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Abstract. It is conjectured that any trigonometric Olshanetsky–Perelomov
Hamiltonian, when written in terms of coordinates called Fundamental Trigono-
metric Invariants (FTI), is in algebraic form, i.e., has polynomial coefficients,
and preserves an infinite flag of polynomial spaces. It is shown that the
heuristically chosen variables that yielded algebraic forms for the trigonomet-
ric Olshanetsky–Perelomov Hamiltonians associated to the root spaces of the
classical Lie algebras (AN , BN , CN , DN , BCN ), and to certain exceptional
ones (G2, F4), are, in fact, FTI. The conjecture is also confirmed for the E6

Hamiltonian, an algebraic form of which is found by using FTI.

1. Introduction

About 30 years ago, Olshanetsky and Perelomov [12] (for a review, see [13])
discovered a remarkable family of quantum mechanical Hamiltonians with trigono-
metric potentials, which are associated to the crystallographic root spaces of the
classical (AN , BN , CN , DN ) and exceptional (G2, F4, E6, E7, E8) Lie algebras.
The Olshanetsky–Perelomov Hamiltonians have the property of complete integra-

bility (the number of integrals of motion in involution is equal to the dimension of
the configuration space) and that of exact solvability (the spectrum can be found
explicitly, in a closed analytic form that is a second-degree polynomial in the quan-
tum numbers). The Hamiltonian associated to a Lie algebra g of rank N , with root
space ∆, is

(1.1) H∆ = −
1

2

N∑

k=1

∂2

∂y2
k

+
β2

8

∑

α∈R+

g2
|α|

|α|
2

sin2 β
2 (α · y)

,

where R+ is the set of positive roots of ∆, β ∈ R is a parameter introduced for
convenience, g2

|α| = µ|α|(µ|α| − 1) are coupling constants depending only on the

root length, and y = (y1, . . . , yN ) is the coordinate vector. If all roots are of the
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same length, then g|α| = g (i.e., there is a single coupling constant). If the roots
are of two different lengths, then for the long roots g|α| = gl and for the short ones
g|α| = gs (i.e., there are two coupling constants). The configuration space here is
the Weyl alcove of the root space (see [13]).

The ground state eigenfunction and its eigenvalue are

(1.2) Ψ0(y) =
∏

α∈R+

∣∣∣∣sin
β

2
(α · y)

∣∣∣∣
µ|α|

, E0 =
β2

8
ρ2,

where ρ =
∑

α∈R+
µ|α|α is the so-called ‘deformed Weyl vector’ (see [13, eqs.

(5.5),(6.7)]). It is known that any eigenfunction Ψ has the form of (1.2a) multi-
plied by a polynomial in exponential (trigonometric) coordinates, i.e., Ψ = ΦΨ0

(see [13]). Such polynomials Φ are called (generalized) Jack polynomials. For
connections between Jack polynomials, and the theory of special functions and
orthogonal polynomials, see, e.g., [8, 10].

For future use, we make three definitions.

Definition 1. A multivariate linear differential operator is said to be in alge-

braic form if its coefficients are polynomials in the independent variable(s). It is
called algebraic if by an appropriate change of the independent variable(s), it can
be written in an algebraic form.

Definition 2. Consider a finite-dimensional (linear) space of multivariate
polynomials defined as a linear span in the following way:

P
(d)
n,{α} = 〈xp1

1 · · ·xpd

d | 0 ≤ α1p1 + · · · + αdpd ≤ n〉,

where the α’s are positive integers and n ∈ N. Its characteristic vector is the
d-dimensional vector with components αi

1:

(1.3) ~α = (α1, . . . , αd).

For some characteristic vectors, the corresponding polynomial spaces may have a
Lie-algebraic interpretation, in that they are the finite-dimensional representation
spaces for some Lie algebra of (first-order) differential operators. For example,
the spaces corresponding to ~α = (1, . . . , 1), indexed by n, are finite-dimensional
representation spaces of the algebra gld+1 of first-order differential operators.

Definition 3. Take the infinite set of spaces of multivariate polynomials Pn ≡

P
(d)
n,{α}, n ∈ N, defined as above, and order them by inclusion:

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn ⊂ · · · .

Such an object is called an infinite flag (or filtration), and is denoted P
(d)
{α}. If a

linear differential operator preserves such an infinite flag, it is said to be exactly

solvable. It is evident that every such operator is algebraic (see [19]). If the
spaces Pn can be viewed as the finite-dimensional representation spaces of some Lie
algebra g, then g is called the hidden algebra of the exactly solvable operator.

Any crystallographic root space ∆ is characterized by its fundamental weights
wa, a = 1, 2, . . . , r, where r = rank(∆). One can take a fundamental weight wa and

1We do not think that this notation will cause a confusion with positive roots.
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generate its orbit Ωa, by acting on it by all elements of the Weyl group of ∆. By
averaging over this orbit, i.e., by computing

(1.4) τa(y) =
∑

w∈Ωa

eiβ(w·y),

one obtains a trigonometric Weyl invariant for any specified β ∈ R. For a given
root space ∆ and a fixed β, there thus exist r independent trigonometric Weyl
invariants τa, generated by the r fundamental weights wa. We shall call them
Fundamental Trigonometric Invariants (FTI). For the theory of root spaces, see [7];
and in a concise form, [6] or [9]. A brief description of FTI, under the name
‘exponential invariants,’ appears in Bourbaki [3, Ch. 6, §3, p. 194)].

The goal of this paper is to show, for each of several Lie algebras g, (i) that
the Jack polynomials arising from the eigenfunctions of the Hamiltonian (1.1),
being rewritten in terms of FTI, remain polynomials in these invariants, (ii) that
a similarity-transformed version of (1.1), namely h ∝ Ψ−1

0 (H − E0)Ψ0, acting on
the space of trigonometric invariants (i.e., the space of trigonometric orbits) is an
operator in algebraic form, and (iii) that h preserves an infinite flag of spaces of
polynomials, with a certain characteristic vector. Results are presented for the root
spaces AN , BCN , BN , CN , DN , G2, F4 and E6. Although similar results might
seem to be obtainable for E7 and E8, an analysis of those root spaces is absent,
mainly due to great technical complications.

