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24 rue Lhomond, 75231 Paris, France

c Department of Mathematics
Heriot-Watt University

Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, U.K.
and Maxwell Institute for Mathematical Sciences, Edinburgh, U.K.

Abstract

We study the relationship between the statistical mechanics of crystal melting
and instanton counting in N = 4 supersymmetric U(1) gauge theory on toric sur-
faces. We argue that, in contrast to their six-dimensional cousins, the two problems
are related but not identical. We develop a vertex formalism for the crystal par-
tition function, which calculates a generating function for the dimension 0 and 1
subschemes of the toric surface, and describe the modifications required to obtain
the corresponding gauge theory partition function.



1 Introduction

The problem of computing instanton contributions to the partition functions of four-
dimensional supersymmetric gauge theories has a multitude of applications in field theory,
string theory, and black hole physics. The algebraic geometry of the corresponding moduli
spaces has spawned much interest in mathematics. In this paper, we will consider a
new related counting problem in the maximally supersymmetric case. Our approach is
motivated by the six-dimensional cousin of the four-dimensional problem.

The vertex formalism [1, 2] allows for the computation of the topological string partition
function on arbitrary toric (hence non-compact) Calabi-Yau threefolds. In ref. [3], this
formalism was recast into an intuitive counting prescription for plane partitions (three-
dimensional Young diagrams), and shown to have the interpretation of a simple statistical
mechanics model of crystal melting. This reformulation was taken as the starting point
for relating topological string theory on toric Calabi-Yau manifolds to a six-dimensional
maximally supersymmetric U(1) gauge theory in ref. [4]. In as far as the partition function
of the gauge theory is the generating function for Donaldson-Thomas invariants, this
relationship was proven in refs. [5, 6].

One now observes that in all examples which have been computed thus far, the U(1)
partition function of N = 4 Vafa-Witten twisted gauge theory in four dimensions [7] has
as prefactor the Euler function η̂(q) = q−1/24 η(q), the generating function for ordinary
partitions (Young tableaux), raised to the power of the Euler characteristic of the under-
lying four-manifold. This suggests that the N = 4 theory might be the four-dimensional
analogue of the six-dimensional gauge theory underlying Donaldson-Thomas invariants,
with its partition function computable from a melting crystal prescription.

Instantons of four-dimensional U(N) gauge theories on toric surfaces (not necessarily
Calabi-Yau) have been studied in refs. [8, 9, 10, 11, 12, 13, 14]. U(1) instantons arise
as building blocks in these works. In ref. [15], Nakajima studied U(N) instantons on
ALE spaces and showed (see Theorem 3.2 of that paper) that at the fixed points of an
appropriately lifted toric action, they decompose into a sum of U(1) instantons (see also
refs. [12, 14] for related results). Based on this result, the authors of ref. [8] employed
a localization calculation on the explicit ADHM instanton moduli space to argue that
in the case of N = 4 Vafa-Witten twisted gauge theories on ALE spaces, the U(N)
partition function simply factorizes into N powers of the U(1) partition function – the
rigorous argument for the factorization of the combinatorial problem was provided in
ref. [16]. They also indicate a heuristic argument as to why this factorization should
hold in general,1 which is supported by calculations in a two-dimensional reduction of the
four-dimensional gauge theory on Hirzebruch-Jung spaces [9, 10]. In this paper, the U(1)
case will be the focus of attention.

In the following, we shall say that an enumerative problem has a melting crystal de-
scription if it can be recast in terms of a box counting prescription, analogous to that
of ref. [3]. We shall see that in passing from the study of the Hilbert scheme of points,
which features prominently in instanton calculations, to the Hilbert scheme of curves, we
obtain a problem which is a close kin to the gauge theory problem and has a melting

1This is in contrast to the six-dimensional case where factorization does not generically hold. See
ref. [17] for an explicit analysis of the Coulomb phase of the six-dimensional U(N) gauge theory and its
relationship to U(1) instantons.
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crystal description. We develop a vertex prescription for calculating the corresponding
partition function, and describe the modifications necessary to arrive at the gauge theory
partition function. In the process, we provide additional motivation for the conjectured
forms of the partition functions of N = 4 theory on Hirzebruch-Jung surfaces proposed
in refs. [8, 9].

