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The Effective One Body description of the
Two-Body problem

Thibault Damour and Alessandro Nagar

Abstract The Effective One Body (EOB) formalism is an analytical approach which
aims at providing an accurate description of the motion and radiation of coalescing
binary black holes with arbitrary mass ratio. We review the basic elements of this
formalism and discuss its aptitude at providing accurate template waveforms to be
used for gravitational wave data analysis purposes.

1 Introduction

A network of ground-based interferometric gravitational wave (GW) detectors
(LIGO/VIRGO/GEO/. . .) is currently taking data near its planned sensitivity [1].
Coalescing black hole binaries are among the most promising, and most exciting,
GW sources for these detectors. In order to successfully detect GWs from coalesc-
ing black hole binaries, and to be able to reliably measure the physical parameters
of the source (masses, spins,. . .), it is necessary to know in advance the shape of
the GW signals emitted by inspiralling and merging black holes. Indeed, the detec-
tion and subsequent data analysis of GW signals is made by using a large bank of
templatesthat accurately represent the GW waveforms emitted by the source.

Here, we shall introduce the reader to one promising strategy toward having an
accurate analytical1 description of the motion and radiation of binary black holes,
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1 Here we use the adjective “analytical” for methods that solve explicit (analytically given) ordi-
nary differential equations (ODE), even if one uses standard (Runge-Kutta-type) numerical tools
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which covers all its stages (inspiral, plunge, merger and ring-down): theEffective
One Bodyapproach [2, 3, 5, 4]. As early as 2000 [3] this method made several quan-
titative and qualitative predictions concerning the dynamics of the coalescence, and
the corresponding GW radiation, notably: (i) a blurred transition from inspiral to
a ‘plunge’ that is just a smooth continuation of the inspiral, (ii) a sharp transition,
around the merger of the black holes, between a continued inspiral and a ring-down
signal, and (iii) estimates of the radiated energy and of thespin of the final black
hole. In addition, the effects of the individual spins of theblack holes were inves-
tigated within the EOB [4, 6] and were shown to lead to a largerenergy release
for spins parallel to the orbital angular momentum, and to a dimensionless rotation
parameterJ/E2 always smaller than unity at the end of the inspiral (so that aKerr
black hole can form right after the inspiral phase). All those predictions have been
broadly confirmed by the results of the recent numerical simulations performed by
several independent groups [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29] (for a review of numerical relativity results see also [30]).
Note that, in spite of the high computer power used in these simulations, the cal-
culation of one sufficiently long waveform (corresponding to specific values of the
many continuous parameters describing the two arbitrary masses, the initial spin
vectors, and other initial data) takes on the order of two weeks. This is a very strong
argument for developing analytical models of waveforms.

Those recent breakthroughs in numerical relativity (NR) open the possibility of
comparing in detail the EOB description to NR results. This EOB/NR comparison
has been initiated in several works [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. The
level of analytical/numerical agreement is unprecedented, compared to what has
been previously achieved when comparing other types of analytical waveforms to
numerical ones. In particular, Refs. [40, 41] have comparedtwo different kind of
analytical waveforms, computed within the EOB framework, to the most accurate
gravitational waveform currently available from the Caltech-Cornell group, finding
that the phase and amplitude differences are of the order of the numerical error.

If the reader wishes to put the EOB results in contrast with other (Post-Newtonian
or hybrid) approaches he can consult,e.g., [27, 28, 42, 43, 44, 45, 46, 47].

Before reviewing some of the technical aspects of the EOB method, let us indi-
cate some of the historical roots of this method. First, we note that the EOB approach
comprises three, rather separate, ingredients:

1. a description of the conservative (Hamiltonian) part of the dynamics of two black
holes;

2. an expression for the radiation-reaction part of the dynamics;
3. a description of the GW waveform emitted by a coalescing binary system.

For each one of these ingredients, the essential inputs thatare used in EOB works
are high-order post-Newtonian (PN) expanded results whichhave been obtained by

to solve them. The important point is that, contrary to 3D numerical relativity simulations, nu-
merically solving ODE’s is extremely fast, and can therefore be done (possibly even in real
time) for a dense sample of theoretical parameters, such as orbital (ν = m1 m2/M, . . .) or spin
(â1 = S1/Gm2

1,θ1,ϕ1, . . .) parameters.



The Effective One Body description of the Two-Body problem 3

many years of work, by many researchers (see references below). However, one of
the key ideas in the EOB philosophy is to avoid using PN results in their original
“Taylor-expanded” form (i.e. c0 +c1v+c2 v2 +c3v3 + · · ·+cnvn), but to use them
instead in someresummedform (i.e. some non-polynomial function ofv, defined
so as to incorporate some of the expected non-perturbative features of the exact re-
sult). The basic ideas and techniques for resumming each ingredient of the EOB are
different and have different historical roots. Concerningthe first ingredient,i.e. the
EOB Hamiltonian, it was inspired by an approach to electromagnetically interacting
quantum two-body systems introduced by Brézin, Itzykson and Zinn-Justin [48].

The resummation of the second ingredient,i.e. the EOB radiation-reaction force
F , was originally inspired by the Padé resummation of the fluxfunction introduced
by Damour, Iyer and Sathyaprakash [49]. Recently, a new and more sophisticated
resummation technique for the radiation reaction forceF has been introduced by
Damour, Iyer and Nagar [50] and further employed in EOB/NR comparisons [40].
It will be discussed in detail below.

As for the third ingredient,i.e. the EOB description of the waveform emitted by
a coalescing black hole binary, it was mainly inspired by thework of Davis, Ruffini
and Tiomno [51] which discovered the transition between theplunge signal and a
ringing tail when a particle falls into a black hole. Additional motivation for the
EOB treatment of the transition from plunge to ring-down came from work on the,
so-called, “close limit approximation” [52].

Let us finally note that the EOB approach has been recently improved [37, 50, 40]
by following a methodology consisting of studying, elementby element, the physics
behind each feature of the waveform, and on systematically comparing various
EOB-based waveforms with ‘exact’ waveforms obtained by NR approaches. Among
these ‘exact’ NR waveforms, it has been useful to consider the small-mass-ratio
limit 2 ν ≡ m1m2/(m1+m2)

2 ≪ 1, in which one can use the well controllable ‘lab-
oratory’ of numerical simulations of test particles (with an added radiation-reaction
force) moving in black hole backgrounds [35, 36].

2 Motion and radiation of binary black holes: post-Newtonian
expanded results

Before discussing the various resummation techniques usedin the EOB approach,
let us briefly recall the ‘Taylor-expanded’ results that have been obtained by pushing
to high accuracies the post-Newtonian (PN) methods.

Concerning the orbital dynamics of compact binaries, we recall that the 2.5PN-
accurate3 equations of motion have been derived in the 1980’s [53, 54, 55, 56].

2 Beware that the fonts used in this chapter make the greek letterν (indicating the symmetric mass
ratio) look very similar to the latin letterv 6= ν indicating the velocity.
3 As usual ‘n-PN accuracy’ means that a result has been derived up to (and including) terms which
are∼ (v/c)2n ∼ (GM/c2r)n fractionally smaller than the leading contribution.
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Pushing the accuracy of the equations of motion to the 3PN (∼ (v/c)6) level proved
to be a non-trivial task. At first, the representation of black holes by delta-function
sources and the use of the (non diffeomorphism invariant) Hadamard regularization
method led to ambiguities in the computation of the badly divergent integrals that
enter the 3PN equations of motion [57, 58]. This problem was solved by using the
(diffeomorphism invariant)dimensional regularizationmethod (i.e.analytic contin-
uation in the dimension of spaced) which allowed one to complete the determina-
tion of the 3PN-level equations of motion [59, 60]. They havealso been derived by
an Einstein-Infeld-Hoffmann-type surface-integral approach [61]. The 3.5PN terms
in the equations of motion are also known [62, 63, 64].

Concerning the emission of gravitational radiation, two differentgravitational-
wave generation formalismshave been developed up to a high PN accuracy: (i)
the Blanchet-Damour-Iyer formalism [65, 66, 67, 68, 69, 70,71] combines a
multipolar post-Minkowskian (MPM) expansion in the exterior zone with a post-
Newtonian expansion in the near zone; while (ii) the Will-Wiseman-Pati formalism
[72, 73, 74, 62] uses a direct integration of the relaxed Einstein equations. These for-
malisms were used to compute increasingly accurate estimates of the gravitational
waveforms emitted by inspiralling binaries. These estimates include both normal,
near-zone generated post-Newtonian effects (at the 1PN [66], 2PN [75, 76, 72],
and 3PN [77, 78] levels), and more subtle, wave-zone generated (linear and non-
linear) ‘tail effects’ [69, 79, 80, 71]. However, technicalproblems arose at the 3PN
level. Similarly to what happened with the equation of motion, the representation
of black holes by ‘delta-function’ sources causes the appearance of dangerously
divergent integrals in the 3PN multipole moments. The use ofHadamard (par-
tie finie) regularization did not allow one to unambiguouslycompute the needed
3PN-accurate quadrupole moment. Only the use of the (formally) diffeomorphism-
invariantdimensional regularizationmethod allowed one to complete the 3PN-level
gravitational-radiation formalism [82].

The works mentioned in this Section (see [83] for a detailed account and more
references) finally lead to PN-expanded results for the motion and radiation of bi-
nary black holes. For instance, the 3.5PN equations of motion are given in the form
(a = 1,2; i = 1,2,3)

d2zi
a

dt2
= Ai cons

a +AiRR
a , (1)

where
Acons= A0 +c−2A2 +c−4A4 +c−6A6 , (2)

denotes the ‘conservative’ 3PN-accurate terms, while

ARR= c−5A5 +c−7A7 , (3)

denotes the time-asymmetric contibutions, linked to ‘radiation reaction’.

On the other hand, if we consider for simplicity the inspiralling motion of a
quasi-circular binary system, the essential quantity describing the emitted gravita-
tional waveform is thephaseφ of the quadrupolar gravitational wave amplitude
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h(t) ≃ a(t)cos(φ(t) + δ ). PN theory allows one to derive several different func-
tional expressions for the gravitational wave phaseφ , as a function either of time
or of the instantaneous frequency. For instance, as a function of time,φ admits the
following explicit expansion in powers ofθ ≡ νc3(tc− t)/5GM (wheretc denotes a
formal ‘time of coalescence’,M ≡ m1 +m2 andν ≡ m1m2/M2)

φ(t) = φc−ν−1θ 5/8

(

1+
7

∑
n=2

(an +a′n ln θ )θ−n/8

)

, (4)

with some numerical coefficientsan,a′n which depend only on the dimensionless
(symmetric) mass ratioν ≡ m1m2/M2. The derivation of the 3.5PN-accurate ex-
pansion (4) uses both the 3PN-accurate conservative acceleration (2) and a 3.5PN
extension of the (fractionally) 1PN-accurate radiation reaction acceleration (3) ob-
tained by assuming a balance between the energy of the binarysystem and the
gravitational-wave energy flux at infinity (see,e.g., [83]).

Among the many other possible ways [84] of using PN-expandedresults to pre-
dict the GW phaseφ(t), let us mention the semi-analytic T4 approximant [42, 32].
The GW phase defined by the T4 approximant happens to agree well during the
inspiral with the NR phase in the equal mass case [27]. However, this agreement
seems to be coincidental because the T4 phase exhibits significant disagreement
with NR results for other mass ratios [39] (as well as for spinning black-holes [47]).