2. The case ∆ = AN

For the root space AN , the Olshanetsky–Perelomov Hamiltonian (1.1) coincides
with the Hamiltonian of the Sutherland model [17, 18], and has the form

(2.1) HSuth = −
1

2

N+1∑

k=1

∂2

∂x2
k

+
gβ2

4

∑

1≤k<l≤N+1

1

sin2(β
2 (xk − xl))

,

with the ground state eigenfunction

(2.2) Ψ0(x) =
∏

1≤i<j≤N+1

sinν

(
β

2
(xi − xj)

)
, g = ν(ν − 1) > −

1

4
.

It describes a system of (N + 1) particles situated on a circle, with a pairwise
interaction that is given by the potential term in (2.1). For a review, see [16].

In order to solve the eigenvalue problem for the Hamiltonian (2.1), let us in-
troduce the Perelomov relative coordinates [14]

(2.3) Y =

N+1∑

i=1

xi, and yi = xi −
1

N + 1
Y, i = 1, . . . , N + 1,

where Y is the center-of-mass coordinate, and the coordinates yi are confined to
the hyperplane

(2.4)

N+1∑

i=1

yi = 0.

A transformation to Weyl-invariant periodic coordinates was introduced in [16]. It
is

(2.5) (x1, . . . , xN+1) 7→
(
eiβY ; ηn(x) = σn(eiβy(x)), n = 1, . . . , N

)
,
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where σk(x) =
∑

i1<···<ik
xi1 · · ·xik

, k = 1, . . . , N are the elementary symmet-
ric polynomials, and by convention, σ0 = σN+1 = 1 and σi = 0 for i < 0 and
i > (N + 1). It was shown that a similarity-transformed version of the Hamilton-
ian (2.1), namely hAN

= − 2
β2 (Ψ0)

−1 HSuth Ψ0, after separation of the center-of-

mass motion (Y = 0), takes on the algebraic form

(2.6) hSuth =

N∑

i,j=1

Aij(η)
∂2

∂ηi∂ηj

+

N∑

i=1

Bi(η)
∂

∂ηi

,

where

Aij =
(N + 1 − i) j

N + 1
ηi ηj +

∑

l≥max(1,j−i)

(j − i − 2l) ηi+l ηj−l at i ≥ j,

Aji = Aij , Bi =
( 1

N + 1
+ ν
)
i (N + 1 − i) ηi.

It can easily be checked [16] that the operator hSuth preserves the infinite flag

P
(N)
{1,...,1}. This is in agreement with our general conjecture that the characteristic

vector for a trigonometric model coincides with the minimal characteristic vector
for the corresponding rational model [2]. The operator hAN

depends on a single
parameter ν, linearly. The nodal structure of its eigenpolynomials (i.e., where they
vanish) at fixed ν remains an open question.

Statement 1. For any n, one can find a fundamental weight wa of the AN root
system for which ηn = τa. Hence, the Weyl-invariant periodic coordinates ηn,
n = 1, . . . , N, defined in (2.5), coincide with the fundamental trigonometric invari-
ants τa, a = 1, . . . , N = rank(AN ), defined in (1.4).

To prove this statement, note that the fundamental weights of AN can be
written in terms of the canonical basis e1, . . . , eN+1 of R

N+1 as (see [3])

(2.7) wk = (e1 + e2 + · · · + ek) −
k

N + 1

N+1∑

j=1

ej, k = 1, . . . , N.

Hence, the orbit element related to a given fundamental weight reads at Y = 0 as

exp(iβwk · y) = exp

(
iβ

k∑

j=1

yj

)
=

k∏

j=1

exp(iβyj).(2.8)

Since the Weyl group of AN is a symmetric group SN+1 that permutes the vec-
tors ej , the averaging of (2.8) over this group gives for the FTI exactly σk(exp(iβy)).
It is worth noting that there exists a symmetry [16]: the involution β ↔ −β corre-
sponds to ηi ↔ ηN+1−i (see (2.8)). Since the original Hamiltonian depends on β2,
this leads to certain relations between the coefficients Aij and Bi ↔ BN+1−i.
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Let us consider the algebra glN+1, realized by the first-order differential oper-
ators

J−
i =

∂

∂τi

, i = 1, . . . , N,(2.9a)

Jij
0 = τi

∂

∂τj

, i, j = 1, . . . , N,(2.9b)

J0 =

d∑

i=1

τi

∂

∂τi

− n,(2.9c)

J+
i = τiJ

0 = τi




d∑

j=1

τj

∂

∂τj

− n


 , i = 1, . . . , N,(2.9d)

where n is any number. If in (2.9), n is a non-negative integer, the generators (2.9)

will have a common invariant subspace P
(N)
n,{1,...,1}, on which they act irreducibly.

Hence the infinite flag P
(N)
{1,...,1} is made of irreducible finite-dimensional represen-

tation spaces of the algebra glN+1. If the raising operators J+
i are excluded, the

remaining generators will form the maximal affine subalgebra of the glN+1 algebra.

It is evident that the generators J0, J− preserve P
(N)
{1,...,1}. It can be proved that

hSuth, given in (2.6), can be rewritten in terms of the generators J0, J−. Therefore,
glN+1 is the hidden algebra of the Sutherland model.

3. The case ∆ = BCN (including ∆ = BN , CN , DN)

For the root space BCN , the Olshanetsky–Perelomov Hamiltonian (1.1) has
the form

(3.1)

HBCN
= −

1

2

N∑

i=1

∂2

∂xi
2

+
gβ2

4

∑

1≤i<j≤N

[
1

sin2
(

β
2 (xi − xj)

) +
1

sin2
(

β
2 (xi + xj)

)
]

+
g2β

2

2

N∑

i=1

1

sin2 βxi

+
g3β

2

8

N∑

i=1

1

sin2 βxi

2

,

with the ground state eigenfunction
(3.2)

Ψ0 =
∏

1≤i<j≤N

∣∣∣∣sin
(β

2
(xi − xj)

)∣∣∣∣
ν ∣∣∣∣sin

(β

2
(xi + xj)

)∣∣∣∣
ν N∏

i=1

|sin(βxi)|
ν2

∣∣∣∣sin
(β

2
xi

)∣∣∣∣
ν3

,

where g = ν(ν−1) > −1/4 , g2 = ν2(ν2−1) > −1/4 , g3 = ν3(ν3+2ν2−1) > −1/4 .
From the general BCN Hamiltonian (3.1), the BN , CN and DN cases are obtained
by specializing as follows:

• BN case: ν2 = 0,
• CN case: ν3 = 0,
• DN case: ν2 = ν3 = 0.

