A counterexample to Premet’s and Joseph’s conjectures

O. YAKIMOVA

Institut des Hautes Études Scientifiques
35, route de Chartres
91440 – Bures-sur-Yvette (France)

Janvier 2007

IHES/M/07/01
A COUNTEREXAMPLE TO PREMET’S AND JOSEPH’S CONJECTURES

O. YAKIMOVA

INTRODUCTION

Let \mathfrak{g} be a finite-dimensional reductive Lie algebra of rank l over an algebraically closed field \mathbb{K} of characteristic zero, and let G be the adjoint group of \mathfrak{g}. Given $x \in \mathfrak{g}$, we denote by \mathfrak{g}_x the centraliser of x in \mathfrak{g}.

Conjecture 1 (Premet). For any $x \in \mathfrak{g}$ the algebra $S(\mathfrak{g}_x)^{\mathfrak{g}_x}$ of \mathfrak{g}_x-invariants is a graded polynomial algebra in l variables.

In some particular cases the problem is simple. For example, for regular nilpotent elements the algebra $S(\mathfrak{g}_x)^{\mathfrak{g}_x}$ is known to be free. In [5], Conjecture 1 is shown to be true in types A and C. It is also verified for some nilpotent elements of orthogonal Lie algebra and for the minimal nilpotent orbits in simple Lie algebras except of type E_8. Later, by a different method, Brown and Brundan [1] proved that Conjecture 1 holds in type A.

Suppose that \mathfrak{p}_+ and \mathfrak{p}_- are opposite parabolic subalgebras of \mathfrak{g}, i.e., $\mathfrak{g} = \mathfrak{p}_+ + \mathfrak{p}_-$. Then the intersection $\mathfrak{q} := \mathfrak{p}_+ \cap \mathfrak{p}_-$ is called a biparabolic or, in other terminology, seaweed subalgebra. Since \mathfrak{g} itself is a parabolic subalgebra, we see that parabolics are particular cases of seaweeds.

For any Lie algebra \mathfrak{q} let $\mathfrak{q}^\prime := [\mathfrak{q}, \mathfrak{q}]$ denote its derived algebra. In [3, Section 7.7], the following conjecture was made.

Conjecture 2 (Joseph). For any seaweed subalgebra $\mathfrak{q} \subset \mathfrak{g}$ the semi-invariants $S(\mathfrak{q})^{\mathfrak{q}^\prime}$ form a polynomial algebra.

A formula for $\text{tr.deg} S(\mathfrak{q})^{\mathfrak{q}^\prime}$ is given in [3]. It is rather complicated and we are not going to use it in full generality. In [2] and [3], it is proved that Conjecture 2 holds for all

2000 Mathematics Subject Classification. 17B25.

Key words and phrases. Nilpotent orbits, centralisers, symmetric invariants.

The author is supported by the Humboldt Foundation and RFFR Grant 05-01-00988.
parabolics and seaweeds in simple Lie algebras of types A and C. As was noticed in [5, Section 4.9], minimal nilpotent orbits provide a testing site for Joseph’s conjecture as well as Premet’s one. If \mathfrak{g} is simple, then for each minimal nilpotent element $e \in \mathfrak{g}$ there exists a parabolic subalgebra $\mathfrak{p} \subset \mathfrak{g}$ such that $S(\mathfrak{g}_e)^{\mathfrak{p}} \cong S(\mathfrak{p})^{\mathfrak{p}'}$. The detailed explanation of this construction is given below. We note only that naturally $\text{tr.deg} \ S(\mathfrak{p})^{\mathfrak{p}'} = \text{tr.deg} \ S(\mathfrak{g}_e)^{\mathfrak{p}e}$ and $\text{tr.deg} \ S(\mathfrak{g}_e)^{\mathfrak{p}e} = l$ by [4].

In this note, we show that Conjecture 1 does not hold for the minimal nilpotent orbit in the simple Lie algebra of type E_8. As a consequence, a conjecture of Joseph on the semi-invariants of (bi)parabolics is not true either.

Acknowledgements. This paper was written during my stay at the IHES. I thank the Institute for warm hospitality and support.