The organisation of this paper is as follows. In Section 2, we define the enumerative prob-
lems which will be addressed in the following, together with the underlying physical mo-
tivation, and introduce the corresponding generating functions. We proceed to compute
the weights that enter in the definition of these generating function in Section 3. In Sec-
tion 4, we set up the vertex formalism to compute the crystal melting partition function,
and work out the explicit examples of the complex projective plane and Hirzebruch-Jung
surfaces. Finally, we describe how these partition functions must be modified to arrive at
the instanton partition function of gauge theory in Section 5. Four appendices at the end
of the paper provide calculational details and background material. In Appendix A, we
compute the Euler characteristics of torus invariant subschemes of a toric surface directly
in Čech cohomology. We collect the facts we will need about toric surfaces in general
and Hirzebruch-Jung surfaces in particular in Appendix B. Appendix C contains a brief
review of characteristic classes of coherent sheaves. In Appendix D, we illustrate the
factorization of the Hilbert scheme of curves into a divisorial and a punctual part, a re-
sult which plays a central role in the computations of this paper, for the example of the
projective plane.

We have made an effort to include many intermediate steps and explanatory notes through-
out, in the hope of rendering the exposition more accessible to the casual reader.

Unless otherwise noted, all schemes are defined over the field C.

2 The enumeration problems

In six dimensions, the counting of closed 0 and 1 dimensional subschemes of a projec-
tive scheme X is closely related to a gauge theory problem on X. The crystal melting
prescription of ref. [3], in hindsight, is most intuitive in this setting, as the boxes out of
which the crystal is built correspond to sections of the structure sheaf OY of the corre-
sponding closed subscheme Y .2 In this section, we will explain the parametrization of
subschemes and the gauge theory problem in turn. We then discuss why they coincide in
six dimensions, and how they are related in four dimensions.

2.1 The Hilbert scheme

Grothendieck proved that the Hilbert functor of a projective scheme X is representable by
a projective scheme called the Hilbert scheme HilbXP (t) of X. The closed points of HilbXP (t)

correspond to closed subschemes Y of X with Hilbert polynomial PX
Y (t) = P (t). Recall

that upon fixing a very ample line bundle L, i.e. an embedding of X into projective space,

2This hindsight is based on the proof of the equivalence of the generating functions for Donaldson-
Thomas and Gromov-Witten invariants on toric threefolds [5, 6].
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the Hilbert polynomial PX
Y (t) ∈ Q[t] is defined by the function

PX
Y (t) = χ

(
OY ⊗ L⊗t

)
=
∑
i≥0

(−1)i dimCH
i(X,OY ⊗ L⊗t)

for sufficiently large t.3 The constant term of the Hilbert polynomial is hence the Euler
characteristic of the subscheme Y . When X = CPr is projective space, the leading term
is given by

PCPr
Y (t) =

d

n!
tn + . . . ,

with n the dimension of Y and d its degree.

One can further stratify the Hilbert scheme, e.g. by considering the Hilbert scheme of
curves with fixed homology class β ∈ H2(X,Z). In the case X = CP2 reviewed in
Appendix D, the homology class is determined by the degree of the curve, and can hence
be read off from the Hilbert polynomial. For space curves, i.e. X = CP3, this stratification
has been studied in ref. [19]. For generic smooth projective surfaces, it is also used in
ref. [20].

In general, Hilbert schemes are very complicated objects. The Hilbert scheme of points
however, for which the Hilbert polynomial is a constant n, is well understood. It has
already made various appearances in the physics literature. It is commonly denoted
X [n] := HilbXn . The Hilbert-Chow morphism

X [n] −→ SnX ,

with SnX the n-th symmetric product of the scheme X, reflects the intuition that away
from the locus at which points approach each other, the moduli space of n points on X
is simply given by n copies of X modulo permutations.

The Hilbert scheme of curves generally exhibits much richer structure. On a smooth
projective surface X, this structure simplifies: codimension 1 subschemes factorize into
divisors, i.e. the multiples of integral codimension 1 subschemes, with multiplicity given
by their degree, and sums of free and embedded points (see ref. [21, p. 514], and also
ref. [22, Section 3]).4 We will denote the Hilbert scheme of subschemes Y of X with
β = [Y ] ∈ H2(X,Z) and n = χ(OY ) as In(X, β). Given a Y ∈ In(X, β), β ∈ H2(X,Z)
depends solely on the divisorial part D of Y . Its contribution to n is given by nβ =
−1

2
β · (β +KX), with KX the canonical class of X (see Section 3.1). n− nβ is due to the

free and embedded points Y0 of Y . Thus,

In(X, β) ∼= Inβ(X, β)×X [n−nβ ] . (2.1)