In order to solve the eigenvalue problem for the BCN Hamiltonian (3.1), let us
perform a change of variables to Weyl-invariant periodic coordinates [4], i.e.,

(3.3) (x1, . . . , xN ) 7→
(
ηn(x) = σn(cos βx), n = 1, . . . , N

)
,
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where σk(x), k = 1, . . . , N, are the elementary symmetric polynomials, with σ0 = 1
by definition. The similarity-transformed Hamiltonian obtained from (3.1),

hBCN
= −

2

β2
(Ψ0)

−1 HBCN
Ψ0,

with Ψ0 given by (3.2), has the form (see [4])

(3.4) hBCN
=

N∑

i,j=1

Aij(η)
∂2

∂ηi∂ηj

+
N∑

i=1

Bi(η)
∂

∂ηi

,

where

Aij = N ηi−1 ηj−1 −
∑

l≥0

[
(i − l) ηi−l ηj+l + (l + j − 1) ηi−l−1 ηj+l−1

− (i − 2 − l) ηi−2−l ηj+l − (l + j + 1) ηi−l−1 ηj+l+1

]
,

Bi = ν3(i − N − 1) ηi−1 −
[
1 + ν(2N − i − 1) + 2ν2 + ν3

]
i ηi

− ν(N − i + 1)(N − i + 2)ηi−2.

Here η0 = 1, and by convention, ηi = 0 for i < 0 and i > N .
It can easily be checked that the operator hBCN

preserves the infinite flag

P
(N)
{1,...,1}, similarly to the case of the AN Hamiltonian. This is in agreement with our

conjecture that the characteristic vector for a trigonometric model always coincides
with the minimal characteristic vector for the corresponding rational model [2].

The BCN model depends on three parameters ν, ν2, ν3, and the nodal struc-
ture of the eigenpolynomials (i.e., where they vanish) at fixed ν’s remains an open
question.

Statement 2. For any n, one can find a fundamental weight a of the CN root
system for which ηn = faτa, where fa is a constant. Hence, the Weyl-invariant pe-
riodic coordinates ηn, n = 1, . . . , N of (3.3) coincide with the fundamental trigono-
metric invariants τa, a = 1, . . . , N = rank(CN ), defined in (1.4), up to numerical
factors. The coefficients in (3.4) are changed accordingly.

Indeed, the element of the k-th orbit related to the fundamental weight wk =
e1 + · · · + ek, k = 1, . . . , N (see [3]), looks like

exp(iβwk · x) =

k∏

j=1

exp(iβxj).(3.5)

The Weyl group of the CN root space is a semidirect product of a permutation
group SN acting on the vectors ei, and a group (Z/2Z)N that acts as ej 7→ (±1)jej.

Averaging (3.5) over the second group action gives 2k
∏k

j=1 cos(βxj), and averaging

over permutations gives σk(cos(βx)), up to a common multiplicative factor.

Remark 1. The set of CN trigonometric invariants of the form (1.4) is char-
acterized by the smallest common period, in comparison with the set of the BN

or DN trigonometric invariants. In general, any CN trigonometric invariant can be
rewritten as a polynomial either in BN or in DN invariants.

Remark 2. Neither the BN Hamiltonian (g2 = 0 in (3.1)) nor the DN Hamil-
tonian (g2 = g3 = 0 in (3.1)) takes on an algebraic form in terms of the BN or DN
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trigonometric invariants, respectively. However, both BN and DN Hamiltonians
take on an algebraic form in terms of the CN trigonometric invariants.

It can be shown that the operator hBCN
of (3.4) can be rewritten in terms

of the generators J0, J− of (2.9) (see [4]), similarly to the AN model; cf. (2.6).
Therefore, glN+1 is the hidden algebra of the BCN model.

4. The case ∆ = G2

The Olshanetsky–Perelomov Hamiltonian (1.1) for the root space G2 has the
form

(4.1) HG2
= −

1

2

3∑

k=1

∂2

∂x2
k

+
gβ2

4

∑

1≤k<l≤3

1

sin2
(

β
2 (xk − xl)

)

+
g1β

2

4

3∑

m=1

∑

1≤k<l≤3
k,l 6=m

1

sin2
(

β
2 (xk + xl − 2xm)

) ,

where g = ν(ν − 1) > − 1
4 and g1 = 3µ(µ − 1) > − 3

4 are the coupling constants as-
sociated with two-body and three-body interactions, respectively. From a physical
point of view, the Hamiltonian (4.1) describes a system of three identical particles
that are situated on a circle. The ground state eigenfunction is

(4.2) Ψ0(x) = (∆(trig)(x))ν(∆
(trig)
1 (x))µ,

where ∆(trig)(x), ∆
(trig)
1 (x) are trigonometric analogues of the Vandermonde deter-

minant and are defined by

∆(trig)(x) =
∏

1≤k<l≤3

∣∣∣∣sin
β

2
(xk − xl)

∣∣∣∣ ,(4.3a)

∆
(trig)
1 (x) =

3∏

m=1

∏

1≤k<l≤3
k,l 6=m

∣∣∣∣sin
β

2
(xk + xl − 2xm)

∣∣∣∣ .(4.3b)

In order to solve the eigenvalue problem for the Hamiltonian (4.1), let us introduce
the Perelomov coordinates Y, yi, i = 1, 2, 3, as in (2.3). The relative coordinates yi

are constrained by y1 + y2 + y3 = 0. It was shown in [15] that after separating
the center-of-mass coordinate in (4.1), and introducing the Weyl-invariant periodic
coordinates