1. **Theory**

Let us say a few words about the general method of [5], which, unfortunately, does not work for the minimal nilpotent orbit in E_8. Let \mathfrak{g} be a simple Lie algebra and $e \in \mathfrak{g}$ a nilpotent element. Suppose that $\langle e, h, f \rangle \subset \mathfrak{g}$ is an \mathfrak{sl}_2-triple containing e. We identify \mathfrak{g} and \mathfrak{g}^* by means of the Killing form. For each $F \in S(\mathfrak{g})^G$ let eF stand for the minimal degree component of the restriction $F|_{e+\mathfrak{g}_f}$. As was shown in [5], $^eF \in S(\mathfrak{g}_e)^{\mathfrak{g}e}$. A set of homogeneous generators $\{F_1, \ldots, F_l\} \subset S(\mathfrak{g})^G$ is said to be *good* if the eF_i’s are algebraically independent.

Given a linear function γ on \mathfrak{g}_e we denote by $(\mathfrak{g}_e)_\gamma$ the stabiliser of γ in \mathfrak{g}_e and set

$$(\mathfrak{g}_e^*)_{\text{sing}} := \{\gamma \in \mathfrak{g}_e^* \mid \dim(\mathfrak{g}_e) \gamma > l\}.$$

Theorem 1. [5] Suppose e admits a good generating system F_1, \ldots, F_l in $S(\mathfrak{g})^G$ and assume further that $(\mathfrak{g}_e^*)_{\text{sing}}$ has codimension ≥ 2 in \mathfrak{g}_e^*. Then $S(\mathfrak{g}_e)^{\mathfrak{g}e}$ is a polynomial algebra in $^eF_1, \ldots, ^eF_l$.

Suppose now that e is a minimal nilpotent element. Then $\dim(\mathfrak{g}_e)_\gamma = l$ for generic $\gamma \in \mathfrak{g}_e^*$, see [4]; and $(\mathfrak{g}_e^*)_{\text{sing}}$ is of codimension ≥ 2, see [5, Section 3.10.]. If \mathfrak{g} is of type E_8, then there is no good generating system, [5, Remark 4.2.]. For that reason in Section 4.8 of [5] another approach was developed. As was proved there, Conjecture 1 holds if and only if there is a certain system of generating invariants in E_7.
Since \(e \) is a minimal nilpotent element, the \(\mathbb{Z} \)-grading defined by \(h \) is
\[
g = g(-2) \oplus g(-1) \oplus g(0) \oplus g(1) \oplus g(2),
\]
with \(g(2) = \mathbb{K}e \) and \(g(1) \oplus g(2) \) being a Heisenberg Lie algebra. Set \(I := g(0)_e = g_e \cap g(0). \)
Then \(g(0) = I \oplus \mathbb{K}h. \) Clearly \(p := g(0) \oplus g(1) \oplus g(2) \) is a parabolic subalgebra of \(g \) and \(p' = g(0)' \oplus g(1) \oplus g(2). \) Since \(p = \mathbb{K}h \oplus g_e \) and \([h, e] = 2e, \) we have
\[
S(p)^p \subset S(p)^p \subset S(g_e).
\]
If \(g \) is not of type \(A, \) then \(l = g(0)' \) and \(p' = g_e. \) Hence \(S(p)^p = S(g_e)^{g_e}. \)

Remark 1. If \(g \) is of type \(A, \) then, so far, we can only say that \(S(p)^p = S(g_e)^{g_e}. \) Set \(n := g(1) \oplus g(2). \) Then there is an isomorphism of \(l \)-modules \((S(g_e)[1/e])^n \cong S(l)[e, 1/e], \) see [5, Section 4.8.] or [7, Lemma 3.]. Therefore the centre of \(l \) acts on \(n \)-invariants trivially and \(S(p)^p = S(g_e)^{g_e} = S(g_e)^{g_e}. \)