To gain some intuition, we illustrate the factorization (2.1) of the Hilbert scheme at the
level of the underlying topological spaces explicitly for the toric surface X = CP2 in
Appendix D. Let us now consider the two factors contributing to eq. (2.1). The Hilbert
scheme of points X [n] on a smooth projective surface X is non-singular and of dimension
2n [21, Theorem 2.4]. As for the moduli space of divisors In(X, β), on a smooth projective
surface X of any dimension with H1(X,OX) = 0, it is a projective space. It follows

3This definition makes sense because the right-hand side of this equation is a polynomial for sufficiently
large t, see e.g. [18, Theorem 7.5].

4We thank Richard Thomas for explanations concerning this point.
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that In(X, β) is non-singular [21, Corollary 2.7]. This will allow us to define generating
functions involving integrals over the fundamental classes [In(X, β)]. Contrary to the
six-dimensional case, recourse to virtual classes, as introduced on projective surfaces in
ref. [20], will not be required.

2.2 Instantons, holomorphic bundles, and sheaves

In the physics literature, instantons are finite-energy minima of the action of a field theory.
In the case of pure Yang-Mills theory in four dimensions, they are given by (anti)self-
dual connections with appropriate boundary conditions at infinity. Vafa and Witten [7]
demonstrated that N = 4 supersymmetric Yang-Mills theory can be modified, following
Witten’s prescription of topological twisting, such that its partition function computes,
in favorable circumstances, the Euler characteristic of the moduli space of instantons.
This is guaranteed if certain vanishing theorems for the geometry of the underlying four-
manifold X and gauge bundle E → X are met [7, Section 2.4], e.g. if X is a compact
Kähler manifold of positive curvature and the structure group of E is SU(2). The twisted
theory can be encountered in the wild (i.e. it can describe physical systems) in two
situations; when the manifold X on which the gauge theory is defined is hyperkähler, so
that the twisted theory coincides with a subsector of the physical theory, or in certain
string theory embeddings, in which the twisting is induced by the background.

For the partition function to be well-defined, a smooth, compact instanton moduli space
is required. One path towards this end is a compactification given by embedding bundles
with irreducible anti-self-dual connection into the space of semistable sheaves. This is the
Gieseker compactification. A semistable sheaf F is in particular torsion-free. Away from
a codimension 2 locus, torsion-free sheaves are locally free, i.e. vector bundles. Hence,
intuitively, in passing from bundles to torsion-free sheaves on surfaces, we are adding
pointlike structures. The precise formulation of this statement is eq. (2.2) below.

In this paper, we consider only the gauge group U(1). This simple case already merits
study for two main reasons:

1. In six dimensions, this is the gauge group that has been related to the topological
vertex formalism.

2. In the case of ALE spaces X, ref. [8] performs the calculation of the partition
function ZALE

U(N)(X) based on the description of the U(N) instanton moduli space

provided by ref. [23], and demonstrates that one has the factorization relation

ZALE
U(N)(X) =

(
ZALE
U(1) (X)

)N
.

The factorization follows from a localization argument which reduces the calculation
to the fixed points of an appropriately chosen toric action, and the demonstration
in ref. [15] that the instanton bundles on ALE spaces factorize at the fixed points.5

Rather than thinking about anti-self-dual connections, we can study holomorphic line
bundles. The connection is established by the following well-known theorem.

5In fact, ref. [8] argues heuristically that this relation should hold in general, as the gauge symmetry
of the U(N) theory can be broken to the maximal torus U(1)N by giving vevs to the scalars, and the
partition function is independent of these vevs. This argument is heuristic as the independence of the
partition function from the scalar vevs needs to be established carefully.
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Proposition 2.1. ([24, Proposition 2.2.6]) If H1(X,R) = 0 and L is a line bundle over
the surface X, then for any 2-form ω representing c1(L) there is a unique gauge equivalence
class of connections with curvature −2π iω.

Hence, in particular, in mapping line bundles to connections, we can choose the harmonic
representative of c1(L) with respect to a chosen metric on X. The space of harmonic
2-forms H(X) on X has a decomposition into subspaces H±(X) of self-dual and anti-self-
dual 2-forms,

H(X) = H+(X)⊕H−(X) .

If the intersection matrix on H2(X,R) is well-defined (a condition we must impose for
X non-compact) and negative definite, as will be the case for our main example, the
Hirzebruch-Jung surfaces, it follows that H+(X) = 0, and hence every holomorphic line
bundle on such a surface admits an anti-self-dual connection. Since exact forms cannot
be anti-self-dual, this connection is unique.