3 Conservative dynamics of binary black holes: the Effective
One Body approach

The PN-expanded results briefly reviewed in the previous Section are expected to
yield accurate descriptions of the motion and radiation of binary black holes only
during theirearly inspiralling stage,i.e. as long as the PN expansion parameter
γe = GM/c2R (whereR is the distance between the two black holes) stays signifi-
cantly smaller than the value∼ 1

6 where the orbital motion is expected to become
dynamically unstable (‘last stable circular orbit’ and beginning of a ‘plunge’ leading
to the merger of the two black holes). One needs a better description of the motion
and radiation to describe thelate inspiral (sayγe & 1

12), as well as the subsequent
plungeandmerger. One possible strategy for having a complete description ofthe
motion and radiation of binary black holes, covering all thestages (inspiral, plunge,
merger, ring-down), would then be to try to ‘stitch together’ PN-expanded analytical
results describing the early inspiral phase with 3D numerical results describing the
end of the inspiral, the plunge, the merger and the ring-downof the final black hole,
see,e.g., Refs. [86, 32].

However, we wish to argue that the EOB approach makes a betteruse of all the
analytical information contained in the PN-expanded results (1)-(3). The basic claim
(first made in [2, 3]) is that the use of suitableresummation methodsshould allow
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one to describe, by analytical tools, asufficiently accurateapproximation of theen-
tire waveform, from inspiral to ring-down, including the non-perturbative plunge
and merger phases. To reach such a goal, one needs to make use of several tools: (i)
resummation methods, (ii) exploitation of the flexibility of analytical approaches,
(iii) extraction of the non-perturbative information contained in various numerical
simulations, (iv) qualitative understanding of the basic physical features which de-
termine the waveform.

Let us start by discussing the first tool used in the EOB approach: the systematic
use of resummation methods. Essentially two resummation methods have been em-
ployed (and combined) and some evidence has been given that they do significantly
improve the convergence properties of PN expansions. The first method is the sys-
tematic use ofPad́e approximants. It has been shown in Ref. [49] that near-diagonal
Padé approximants of the radiation reaction force4 F seemed to provide a good
representation ofF down to the last stable orbit (which is expected to occur when
R∼ 6GM/c2, i.e. whenγe ≃ 1

6). In addition, a new route to the resummation ofF
has been proposed very recently in Ref. [50]. This approach,that will be discussed
in detail below, is based on a new multiplicative decomposition of the metric mul-
tipolar waveform (which is originally given as a standard PNseries). In this case,
Padé approximants prove to be useful to further improve theconvergence properties
of one particular factor of this multiplicative decomposition.

The second resummation method is a novel approach to the dynamics of compact
binaries, which constitutes the core of the Effective One Body (EOB) method.

For simplicity of exposition, let us first explain the EOB method at the 2PN
level. The starting point of the method is the 2PN-accurate Hamiltonian describing
(in Arnowitt-Deser-Misner-type coordinates) the conservative, or time symmetric,
part of the equations of motion (1) (i.e. the truncationAcons= A0 +c−2A2 +c−4A4

of Eq. (2)) sayH2PN(qqq1 − qqq2, ppp1, ppp2). By going to the center of mass of the sys-
tem(ppp1 + ppp2 = 0), one obtains a PN-expanded Hamiltonian describing therelative
motion, qqq = qqq1−qqq2, ppp = ppp1 = −ppp2:

Hrelative
2PN (qqq, ppp) = H0(qqq, ppp)+

1
c2 H2(qqq, ppp)+

1
c4 H4(qqq, ppp) , (5)

whereH0(qqq, ppp) = 1
2µ ppp2+ GMµ

|qqq| (with M ≡ m1+m2 andµ = m1m2/M) corresponds
to the Newtonian approximation to the relative motion, while H2 describes 1PN
corrections andH4 2PN ones. It is well known that, at the Newtonian approximation,
H0(qqq, ppp) can be thought of as describing a ‘test particle’ of massµ orbiting around
an ‘external mass’GM. The EOB approach is ageneral relativistic generalization
of this fact. It consists in looking for an ‘external spacetime geometry’gext

µν(xλ ;GM)

such that the geodesic dynamics of a ‘test particle’ of massµ within gext
µν(xλ ,GM) is

4 We henceforth denote byF theHamiltonianversion of the radiation reaction termARR, Eq. (3),
in the (PN-expanded) equations of motion. It can be heuristically computed up to (absolute) 5.5PN
[77, 81, 82] and even 6PN [85] order by assuming that the energy radiated in gravitational waves
at infinity is balanced by a loss of the dynamical energy of thebinary system.
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equivalent(when expanded in powers of 1/c2) to the original, relative PN-expanded
dynamics (5).

Let us explain the idea, proposed in [2], for establishing a ‘dictionary’ between
the real relative-motion dynamics, (5), and the dynamics ofan ‘effective’ particle of
massµ moving in gext

µν(xλ ,GM). The idea consists in ‘thinking quantum mechan-
ically’5. Instead of thinking in terms of a classical Hamiltonian,H(qqq, ppp) (such as
Hrelative

2PN , Eq. (5)), and of its classical bound orbits, we can think in terms of the
quantized energy levelsE(n, ℓ) of the quantum bound states of the Hamiltonian
operatorH(q̂qq, p̂pp). These energy levels will depend on two (integer valued) quan-
tum numbersn andℓ. Here (for a spherically symmetric interaction, as appropriate
to Hrelative), ℓ parametrizes the total orbital angular momentum (LLL2 = ℓ(ℓ+ 1) h̄2),
while n represents the ‘principal quantum number’n= ℓ+nr +1, wherenr (the ‘ra-
dial quantum number’) denotes the number of nodes in the radial wave function. The
third ‘magnetic quantum number’m (with −ℓ ≤ m≤ ℓ) does not enter the energy
levels because of the spherical symmetry of the two-body interaction (in the center
of of mass frame). For instance, a non-relativistic Coulomb(or Newton!) interaction

H0 =
1

2µ
ppp2 +

GMµ
|qqq| (6)

gives rise to the well-known result

E0(n, ℓ) = −1
2

µ
(

GMµ
nh̄

)2

, (7)

which depends only onn (this is the famous Coulomb degeneracy). When consider-
ing the PN corrections toH0, as in Eq. (5), one gets a more complicated expression
of the form

Erelative
2PN (n, ℓ) = −1

2
µ

α2

n2

[

1+
α2

c2

(c11

nℓ
+

c20

n2

)

+
α4

c4

( c13

nℓ3 +
c22

n2ℓ2 +
c31

n3ℓ
+

c40

n4

)

]

,

(8)
where we have setα ≡ GMµ/h̄ = Gm1m2/h̄, and where we consider, for simplic-
ity, the (quasi-classical) limit wheren andℓ are large numbers. The 2PN-accurate
result (8) had been derived by Damour and Schäfer [87] as early as 1988. The di-
mensionless coefficientscpq are functions of the symmetric mass ratioν ≡ µ/M,
for instancec40 = 1

8(145−15ν +ν2). In classical mechanics (i.e. for largen andℓ),
it is called the ‘Delaunay Hamiltonian’,i.e. the Hamiltonian expressed in terms of
theaction variables6 J = ℓh̄= 1

2π
∮

pϕ dϕ , andN = nh̄= Ir +J, with Ir = 1
2π
∮

pr dr.

The energy levels (8) encode, in a gauge-invariant way, the 2PN-accurate relative
dynamics of a ‘real’ binary. Let us now consider an auxiliaryproblem: the ‘effec-
tive’ dynamics of one body, of massµ , following a geodesic in some ‘external’

5 This is related to an idea emphasized many times by John Archibald Wheeler: quantum mechan-
ics can often help us in going to the essence of classical mechanics.
6 We consider, for simplicity, ‘equatorial’ motions withm= ℓ, i.e., classically,θ = π

2 .
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(spherically symmetric) metric7

gext
µν dxµ dxν = −A(R)c2dT2 +B(R)dR2+R2(dθ 2 +sin2 θ dϕ2) . (9)

Here, thea priori unknownmetric functionsA(R) andB(R) will be constructed in
the form of expansions inGM/c2R:

A(R) = 1+a1
GM
c2R

+a2

(

GM
c2R

)2

+a3

(

GM
c2R

)3

+ · · · ;

B(R) = 1+b1
GM
c2R

+b2

(

GM
c2R

)2

+ · · · , (10)

where the dimensionless coefficientsan,bn depend onν. From the Newtonian limit,
it is clear that we should seta1 = −2. By solving (by separation of variables) the
‘effective’ Hamilton-Jacobi equation

gµν
eff

∂Seff

∂xµ
∂Seff

∂xν + µ2c2 = 0,

Seff = −Eeff t +Jeff ϕ +Seff(R) , (11)

one can straightforwardly compute (in the quasi-classical, large quantum numbers
limit) the Delaunay HamiltonianEeff(Neff,Jeff), with Neff = neff h̄, Jeff = ℓeff h̄ (where
Neff = Jeff + Ieff

R , with Ieff
R = 1

2π
∮

peff
R dR, Peff

R = ∂Seff(R)/dR). This yields a result of
the form

Eeff(neff, ℓeff) = µc2− 1
2

µ
α2

n2
eff

[

1+
α2

c2

(

ceff
11

neffℓeff
+

ceff
20

n2
eff

)

+
α4

c4

(

ceff
13

neffℓ
3
eff

+
ceff

22

n2
effℓ

2
eff

+
ceff

31

n3
effℓeff

+
ceff

40

n4
eff

)]

,

(12)

where the dimensionless coefficientsceff
pq are now functions of the unknown coeffi-

cientsan,bn entering the looked for ‘external’ metric coefficients (10).

At this stage, one needs (as in the famous AdS/CFT correspondence) to define a
‘dictionary’ between the real (relative) two-body dynamics, summarized in Eq. (8),
and the effective one-body one, summarized in Eq. (12). As, on both sides, quantum
mechanics tells us that the action variables are quantized in integers (Nreal = nh̄,
Neff = neffh̄, etc.) it is most natural to identifyn = neff andℓ = ℓeff. One then still
needs a rule for relating the two different energiesErelative

real andEeff. Ref. [2] proposed
to look for a general map between the real energy levels and the effective ones
(which, as seen when comparing (8) and (12), cannot be directly identified because

7 It is convenient to write the ‘external metric’ in Schwarzschild-like coordinates. Note that the
external radial coordinateR differs from the two-body ADM-coordinate relative distance RADM =
|qqq|. The transformation between the two coordinate systems hasbeen determined in Refs. [2, 5].
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Fig. 1 Sketch of the correspondence between the quantized energy levels of the real and effective
conservative dynamics.ndenotes the ‘principal quantum number’ (n= nr +ℓ+1, withnr = 0,1, . . .
denoting the number of nodes in the radial function), whileℓ denotes the (relative) orbital angular
momentum(LLL2 = ℓ(ℓ + 1) h̄2). Though the EOB method is purely classical, it is conceptually
useful to think in terms of the underlying (Bohr-Sommerfeld) quantization conditions of the action
variablesIR andJ to motivate the identification betweenn andℓ in the two dynamics.

they do not include the same rest-mass contribution8), namely

Eeff

µc2 −1 = f

(

Erelative
real

µc2

)

=
Erelative

real

µc2

(

1+ α1
Erelative

real

µc2 + α2

(

Erelative
real

µc2

)2

+ · · ·
)

.

(13)
The ‘correspondence’ between the real and effective energylevels is illustrated in
Fig. 1

Finally, identifyingEeff(n, ℓ)/µc2 to f (Erelative
real /µc2) yields six equations, relat-

ing the six coefficientsceff
pq(a2,a3;b1,b2) to the sixcpq(ν) and to the two energy

coefficientsα1 andα2. It is natural to setb1 = +2 (so that the linearized effective
metric coincides with the linearized Schwarzschild metricwith massM = m1+m2).
One then finds that there exists auniquesolution for the remaining five unknown
coefficientsa2,a3,b2,α1 andα2. This solution is very simple:

a2 = 0, a3 = 2ν , b2 = 4−6ν , α1 =
ν
2

, α2 = 0. (14)

8 IndeedEtotal
real = Mc2+Erelative

real = Mc2+Newtonian terms+1PN/c2+ · · · , whileEeffective= µc2+

N+1PN/c2 + · · · .
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Note, in particular, that the map between the two energies issimply

Eeff

µc2 = 1+
Erelative

real

µc2

(

1+
ν
2

Erelative
real

µc2

)

=
s−m2

1c4−m2
2c4

2m1m2c4 (15)

wheres = (E tot
real)

2 ≡ (Mc2 + Erelative
real )2 is Mandelstam’s invariant= −(p1 + p2)

2.
Note also that, at 2PN accuracy, the crucial ‘gext

00 ’ metric coefficientA(R) (which
fully encodes the energetics of circular orbits) is given bythe remarkably simple
PN expansion

A2PN(R) = 1−2u+2ν u3 , (16)

whereu≡ GM/(c2R) andν ≡ µ/M ≡ m1m2/(m1 +m2)
2.