From now on assume that \(g \) is of type \(E_8. \) Then \(l \) is of type \(E_7. \) For generic \(v \in g(1) \) the stabiliser \(l_v \) is a simple Lie algebra of type \(E_6. \) Fix such \(v \in g(1). \) Let \(t \subset l \) and \(l \subset l_v \) be maximal tori such that \(l \subset t. \) Then there is a unique orthogonal decomposition \(t = l \oplus \mathbb{K}h_0. \) Let \(W \) and \(W' \) denote the Weyl groups of \(l \) and \(l_v, \) respectively. Each \(\varphi \in S(t)^W \) can be presented uniquely as
\[
\varphi = \sum_{j=0}^\nu \varphi_i^{(j)} h_0 j \quad \hfill \left(\varphi_i^{(j)} \in S(t)^{W'}, \, \varphi_i^{(\nu)} \neq 0, \, \nu = \nu(i) \right).
\]

Theorem 2. [5, Theorem 4.14.] The algebra \(S(g_e)^{g_e} \) is free if and only if there is a homogeneous generating system \(\varphi_1, \ldots, \varphi_7 \) in \(S(t)^W \) such that the elements \(\varphi_1^{(\nu)} h_0^{(1)}, \ldots, \varphi_7^{(\nu)} h_0^{(7)} \) are algebraically independent.

The main technical result of this paper is the following:

Proposition 1. Suppose that \(\varphi_1, \ldots, \varphi_7 \) is a system of homogeneous generators of \(S(t)^W \) with \(\deg \varphi_i < \deg \varphi_j \) for \(i < j. \) Then the elements \(\varphi_1^{(\nu)} h_0^{(1)}, \varphi_2^{(\nu)} h_0^{(2)}, \varphi_3^{(\nu)} h_0^{(3)} \) are algebraically dependent.

Combining Theorem 2 and Proposition 1, we conclude that Conjectures 1 and 2 are false.
2. Calculations

Since it is difficult to deal with E_7 directly, we first consider a regular subalgebra $\mathfrak{sl}_8 \subset E_7$ such that $\mathfrak{t} \subset \mathfrak{sl}_8$. Let ϖ_i and ϖ'_i denote the fundamental weights of E_7 and SL_8, respectively. We use the Vinberg–Onishchik numbering of simple roots and fundamental weights, see [6, Tables]. We may (and will) assume that the simple roots of \mathfrak{sl}_8 are the first six simple roots of E_7 and the lowest root δ. On the extended Dynkin diagram of E_7, which is given below, the simple roots of \mathfrak{sl}_8 form the upper line. Recall that \mathfrak{t} is a maximal torus in a regular subalgebra $E_6 \subset E_7$. Without loss of generality, we may assume that \mathfrak{t} coincides with the annihilator of the weight ϖ_1. Expressing δ as a linear combination of the simple roots one can see that $\varpi_1(\delta) = -1$. Hence the subtorus \mathfrak{t} is also the annihilator of $\varpi'_1 - \varpi'_7$.

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \delta \\
& & & & & & & 67
\end{array}
\]

Without loss of generality, we may assume that \mathfrak{t} is the subspace of diagonal matrices of \mathfrak{sl}_8. The dual space \mathfrak{t}^* is spanned by $\epsilon_1, \epsilon_2, \ldots, \epsilon_8$ subject to the relation $\epsilon_1 + \epsilon_2 + \cdots + \epsilon_8 = 0$ and the Weyl group of SL_8 permutes the ϵ_i's. Since the fundamental weights ϖ'_1, ϖ'_7 can be expressed as $\varpi_1 = \epsilon_1$ and $\varpi_7 = -\epsilon_8$, we conclude that \mathfrak{t} is the annihilator of $\epsilon_1 + \epsilon_8$. Therefore \mathfrak{t} can be presented as a linear space of diagonal matrices:

\[
(1) \quad \mathfrak{t} = \{ \text{diag}(b, b_1, b_2, \ldots, b_6, -b) \mid \sum_{i=1}^{6} b_i = 0 \}.
\]

Then

\[
(2) \quad \mathbb{K}h_0 = \{ \text{diag}(a, -a/3, -a/3, -a/3, -a/3, -a/3, -a/3, a) \mid a \in \mathbb{K} \}.
\]