η1 =
−2

β2

[
sin2 β

2
(y1 − y2) + sin2 β

2
(y2 − y3) + sin2 β

2
(y3 − y1)

]
,(4.4a)

η2 =
4

β6

[
sin β(y1 − y2) + sin β(y2 − y3) + sin β(y3 − y1)

]2
,(4.4b)
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the similarity-transformed Hamiltonian hG2
= −2(Ψ0)

−1 HG2
Ψ0 takes, after the

transformation to new coordinates (x1, x2, x3) 7→
(
Y, η1, η2

)
, the algebraic form

hG2
(η) = −

(
2η1 +

β2

2
η2
1 −

β4

24
η2

)
∂2

η1η1

−

(
12 +

8β2

3
η1

)
η2∂

2
η1η2

+

(
8

3
η2
1η2 − 2β2η2

2

)
∂2

η2η2

−

{
2[1 + 3(µ + ν)] +

2

3
(1 + 3µ + 4ν)β2η1

}
∂η1

+

{
4

3
(1 + 2ν)η2

1 − [
7

3
+ 4(µ + ν)]β2η2

}
∂η2

.

(4.5)

It can easily be checked that the operator hG2
preserves the infinite flag P

(2)
{1,2}. This

is in agreement with our conjecture that the characteristic vector for a trigonometric
model always coincides with the minimal characteristic vector for the corresponding
rational model [2].

The root space G2 has two fundamental weights; namely, a1 = e3 − e1 and
a2 = −e1−e2 +2e3. Averaging over the orbits generated by a1 and a2 (as in (1.4)),
we end up with the explicit FTI

τ1 = 2[cos(β(y1 − y2)) + cos(β(2y1 + y2)) + cos(β(2y1 + y2))],(4.6a)

τ2 = 2[cos(3βy1) + cos(3βy2) + cos(3β(y1 + y2))].(4.6b)

One can easily verify a connection between η1,2 and τ1,2:

(4.7) η1 =
1

2β2
(τ1 − 6), η2 =

1

β6
(4τ2 − τ2

1 + 12).

The transformation (4.7) does not alter the infinite flag P
(2)
{1,2}. Changing the vari-

ables in (4.5) from η’s to τ ’s we end up with

hG2
(τ) =

1

8β2
hG2

=

(
4 + τ1 +

τ2

3
−

τ2
1

3

)
∂2

τ1τ1

−

(
12 + 4τ2 + τ1τ2 − 2τ2

1

)
∂2

τ1τ2

−

(
9τ1 + 3τ2 + 3τ1τ2 + τ2

2 − τ3
1

)
∂2

τ2τ2

+

[
2ν −

1 + 3µ + 4ν

3
τ1

]
∂τ1

−

[
3(2µ + ν) + (1 + 2µ + 2ν)τ2 +

ν

12
τ2
1

]
∂τ2

.

(4.8)

A straightforward analysis confirms the conclusion that the operator hG2
(τ) pre-

serves the infinite flag P
(2)
{1,2}. This is not a surprising result, since the transforma-

tion (4.7) maps each subspace in P
(2)
{1,2} to itself.

The G2 model depends on two parameters ν, µ, and the nodal structure of
eigenpolynomials (i.e., where they vanish) at fixed ν and µ remains an open ques-
tion.
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Let us consider an infinite-dimensional Lie algebra of differential operators gen-
erated by the following eight operators:

(4.9)






L1 = ∂τ1
, L2 = τ1∂τ1

−
n

3
,

L3 = 2τ2∂τ2
−

n

3
, L4 = τ2

1 ∂τ1
+ 2τ1τ2∂τ2

− nτ1,

L5 = ∂τ2
, L6 = τ1∂τ2

,

L7 = τ2
1 ∂τ2

, T = τ2∂
2
τ1τ1

.

This algebra was introduced for the first time in [15], being called g(2). The gener-
ators Li, i = 1, . . . , 7, generate a subalgebra of the form gl2 ⋉ R3. For each n ∈ N,
the generators (4.9) have the common invariant subspace

(4.10) P
(2)
n,{1,2} = 〈τn1

1 τn2

2 | 0 ≤ n1 + 2n2 ≤ n〉

(cf. Definition 2), on which they act irreducibly 2. The common invariant subspaces

P
(2)
n,{1,2}, n ∈ N, form the infinite flag P

(2)
{1,2}. If the generator L4 is excluded, the

remaining generators preserve P
(2)
{1,2}.

It can easily be shown that the operator (4.8) can be rewritten in terms of the
generators of the algebra g(2), in the n = 0 case, as

hG2
(τ) = 4L1L1 + L2L1 +

1

3
T −

1

3
L2L2 − 12L1L5 − 2L1L3 −

1

2
L2L3

+ 2L6L2 − 9L5L6 −
3

2
L3L5 −

3

2
L3L6 −

1

4
L3L3 + L6L7

+ 2νL1 −
3µ + 4ν

3
L2 − 3(2µ + ν)L5 −

1 + 4µ + 4ν

4
L3 −

ν

12
L7.

(4.11)

In this representation, the generator L4 is absent. Hence, the algebra g(2) is the
hidden algebra of the G2 trigonometric model.

5. The case ∆ = F4

The trigonometric F4 model is defined by the Olshanetsky–Perelomov Hamil-
tonian (1.1) for the root space F4

3,

(5.1) HF4
= −

1

2

4∑

i=1

∂2
xi

+
gβ2

4

∑

1≤j<i≤4

(
1

sin2 β(xi−xj)
2

+
1

sin2 β(xi+xj)
2

)

+ g1β
2

4∑

i=1

1

sin2 βxi

+ g1β
2

∑

νj=0,1,
for j=1,2,3,4

1

sin2 β[x1+(−1)ν2x2+(−1)ν3x3+(−1)ν4x4]
2

,

where β is a parameter and g, g1 > −1/4 are the coupling constants. If g1 = 0, the
Hamiltonian (5.1) degenerates to that of the trigonometric D4 model (i.e., (3.1) at
N = 4 and g2 = g3 = 0). The trigonometric F4 model is completely integrable, for

2It is also worth mentioning that at n = 0, the algebra gl2 ⋉R3 becomes an algebra of vector
fields, acting on a 2-Hirzebruch surface Σ2, and the modules are the sections of holomorphic line
bundles over this surface (see [5] and references therein).