The dimensionless parameterν ≡ µ/M varies between 0 (in the test mass
limit m1 ≪ m2) and 1

4 (in the equal-mass casem1 = m2). Whenν → 0, Eq. (16)
yields back, as expected, the well-known Schwarzschild time-time metric coeffi-
cient−gSchw

00 = 1−2u= 1−2GM/c2R. One therefore sees in Eq. (16) the rôle ofν
as adeformation parameterconnecting a well-known test-mass result to a non trivial
and new 2PN result. It is also to be noted that the 1PN EOB result A1PN(R) = 1−2u
happens to beν-independent, and therefore identical toASchw= 1−2u. This is re-
markable in view of the many non-trivialν-dependent terms in the 1PN relative
dynamics. The physically real 1PNν-dependence happens to be fully encoded in
the functionf (E) mapping the two energy spectra given in Eq. (15) above.

Let us emphasize the remarkable simplicity of the 2PN result(16). The 2PN
Hamiltonian (5) contains eleven rather complicatedν-dependent terms. After trans-
formation to the EOB format, the dynamical information contained in these eleven
coefficients getscondensedinto the very simple additional contribution+2ν u3 in
A(R), together with an equally simple contribution in the radialmetric coefficient:
(A(R)B(R))2PN = 1−6ν u2. This condensation process is even more drastic when
one goes to the next (conservative) post-Newtonian order: the 3PN level, i.e. ad-
ditional terms of orderO(1/c6) in the Hamiltonian (5). As mentioned above, the
complete obtention of the 3PN dynamics has represented quite a theoretical chal-
lenge and the final, resulting Hamiltonian is quite complicated. Even after going to
the center of mass frame, the 3PN additional contribution1

c6 H6(qqq, ppp) to Eq. (5) in-
troduces eleven new complicatedν-dependent coefficients. After transformation to
the EOB format [5], these eleven new coefficients get “condensed” into onlythree
additional terms: (i) an additional contribution toA(R), (ii) an additional contribu-
tion toB(R), and (iii) aO(ppp4) modification of the ‘external’ geodesic Hamiltonian.
For instance, the crucial 3PNgext

00 metric coefficient becomes

A3PN(R) = 1−2u+2νu3 +a4ν u4 , (17)

whereu = GM/(c2R),

a4 =
94
3
− 41

32
π2 ≃ 18.6879027, (18)
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Fig. 2 Various approximations and Padé resummation of the EOB radial potentialA(u), whereu=
GM/(c2R), for the equal-mass caseν = 1/4. The vertical dashed lines indicate the corresponding
(adiabatic) LSO location [2] defined by the conditiond2E 0

eff/dR2 = dE 0
eff/dR= 0, whereE 0

eff is the
effective energy along the sequence of circular orbits (i.e., whenPeff

R = 0).

while the additional contribution toB(R) gives

D3PN(R) ≡ (A(R)B(R))3PN = 1−6νu2+2(3ν −26)νu3 . (19)

Remarkably, it is found that the very simple 2PN energy map Eq. (15) does not need
to be modified at the 3PN level.

The fact that the 3PN coefficienta4 in the crucial ‘effective radial potential’
A3PN(R), Eq. (17), is rather large and positive indicates that theν-dependent non-
linear gravitational effects lead, for comparable masses(ν ∼ 1

4), to a last stable (cir-
cular) orbit (LSO) which has a higher frequency and a larger binding energy than
what a naive scaling from the test-particle limit(ν → 0) would suggest. Actually,
the PN-expanded form (17) ofA3PN(R) does not seem to be a good representation
of the (unknown) exact functionAEOB(R) when the (Schwarzschild-like) relative
coordinateR becomes smaller than about 6GM/c2 (which is the radius of the LSO
in the test-mass limit). In fact, by continuity with the test-mass case, one a priori
expects thatA3PN(R) always exhibits a simple zero defining an EOB “effective hori-
zon” that is smoothly connected to the Schwarzschild event horizon atR= 2GM/c2

whenν → 0. However, the large value of thea4 coefficient does actually prevent
A3PN to have this property whenν is too large, and in particular whenν = 1/4, as it
is visually explained in Fig. 2. The black curves in the figurerepresent theA func-
tion at 1PN (solid line), 2PN (dashed line) and 3PN (dash-dotline) approximation:
while the 2PN curve still has a simple zero, the 3PN does not, due to the large value
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of a4. It was therefore suggested [5] to further resum9 A3PN(R) by replacing it by a
suitable Padé(P) approximant. For instance, the replacement ofA3PN(R) by

A1
3(R) ≡ P1

3 [A3PN(R)] =
1+n1u

1+d1u+d2u2 +d3u3 (20)

ensures that theν = 1
4 case is smoothly connected with theν = 0 limit, as Fig. 2

clearly shows10.
The use of Eq. (20) was suggested before one had any (reliable) non-perturbative

information on the binding of close black hole binaries. Later, a comparison with
some “waveless” numerical simulations of circular black hole binaries [89] has
given some evidence that Eq. (20) is physically adequate. InRefs. [4, 89] it was also
emphasized that, in principle, the comparison between numerical data and EOB-
based predictions should allow one to determine the effect of the unknown higher
PN contributions to Eq. (17). For instance, one can add a 4PN-like term +a5νu5

or a 5PN-like term+a6νu6 in Eq. (17), and then Padé the resulting radial function.
The newresummed Apotential will exhibit an explicit dependence ona5 (at 4PN)
or (a5,a6) (at 5PN), that is

A1
4(R;a5,ν) = P1

4

[

A3PN(R)+ νa5u
5
]

, (21)

or
A1

5(R;a5,a6,ν) = P1
5

[

A3PN(R)+ νa5u
5 + νa6u6

]

. (22)

Comparing the predictions ofA1
4(R;a5,ν) orA1

5(R;a5,a6,ν) to numerical data might
then determine what is the physically preferred “effective” value of the unknown co-
efficienta5 (if working at 4PN effective accuracy) or of the doublet(a5,a6) (when
including also 5PN corrections). For illustrative purposes, Fig. 2 shows the effect
of the Padé resummation witha5 = a6 = 0 andν = 1/4. Note that the Padé re-
summation procedure is injecting some “information” beyond that contained in the
numerical values of the PN expansion coefficientsan’s of A(R). As a consequence,
the operation of Padéing and of restrictinga5 anda6 to the (3PN-compatible) val-
uesa5 = 0 = a6 do not commute:A1

4(R;0,1/4) 6= A1
5(R;0,0,1/4) 6= A1

3(R,1/4).
In this respect, let us also mention that the 4PNa5-dependent Padé approximant
A1

4(R;a5,ν) exactly reduces to the 3PN Padé approximantA1
3(R;ν) whena5 is re-

placed by the following function ofν

a3PN
5 (ν) ≡ ν(3392−123π2)2

18432(ν −4)
. (23)

9 The PN-expanded EOB building blocksA(R),B(R), . . . already represent aresummationof the
PN dynamics in the sense that they have “condensed” the many terms of the original PN-expanded
Hamiltonian within a very concise format. But one should notrefrain to further resum the EOB
building blocks themselves, if this is physically motivated.
10 We recall that the coefficientn1 and (d1,d2,d3) of the Padé approximant are determined by
the condition that the first four terms of the Taylor expansion of A1

3 in powers ofu = GM/(c2R)
coincide withA3PN.
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Note that the value of theA1
3-reproducing effective 4PN coefficienta3PN

5 (ν) in the
equal mass case isa3PN

5 (1/4) ≃ −17.158031. This is numerically compatible with
the valuea5 = −17.16 quoted in Ref. [28] (but note that the correctA1

3-reproducing
4PN coefficient depends on the symmetric mass ratioν). Similarly, when work-
ing at the 5PN level,A1

5(R;a5,a6,ν) exactly reduces to the 4PN Padé approximant
A1

4(R;a5,ν) whena6 is replaced by the following function of bothν anda5:

a4PN
6 (ν,a5) ≡

ν
(

2304a2
5+96

(

3392−123π2
)

a5 +
(

3776−123π2
)(

32(3ν +94)−123π2
))

24[(3776−123π2)ν −1536]
.

(24)

The use of numerical relativity data to constrain the valuesof the higher PN param-
eters(a5,a6) is an example of the usefulflexibility [88] of analytical approaches:
the fact that one can tap numerically-based, non-perturbative information to im-
prove the EOB approach. The flexibility of the EOB approach related to the use of
the a5-dependent radial potentialA1

4(R;a5,ν) has been exploited in several recent
works [33, 37, 38, 39, 28, 41] focusing on the comparison of EOB-based wave-
forms with waveforms computed via numerical relativity simulations. Collectively,
all these studies have shown that it is possible to constraina5 (together with other
flexibility parameters related to the resummation of radiation reaction, see below)
so as to yield an excellent agreement (at the level of the published numerical errors)
between EOB and numerical relativity waveforms. The result, however, cannot be
summarized by stating thata5 is constrained to be in the vicinity of a special nu-
merical value. Rather, one finds a strong correlation between a5 and other parame-
ters, notably the radiation reaction parametervpole introduced below. More recently,
Ref. [40] could get rid of the flexibility parameters (such asvpole) related to the
resummation of radiation reaction, and has shown that one can get an excellent
agreement with numerical relativity data by usingonly the flexibility in the doublet
(a5,a6) (the other parameters being essentially fixed internally tothe formalism).
We shall discuss this result further in Sec. 5 below.

The same kind ofν-continuity argument discussed so far for theA function needs
to be applied also to theD(R)3PN function defined in Eq. (19). A straightforward
way to ensure that theD function stays positive whenRdecreases (since it isD = 1
whenν → 0) is to replaceD3PN(R) by D0

3(R) ≡ P0
3 [D3PN(R)], whereP0

3 indicates
the(0,3) Padé approximant and explicitly reads

D0
3(R) =

1
1+6νu2−2(3ν −26)νu3 . (25)

The resummation ofA (via Padé approximants) is necessary for ensuring the exis-
tence andν-continuity of alast stable orbit(see vertical lines in Fig. 2), as well as
the existence andν-continuity of alast unstable orbit, i.e. of aν-deformed analog
of the light ringR = 3GM/c2 whenν → 0. We recall that, whenν = 0, the light
ring corresponds to the circular orbit of a massless particle, or of an extremely rel-
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ativistic massive particle, and is technically defined by looking for the maximum
of A(R)/R2, i.e. by solving(d/dR)(A(R)/R2) = 0. Whenν 6= 0 and when consid-
ering the quasi-circular plunge following the crossing of the last stable orbit, the
“effective” meaning of the “ν-deformed light ring” (technically defined by solving
(d/dR)(A(R : ν)/R2) = 0) is to entail, in its vicinity, the existence of a maximum
of the orbital frequencyΩ = dϕ/dt (the resummation ofD(R) plays a useful role
in ensuring theν-continuity of this plunge behavior).