Let us identify \mathfrak{t} with \mathfrak{t}^* by means of the Killing form. Then Weyl group invariants of SL_8 can be expressed in terms of variables a, b, b_1, \ldots, b_6; the $\varphi_i^{(\nu)}$'s will be polynomials in b, b_1, \ldots, b_6 and h_0 proportional to a. Since \mathfrak{sl}_8 is a maximal rank subalgebra of E_7, one can write invariants of E_7 as polynomials in invariants of SL_8 with unknown coefficients. This will give us certain constrains on $\varphi_1^{(\nu)} h_0^{\nu(1)}, \varphi_2^{(\nu)} h_0^{\nu(2)}$, and $\varphi_3^{(\nu)} h_0^{\nu(3)}$.

First we concentrate on SL_8-invariants. According to formulas (1) and (2), any diagonal matrix in s_{l8} is of the form:

$$(a + b, -a/3 + b_1, -a/3 + b_2, -a/3 + b_3, -a/3 + b_4, -a/3 + b_5, -a/3 + b_6, a - b)$$

with $\sum_{i=1}^{6} b_i = 0$. Set $\tau_k := \sum_{i=1}^{6} b_i^k$, and let S_i be the trace of the $i + 1$ power of a diagonal matrix. Then

$$S_2 = 2a^2 + 2b^2 + \frac{6}{9}a^2 + \sum_{i=1}^{6} \left(-\frac{2}{3}ab_i + b_i^2 \right) = \frac{8}{3}a^2 + 2b^2 + \tau_2.$$

In the same way

$$S_3 = \frac{16}{9}a^3 + 6ab^2 - a\tau_2 + \tau_3;$$

$$S_4 = \left(2 + \frac{2}{27}\right)a^4 + 12a^2b^2 + \frac{2}{3}a^2\tau_2 - \frac{4}{3}a\tau_3 + 2b^4 + \tau_4;$$

$$S_5 = \left(2 - \frac{2}{81}\right)a^5 + 20a^3b^2 - \frac{10}{27}a^3\tau_2 + \frac{10}{9}a^2\tau_3 + 10ab^4 - \frac{5}{3}a\tau_4 + \tau_5;$$

$$S_6 = \left(2 + \frac{2}{27}\right)a^6 + 30a^4b^2 + \frac{5}{27}a^4\tau_2 - \frac{20}{27}a^3\tau_3 + 30a^2b^4 + \frac{5}{3}a^2\tau_4 + \ldots ;$$

$$S_8 = \left(2 + \frac{2}{27}\right)a^8 + 56a^6b^2 + \frac{28}{27}a^6\tau_2 - \frac{56}{27}a^5\tau_3 + 140a^4b^4 + \frac{70}{81}a^4\tau_4 + \ldots .$$

In principle, it is possible to calculate all of them either by hand or using computer. The expression for S_7 is of no importance for us. Also, the coefficients of smaller degrees of a play no rôle in the following calculations. Therefore they are not written down in S_6 and S_8.

Let φ_1, φ_2, and φ_3 be Weyl group invariants of E_7 of degrees 2, 6, and 8, respectively. Then $\deg(\varphi_1^{(\nu)}) = 0$. Since s_{l8} is a maximal rank subalgebra of E_7, the E_7-invariants are polynomials in SL_8-invariants. Using this, we will show that $\deg(\varphi_2^{(\nu)}) \leq 2$ and $\deg(\varphi_3^{(\nu)}) \leq 4$. Since both these polynomials are invariants of the Weyl group of E_6, they must be algebraically dependent (recall that the degrees of E_6-invariants are 2, 5, 6, 8, 9, 12).

Lemma 1. For the Weyl group invariant φ_2 with $\deg \varphi_2 = 6$, we have $\deg(\varphi_2^{(\nu)}) \leq 2$.