Note finally that even in the case of U(1) gauge theory, where the instanton moduli space
is a lattice and in no need of regularization, we continue to consider the larger space of
torsion-free sheaves, in accord with points 1 and 2 above.

2.3 Crystal melting vs. gauge theory

On a toric Calabi-Yau threefold X, the problem that Maulik, Nekrasov, Okounkov, and
Pandharipande address in ref. [5] is the counting of subschemes Y of compact support
with no component of codimension 1, and with holomorphic Euler characteristic n and
second homology class β,

n = χ(OY ) , β = [Y ] ∈ H2(X,Z) .

They denote the corresponding moduli space of ideal sheaves by In(X, β). They then
compute the generating function

ZDT (X; q, w) =
∑

β∈H2(X,Z)

∑
n∈Z

Ñn,β q
nwβ

for the Donaldson-Thomas invariants

Ñn,β =

∫
[In(X,β)]vir

1 ,

the lengths of the 0 dimensional virtual fundamental cycles. On a projective scheme X,
In(X, β) is the moduli space parametrizing isomorphism classes of torsion-free sheaves
of rank 1 with trivial determinant, where the singularity sets of the torsion-free sheaves
constitute the subschemes being counted.6

6The argument is the following (see e.g. ref. [25]). A torsion-free sheaf T injects into its double dual.
The determinant sheaf of a rank r torsion-free sheaf is defined to be

det T =
(∧r T )∗∗ .

This is a line bundle, as the double dual of a sheaf is reflexive (i.e. isomorphic to its double dual),
and reflexive sheaves of rank 1 are locally free. Rank 1 torsion-free sheaves with trivial determinant
hence possess an injection into the structure sheaf, i.e. they are ideal sheaves. Note that the distinction
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Shifting focus from 6 dimensional Calabi-Yau manifolds to toric surfaces, the counting
problem that gives rise to a melting crystal interpretation and vertex formulation is again
that of counting all subschemes of dimension 0 and 1 of compact support. In four dimen-
sions, this does not quite map to a counting problem of torsion-free sheaves. Torsion-free
sheaves of trivial determinant on a surface are the ideal sheaves merely of points, by the
same argument as above. We can enlarge this space in two ways. We can add 1 dimen-
sional subschemes of compact support by hand and consider the corresponding Hilbert
scheme of compact curves, or equivalently the moduli space of ideal sheaves

In(X, β)

introduced above, now for X a surface. Alternatively, we can drop the trivial determinant
condition, thus enlarging the space to involve factors of line bundles L, given by the double
duals of torsion-free sheaves T , such that

T = L ⊗ IY . (2.2)

Again dimension 1 subschemes come into play, by their relation to effective divisors,
however now only up to linear equivalence. Indeed, the decomposition (2.2) corresponds
to the gauge theory problem outlined in Section 2.2.

In the case of surfaces, we will hence be computing two different generating functions,
defined as follows.

Crystal melting.

Zcm(X; q, w) =
∑

β∈H2(X,Z)

∑
n∈Z

N cm
n,β q

nwβ , (2.3)

where n = χ(OY ), β = [Y ] ∈ H2(X,Z) and

N cm
n,β =

∫
In(X,β)

e
(
TIn(X, β)

)
. (2.4)

Here and below, e(E) denotes the Euler class of the bundle E. As announced above, no
recourse to virtual fundamental classes is taken in these definitions.

between trivializable determinant and trivial determinant is important here. The singularity set S(T )
of a torsion-free sheaf T occurs in codimension 2 or higher, hence the corresponding subscheme has no
component in codimension 0 or 1. This argument can be summarized in the exact sequence of sheaves

0 // T // T ∗∗

∼=
��

// S(T ) // 0

OX

where the vertical isomorphism is a fixed trivialization.
Conversely, the ideal sheaf IY of a proper closed subscheme Y of a noetherian integral scheme X is

a coherent sheaf of rank 1. As a subsheaf of the structure sheaf OX , it is torsion-free by the integrality
assumption on X. If Y has no support in codimension 1, then the determinant of IY is trivial.
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Gauge theory.