3Actually, this form corresponds to the representation of the F4 Hamiltonian for the dual root
space (see a discussion in [1]). It was chosen for convenience in making calculations. Calculations
using the F4 Hamiltonian defined for the root space turned out to be more complicated.
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arbitrary values of the coupling constants g, g1. It describes a quantum particle in
a four-dimensional space.

The ground state of the Hamiltonian (5.1) is

(5.2) Ψ0 = ∆ν
−(β)∆ν

+(β)∆µ
0 (β)∆µ(β),

where the degrees ν, µ are related to the coupling constants by

(5.3) g = ν(ν − 1), g1 =
1

2
µ(µ − 1),

and

∆±(β) =
∏

1≤j<i≤4

sin
β(xi ± xj)

2
,(5.4a)

∆0(β) =
4∏

i=1

sinβxi,(5.4b)

∆(β) =
∏

νj=0,1,
for j=1,...,4

sin
β [x1 + (−1)−ν2x2 + (−1)−ν3x3 + (−1)−ν4x4]

2
.(5.4c)

The ground state eigenvalue is

(5.5) E0 = (7ν2 + 14µ2 + 18νµ)β2.

In [1], as a result of a series of intelligent guesses, after rather sophisticated and
tedious analysis there were found surprisingly simple variables in terms of which
the similarity-transformed version of the Hamiltonian (5.1),

(5.6) hF4
= −2(Ψ0)

−1(HF4
− E0)(Ψ0),

takes the form of an algebraic operator. This operator was derived explicitly

(see [1]). It preserves the infinite flag P
(4)
{1,2,2,3}. This is in agreement with our

conjecture that the characteristic vector for a trigonometric model always coincides
with the minimal characteristic vector for the corresponding rational model [2].
The explicit expressions for the abovementioned variables are4

η2 = η̃1 −
β2

6
η̃2,(5.7a)

η6 = η̃3 −
1

6
η̃1 η̃2 −

β2

2
(η̃4 −

1

36
η̃2
2),(5.7b)

η8 = η̃4 −
1

4
η̃1 η̃3 +

1

12
η̃2
2 ,(5.7c)

η12 = η̃4 η̃2 −
1

36
η̃3
2 −

3

8
η̃2
3 +

1

8
η̃1 η̃2 η̃3 −

3

8
η̃2
1 η̃4,(5.7d)

where the η̃’s are the elementary symmetric polynomials

(5.8) η̃i = σi

(
4 sin2 β

2 x

β2

)
, i = 1, 2, 3, 4.

(For a definition of σ’s, see (2.5).) Below we shall show that there is nothing
mysterious in the variables (5.7); they can easily be obtained from the FTI of (1.4).

4In the limit β → 0, the η variables go to the polynomial invariants of the F4 root space,
which are classified according to the degrees of the F4 algebra (i.e., 2, 6, 8, 12). The numbering of
the η’s reflects this fact.
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Associated with the algebra F4 are a root space and a dual root space. From a
technical point of view, it is more convenient to work in the dual root space. Thus,
we shall define the FTI by averaging over orbits in the dual root space. In the dual
root space, the fundamental weights

(5.9) a1 = e3 + e4, a2 = 2e4, a3 = e2 + e3 + 2e4, a4 = e1 + e2 + e3 + 3e4

generate orbits with lengths equal to 24, 24, 96, 96, respectively. Averaging over the
orbits, as in (1.4), we define FTI that we denote by τ1,2,3,4, respectively. After some
algebra one finds an explicit relation between η’s and τ ’s:

η2 = −

1

24

τ1 − 24

β2
,(5.10a)

η6 =
1

4608

τ 2
1 + 24τ1 − 36τ2 − 288

β6
,(5.10b)

η8 =
1

3072

τ 2
1 − 12τ1 − 3τ3

β8
,(5.10c)

η12 = −

1

294912

2τ 3
1 + 72τ 2

1 − 9τ1τ3 − 864τ1 − 324τ2 − 216τ3 + 27τ4 − 1728

β12
.(5.10d)

It is evident that this transformation leads to an algebraic form for hF4
; and in fact,

this algebraic form preserves the infinite flag P
(4)
{1,2,2,3}. The form of this operator

in terms of the trigonometric invariants (the τ ’s) is the following:

(5.11) hF4
(τ) ≡

1

4β2
hF4

=
4∑

i,j=1

Aij(τ)
∂2

∂τi∂τj

+
4∑

i=1

Bi(τ)
∂

∂τi

,

where

A11 = −2τ2
1 + 24τ1 + 12τ2 + 2τ3 + 96,

A12 = −2τ1τ2 + 24τ1 + 6τ3,

A13 = 24τ2
1 + 8τ1τ2 − 3τ1τ3 − 192τ1 − 84τ2 − 48τ3 + 3τ4 − 576,

A14 = 8τ1τ2 − 4τ1τ4 + 4τ2τ3 − 96τ1 − 24τ3,

A22 = 24τ2
1 − 4τ2

2 − 192τ1 − 96τ2 − 48τ3 + 4τ4 − 384,

A23 = −48τ2
1 − 8τ1τ2 + 6τ1τ3 − 4τ2τ3 + 480τ1 + 216τ2 + 120τ3 − 18τ4 + 1152,

A24 = −48τ3
1 − 8τ2

1 τ2

+ 192τ2
1 + 208τ1τ2 + 144τ1τ3 − 12τ1τ4 + 24τ2

2 + 16τ2τ3 − 6τ2τ4 + 6τ2
3

+ 3072τ1 + 960τ2 + 576τ3 − 96τ4 + 4608,

A33 = 24τ3
1 + 8τ2

1 τ2 − 192τ2
1 − 120τ1τ2 − 72τ1τ3 + 2τ1τ4 − 8τ2τ3 − 6τ2

3

− 768τ1 − 96τ2 − 96τ3 + 24τ4,

A34 = 4τ1τ2τ3 − 32τ2
1 τ2 + 192τ2

1 + 288τ1τ2 − 24τ1τ3 − 16τ1τ4 + 144τ2
2

+ 64τ2τ3 − 12τ2τ4 − 8τ3τ4 − 1920τ1 − 96τ2 − 480τ3 + 72τ4 − 4608,

A44 = −32τ3
1 τ2 − 384τ3

1 − 192τ2
1 τ2 − 16τ2

1 τ4 + 96τ1τ
2
2 + 4τ2τ

2
3

+ 96τ1τ2τ3 − 8τ1τ2τ4 + 2688τ2
1 + 1728τ2

2 + 48τ2
3 − 12τ2

4

+ 5760τ1τ2 + 1152τ1τ3 + 32τ1τ4 + 1024τ2τ3 − 48τ2τ4 + 32τ3τ4

+ 15360τ1 + 12288τ2 + 2304τ3 + 192τ4 + 18432,
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and