4 Description of radiation-reaction effects in the Effective One
Body approach

In the previous Section we have described how the EOB method encodes the con-
servative part of the relative orbital dynamics into the dynamics of an ’effective’
particle. Let us now briefly discuss how to complete the EOB dynamics by defining
someresummedexpressions describing radiation reaction effects. One isinterested
in circularized binaries, which have lost their initial eccentricity under the influence
of radiation reaction. For such systems, it is enough (as shown in [3]) to include a
radiation reaction force in thepϕ equation of motion only. More precisely, we are
using phase space variablesr, pr ,ϕ , pϕ associated to polar coordinates (in the equa-
torial planeθ = π

2 ). Actually it is convenient to replace the radial momentumpr by
the momentum conjugate to the ‘tortoise’ radial coordinateR∗ =

∫

dR(B/A)1/2, i.e.
PR∗ = (A/B)1/2PR. The real EOB Hamiltonian is obtained by first solving Eq. (15)
to getEtotal

real =
√

s in terms ofEeff, and then by solving the effective Hamiltonian-
Jacobi equation11 to getEeff in terms of the effective phase space coordinatesqqqeff
andpppeff. The result is given by two nested square roots (we henceforth setc = 1):

ĤEOB(r, pr∗ ,ϕ) =
Hreal

EOB

µ
=

1
ν

√

1+2ν (Ĥeff −1) , (26)

where

Ĥeff =

√

√

√

√p2
r∗ +A(r)

(

1+
p2

ϕ

r2 +z3
p4

r∗
r2

)

, (27)

with z3 = 2ν (4−3ν). Here, we are using suitably rescaled dimensionless (effective)
variables:r = R/GM, pr∗ = PR∗/µ , pϕ = Pϕ/µ GM, as well as a rescaled timet =
T/GM. This leads to equations of motion(r,ϕ , pr∗ , pϕ) of the form

11 Completed by theO(ppp4) terms that must be introduced at 3PN.
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dϕ
dt

=
∂ ĤEOB

∂ pϕ
≡ Ω , (28)

dr
dt

=

(

A
B

)1/2 ∂ ĤEOB

∂ pr∗
, (29)

dpϕ

dt
= F̂ϕ , (30)

dpr∗
dt

= −
(

A
B

)1/2 ∂ ĤEOB

∂ r
, (31)

which explicitly read

dϕ
dt

=
Apϕ

νr2ĤĤeff
≡ Ω , (32)

dr
dt

=

(

A
B

)1/2 1

νĤĤeff

(

pr∗ +z3
2A
r2 p3

r∗

)

, (33)

dpϕ

dt
= F̂ϕ , (34)

dpr∗
dt

= −
(

A
B

)1/2 1

2νĤĤeff

{

A′ +
p2

ϕ

r2

(

A′− 2A
r

)

+z3

(

A′

r2 − 2A
r3

)

p4
r∗

}

, (35)

whereA′ = dA/dr. As explained above the EOB metric functionA(r) is defined
by Padé resumming the Taylor-expanded result (10) obtained from the matching
between the real and effective energy levels (as we were mentioning, one uses a
similar Padé resumming forD(r) ≡ A(r)B(r)). One similarly needs to resum̂Fϕ ,
i.e., theϕ component of the radiation reaction which has been introduced on the
r.h.s. of Eq. (30). During the quasi-circular inspiral̂Fϕ is known (from the PN
work mentioned in Section 2 above) in the form of a Taylor expansion of the form

F̂Taylor
ϕ = −32

5
ν Ω5 r4

ω F̂Taylor(vϕ) , (36)

wherevϕ ≡ Ω rω , andrω ≡ r[ψ(r, pϕ )]1/3 is a modified EOB radius, withψ being
defined as

ψ(r, pϕ) =
2
r2

(

dA(r)
dr

)−1


1+2ν





√

√

√

√A(r)

(

1+
p2

ϕ

r2

)

−1







 , (37)

which generalizes the 2PN-accurate Eq. (22) of Ref. [90]. InEq. (36) we have de-
fined

F̂Taylor(v) = 1+A2(ν)v2 +A3(ν)v3 +A4(ν)v4 +A5(ν)v5

+A6(ν, logv)v6 +A7(ν)v7 +A8(ν = 0, logv)v8 , (38)
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Fig. 3 The extreme-mass-ratio limit (ν = 0): the Newton-normalized energy flux emitted by a
particle on circular orbits. The figure illustrates the scattering of the standard Taylor expansion
of the flux around the “exact” numerical result (computed up to ℓ = 6) obtained via perturbation
theory.

where we have added to the known 3.5PN-accurate comparable-mass result the
small-mass-ratio 4PN contribution [91]. We recall that thesmall-mass contribution
to the Newton-normalized flux is actually known up to 5.5PN order, i.e. tov11 in-
cluded. The standard Taylor expansion of the flux, (38), has rather poor convergence
properties when considered up to the LSO. This is illustrated in Fig. 3 in the small-
mass limitν = 0. The convergence of the PN-expanded flux can be studied in detail
in theν = 0 limit, because in this case one can compute an “exact” result numeri-
cally (using black hole perturbation theory [92, 93]). The “exact” energy flux shown
in Fig. 3 is obtained as a sum over multipoles

Fℓmax=
ℓmax

∑
ℓ=2

ℓ

∑
m=1

Fℓm, (39)

whereFℓm = Fℓ|m| already denotes the sum of two equal contributions corresponding
to +mand−m (m 6= 0 asFℓ0 vanishes for circular orbits). To be precise, the “exact”
result exhibited in Fig. 3 is given by the rather accurate approximationF(6) obtained
by choosingℓmax= 6; i.e., by truncating the sum overℓ in Eq. (39) beyondℓ = 6. In
addition, one normalizes the result onto the “Newtonian” (i.e., quadrupolar) result
FN

22 = 32/5(µ/M)2v10. In other words, the solid line in Fig. 3 represents the quantity
F̂ ≡ F (6)/FN

22.
For clarity, we selected only three Taylor approximants: 3PN (v6), 3.5PN(v7)

and 5.5PN (v11). These three values suffice to illustrate the rather large scatter
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among Taylor approximants, and the fact that, near the LSO, the convergence to-
wards the exact value (solid line) is rather slow, and non monotonic. [See also Fig. 1
in Ref. [94] and Fig. 3 of Ref. [49] for fuller illustrations of the scattered and non
monotonic way in which successive Taylor expansions approach the numerical re-
sult.] The results shown in Fig. 3 elucidate that the Taylor series (38) is inadequate
to give a reliable representation of the energy loss during the plunge. That is the rea-
son why the EOB formalism advocates the use of a “resummed” version ofFϕ , i.e.
a nonpolynomial function replacing Eq. (38) at the r.h.s. ofthe Hamilton’s equation
(and coinciding with it in in thev/c≪ 1 limit).

Two methods have been proposed to perform such a resummation. The first
method, that strongly relies on the use of Padé approximants, was introduced
by Damour, Iyer and Sathyaprakash [49] and, with different degrees of sophis-
tication, has been widely used in the literature dealing with the EOB formal-
ism [3, 6, 31, 35, 32, 33, 34, 36, 37, 38, 39, 28, 41]. The secondresummation
method has been recently introduced by Damour, Iyer and Nagar [50] and exploited
to provide a self-consistent expression of the radiation reaction force in Ref. [40].
This latter resummation procedure is based on (i) a new multiplicative decomposi-
tion of the gravitational metric waveform which yields a (ii) resummation of each
multipolar contribution to the energy flux. The use of Padé approximants is a useful
tool (but not the only one) that proves helpful to further improve the convergence
properties of each multipolar contribution to the flux. The following two Sections
are devoted to highlighting the main features of the two methods. For pedagogi-
cal reasons the calculation is first done in the small-mass limit (ν → 0) and then
generalized to the comparable mass case.

4.1 Resummation of̂FTaylor using a one-parameter family of Pad́e
approximants: tuningvpole

Following [49], one resumŝFTaylor by using the following Padé resummation ap-
proach. First, one chooses a certain numbervpole which is intended to represent the
value of the orbital velocityvϕ at which the exact angular momentum flux would
become infinite if one were to formally analytically continue F̂ϕ alongunstable
circular orbits below the Last Stable Orbit (LSO): then, givenvpole, one defines the
resummedF̂(vϕ ) as

F̂ resummed(vϕ) =

(

1− vϕ

vpole

)−1

P4
4

[(

1− vϕ

vpole

)

F̂Taylor(vϕ ;ν = 0)

]

, (40)

whereP4
4 denotes a(4,4) Padé approximant.

If one first follows the reasoning line of [49], and fixes the location of the pole in

the resummed flux at the standard Schwarzschild valuev(ν=0)
pole = 1/

√
3, one gets the

result in Fig. 4. By comparison to Fig. 3, one can appreciate the significantly better
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Fig. 4 The extreme-mass-ratio limit (ν = 0). Padé resummation of the Taylor expandend energy
flux of Fig. 3 as proposed in Ref. [49] withvpole = 1/

√
3. The sequence of Padé approximants is

less scattered than the corresponding Taylor ones and closer to the exact result.

(and monotonic) way in which successivePad́e approximantsapproach (inL∞ norm
on the full interval 0< x< xLSO) the numerical result. Ref. [49] also showed that the
observationally relevant overlaps (of both the “faithfulness” and the “effectualness”
types) between analytical and numerical adiabatic signalswere systematically better
for Padé approximants than for Taylor ones. Note that this figure is slightly different
from the corresponding results in panel(b)of Fig. 3 in [49] (in particular, the present
result exhibits a better “convergence” of thev11 curve). This difference is due to the
new treatment of the logarithmic terms∝ logx. Instead of factoring them out in
front as proposed in [49], we consider them here (following [37]) as being part of
the “Taylor coefficients”fn(logx) when Padéing the flux function.

A remarkable improvement in the (L∞) closeness between̂FPadé-resummed(v) and
F̂Exact(v) can be obtained, as suggested by Damour and Nagar [37] (following ideas
originally introduced in Ref. [97]), by suitably flexing thevalue ofvpole. As pro-
posed in Ref. [37],vpole is tuned until the difference between the resummed and the
exact flux at the LSO is zero (or at least smaller than 10−4). The resulting closeness
between the exact and tuned-resummed fluxes is illustrated in Fig. 5. It is so good
(compared to the previous figures, where the differences were clearly visible) that
we need to complement the figure with Table 1. This table compares in a quantitative
way the result of the “untuned” Padé resummation (vpole= 1/

√
3) of Ref. [49] to the

result of the “vpole-tuned” Padé resummation described here. Defining the function
∆ F̂(v;vpole) = F̂Resummed(v;vpole)− F̂Exact(v) measuring the difference between a
resummed and the exact energy flux, Table 1 lists both the values of∆ F̂ atv= vLSO

and itsL∞ norm on the interval 0< v < vLSO for both the untuned and tuned cases.
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Fig. 5 The extreme mass ratio limit (ν = 0). Same of Fig. 4 butflexingthe value of the parameter
vpole so to improve the agreement with the exact result.

Table 1 Errors in the flux of the two (untuned or tuned) Padé resummation procedures. From
left to right, the columns report: the PN-order; the difference between the resummed and the exact
flux, ∆ F̂ = F̂Resummed− F̂Exact, at the LSO, and theL∞ norm of∆ F̂ , ||∆ F̂||∞ (computed over the
interval 0< v < vLSO), for vpole = 1/

√
3; theflexedvalue ofvpole used here;∆̂F at the LSO and

the correspondingL∞ norm (over the same interval) for the flexed value ofvpole.

PN-order∆ F̂1/
√

3
LSO ||∆ F̂||1/

√
3

∞ vpole ∆ F̂
vpole
LSO ||∆ F̂||vpole

∞

3 (v6) -0.048 0.048 0.5334 7.06×10−5 0.00426
3.5 (v7) -0.051 0.051 0.5425 5.50×10−5 0.00429
5.5 (v11) -0.022 0.022 0.5416 2.52×10−5 0.000854

Note, in particular, how thevpole-flexing approach permits to reduce theL∞ norm
over this interval by more than an order of magnitude with respect to the untuned
case. Note that the closeness between the tuned flux and the exact one is remarkably
good (4.3×10−3) already at the 3PN level.