Zgt(X; q, w) =
∑

β∈H2(X,Z)

∑
n∈Q

N gt
n,β q

−nwβ , (2.5)

where n = ch2(T ), β = ch1(T ) ∈ H2(X,Z) and

N gt
n,β =

∫
MX(β,n)

e
(
TMX(β, n)

)
, (2.6)

with MX(β, n) the moduli space parametrizing isomorphism classes of torsion-free sheaves
T of the given Chern character. Note that for torsion-free sheaves on non-compact spaces,
the second Chern characteristic class n can be fractional; we therefore take the summation
in (2.5) over Q, with N gt

n,β = 0 away from a fixed common denominator of n, depending
on X.

Explaining the various ingredients in these formulae, and interpreting and evaluating the
integrals (2.4) and (2.6), will occupy the rest of this paper.

3 The weights for the generating functions

Following the 6 dimensional discussion of ref. [5], we organize the crystal melting counting
problem (2.3) on a toric surface X in terms of the holomorphic Euler characteristic χ(OY )
of the subschemes Y , which serves as a weight in the generating function, and their second
homology class [Y ] ∈ H2(X,Z). For the gauge theory partition function, the weight
originates in the action, which for anti-self-dual connections in four dimensions evaluates
to the Chern class of the vector bundle (locally free sheaf) via Chern-Weil theory. When
we compactify the space of gauge connections by including pointlike instantons, it is
natural to retain the Chern class as weight, as in (2.5). In this section, we will compute
these two weights and find that on Calabi-Yau surfaces, they are equal up to sign, at least
for torically invariant Y (this qualification arises due to the non-compactness of X, see
point 3. in Subsection 3.2).

3.1 The Euler characteristic of subschemes

Based on the factorization (2.1), we can calculate the Euler characteristic of Y by adding
the contributions from the divisorial and punctual parts, D and Y0, of Y : the Euler
characteristic of a 0 dimensional scheme enumerates its global sections,

χ(OY0) = h0(Y0,OY0) ,

while the Euler characteristic of a divisor D on a surface X, as is reviewed in Appendix
C, is given by

χ(OD) = −1
2
D · (D +KX) , (3.1)

with KX the canonical class of the surface. The right-hand side of eq. (3.1) clearly only
depends on the class of the divisors up to linear equivalence. We will denote this class by
square brackets [−]. Altogether,

χ(OY ) = −1
2
D · (D +KX) + h0(Y0,OY0) . (3.2)
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The derivation of formula (3.1) in Appendix C relies on the application of the Hirzebruch-
Riemann-Roch theorem, valid for X projective. When relaxing the compactness condi-
tion, the terms on the left- and right-hand side of eq. (3.1) remain well-defined for D a
divisor with compact support. By calculating the Euler characteristic directly in Čech
cohomology in Appendix A, following ref. [5], we will see that at least in the case of
torically invariant subschemes, eq. (3.1) remains valid for D of compact support also on
a non-compact toric surface X. On restricting to torically invariant subschemes Y , the
decomposition into a reduced subscheme D of dimension 1 and a 0 dimensional subscheme
Y0 is immediate.

To explicitly determine the Euler characteristic of a given divisor on a toric surface X, we
benefit from the property that the Chow ring A1(X) is generated by the classes of torically
invariant divisors Di (this is in fact true in arbitrary dimensions). We will enumerate the
Di via i = 0, . . . , n + 1, reserving the indices i = 0 and i = n + 1 for non-compact toric
divisors if these are present, otherwise setting D0 = Dn+1 = 0. This notation allows for
the simultaneous treatment of compact and non-compact toric surfaces.

Expanding [D] in classes [Di] generated by compactly supported divisors,

[D] =
n∑
i=1

λi [Di] ,

with λi non-negative integers, and with the intersection matrix as given in eq. (B.2) of
Appendix B, the calculation of the Euler characteristic in Appendix A yields

χ(OD) =
n∑
i=1

(
ai
λi (λi − 1)

2
+ λi − λi λi+1

)
, (3.3)

where the ai denote the negative self-intersection numbers ai = −D2
i , and λn+1 = 0 is

introduced for notational convenience.

To compare with eq. (3.1), note that the total Chern class of a non-singular toric variety
X is given by

ct(X) =
n+1∏
i=0

(1 + [Di]) .