B1 = −2(1 + 6 µ + 5 ν)τ1 − 48 ν,

B2 = −12 ν τ1 − 4(1 + 5 µ + 3 ν) τ2 − 96 µ,

B3 = −48(µ + ν) τ1 − 24 ν τ2 − 6(1 + 4 µ + 3 ν) τ3,

B4 = −48 µ τ2
1 − 8 ν τ1τ2 + 48 (8 µ + ν) τ1 + 48 (4 µ− ν) τ2

+ 96 µ τ3 − 12 (1 + 3 µ + 2 ν) τ4 + 1152 µ.

A straightforward analysis confirms the conclusion that the operator hF4
(τ) pre-

serves the infinite flag P
(4)
{1,2,2,3}. This is not a surprising result, since the transfor-

mation (5.10) maps each subspace in P
(4)
{1,2,2,3} to itself.

The F4 model depends on the two parameters ν, µ, and the nodal structure of
the eigenpolynomials (i.e., where they vanish) at fixed ν and µ remains an open
question.

This Hamiltonian can be written in terms of the generators of an infinite-
dimensional algebra of differential operators f(4) generated by 49 operators, which
admits finite-dimensional representations in terms of inhomogeneous polynomials in
four variables (see [1]). Among those 49 operators there are 22 differential operators
of the first order, 22 of the second, and 5 of the third.

6. The case ∆ = E6

The Hamiltonian of the trigonometric E6 model is built using the root system
of the E6 algebra (see (1.1)). A convenient way to represent the Hamiltonian in
coordinate form is to use an 8-dimensional space with coordinates x1, x2, . . . , x8,
imposing two constraints: x7 = x6 and x8 = −x6. In terms of these coordinates,

(6.1) HE6
= −

1

2
∆(8) +

gβ2

4

∑

1≤j<i≤5

[
1

sin2 β
2 (xi + xj)

+
1

sin2 β
2 (xi − xj)

]

+
gβ2

4

∑

{νj}

1[
sin2 β

4

(
−x8 + x7 + x6 −

∑5
j=1(−1)νj xj

)] ,

the second summation being one over quintuples {νj} where each νj = 0, 1, and∑5
j=1 νj is even. Here, g = ν(ν − 1) > −1/4 is the coupling constant. The

configuration space is the principal E6 Weyl alcove.
In order to resolve the constraints, we introduce new variables:

(6.2)

yi = xi, i = 1, . . . , 5,

y6 = x6 + x7 − x8 (with the constraint y6 = 3x6),

y7 = x6 − x7 (with the constraint y7 = 0),

y8 = x6 + x8 (with the constraint y8 = 0).

In terms of these, the Laplacian has the representation

(6.3) ∆(8) = ∆(5)
y + 3

∂2

∂y2
6

+ 2

[
∂2

∂y2
7

+
∂2

∂y2
8

+
∂2

∂y7∂y8

]
,
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while the potential part of (6.1) depends on y1, . . . , y6 only:

(6.4) V =
gβ2

4

∑

1≤j<i≤5

[
1

sin2 β
2 (yi + yj)2

+
1

sin2 β
2 (yi − yj)

]

+
gβ2

4

∑

{νj}

1[
sin2 β

4

(
y6 −

∑5
j=1(−1)νj yj

)] .

In this formalism, imposing the constraints requires that one should study only
eigenfunctions having no dependence on y7, y8. Hence, the y7, y8-dependent part of
the Laplacian standing in square brackets in (6.3) can simply be dropped.

The ground state eigenfunction and its eigenvalue are

(6.5) Ψ0 = (∆
(5)
+ ∆

(5)
− )ν∆ν

E6
, E0 = 39β2ν2,

where

∆
(5)
± =

∏

1≤j<i≤5

sin
β

2
(yi ± yj),(6.6a)

∆E6
=
∏

{νj}

sin
β

4

(
y6 +

5∑

j=1

(−1)νj yj

)
.(6.6b)

The main object of our study is the similarity-transformed version of the Hamil-
tonian (6.1), with the ground state eigenfunction (6.5a) taken as a factor, i.e.,

(6.7) hE6
= −

8

β2
(Ψ0)

−1(HE6
− E0)(Ψ0),

where E0 is given by (6.5b).
The E6 root space is characterized by 6 fundamental weights, which generate

orbits of lengths ranging from 27 to 720. Let us introduce an ordering of the
fundamental trigonometric invariants τa defined by (1.4), namely:

orbit variable weight vector orbit size
τ1 −2e6 27
τ2 e5 − e6 27
τ3 e4 + e5 − 2e6 216
τ4 − 1

2 (e1 − e2 − e3 − e4 − e5) −
5
2e6 216

τ5
1
2 (e1 + e2 + e3 + e4 + e5) −

3
2e6 72

τ6 e3 + e4 + e5 − 3e6 720

The pairs of variables (τ1, τ2) and (τ3, τ4) are complex conjugates. The orbit
variables have certain transformation properties under the involution β 7→ −β:
τ1,3(−β) = τ2,4(β), while τ5,6 remain unchanged, i.e., are invariant. Since the
Hamiltonian is invariant under β 7→ −β, after converting to τ -variables it should
be invariant under the simultaneous interchange τ1 ↔ τ2, τ3 ↔ τ4.