It has recently been shown in several works [37, 38, 39, 41] that theflexibility
in the choice ofvpole could be advantageously used to get a close agreement with
NR data (at the level of the numerical error). We will not comment here any further
on thisparameter-dependentresummation procedure of the energy flux and address
the reader to the aforementioned references for further details.
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4.2 Parameter-free resummation of waveform and energy flux

In this section we shall introduce the reader to the new resummation technique for
the multipolar waveform (and thus for the energy flux) introduced in Ref. [36, 37]
and perfected in [50]. The aim is to summarize here the main ideas discussed in [50]
as well as to collect most of the relevant equations that are useful for implementa-
tion in the EOB dynamics. To be precise, the new results discussed in Ref. [50] are
twofold: on the one hand, that work generalized theℓ = m= 2 resummed waveform
of [36, 37] to higher multipoles by using the most accurate currently known PN-
expanded results [99, 100, 101] as well as the higher PN termswhich are known
in the test-mass limit [95, 96]; on the other hand, it introduced anew resumma-
tion procedurewhich consists in considering a new theoretical quantity, denoted as
ρℓm(x), which enters the(ℓ,m) waveform (together with other building blocks, see
below) only through itsℓ-th power:hℓm ∝ (ρℓm(x))ℓ. Here, and below,x denotes the
invariant PN-ordering parameterx≡ (GMΩ/c3)2/3.

The main novelty introduced by Ref. [50] is to write the(ℓ,m) multipolar wave-
form emitted by a circular nonspinning compact binary as theproductof several
factors, namely

h(ε)
ℓm =

GMν
c2R

n(ε)
ℓmcℓ+ε(ν)x(ℓ+ε)/2Yℓ−ε,−m

(π
2

,Φ
)

Ŝ(ε)
eff Tℓmeiδℓmρℓ

ℓm. (41)

Hereε denotes the parity ofℓ+m (ε = π(ℓ+m)), i.e.ε = 0 for “even-parity” (mass-
generated) multipoles (ℓ+m even), andε = 1 for “odd-parity” (current-generated)

ones (ℓ+modd);n(ε)
ℓm andcℓ+ε(ν) are numerical coefficients;̂S(ε)

eff is aµ-normalized
effective source (whose definition comes from the EOB formalism); Tℓm is a re-
summed version [36, 37] of an infinite number of “leading logarithms” entering the
tail effects[69, 103];δℓm is a supplementary phase (which corrects the phase effects
not included in thecomplextail factor Tℓm), and, finally,(ρℓm)ℓ denotes theℓ-th
power of the quantityρℓm which is the new building block introduced in [50]. Note
that in previous papers [36, 37] the quantity(ρℓm)ℓ was denoted asfℓm and we will
mainly use this notation below. Before introducing explicitly the various elements
entering the waveform (41) it is convenient to decomposehℓm as

hℓm = h(N,ε)
ℓm ĥ(ε)

ℓm, (42)

whereh(N,ε)
ℓm is the Newtonian contribution and̂h(ε)

ℓm ≡ Ŝ(ε)
eff Tℓmeiδℓm fℓm represents a

resummed version of all the PN corrections. The PN correcting factorĥ(ε)
ℓm, as well

as all its building blocks, has the structurêh(ε)
ℓm = 1+O(x).

Entering now in the discussion of the explicit form of the elements entering
Eq. (41), we have that theν-independent numerical coefficients are given by
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n(0)
ℓm = (im)ℓ

8π
(2ℓ+1)!!

√

(ℓ+1)(ℓ+2)

ℓ(ℓ−1)
, (43)

n(1)
ℓm = −(im)ℓ

16π i
(2ℓ+1)!!

√

(2ℓ+1)(ℓ+2)(ℓ2−m2)

(2ℓ−1)(ℓ+1)ℓ(ℓ−1)
, (44)

while the ν-dependent coefficientscℓ+ε(ν) (such that|cℓ+ε(ν = 0)| = 1), can be
expressed in terms ofν (as in Ref. [99, 101]), although they are more conveniently
written in terms of the two mass ratiosX1 = m1/M andX2 = m2/M in the form

cℓ+ε(ν) = Xℓ+ε−1
2 +(−)ℓ+εXℓ+ε−1

1

= Xℓ+ε−1
2 +(−)mXℓ+ε−1

1 . (45)

In the second form of the equation we have used the fact that, as ε = π(ℓ + m),
π(ℓ+ ε) = π(m).

Let us turn now to discussing the structure of theŜ(ε)
eff andTℓm factors. To this aim,

following Ref. [50], we recall that the along the sequence ofEOB circular orbits,
which are determined by the condition∂u

{

A(u)[1+ j20u2]
}

= 0, the effective EOB
Hamiltonian (per unitµ mass) reads

Ĥeff =
Heff

µ
=
√

A(u)(1+ j20 u2) (circular orbits). (46)

where the squared angular momentum is given by

j20(u) = − A′(u)

(u2A(u))′
(circular orbits), (47)

with the prime denotingd/du. Inserting thisu-parametric representation ofj2

in Eq. (46) defines theu-parametric representation of the effective Hamiltonian
Ĥeff(u). In the even-parity case (corresponding to mass moments), since the lead-
ing order source of gravitational radiation is given by the energy density, Ref. [50]
defined the even-parity “source factor” as

Ŝ(0)
eff (x) = Ĥeff(x) ℓ+m even, (48)

wherex = (GMΩ/c3)2/3. In the odd-parity case, they explored two, equally mo-
tivated, possibilities. The first one consists simply in still factoring Ĥeff(x); i.e., in

definingŜ(1,H)
eff = Ĥeff(x) also whenℓ+ m is odd. The second one consists in fac-

toring the angular momentumJ . Indeed, the angular momentum densityεi jkx jτ0k

enters as a factor in the (odd-parity) current moments, andJ occurs (in the small-ν
limit) as a factor in the source of the Regge-Wheeler-Zerilli odd-parity multipoles.
This leads us to define as second possibility

Ŝ(1,J)
eff = ĵ(x) ≡ x1/2 j(x) ℓ+m odd, (49)
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where ĵ denotes what can be called the “Newton-normalized” angularmomentum,
namely the ratioĵ(x) = j(x)/ jN(x) with jN(x) = 1/

√
x. In Ref. [50] the relative

merits of the two possible choices were discussed. Althoughthe analysis in the
adiabaticν = 0 limit showed that they are equivalent from the practical point of
view (because they both yield waveforms that are very close to the exact numerical
result) we prefer to consider only theJ-factorization in the following, that we will
treat as our standard choice.

The second building block in our factorized decomposition is the “tail factor”
Tℓm (introduced in Refs. [36, 37]). As mentioned above,Tℓm is a resummed version
of an infinite number of “leading logarithms” entering the transfer function between
the near-zone multipolar wave and the far-zone one, due totail effectslinked to
its propagation in a Schwarzschild background of massMADM = Hreal

EOB. Its explicit
expression reads

Tℓm =
Γ (ℓ+1−2iˆ̂k)

Γ (ℓ+1)
eπ ˆ̂ke2iˆ̂k log(2kr0), (50)

wherer0 = 2GM and ˆ̂k ≡ GHreal
EOBmΩ andk ≡ mΩ . Note thatˆ̂k differs fromk by a

rescaling involving thereal (rather than theeffective) EOB Hamiltonian, computed
at this stage along the sequence of circular orbits.

The tail factorTℓm is a complex number which already takes into account some
of the dephasing of the partial waves as they propagate out from the near zone to
infinity. However, as the tail factor only takes into accountthe leading logarithms,
one needs to correct it by a complementary dephasing term,eiδℓm, linked to sublead-
ing logarithms and other effects. This subleading phase correction can be computed

as being the phaseδℓm of the complex ratio between the PN-expandedĥ(ε)
ℓm and the

above defined source and tail factors. In the comparable-mass case (ν 6= 0), the 3PN
δ22 phase correction to the leading quadrupolar wave was originally computed in
Ref. [37] (see also Ref. [36] for theν = 0 limit). Full results for the subleading par-
tial waves to the highest possible PN-accuracy by starting from the currently known
3PN-accurateν-dependent waveform [101] have been obtained in [50].

The last factor in the multiplicative decomposition of the multipolar waveform
can be computed as being the modulusfℓm of the complex ratio between the PN-

expanded̂h(ε)
ℓm and the above defined source and tail factors. In the comparable mass

case (ν 6= 0), the f22 modulus correction to the leading quadrupolar wave was com-
puted in Ref. [37] (see also Ref. [36] for theν = 0 limit). For the subleading partial
waves, Ref. [50] explicitly computed the otherfℓm’s to the highest possible PN-
accuracy by starting from the currently known 3PN-accurateν-dependent wave-
form [101]. In addition, as originally proposed in Ref. [37], to reach greater accu-
racy the fℓm(x;ν)’s extracted from the 3PN-accurateν 6= 0 results are completed
by adding higher order contributions coming from theν = 0 results [95, 96]. In
the particularf22 case discussed in [37], this amounted to adding 4PN and 5PN
ν = 0 terms. This “hybridization” procedure was then systematically pursued for
all the other multipoles, using the 5.5PN accurate calculation of the multipolar de-
composition of the gravitational wave energy flux of Refs. [95, 96]. Note that such
hybridization procedure isnot equivalent to the straightforward hybrid sum ansatz,
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h̃ℓm = h̃known
ℓm (ν)+ h̃higher

ℓm (ν = 0) (whereh̃ℓm ≡ hℓm/ν) that one may have thought
to implement.

In the even-parity case, the determination of the modulusfℓm is unique. In the
odd-parity case, it depends on the choice of the source which, as explained above,
can be connected either to the effective energy or to the angular momentum. We will
consider both cases and distinguish them by adding either the labelH or J to the
correspondingfℓm. Note, in passing, that, since in both cases the factorized effective
source term (Heff or J ) is a real quantity, the phasesδℓm’s are the same.

The above explained procedure defines thefℓm’s as Taylor-expanded PN series
of the type

fℓm(x;ν) = 1+cfℓm
1 (ν)x+cfℓm

2 (ν)x2 +cfℓm
3 (ν, log(x))x3 + . . . (51)

Note that one of the virtues of our factorization is to have separated the half-integer

powers ofx appearing in the usual PN-expansion ofh(ε)
ℓm from the integer powers,

the tail factor, together with the complementary phase factor eiδℓm, having absorbed
all the half-integer powers. In Ref. [39] all thefℓm’s (both for theH andJ choices)
have been computed up to the highest available (ν-dependent or not) PN accuracy.
In the formulas for thefℓm’s given below we “hybridize” them by adding to the
knownν-dependent coefficientscfℓm

n (ν) in Eq. (51) theν = 0 value of the higher
order coefficients:cfℓm

n′ (ν = 0). The 1PN-accuratefℓm’s for ℓ+meven and and also
for ℓ+ m odd can be written down for allℓ. The complete result for thefℓm’s that
are known with an accuracy higher than 1PN are listed in Appendix B of Ref. [39].
Here, for illustrative purposes, we quote only the lowestf even

ℓm and f odd,J
ℓm up toℓ = 3

included.

f22(x;ν) = 1+
1
42

(55ν −86)x+

(

2047ν2−6745ν −4288
)

1512
x2

+

(

114635ν3

99792
− 227875ν2

33264
+

41
96

π2ν − 34625ν
3696

− 856
105

eulerlog2(x)+
21428357
727650

)

x3

+

(

36808
2205

eulerlog2(x)−
5391582359
198648450

)

x4

+

(

458816
19845

eulerlog2(x)−
93684531406
893918025

)

x5 +O(x6), (52)

f J
21(x;ν) = 1+

(

23ν
42

− 59
28

)

x+

(

85ν2

252
− 269ν

126
− 5

9

)

x2

+

(

88404893
11642400

− 214
105

eulerlog1(x)

)

x3

+

(

6313
1470

eulerlog1(x)−
33998136553
4237833600

)

x4 +O(x5), (53)
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f33(x;ν) = 1+

(

2ν − 7
2

)

x+

(

887ν2

330
− 3401ν

330
− 443

440

)

x2

+

(

147471561
2802800

− 78
7

eulerlog3(x)

)

x3 +

(

39 eulerlog3(x)−
53641811
457600

)

x4 +O(x5),

(54)

f J
32(x;ν) = 1+

320ν2−1115ν +328
90(3ν −1)

x+
39544ν3−253768ν2+117215ν−20496

11880(3ν −1)
x2

+

(

110842222
4729725

− 104
21

eulerlog2(x)

)

x3 +O(x4), (55)

f31(x;ν) = 1+

(

−2ν
3

− 13
6

)

x+

(

−247ν2

198
− 371ν

198
+

1273
792

)

x2

+

(

400427563
75675600

− 26
21

eulerlog1(x)

)

x3 +

(

169
63

eulerlog1(x)−
12064573043
1816214400

)

x4 +O(x5).