It follows that

KX = −
n+1∑
i=0

[Di] ,

and hence

χ(OD) = −1

2

n∑
i,j=1

λi(λj − 1)Di ·Dj +
1

2

n∑
i=1

λiDi · (D0 +Dn+1) . (3.4)

Borrowing the result (5.5) from Section 5, in which [D0] and [Dn+1] are expressed as
linear combinations of [D1], . . . , [Dn], we conclude that eq. (3.1) reproduces the Čech
cohomology result (3.3).
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3.2 The Chern characteristic of sheaves

In the gauge theory setup, we wish to weigh all sheaves via the degree of their second
Chern character. This is the natural extension of the notion of instanton number beyond
locally free sheaves (i.e. vector bundles), see Appendix C. The Chern character satisfies
the multiplicative property

ch(E ⊗ F) = ch(E) · ch(F) .

For the ideal sheaf IZ of a cycle Z, an application of the Grothendieck-Riemann-Roch
theorem yields

ch(IZ) = 1− ηZ ,
with ηZ the class of the cycle (see e.g. ref. [26, p. 159]). Due to the relation ch0(L) =
rk (L) = 1 for a line bundle L, we have

ch2(L ⊗ IZ) = ch2(L)− ηZ .

We can therefore consider the two factors contributing to the weight of a given torsion-free
sheaf separately.

As we show in Lemma C.1 of appendix C, deg(ηZ) = χ(OZ).

For line bundles, we can work in the more familiar cohomological setup. On a compact
surface X, the instanton number evaluates to the intersection pairing of the corresponding
divisors,

1

2

∫
X

c1
(
OX(D)

)
∧ c1

(
OX(D)

)
=

1

2
D ·D . (3.5)

For a divisor D with compact support, this relation in fact continues to hold on arbitrary
toric manifolds. The argument consists of three parts:

1. Also on non-compact manifolds, the first Chern class c1(OX(D)) of the line bundle
associated to a divisor and the closed Poincaré dual ηD of the support of the divisor
are cohomologous, c1(OX(D)) ∼ ηD.7

2. Since the support |D| is compact, we can replace the closed Poincaré dual by the
compact Poincaré dual. By localization of this class (in the sense of e.g. ref. [27]),
we know that we can choose its support to be contained in an arbitrary open set
containing |D|, such that the integral in eq. (3.5) is well-defined.

3. We verify the relation (3.5) by performing the calculation on a toric compactification
X̄ of X for which the compactification divisor does not intersect the image of the
support of D. This property guarantees that the evaluations of the integrals over
X and X̄ coincide. An example of such a compactification, which always exists for
smooth toric surfaces, is given in Figure 1.

7Recall that the closed Poincaré dual is integrated against forms of compact support, in contrast to
the compact Poincaré dual which itself has compact support (see e.g. ref. [27, pp. 51–53]). Hence, the
closed Poincaré dual ηΣ of a cycle Σ satisfies∫

Σ

ψ =
∫
X

ηΣ ∧ ψ

for any ψ ∈ H∗
c (X,R) (defining both sides to vanish if the form degrees are not appropriate). By

restricting the integration to the support of ψ, the argument establishing c1(OX(−D)) ∼ ηD on compact
manifolds (see e.g. ref. [28, p. 143]) goes through in the non-compact case.
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Figure 1: A toric compactification of the resolved A1 singularity (in blue) to P1 × P1 blown up at two
points.

The toric assumption can be replaced by the requirement that a compactification with
the requisite properties exists.

We thus arrive at
ch2

(
OX(D)⊗ IZ

)
= 1

2
D ·D − χ(OZ) .

For KX = 0 this agrees with eq. (3.2) up to sign, as announced at the beginning of this
section.

It turns out that all non-compact divisors in the geometries that we will consider are
linearly equivalent to divisors with compact support. This thus allows us to compute
the instanton number on the full Picard group. Note that the instanton numbers of line
bundles associated to prime divisors with non-compact support are no longer necessarily
integral.

4 Crystal melting: counting subschemes

In the previous sections, we have introduced two closely related enumerative problems:
counting subschemes vs. counting torsion-free sheaves on a toric surface. The line bundle
factor in eq. (2.2) requires invoking linear equivalence between toric divisors, and hence
cannot be straightforwardly implemented within a vertex formalism that essentially only
allows for nearest neighbor interactions (in terms of the 2-cones of the toric fan, or the
vertices of the dual web diagram).8 The problem of counting, in an appropriate sense,
the 0 and 1 dimensional compactly supported subschemes of a toric surface does however
have a melting crystal implementation, as we demonstrate in this section.