After very lengthy, truly cumbersome and tedious calculations which probably
will be published elsewhere, one can show that the similarity-transformed Hamil-
tonian (6.7), in terms of the above trigonometric invariants (τ -variables), takes on
an algebraic form. This is the following:

(6.8) hE6
=

6∑

i,j=1

Aij(τ)
∂2

∂τi∂τj

+

6∑

i=1

Bi(τ)
∂

∂τi

,
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where

A11 = −
4τ2

1

3
+ 20τ2 + 2τ4,

A12 = −
2τ1τ2

3
+ 6τ5 + 54,

A13 = −
4τ1τ3

3
+ 5τ2τ5 − 32τ2 − 5τ4,

A14 = 16τ1τ2 −
5τ1τ4

3
− 51τ5 + 3τ6 − 432,

A15 = −τ1τ5 + 32τ1 + 5τ3,

A16 = 10τ1τ5 − 2τ1τ6 − 64τ2
2 − 4τ2τ4 + 4τ3τ5 + 384τ1 + 78τ3,

A22 = −
4τ2

2

3
+ 20τ1 + 2τ3,

A23 = 16τ1τ2 −
5τ2τ3

3
− 51τ5 + 3τ6 − 432,

A24 = −
4τ2τ4

3
+ 5τ1τ5 − 32τ1 − 5τ3,

A25 = −τ2τ5 + 32τ2 + 5τ4,

A26 = −64τ2
1 − 4τ1τ3 + 10τ2τ5 − 2τ2τ6 + 4τ4τ5 + 384τ2 + 78τ4,

A33 = 16τ1τ
2
2 − 64τ2

1 − 24τ1τ3 − 36τ2τ5 + 2τ2τ6 −
10τ2

3

3
+ 4τ4τ5 − 208τ2 + 8τ4,

A34 = 4τ1τ2τ5 − 176τ1τ2 −
8τ3τ4

3
+ 6τ2

5 + 528τ5 − 42τ6 + 3888,

A35 = 32τ2
2 + 4τ2τ4 − 2τ3τ5 − 224τ1 − 44τ3,

A36 = −128τ2
1 τ2 + 5τ1τ

2
5 + 3τ2τ4τ5 + 320τ1τ5 − 32τ1τ6

+ 576τ2
2 + 104τ2τ4 − τ3τ5 − 4τ3τ6 + 5τ2

4 + 192τ1 − 312τ3,

A44 = 16τ2
1 τ2 − 36τ1τ5 + 2τ1τ6 − 64τ2

2 − 24τ2τ4 + 4τ3τ5 −
10τ2

4

3
− 208τ1 + 8τ3,

A45 = 32τ2
1 + 4τ1τ3 − 2τ4τ5 − 224τ2 − 44τ4,

A46 = −128τ1τ
2
2 + 3τ1τ3τ5 + 5τ2τ

2
5 + 576τ2

1 + 104τ1τ3 + 320τ2τ5

− 32τ2τ6 + 5τ2
3 − τ4τ5 − 4τ4τ6 + 192τ2 − 312τ4,

A55 = 16τ1τ2 − 2τ2
5 − 36τ5 + 2τ6 − 144,

A56 = −96τ1τ2 + 3τ3τ4 + 15τ2
5 − 3τ5τ6 + 216τ5 − 12τ6 + 864,

A66 = −64τ2
1 τ2

2 + 4τ1τ2τ
2
5 + 256τ3

1 + 32τ2
1 τ3 + 80τ1τ2τ5 − 24τ1τ2τ6 + 4τ1τ

2
3

− 16τ1τ4τ5 + 256τ3
2 + 32τ2

2 τ4 − 16τ2τ3τ5 + 4τ2τ
2
4 + 2τ3τ4τ5 + 6τ3

5 − 2112τ1τ2

− 96τ1τ4 − 96τ2τ3 + 84τ3τ4 + 216τ2
5 + 36τ5τ6 − 6τ2

6 + 2592τ5 + 288τ6 + 10368,

and

B1 = −
4(6 + ν)

3
τ1,

B2 = −
4(6 + ν)

3
τ2,
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B3 = −
1

18
[(1 − ν)(τ1

2 + 5τ1 τ2 + 9τ2
2 − 15τ2 − 54τ4 − 45τ5 − 405)

+ 30(13 + 3ν)τ1 + (171 + 49ν)τ3],

B4 = −
1

18
[(1 − ν)(9τ1

2 + 5τ1 τ2 + τ2
2 − 15τ1 − 54τ3 − 45τ5 − 405)

+ 30(13 + 3ν)τ2 + (171 + 49ν)τ4],

B5 = −
1

108
(1 − ν)[2(τ1

2 + τ1 τ2 + τ2
2) − 30(τ1 + τ2) − 3(τ3 + τ4)]

−
13(5 + ν)

6
τ5 −

3

2
(47 + ν),

B6 =
(1 − ν)

108
[2(τ1

3 + 2τ1
2τ2 + 2τ1τ2

2 + τ2
3) − 3(26τ1

2 + 9τ1τ3 + 11τ1τ4 + 12τ1τ5

+ 26τ2
2 + 11τ2 τ3 + 9τ2τ4 + 12τ2τ5) + 3438(τ1 + τ2) + 522(τ3 + τ4)]

−
(43 + 29ν)

3
τ1τ2 + (23 + 61ν)τ5 − (20 + 7ν)τ6 + 108(1 + 5ν).

After some analysis, one finds that the operator (6.8) preserves the infinite flag

P
(6)
{1,1,2,2,2,3}. Its characteristic vector ~α = (1, 1, 2, 2, 2, 3) coincides with the minimal

characteristic vector for the corresponding rational model [2]. This confirms our
conjecture that the characteristic vector for a trigonometric model always coincides
with the minimal characteristic vector for the corresponding rational model.