(56)

For convenience and readability, we have introduced the following “eulerlog” func-

tions eulerlogm(x) eulerlogm(x)= γE + log2+
1
2

logx+ logm, whereγE = 0.57721. . .

is Euler’s constant.
The decomposition of the total PN-correction factorĥ(ε)

ℓm into several factors is
in itself a resummation procedure which has already improved the convergence of
the PN series one has to deal with: indeed, one can see that thecoefficients en-
tering increasing powers ofx in the fℓm’s tend to be systematically smaller than

the coefficients appearing in the usual PN expansion ofĥ(ε)
ℓm. The reason for this is

essentially twofold: (i) the factorization ofTℓm has absorbed powers ofmπ which

contributed to make large coefficients inĥ(ε)
ℓm, and (ii) the factorization of either̂Heff

or ĵ has (in theν = 0 case) removed the presence of an inverse square-root sin-
gularity located atx = 1/3 which caused the coefficient ofxn in any PN-expanded
quantity to grow as 3n as n → ∞. To prevent some potential misunderstandings,
let us emphasize that we are talking here about a singularityentering the analytic
continuation (to larger values ofx) of a mathematical functionh(x) defined (for
small values ofx) by considering the formal adiabatic circular limit. The point is
that, in theν → 0 limit, the radius of convergence and therefore the growth with n
of the PN coefficients ofh(x) (Taylor-expanded atx = 0), are linked to the singu-
larity of the analytically continuedh(x) which is nearest tox = 0 in the complex
x-plane. In theν → 0 case, the nearest singularity in the complexx-plane comes
from the source factor̂Heff(x) or ĵ(x) in the waveform and is located at the light-
ring xLR(ν = 0) = 1/3. In theν 6= 0 case, the EOB formalism transforms the latter
(inverse square-root) singularity in a more complicated (“branching”) singularity
wheredĤeff/dx andd ĵ/dx have inverse square-root singularities located at what
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is called [3, 31, 33, 38, 37] the (Effective)12 “EOB-light-ring”, i.e., the (adiabatic)

maximum ofΩ , xadiab
ELR (ν) ≡

(

MΩadiab
max

)2/3
& 1/3.

Despite this improvement, the resulting “convergence” of the usual Taylor-
expandedfℓm(x)’s quoted above does not seem to be good enough, especially near
or below the LSO, in view of the high-accuracy needed to definegravitational wave
templates. For this reason, Refs. [36, 37] proposed to further resum thef22(x) func-
tion via a Padé (3,2) approximant,P3

2{ f22(x;ν)}, so as to improve its behavior in the
strong-field-fast-motion regime. Such a resummation gave an excellent agreement
with numerically computed waveforms, near the end of the inspiral and during the
beginning of the plunge, for different mass ratios [36, 38, 39]. As we were mention-
ing above, a new route for resummingfℓm was explored in Ref. [50]. It is based on
replacingfℓm by its ℓ-th root, say

ρℓm(x;ν) = [ fℓm(x;ν)]1/ℓ. (57)

The basic motivation for replacingfℓm byρℓm is the following: the leading “Newtonian-

level” contribution to the waveformh(ε)
ℓm contains a factorωℓrℓ

harmvε whererharm is
the harmonic radial coordinate used in the MPM formalism [66, 68] . When com-
puting the PN expansion of this factor one has to insert the PNexpansion of the
(dimensionless) harmonic radial coordinaterharm, rharm= x−1(1+c1x+O(x2)), as
a function of the gauge-independent frequency parameterx. The PN re-expansion of
[rharm(x)]ℓ then generates terms of the typex−ℓ(1+ ℓc1x+ ....). This is one (though
not the only one) of the origins of 1PN corrections inhℓm and fℓm whose coefficients
grow linearly withℓ. The study of [50] has pointed out that theseℓ-growing terms
are problematic for the accuracy of the PN-expansions. Our replacement offℓm by
ρℓm is a cure for this problem. More explicitly, the the investigation of 1PN correc-
tions to GW amplitudes [66, 68, 99] has shown that, in the even-parity case (but see
also Appendix A of Ref. [50] for the odd-parity case),

cfℓm
1 (ν) = −ℓ

(

1− ν
3

)

+
1
2

+
3
2

cℓ+2(ν)

cℓ(ν)
− bℓ(ν)

cℓ(ν)
− cℓ+2(ν)

cℓ(ν)

m2(ℓ+9)

2(ℓ+1)(2ℓ+3)
,

(58)

wherecℓ(ν) is defined in Eq. (45) and

bℓ(ν) ≡ Xℓ
2 +(−)ℓXℓ

1. (59)

Focusing on theν = 0 case for simplicitly (since theν dependence ofcfℓm
1 (ν) is

quite mild [50]), the above result shows that the PN expansion of fℓm starts as

f even
ℓm (x;0) = 1− ℓx

(

1− 1
ℓ

+
m2(ℓ+9)

2ℓ(ℓ+1)(2ℓ+3)

)

+O(x2). (60)

12 Beware that this “Effective EOB-light-ring” occurs for a circular-orbit radius slightly larger
than the purely dynamical (circular) EOB-light-ring (where Heff andJ would formally become
infinite).
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Fig. 6 Performance of the new resummation procedure described in Ref. [50]. The total GW flux
F̂ (up to ℓmax = 6) computed from inserting in Eq. (62) the factorized waveform (41) with the
Taylor-expandedρℓm’s (with either 3PN or 5PN accuracy forρ22) is compared with the “exact”
numerical data.

The crucial thing to note in this result is that asℓ gets large (keeping in mind that
|m| ≤ ℓ), the coefficient ofx will be negative and will approximately range between
−5ℓ/4 and−ℓ. This means that whenℓ ≥ 6 the 1PN correction infℓm would by
itself makefℓm(x) vanish before the (ν = 0) LSOxLSO = 1/6. For example, for the
ℓ = m= 6 mode, one hasf 1PN

66 (x;0) = 1−6x(1+11/42)≈ 1−6x(1+0.26) which
means a correction equal to−100% atx = 1/7.57 and larger than−100% at the
LSO, namelyf 1PN

66 (1/6;0) ≈ 1−1.26= −0.26. This value is totally incompatible
with the “exact” valuef exact

22 (xLSO) = 0.66314511 computed from numerical data in
Ref. [50].

Finally, one uses the newly resummed multipolar waveforms (41) to define a
resummation of theradiation reaction forceFϕ is defined as

Fϕ = − 1
Ω

F(ℓmax), (61)

where the (instantaneous, circular) GW fluxF (ℓmax) is defined as

F(ℓmax) =
2

16πG

ℓmax

∑
ℓ=2

ℓ

∑
m=1

|Rḣℓm|2 =
2

16πG

ℓmax

∑
ℓ=2

ℓ

∑
m=1

(mΩ)2|Rhℓm|2. (62)

As an example of the performance of the new resummation procedure based on the
decomposition ofhℓm given by Eq. (41), let us focus, as before, on the computation
of the GW energy flux emitted by a test particle on circular orbits on Schwarzschild
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spacetime. Figure 6 illustrates the remarkable improvement in the closeness between
F̂New-resummedandF̂Exact. The reader should compare this result with the previous
Fig. 3 (the straightforward Taylor approximants to the flux), Fig. 4 (the Padé re-
summation withvpole = 1/

√
3) and Fig. 5 (thevpole-tuned Padé resummation). To

be fully precise, Fig. 6 plots two examples of fluxes obtainedfrom our newρℓm-
representation for the individual multipolar waveformshℓm. These two examples
differ in the choice of approximants for theℓ = m= 2 partial wave. One example
uses forρ22 its 3PN Taylor expansion,T3[ρ22], while the other one uses its 5PN
Taylor expansion,T5[ρ22]. All the other partial waves are given by their maximum
known Taylor expansion13. Note that the fact that we use here for theρℓm’s some
straightforward Taylor expansions does not mean that this new procedure is not a
resummation technique. Indeed, the defining resummation features of our procedure
have four sources: (i) the factorization of the PN corrections to the waveforms into
four different blocks, namelŷS(ε)

eff , Tℓm, eiδℓm andρℓ
ℓm in Eq. (41); (ii) the fact the

Ŝ(ε)
eff is by itself a resummed source whose PN expansion would contain an infinite

number of terms; (iii) the fact that the tail factor is a closed form expression (see
Eq. (50) above) whose PN expansion also contains an infinite number of terms and
(iv) the fact that we have replaced the Taylor expansion offℓm ≡ ρℓ

ℓm by that of its
ℓ-th root, namelyρℓm.

In conclusion, Eqs. (41) and (62) introduce a new recipe to resum the (ν-
dependent) GW energy flux that is alternative to the (vpole-tuned) one given by
Eq. (40). The two main advantages of the new resummation are:(i) it gives a better
representation of the exact result in theν → 0 limit (compare Fig. 6 to Fig. 5), and
(ii) it is parameter-free: the only flexibility that one has in the definition of the wave-
form and flux is the choice of the analytical representation of the function f22, like,
for instance,P3

2 { f22}, (T3 [ρ22])
2, (T5 [ρ22])

2, etc., (although Ref. [50] has pointed
out the good consistency among all these choices). Note, that whenν 6= 0, the GW
energy flux will depend on the choice of resummation of the radial potentialA(R)
through the Hamiltonian (for the even-parity modes) or the angular momentum (for
the odd-parity modes). At the practical level, this means that the EOB model, im-
plemented with the new resummation procedure of the energy flux (and waveform)
described so far, will essentially only depend on the doublet of parameters(a5,a6),
that can in principle be constrained by comparison with (accurate) numerical rela-
tivity results. Contrary to the previousvpole-resummation of the radiation reaction,
this route to resummation is free of radiation-reaction flexibility parameters. We
will consider it as our “standard” route to the resummation of the energy flux in the
following Sections discussing in details the properties ofthe EOB dynamics and
waveforms.

13 We recall that Ref. [50] has also shown that the agreement improves even more when the Taylor
expansion of the functionρ22 is further suitably Padé resummed.
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5 Effective One Body dynamics and waveforms

In this section we marry together all the EOB building blocksdescribed in the pre-
vious Sections and discuss the characteristic of the dynamics of the two black holes
as provided by the EOB approach. In the following three subsections we discuss
in some detail: (i) the set up of initial data for the EOB dynamics with negligible
eccentricity (Sec. 5.1); (ii) the structure of the full Effective One Body waveform,
covering inspiral, plunge, merger and ringdown, with the introduction of suitable
Next-to-Quasi-Circular (NQC) effective corrections to it(and thus to the energy
flux) (Sec. 5.2); (iii) the explicit structure of the EOB dynamics, discussing the so-
lution of the dynamical equations.

5.1 Post-post-circular initial data

In this section we discuss in detail the so-calledpost-post-circulardynamical initial
data (positions and momenta) as introduced in Sec. III B of [37]. This kind of (im-
proved) construction is needed to have initial data with negligible eccentricity. Since
the construction of the initial data is analytical, including the correction is useful to
start the system relatively close and to avoid evolving the EOB equation of motion
for a long time in order to make the system circularize itself.