Proof. The invariant φ_2 is a linear combination of SL_8-invariants of degree 6. One can express this as follows:

$$\varphi_2 = x_1S_2^3 + x_2S_3^2 + x_3S_2S_4 + x_4S_6, \quad \text{where } x_i \in \mathbb{K}.$$
Assume that $\deg(\varphi_2^{(\nu)}) > 2$. Since $\varphi_2^{(\nu)}$ is an invariant of E_6, it cannot be of degree 3. Hence $\deg(\varphi_2^{(\nu)}) \geq 4$ and the coefficients of $a^6, a^4,$ and a^3 in φ_2 are zeros. This condition gives us four linear equations on x_i.

Let us write down the polynomials in question:

\[
S_2^3 = \frac{512}{27}a^6 + \frac{64}{3}a^4(2b^2 + \tau_2) + \ldots; \\
S_3^2 = \frac{256}{81}a^6 + \frac{32}{9}a^4(6b^2 - \tau_2) + \frac{32}{9}a^3\tau_3 + \ldots; \\
S_2S_4 = \frac{448}{81}a^6 + (36 + \frac{4}{27})a^4b^2 + (2 + \frac{50}{27})a^4\tau_2 - \frac{32}{9}a^3\tau_3 + \ldots; \\
S_6 = (2 + \frac{2}{3^5})a^6 + 30a^4b^2 + \frac{5}{27}a^4\tau_2 - \frac{20}{27}a^3\tau_3 + \ldots .
\]

Again we calculate only whose coefficients, which will be used. Since b and all τ_i are algebraically independent, we indeed obtain four linear equations.

\[
\begin{align*}
\frac{512}{27}x_1 + \frac{256}{81}x_2 + \frac{448}{81}x_3 + (2 + \frac{2}{3^5})x_4 &= 0 \\
\frac{128}{3}x_1 + \frac{64}{3}x_2 + (36 + \frac{4}{27})x_3 + 30x_4 &= 0 \\
\frac{64}{3}x_1 - \frac{32}{9}x_2 + (2 + \frac{50}{27})x_3 + \frac{5}{27}x_4 &= 0 \\
\frac{32}{9}x_2 - \frac{32}{9}x_3 - \frac{20}{27}x_4 &= 0
\end{align*}
\]

The determinant of this system is non-zero. Hence the only solution is trivial. Since $\varphi_2 \neq 0$, we have proved that $\deg(\varphi_2^{(\nu)}) \leq 2$. \hfill \square

Lemma 2. For the Weyl group invariant φ_3 with $\deg \varphi_3 = 8$, we have $\deg(\varphi_3^{(\nu)}) \leq 4$.

Proof. Argument for this invariant is essentially the same as in Lemma 1, but here calculations are more involved. Again

\[
\varphi_3 = y_1S_2^4 + y_2S_2S_3^2 + y_3S_2^2S_4 + y_4S_2S_6 + y_5S_3S_5 + y_6S_4^2 + y_7S_8, \quad \text{where } y_i \in \mathbb{K}.
\]

We need coefficients of this seven polynomials up to a^4. Here they are:

\[
S_2^4 = \frac{4096}{81}a^8 + \frac{4096}{27}a^6b^2 + \frac{2048}{27}a^6\tau_2 + \frac{128}{3}a^4(4b^4 + 4b^2\tau_2 + \tau_2^2) + \ldots; \\
S_3^2 = \frac{2048}{243}a^8 + \frac{5120}{81}a^6b^2 - \frac{512}{81}a^6\tau_2 + \frac{256}{27}a^5\tau_3 + \frac{416}{3}a^4b^4 - \frac{160}{9}a^4b^2\tau_2 - \frac{8}{9}a^4\tau_2 + \ldots.
\]
\[S_2 S_4 = \frac{3584}{243} a^8 + \frac{8704}{81} a^6 b^2 + \frac{1280}{81} a^6 \tau_2 - \frac{256}{27} a^5 \tau_3 + \]
\[+ \frac{4064}{3} a^4 b^4 - \frac{2144}{27} a^4 b^2 \tau_2 + \frac{152}{27} a^4 \tau_2^2 + \frac{64}{9} a^4 \tau_4 + \ldots; \]
\[S_2 S_6 = \frac{3904}{729} a^8 + \frac{20416}{243} a^6 b^2 + \frac{488}{243} a^6 \tau_2 - \frac{160}{81} a^5 \tau_3 + \]
\[+ \frac{140}{9} a^4 b^4 + \frac{820}{27} a^4 b^2 \tau_2 + \frac{5}{27} a^4 \tau_2^2 + \frac{40}{9} a^4 \tau_4 + \ldots; \]
\[S_3 S_5 = \frac{2560}{729} a^8 + \frac{1280}{27} a^6 b^2 - \frac{640}{243} a^6 \tau_2 + \frac{320}{81} a^5 \tau_3 + \]
\[+ \frac{1240}{27} a^4 b^4 - \frac{200}{9} a^4 b^2 \tau_2 + \frac{20}{27} a^4 \tau_2^2 - \frac{80}{27} a^4 \tau_4 + \ldots; \]
\[S_4^2 = \frac{3136}{729} a^8 + \frac{448}{9} a^6 b^2 + \frac{224}{27} a^6 \tau_2 - \frac{448}{81} a^5 \tau_3 + \frac{4112}{27} a^4 b^4 + 16 a^4 b^2 \tau_2 + \frac{4}{9} a^4 \tau_2^2 + \frac{112}{27} a^4 \tau_4 + \ldots; \]
\[S_8 = (2 + \frac{2}{3^7}) a^8 + 56 a^6 b^2 + \frac{28}{3^6} a^6 \tau_2 - \frac{56}{3^5} a^5 \tau_3 + 140 a^4 b^4 + \frac{70}{81} a^4 \tau_4 + \ldots. \]

I calculated these expansions on the computer in “Maple”. It is quite possible to check any of the coefficients by hand, but getting them all is rather tiresome.

Assume that \(\deg(\varphi_3^{(\nu)}) > 4 \). Then the coefficients of \(a^8, a^6, a^5, \) and \(a^4 \) in \(\varphi_3 \) are zeros. Therefore there are eight linear equations, corresponding to the summands

\[a^8, a^6 b^2, a^6 \tau_2, a^5 \tau_3, a^4 b^4, a^4 b^2 \tau_2, a^4 \tau_2^2, a^4 \tau_4, \]

depending on seven variables \(y_i \). Since at least one \(7 \times 7 \) minor of this matrix is non-zero (it was checked on the computer), the only possible solution is zero. Thus if \(\varphi_3 \neq 0 \), then \(\deg(\varphi_3^{(\nu)}) \leq 4. \)

\[\square \]

Proof of Proposition 1. Suppose that \(\varphi_1, \ldots, \varphi_7 \) is a system of homogeneous generators of \(S(d)^W \) with \(\deg \varphi_i < \deg \varphi_j \) for \(i < j \). Then \(\deg \varphi_1 = 2, \deg \varphi_2 = 6, \) and \(\deg \varphi_3 = 8 \). Clearly \(\varphi_1^{(\nu)} h_0^{(\nu)} \) is proportional to \(h_0^2 \). Hence the polynomials \(\varphi_1^{(\nu)} h_0^{(\nu_1)}, \varphi_2^{(\nu)} h_0^{(\nu_2)}, \) and \(\varphi_3^{(\nu)} h_0^{(\nu_3)} \) are algebraically independent if and only if \(\varphi_2^{(\nu)} \) and \(\varphi_3^{(\nu)} \) are. By Lemmas 1 and 2, we have \(\deg \varphi_2^{(\nu)}, \deg \varphi_3^{(\nu)} \leq 4 \). Recall that \(\varphi_2^{(\nu)} \) and \(\varphi_3^{(\nu)} \) are invariants of \(E_6 \). Since the Weyl group of type \(E_6 \) has no basic invariants of degrees 1, 3, and 4; and only one of degree 2, these polynomials are algebraically dependent.

\[\square \]
REFERENCES

MATHEMATIC S INSTITUT, UNIVERSITÄT ZU KÖLN, WEYERTAL 86-90, 50931 KÖLN GERMANY

E-mail address: yakimova@mpim-bonn.mpg.de