It is worth mentioning that the operator (6.8) has a symmetry with respect
to FTI (orbit variables) generated by orbits of the same length (see above); i.e.,
τ1 ↔ τ2, τ3 ↔ τ4. Under this involution,

A12 ↔ A12 , A13 ↔ A24 , A14 ↔ A23 , A15 ↔ A25 , A16 ↔ A26 , A33 ↔ A44 ,

A34 ↔ A34 , A35 ↔ A45 , A36 ↔ A46 , A55 ↔ A55 , A56 ↔ A56 , A66 ↔ A66 ,

B1 ↔ B2 , B3 ↔ B4 , B5 ↔ B5 , B6 ↔ B6 .

The E6 model depends on the parameter ν, and the nodal structure of eigen-
polynomials (i.e., where they vanish) at fixed ν remains an open question.

7. Summary and conclusions

Weyl-invariant coordinates leading to the algebraic forms of the trigonometric
Olshanetsky–Perelomov Hamiltonians associated to the crystallographic root spaces
AN , BCN , G2, F4 were found (in [16], [4], [15], and [1], respectively) in a manner
that was specific to each problem. In this paper, we have shown that the fundamen-
tal trigonometric invariants (FTI), if used as coordinates, provide a systematic way
of reducing the trigonometric Hamiltonians associated to AN , BN , CN , DN , BCN ,
and G2, F4, E6, to algebraic form. The eigenfunctions of the trigonometric Hamil-
tonians (i.e., the Jack polynomials) remain polynomials in the FTI. The use of FTI
enabled us to find an algebraic form of the Hamiltonian associated to E6, which did
not seem feasible at all, in the past. The calculations in this paper were based on
a straightforward change of variables from Cartesian coordinates to FTI. Actually,
there are clear indications of the existence of a representation-theoretic formalism
that may allow such results to be derived more rapidly and elegantly [6, 9, 11].

Each of the Olshanetsky–Perelomov Hamiltonians, in algebraic form, preserves
an infinite flag of polynomial spaces, with a characteristic vector ~α that coincides
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with the minimal characteristic vector for the corresponding rational model (cf. [2]).
It is worth noting that the matrices Aij in the algebraic-form Hamiltonians given ex-
plicitly in Eqs. (2.6), (3.4), (4.8), (5.11), (6.8), with polynomial entries, correspond
to flat-space metrics, in the sense that the associated Riemann tensor vanishes. The
change of variables in the corresponding Laplace–Beltrami operator, from FTI to
Cartesian coordinates, transforms these metrics to diagonal form.

It should be stressed that each Hamiltonian of the form (1.1) is completely
integrable. This implies the existence of a number of operators (the ‘higher Hamil-
tonians’) which commute with it and which are in involution. It is evident that
these commuting operators take on an algebraic form after a gauge rotation (with
the corresponding ground state eigenfunction as a gauge factor), and a change of
variables from Cartesian coordinates to the FTI, i.e., to the τ ’s.

Although both the original Hamiltonian (1.1) and the FTI (1.4) depend on the
real parameter β, the resulting algebraic forms are β-independent. This fact yields
a non-trivial connection between the algebraic operators of trigonometric models
and the corresponding rational models. In practice, the connection is made in the
following way: (i) take the set of FTI, specially ordered; and (ii) subtract from each
a certain nonlinear combination of the other FTI, in such a way that as β → 0,
one obtains the polynomial Weyl invariants, which in the rational case lead to an
algebraic operator, preserving a minimal flag. Surprisingly, if one changes variables
to these transformed FTI, the operator, expressed in terms of them, remains in
algebraic form. This makes it possible to derive the algebraic operator of the
rational model by taking the β → 0 limit [2]. The significance of the ordering of
the FTI, on which this procedure depends, is not clear to the authors.

An analysis similar to the analysis of this paper has not yet been presented for
the case of the trigonometric Olshanetsky–Perelomov Hamiltonians related to the
exceptional root spaces E7 and E8. We conjecture that in these cases as well, the
FTI taken as coordinates will yield an algebraic form for the Hamiltonian, and that
the infinite flag of polynomial spaces with the same characteristic vector as in the
corresponding rational model will be preserved.

In concluding, we mention that the existence of algebraic forms of Olshanetsky–
Perelomov Hamiltonians makes possible the study of their perturbations by purely
algebraic means: one can develop a perturbation theory in which all corrections
are found by linear-algebraic methods [20]. It also gives a hint that quasi-exactly-
solvable generalizations of the Olshanetsky–Perelomov Hamiltonians may exist.
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gie des algèbres de Lie de champs de vecteurs et fibrés en droites sur des surfaces complexes
compactes, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 1307–1312.

[6] O. Haschke and W. Ruehl, The construction of trigonometric invariants for Weyl groups and
the derivation of corresponding exactly solvable Sutherland models, Modern Phys. Lett. A 14

(1999), 937–949.
[7] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced

Math., no. 29, Cambridge Univ. Press, Cambridge, UK, 1990.
[8] H. Jack, A class of symmetric polynomials with a parameter, Proc. Roy. Soc. Edinburgh

Sect. A 69 (1970–1971), 1–18.
[9] S. P. Khastgir, A. J. Pocklington, and R. Sasaki, Quantum Calogero–Moser models: Integra-

bility for all root systems, J. Phys. A 33 (2000), 9033–9064.
[10] I. G. Macdonald, Symmetric Functions and Orthogonal Polynomials, University Lecture Se-

ries, no. 12, Amer. Math. Soc., Providence, RI, 1998.
[11] N. Nekrasov, private communication to A. V. Turbiner, c. 1999.
[12] M. A. Olshanetsky and A. M. Perelomov, Quantum completely integrable systems connected

with semi-simple Lie algebras, Lett. Math. Phys. 2 (1977), 7–13.

[13] M. A. Olshanetsky and A. M. Perelomov, Quantum integrable systems related to Lie algebras,
Phys. Rep. 94 (1983), 313–393.

[14] A. M. Perelomov, Algebraic approach to the solution of one-dimensional model of N inter-
acting particles, Sov. Phys. – Theor. and Math. Phys. 6 (1971), 263–275. Russian original in
Teor. Mat. Fiz. 6 (1971), 364ff.

[15] M. Rosenbaum, A. Turbiner, and A. Capella, Solvability of the G2 integrable system, Internat.
J. Mod. Phys. A 13 (1998), 3885–3904.
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