptic integrals of the first and second kind, and logarithms of complex numbers. In this paper we investigate the Generalized Grothendieck's Conjecture of Periods in the case of 1-motives whose underlying semi-abelian variety is a non trivial extension of a product of elliptic curves by a torus. This will imply the introduction of elliptic integrals of the third kind for the computation of the period matrix of M and therefore the Generalized Grothendieck's Conjecture of Periods applied to M will be equivalent to a transcendental conjecture involving elliptic integrals of the first, second and third kind.
Large genus behavior of topological recursion
Bertrand EYNARD - 2019-05-13 (M/19/04)
We show that for a rather generic set of regular spectral curves, the {\it Topological--Recursion} invariants $F_g$ grow at most like $O((\beta g)! r^{-g}) $ with some $r>0$ and $\beta\leq 5$
Standard conjectures in model theory, and categoricity of comparison isomorphisms. A model theory perspective.
Misha GAVRILOVICH - 2019-03-22 (M/19/03)



On Phases Of Melonic Quantum Mechanics
Frank FERRARI, Fidel I. SCHAPOSNIK MASSOLO - 2019-03-18 (P/19/02)
We explore in detail the properties of two melonic quantum mechanical theories which can be formulated either as fermionic matrix quantum mechanics in the new large D limit, or as disordered models. Both models have a mass parameter m and the transition from the perturbative large m region to the strongly coupled "black-hole" small m region is associated with several interesting phenomena. One model, with U(n)^2 symmetry and equivalent to complex SYK, has a line of first-order phase transitions terminating, for a strictly positive temperature, at a critical point having non-trivial, non-mean-field critical exponents for standard thermodynamical quantities. Quasi-normal frequencies, as well as Lyapunov exponents associated with out-of-time-ordered four-point functions, are also singular at the critical point, leading to interesting new critical exponents. The other model, with reduced U(n) symmetry, has a quantum critical point at strictly zero temperature and positive critical mass m∗. For 0
The lure of conformal symmetry
Ivan TODOROV - 2019-01-22 (P/19/01)
The Clifford algebra ${\rm Cl} (4,1) \simeq {\mathbb C} [4]$, generated by the real (Majorana) $\gamma$-matrices and by a hermitian $\gamma_5$, gives room to the reductive Lie algebra $u(2,2)$ of the conformal group extended by the $u(1)$ helicity operator. Its unitary positive energy ladder representations, constructed by Gerhard Mack and the author 50 years ago, opened the way to a better understanding of zero-mass particles and fields and their relation to the space of bound states of the hydrogen atom. They became a prototypical example of a minimal representation of a non-compact reductive group introduced during the subsequent decade by Joseph.