The factorization (2.1) of the Hilbert scheme discussed in Section 2.1 results in a factor-

8We say ‘essentially’ as even the vertex formalism in six dimensions requires identifying homologous
curve classes by hand. In fact, when H1(X,OX) = H2(X,OX) = 0, Pic (X) ∼= H2(X,Z), so ‘linearly
equivalent’ and ‘homologous’ are the same notion on smooth compact toric surfaces (in fact, this holds in
any dimension: all cohomology classes on toric manifolds are analytic, hence of pure type (p, p)). Even
so, in Zcm, all curves are counted and only the weight wβ invokes homological equivalence, whereas in
Zgt, the enumeration itself proceeds over equivalence classes.
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ization of the partition function Zcm defined in eq. (2.3),

Zcm(X; q, w) =
∑

β∈H2(X,Z)

∫
Inβ (X,β)

e
(
TInβ(X, β)

)
qnβ wβ

∑
n≥0

∫
X[n]

e
(
TX [n]

)
qn .

(4.1)

We begin by considering the contribution of the free and embedded 0 dimensional sub-
schemes. The corresponding generating function for smooth projective surfaces has been
calculated by Göttsche in ref. [29]. We reproduce his result in the case of toric sur-
faces via a localization calculation, which then permits an extension to the non-compact
case. This calculation will also be relevant in the gauge theory context of Section 5. We
next apply a similar localization argument to the divisorial contribution to the partition
function. Finally, we show how the computation of Zcm can be encapsulated in a small
set of diagrammatic rules, and illustrate these in the examples of projective space and
Hirzebruch-Jung spaces. Localization arguments lie at the heart of the calculations in
this section.

4.1 0 dimensional subschemes

For X a smooth projective surface, the moduli space X [n] of 0 dimensional subschemes of
length n is non-singular of dimension 2n [21, Theorem 2.4]. The generating function we
are after was computed by Göttsche for smooth projective surfaces as [29]∑

n≥0

χ
(
X [n]

)
qn =

(
η̂(q)−1

)χ(X)
, (4.2)

with

η̂(q) =
∞∏
k=1

(
1− qk

)
the generating function of partitions. The computation of ref. [29] does not require a torus
action on the surface. If such an action exists, i.e. in the case of a toric surface X, we
can reproduce Göttsche’s formula (4.2) by a localization computation (see also ref. [30]
and ref. [16, appendix A]). As the Hilbert scheme X [n] is smooth, we can use conventional
Atiyah-Bott localization [31] in equivariant cohomology. We quote here the more general
integration formula of Edidin and Graham [32] in equivariant Chow theory; this is the
framework that generalizes beyond smooth varieties.

Theorem 4.1. ([32, Proposition 5]) Let M be a smooth and complete scheme with the
action of a torus T = (C∗)k. Denote the fixed point locus of the T -action by MT , with
embedding

i : MT ↪→ M .

Let a ∈ A0(M) descend from an equivariant class α ∈ AT0 (M), i.e. a = i∗α. Then

deg(a) =
∑
F⊂MT

πF ∗

( i∗Fα

eT (NFM)

)
, (4.3)

11



where the sum runs through the connected components of the fixed point locus, NFM
denotes the normal bundle over F in M , iF the embedding of F into M , and πF the
projection of F to a point. eT (NFM) is the T -equivariant Euler class which is invert-
ible in AT∗ (F ) ⊗Q[t1,...,tk] Q[t1, . . . , tk]m, where Q[t1, . . . , tk]m is the localization of the ring
Q[t1, . . . , tk] at the maximal ideal m spanned by the generators t1, . . . , tk of the equivariant
ring of T .

When the set of T -fixed points is a union of isolated points, the tangent bundle to each
F is trivial, and thus

eT (NFM) = eT (TM |F ) .

With a = e(TM), we have α = eT (TM), and hence i∗Fα = eT (TM |F ) cancels the de-
nominator in the integrand on the right-hand side of the localization formula (4.3). In
this case, the integral (4.3) can simply be evaluated by counting the fixed points of the
T -action on M .

Note that characteristic classes of equivariant vector bundles can be extended to equiv-
ariant classes. Theorem 4.1 hence applies to our case of interest, with M = X [n] and
a = e(TX [n]) the Euler class of the tangent bundle of the Hilbert scheme X [n].