To explain the improved construction of initial data let us introduce a formal
book-keeping parameterε (to be set to 1 at the end) in front of the radiation reaction
F̂ϕ in the EOB equations of motion. One can then show that the quasi-circular
inspiralling solution of the EOB equations of motion formally satisfies

pϕ = j0(r)+ ε2 j2(r)+O(ε4), (63)

pr∗ = επ1(r)+ ε3π3(r)+O(ε5). (64)

Here, j0(r) is the usualcircular approximation to the inspiralling angular momen-
tum as explicitly given by Eq. (47) above. The orderε (“post-circular”) termπ1(r) is
obtained by: (i) inserting the circular approximationpϕ = j0(r) on the left-hand side
(l.h.s) of Eq. (10) of [34], (ii) using the chain ruled j0(r)/dt = (d j0(r)/dr)(dr/dt),
(iii) replacingdr/dt by the right-hand side (r.h.s) of Eq. (9) of [34] and (iv) solving
for pr∗ at the first order inε. This leads to an explicit result of the form (using the
notation defined in Ref. [34])

επ1(r) =

[

νĤĤeff

(

B
A

)1/2(d j0
dr

)−1

F̂ϕ

]

0

, (65)

where the subscript 0 indicates that the r.h.s. is evaluatedat the leading circular
approximationε → 0. The post-circular EOB approximation( j0,π1) was intro-
duced in Ref. [3] and then used in most of the subsequent EOB papers [6, 31,
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32, 33, 34, 35]. Thepost-post-circularapproximation (orderε2), introduced in
Ref. [37] and then used systematically in Ref. [38, 39, 40], consists of: (i) for-
mally solving Eq. (35) with respect to the explicitp2

ϕ appearing on the r.h.s., (ii)
replacingpr∗ by its post-circular approximation, Eq. (65), (iii) using the chain rule
dπ1(r)/dt = (dπ1(r)/dr)(dr/dt), and (iv) replacingdr/dt in terms ofπ1 (to lead-
ing order) by using Eq. (33). The result yields an explicit expression of the type
p2

ϕ ≃ j20(r)[1+ ε2k2(r)] of which one finally takes the square root. In principle, this
procedure can be iterated to get initial data at any order inε. As it will be shown
below, the post-post-circular initial data( j0

√

1+ ε2k2,π1) are sufficient to lead to
negligible eccentricity when starting the integration of the EOB equations of motion
at radiusr ≡ R/(GM) = 15.

5.2 Effective One Body waveforms

At this stage we have essentially discussed all the elementsthat are needed to com-
pute the EOB dynamics obtained by solving the EOB equation ofmotion, Eqs. (32)-
(35). The dynamics of the system yields a trajectory(qqq(t), ppp(t))≡ (ϕ(t), r(t), pϕ (t), pr∗(t))
in phase space. The (multipolar) metric waveform during theinspiral and plunge
phase, up to the EOB “merger time”tm (that is defined as the maximum of the orbital
frequencyΩ ,) is a function of this trajectory, i.e.hinsplunge

ℓm ≡ hinsplunge
ℓm (qqq(t), ppp(t)).

Focusing only on the dominantℓ = m= 2 waveform, the waveform that describes
the full process of the binary black hole coalescence (i.e.,inspiral, plunge, merger
and ringdown) can be split in two parts:

• The insplunge waveform: hinsplunge(t), computed along the EOB dynamics up to
merger, which includes (i) the resummation of the “tail” terms described above
and (ii) some effective parametrization of Next-to-Quasi-Circular effects. The
ℓ = m= 2 metric waveform explicitly reads

(

Rc2

GM

)

hinsplunge
22 (t) = νn(0)

22 c2(ν)xĥ22(ν; x) f NQC
22 Y2,−2

(π
2

,Φ
)

, (66)

where the argumentx is taken to be (following [90])x = v2
ϕ = (rω Ω)2 (where

rω was introduced in Eq. (36) above). The resummed version off22 enter-
ing in ĥ22(x) used here is given by the followingPad́e-resummedfunction
f Pf
22 ≡ P3

2 [ f Taylor
22 (x;ν)]. In the waveformh22 above we have introduced (follow-

ing [40]) a new ingredient, a “Next-to-Quasi-Circular” (NQC) correction factor
of the form14

f NQC
22 (a1,a2) = 1+a1

p2
r∗

(rΩ)2 +a2
r̈

r Ω2 , (67)

14 Note that one could also similarly improve the subleading higher-multipolar-order contributions
toFϕ . In addition, other (similar) expressions of the NQC factors can be found in the literature [38,
39, 41].
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wherea1 anda2 are free parameters that have to be fixed. A crucial facet of the
new EOB formalism presented here consists in trying to be as predictive as pos-
sible by reducing to an absolute minimum the number of “flexibility parameters”
entering our theoretical framework. One can achieve this aim by “analytically”
determining the two parametersa1,a2 entering (via the NQC factor Eq. (67)) the
(asymptotic) quadrupolar EOB waveform̂RhEOB

22 (whereR̂= R/M) by imposing:
(a) that the modulus|R̂hEOB

22 | reaches, at the EOB-determined “merger time”tm,
a local maximum, and (b) that the value of this maximum EOB modulus is equal
to a certain (dimensionless) function ofν, ϕ(ν). In Ref. [40] we calibratedϕ(ν)
(independently of the EOB formalism) by extracting from thebest current Nu-
merical Relativity simulations the maximum value of the modulus of the Numer-
ical Relativity quadrupolarmetricwaveform|R̂hNR

22 |. Using the data reported in
[29] and [39], and considering the “Zerilli-normalized” asymptotic metric wave-
form Ψ22 = R̂h22/

√
24, we foundϕ(ν) ≃ 0.3215ν(1−0.131(1−4ν)). Our re-

quirements (a) and (b) impose, for any givenA(u) potential,two constraintson
the two parameters a1,a2. We can solve these two constraints (by an iteration
procedure) and thereby uniquely determine the values ofa1,a2 corresponding
to any givenA(u) potential. In particular, in the case considered here where
A(u) ≡ A(u;a5,a6,ν) this uniquely determinesa1,a2 in function of a5,a6 and
ν. Note that this is done while also consistently using the “improved” version of
h22 given by Eq. (66) to compute the radiation reaction force viaEq. (62).

• a simplified representation of the transition between plunge and ring-down
by smoothlymatching(following Refs. [36]), on a(2p+ 1)-toothed “comb”
(tm− pδ , . . . ,tm−δ , tm, tm+δ , . . . ,tm+ pδ ) centered around a matching timetm,
the inspiral-plus-plunge waveform to a ring-down waveform, made of the super-
position of several15 quasi-normal-mode complex frequencies,

(

Rc2

GM

)

hringdown
22 (t) = ∑

N
C+

N e−σ+
N (t−tm) , (68)

with σ+
N = αN + i ωN, and where the labelN refers to indices(ℓ,ℓ′,m,n), with

(ℓ,m) = (2,2) being the Schwarzschild-background multipolarity of the consid-
ered (metric) waveformhℓm, with n = 0,1,2. . . being the ‘overtone number’
of the considered Kerr-background Quasi-Normal-Mode, andℓ′ the degree of
its associated spheroidal harmonicsSℓ′m(aσ ,θ ). As discussed in [3] and [36],
and already mentioned above, the physics of the transition between plunge and
ring-down (which was first understood in the classic work of Davis, Ruffini and
Tiomno [51]) suggests to choose as matching timetm, in the comparable-mass
case, the EOB time when the EOB orbital frequencyΩ(t) reaches itsmaximum
value.

Finally, one defines a complete, quasi-analytical EOB waveform (covering the
full process from inspiral to ring-down) as:

15 Refs. [36, 38] usep = 2, i.e.a 5-teethed comb, and, correspondingly, 5 positive-frequency Kerr
Quasi-Normal Modes.
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hEOB
22 (t) = θ (tm− t)hinsplunge

22 (t)+ θ (t− tm)hringdown
22 (t) , (69)

whereθ (t) denotes Heaviside’s step function. The final result is a waveform that
only depends on thetwo parameters(a5,a6) which parametrize some flexibility on
the Padé resummation of the basic radial potentialA(u), connected to the yet uncal-
culated (4PN, 5PN and) higher PN contributions.

5.3 Effective One Body dynamics

We conclude this section by discussing the features of the typical EOB dynamics ob-
tained by solving the EOB equation of motion Eqs. (32)-(35) with post-post-circular
initial data. The resummation of the radiation reaction force uses the multiplicative
decomposition ofhℓm given by Eq. (41) with NQC correction to theℓ = m = 2
multipole given by Eq. (67). We fix the free parameters to the model to bea5 = 0,
a6 = −20 (see below why) whilea1 anda2 are obtained consistently according to
the iteration procedure discussed above. The system is started atr0 = 15 andϕ0 = 0.
The post-post-circular initial data givep0

ϕ = 4.31509298 andp0
r∗ = −0.00109847.

The result of the outcome of the integration of the EOB equation of motion is dis-
played in Fig. 7 together with the trajectory (top-left panel) and the orbital frequency
(bottom-right panel). On this plot we remark two things. First, the fact that the or-
bital frequency has a maximum at timetm = 3522 that identifies, in EOB, the merger
(and matching) time. Second, the fact thatpr∗ tends to a finite value after the merger
(contrary topr , that would diverge), yielding a more controllable numerical treat-
ment of the late part of the EOB dynamics.

6 Effective One Body and Numerical Relativity waveforms

So far we have seen that (at least) two different EOB models (of dynamics and
waveforms) are available. They differ, essentially, in theway the resummation of the
GW energy flux yielding the radiation reaction force is performed. The first EOB
model, that we will refer to as the “old” one, basically uses aPadé-resummation
of the energy flux with an external parametervpole that must be fixed in some way.
The second EOB model, that we will refer to as the “improved” one, uses a more
sophisticated resummation procedure of the energy flux, multipole by multipole,
in such a way that the final result depends explicitly only on the same parameters
(a5,a6) that are used to parametrize higher PN contribution to the conservative part
of the dynamics.

In the last three years, the power of the “old” EOB model has been exploited in
various comparisons with numerical relativity data, aiming at constraining in some
way the space of the EOB flexibility parameters (notably represented bya5 and
vpole) by looking at regions in the parameter space where the agreement between the
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Fig. 7 EOB dynamics fora5 = 0 anda6 = −20. Clockwise from the top left panel,the panels
report: the trajectory, the radial separationr(t), the radial momentumpr∗ (conjugate tor∗), the
orbital frequencyΩ(t), the angular momentumpϕ (t) and the orbital phaseϕ(t).

numerical and analytical waveforms is at the level of numerical error. For example,
after a preliminary comparison done in Ref. [31], Buonanno et al. [33] compared
restrictedEOB waveforms16 to NR waveforms computed by the NASA-Goddard
group, showing that it is possible to tune the value ofa5 so as to have a good
agreement between the two set of data. In particular, fora5 = 60 andvpole given
according to the (nowadays outdated) suggestion of Ref. [49], in the equal-mass
case (ν = 1/4), they found that the dephasing between (restricted) EOB and NR
waveforms (covering late inspiral, merger and ring-down) stayed within±0.030

16 The terminology “restricted” refers to a waveform which uses only the leadingNewtonianap-

proximation,h(N,ε)
ℓm , to the waveform
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GW cycles over 14 GW cycles. In the case of a mass ratio 4 : 1 (ν = 0.16), the
dephasing stayed within±0.035 GW cycles over 9 GW cycles.

Later, theresummedfactorized EOB waveform of Eq. (66) above within the “old”
EOB model has been compared to several set of equal-mass and unequal-mass NR
waveforms: (i) in the comparison with the very accurate inspiralling simulation of
the Caltech-Cornell group [27] the dephasing stayed smaller than±0.001 GW cy-
cles over 30 GW cycles (and the amplitudes agreed at the∼ 10−3 level) [37]; (ii)
in the comparison [38] with a late-inspiral-merger-ringdown NR waveform com-
puted by the Albert Einstein Institute group, the dephasingstayed smaller than
±0.005 GW cycles over 12 GW cycles; (iii) in the (joint) comparison [39] between
EOB and very accurate equal-mass inspiralling simulation of the Caltech-Cornell
group [27] and late-inspiral-merger-ringdown waveform for 1:1, 2:1 and 4:1 mass
ratio data computed by the Jena group it was possible to tune the EOB flexibility
parameters (notablya5 andvpole) so that the dephasing stayed at the level of the
numerical error. The same “old” model, with resummed factorized waveform, and
the parameter-dependent (usingvpole) resummation of radiation reaction force, was
recently extended by adding 6 more flexibility parameters tothe ones already intr-
duced in Refs. [37, 39], and was “calibrated” on the high-accuracy Caltech-Cornell
equal-mass data [41]. This calibration showed that only 5 flexibility parameters (a5,
vpole and three parameters related to non-quasi-circular corrections to the waveform
amplitude) actually suffice to make the “old” EOB and NR waveform agree, both
in amplitude and phase, at the level of the numerical error (this multi-flexed EOB
model brings in an improvement with respect to the one of Refs. [37, 39] espe-
cially for what concerns the agreement between the waveformamplitude around the
merger).

Recently, Ref. [40] has introduced and fully exploited the possibilities of the “im-
proved” EOB formalism described above, taking advantage of: (i) the multiplica-
tive decomposition of the (resummed) multipolar waveform advocated in Eq. (41)
above, (ii) the effect of the NQC corrections to the waveform(and energy flux)
given by Eq. (66), and, most importantly, (iii) the parameter-free resummation of
radiation reactionFϕ . In Ref. [40] the(a5,a6)-dependent predictions made by
the “improved” formalism were compared to the high-accuracy waveform from
an equal-mass BBH (ν = 1/4) computed by the Caltech-Cornell group [29], (and
now made available on the web). It was found that there is a strong degeneracy
betweena5 anda6 in the sense that there is an excellent EOB-NR agreement for
an extended region in the(a5,a6)-plane. More precisely, the phase difference be-
tween the EOB (metric) waveform and the Caltech-Cornell one, considered between
GW frequenciesMωL = 0.047 andMωR = 0.31 (i.e., the last 16 GW cycles before
merger), stays smaller than 0.02 radians within a long and thin banana-like region
in the(a5,a6)-plane. This “good region” approximately extends between the points
(a5,a6) = (0,−20) and (a5,a6) = (−36,+520). As an example (which actually
lies on the boundary of the “good region”), we have followed [40] in considering
here the specific valuesa5 = 0,a6 = −20 (to which correspond, whenν = 1/4,
a1 = −0.036347,a2 = 1.2468). We henceforth useM as time unit.
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Fig. 8 This figure illustrates the comparison between the “improved” EOB waveform (quadrupolar
(ℓ = m= 2) metric waveform (66) with parameter-free radiation reaction (61) and witha5 = 0,a6 =
−20) with the most accurate numerical relativity waveform (equal-mass case) nowadays available.
The phase difference between the two is∆φ ≤±0.01 radians during the entire inspiral and plunge.
Ref. [40] has shown that this agreement is at the level of the numerical error.

This result relies on the proper comparison between NR and EOB time series,
which is a delicate subject. In fact, to compare the NR and EOBphase time-series
φNR

22 (tNR) andφEOB
22 (tEOB) one needs to shift, by additive constants, both one of the

time variables, and one of the phases. In other words, we needto determineτ andα
such that the “shifted” EOB quantities

t ′EOB = tEOB+ τ , φ
′EOB
22 = φEOB

22 + α (70)

“best fit” the NR ones. One convenient way to do so is first to “pinch” the EOB/NR
phase difference at two different instants (correspondingto two different frequen-
cies). More precisely, one can choose two NR timestNR

1 ,tNR
2 , which determine two

corresponding GW frequencies17 ω1 = ωNR
22 (tNR

1 ), ω2 = ωNR
22 (tNR

2 ), and then find
the time shiftτ(ω1,ω2) such that the shifted EOB phase difference, betweenω1 and
ω2, ∆φEOB(τ)≡ φ ′EOB

22 (t
′EOB
2 )−φ ′EOB

22 (t
′EOB
1 ) = φEOB

22 (tEOB
2 +τ)−φEOB

22 (tEOB
1 +τ)

is equal to the corresponding (unshifted) NR phase difference∆φNR ≡ φNR
22 (tNR

2 )−
φNR

22 (tNR
1 ). This yields one equation for one unknown (τ), and (uniquely) determines

a valueτ(ω1,ω2) of τ. [Note that theω2 → ω1 = ωm limit of this procedure yields
the one-frequency matching procedure used in [27].] After having so determinedτ,
one can uniquely define a corresponding best-fit phase shiftα(ω1,ω2) by requiring
that, say,φ ′EOB

22 (t
′EOB
1 ) ≡ φEOB

22 (t
′EOB
1 )+ α = φNR

22 (tNR
1 ).

17 Alternatively, one can start by giving oneselfω1,ω2 and determine the NR instantstNR
1 , tNR

2 at
which they are reached.
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Fig. 9 Close up around merger of the waveforms of Fig. 8. Note the excellent agreement between
bothmodulus and phasing also during the ringdown phase.

Having so related the EOB time and phase variables to the NR ones we can
straigthforwardly compare all the EOB time series to their NR correspondants. In
particular, we can compute the (shifted) EOB–NR phase difference

∆ ω1,ω2φEOBNR
22 (tNR) ≡ φ

′EOB
22 (t ′EOB)−φNR

22 (tNR). (71)

Figure 8 compares18 (the real part of) our analyticalmetricquadrupolar waveform
ΨEOB

22 /ν to the corresponding (Caltech-Cornell) NRmetricwaveformΨNR
22 /ν. This

NR metric waveform has been obtained by a double time-integration (following the
procedure of Ref. [39]) from the original, publicly available, curvaturewaveform
ψ22

4 . Such a curvature waveform has been extrapolatedboth in resolution and in
extraction radius. The agreement between the analytical prediction and the NR result
is striking, even around the merger. See Fig. 9 which closes up on the merger. The
vertical line indicates the location of the EOB-merger time, i.e., the location of the
maximum of the orbital frequency.

The phasing agreement between the waveforms is excellent over the full time
span of the simulation (which covers 32 cycles of inspiral and about 6 cycles of
ringdown), while the modulus agreement is excellent over the full span, apart from
two cycles after merger where one can notice a difference. More precisely, the phase

18 The two frequencies used for this comparison, by means of the“two-frequency pinching tech-
nique” mentioned above, areMω1 = 0.047 andMω2 = 0.31.
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Fig. 10 Comparison between Numerical Relativity and EOB metric waveform for the 2:1 mass
ratio.

difference,∆φ = φEOB
metric−φNR

metric, remains remarkably small (∼±0.02 radians) dur-
ing the entire inspiral and plunge (ω2 = 0.31 being quite near the merger). By com-
parison, the root-sum of the various numerical errors on thephase (numerical trun-
cation, outer boundary, extrapolation to infinity) is about0.023 radians during the
inspiral [29]. At the merger, and during the ringdown,∆φ takes somewhat larger
values (∼ ±0.1 radians), but it oscillates around zero, so that, on average, it stays
very well in phase with the NR waveform (as is clear on Fig. 9).By comparison,
we note that [29] mentions that the phase error linked to the extrapolation to infinity
doubles during ringdown. We then note that the total “two-sigma” NR error level
estimated in [29] rises to 0.05 radians during ringdown, which is comparable to the
EOB-NR phase disagreement. In addition, Ref. [40] comparedthe “improved” EOB
waveform to accurate numerical relativity data (obtained by the Jena group [39]) on
the coalescence ofunequal mass-ratioblack-hole binaries. Fig. 10 shows the re-
sult of the EOB/NR waveform comparison for a 2:1 mass ratio, corresponding to
ν = 2/9. Whena5 = 0, a6 = −20 one findsa1 = −0.017017 anda2 = 1.1906.
Again, the agreement is excellent, and within the numericalerror bars.

Finally, Ref. [40] explored another aspect of the physical soundness of the EOB
analytical formalism: thetriple comparison between (i) the NR GW energy flux at
infinity (which was computed in [28]); (ii) the corresponding analytically predicted
GW energy flux at infinity (computed by summing|ḣℓm|2 overℓ,m ); and (iii) (mi-
nus) themechanicalenergy loss of the system, as predicted by the general EOB
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Fig. 11 The triple comparison between Numerical Relativity and EOBGW energy fluxes and the
EOB mechanical energy loss.

formalism, i.e. the “work” done by the radiation reactionĖmechanical= ΩFϕ . This
comparison is shown in Fig. 11, which should be compared to Fig. 9 of [28]. We
kept here the same vertical scale as [28] which compared the NR flux to older ver-
sions of (resummed and non-resummed) analytical fluxes and needed such a±10%
vertical scale to accomodate all the models they considered. [The horizontal axis
is the frequencyϖ of the differentiated metric waveforṁh22.] By contrast, we see
again the striking closeness (at the∼ 2×10−3 level) between the EOB and NR GW
fluxes. As both fluxes include higher multipoles than the(2,2) one, this closeness
is a further test of the agreement between the improved EOB formalism and NR re-
sults. [We think that the∼ 2σ difference between the (coinciding) analytical curves
and the NR one on the left of the Figure is due to uncertaintiesin the flux computa-
tion of [28], possibly related to the method used there of computingḣ.] Note that the
rather close agreement between the analytical energy flux and the mechanical en-
ergy loss during late inspiral is not required by physics (because of the well-known
“Schott term” [104]), but is rather an indication thatḣℓm can be well approximated
by−imΩhℓm



38 Thibault Damour and Alessandro Nagar

7 Conclusions

We have reviewed the basic elements of the Effective One Body(EOB) formalism.
This formalism is still under development. The various existing versions of the EOB
formalism have all shown their capability to reproduce within numerical errors the
currently most accurate numerical relativity simulationsof coalescing binary black
holes. These versions differ in the number of free theoretical parameters. Recently
a new “improved” version of the formalism has been defined which contains essen-
tially only two free theoretical parameters.
Among the successes of the EOB formalism let us mention:

1. An analytical understanding of the non-adiabatic late-inspiral dynamics and of
its “blurred” transition to a quasi-circular plunge;

2. The surprising possibility to analytically describe themerger of two black holes
by a seemingly coarse approximation consisting of matchinga continued inspiral
to a ringdown signal;

3. The capability, after using suitable resummation methods, to reproduce with
exquisite accuracyboth the phase and the amplitude of the gravitational wave
signal emitted during the entire coalescence process, fromearly-inspiral, to late-
inspiral, plunge, merger and ringdown;

4. The gravitational wave energy flux predicted by the EOB formalism agrees,
within numerical errors, with the most accurate numerical-relativity energy flux;

5. The ability to correctly estimate (within a 2% error) the final spin and mass of
nonspinning coalescing black hole binaries [this issue hasnot been discussed in
this review, but see Ref. [34]].

We anticipate that the EOB formalism will also be able to provide an accurate
description of more complicated systems than the nonspinning BBH discussed in
this review. On the one hand, we think that the recently improved EOB frame-
work can be extended to the description of (nearly circularized) spinningblack
hole systems by suitably incorporating both the PN-expanded knowledge of spin
effects [105, 106, 108] and their possible EOB resummation [4, 107]. On the other
hand, the EOB formalism can also be extended to the description of binary neutron
stars or mixed binary systems made of a black hole and a neutron star [109, 110].
An important input for this extension is the use of the relativistic tidal properties of
neutron stars [111, 112, 113]

Finally, we think that the EOB formalism has opened the realistic possibility of
constructing (with minimal computational resources) a very accurate, large bank of
gravitational wave templates, thereby helping in both detecting and analyzing the
signals emitted by inspiralling and coalescing binary black holes. Though we have
had in mind in this review essentially ground-based detectors, we think that the
EOB method can also be applied to space-based ones,i.e., to (possibly eccentric)
large mass ratio systems.
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