The fixed points of X [n] parametrize the torically invariant 0 dimensional subschemes of X
with holomorphic Euler characteristic n. They can be enumerated by considering an affine
patch C[x, y] around each set theoretic fixed point, and ideals I ⊂ C[x, y] generated by
monomials xm yn giving rise to non-reduced schemes with support at this point. The ideals
I are in one-to-one correspondence with Young tableaux πI , as illustrated in Figure 2.
The boxes of the Young tableau map to a basis of global sections of the corresponding 0

Figure 2: The Young tableau encoding the ideal generated by the monomials xmi yni , i = 1, . . . , 4, with
(mi, ni) the coordinates of the shaded boxes.

dimensional subscheme Y . Its Euler characteristic is hence equal to

χ(OY ) = h0(Y,OY ) = dimC
(
C[x, y]

/
I
)

= |πI | ,

the number of boxes in the Young tableau πI . The contribution to the partition function
per geometric fixed point is hence ∑

π

q|π| = η̂(q)−1 .

12



The toric fixed points correspond to the maximal cones of the toric fan of X. Since the
Euler characteristic χ(X) of a toric manifold X is given by the number of maximal cones
of X, this reproduces the formula (4.2).

The application of standard theorems is complicated when the surface X is non-compact.
We will proceed by applying the localization formula to a toric compactification X̄ of X,
and then restrict to the fixed points lying in X. This procedure is clearly independent of
the choice of compactification.

4.2 1 dimensional subschemes

We now want to apply Theorem 4.1 to the integral over [Inβ(X, β)]. For X a smooth pro-
jective surface, this class exists as the corresponding Hilbert scheme of curves is smooth,
as argued in Section 2.1. For X non-compact, we will again consider a toric compactifi-
cation X̄ of X, as illustrated in Figure 1. This compactification is obtained by gluing in
a set of torically invariant divisors which have vanishing intersection with the compactly
supported divisors of X. For β the class of a compactly supported divisor, it follows
that

Inβ(X, β) ∼= Inβ(X̄, β) ,

as for D such that [D] = β, all divisors linearly equivalent to D will lie within X. We
conclude that for β the class of a compactly supported divisor, Inβ(X, β) is smooth on a
smooth quasi-projective toric surface as well.

4.2.1 The toric fixed points

Above, we considered ideal sheaves corresponding to 0 dimensional subschemes. In gen-
eral, ideal sheaves invariant under the torus action are monomial, i.e. locally generated by
monomials. We will describe such an ideal sheaf I by specifying it locally on the torically
invariant open sets Ui of the surface X, Ii = I(Ui) ⊂ C[x, y], such that restrictions to
overlaps coincide. The monomial ideals Ii are in a one-to-one relation to Young tableaux
which in distinction to the 0 dimensional case may be infinite, i.e. the generators do not
necessarily include monomials of the form xm or yn.

The factorization (2.1) of the Hilbert scheme into a divisorial and a punctual part is
immediate when restricting to the toric fixed points: the possible associated primes to
Ii are (x), (y), and (x, y) (see e.g. ref. [33] for an explanation of this notion), the latter
implying the existence of an embedded point. It is easy to see that all Young diagrams
other than Hook diagrams correspond to closed subschemes with embedded points. The
decomposition

{infinite Young tableau} ←→
(
N ∪ {0}

)2 × {finite Young tableau}

illustrated in Figure 3 hence corresponds to the decomposition of the fixed point into an
effective divisor, and free and embedded point contributions (free in case λi = λi+1 = 0).

We now consider the two factors contributing to Zcm as given in eq. (4.1) in turn.

13



Figure 3: Decomposition of a subscheme into a reduced and a 0 dimensional component.

Points. The torically invariant ideal sheaves of points were discussed in Section 4.1.
They are in one-to-one correspondence with vectors of finite Young tableaux

π = (π1, . . . , πn) ,

one diagram assigned to each toric fixed point of the surface. The Euler characteristic of
the corresponding subscheme Y0 is given by

χ(OY0) =
n∑
i=1

|πi| .

Below we will also identify toric fixed points, which correspond to 2-cones of the toric
fan, by the two bounding 1-cones, and whence use the notation πi,i+1 := πi as e.g. in
Figure 3.

Divisors. As reviewed in appendix B, the torically invariant divisors are in one-to-
one correspondence with the 1-cones of the toric fan. Labeling the compactly supported
torically invariant divisors as Di, i = 1, . . . , n (i.e. disregarding the two outermost 1-cones
in the case of non-compact surfaces), a general effective divisor D kept fixed by the toric
action is parametrized by n non-negative integers λi,

D =
n∑
i=1

λiDi .

The Euler characteristic of D is then computed via (3.4),

χ(OD) =
n∑
i=1

(
ai
λi (λi − 1)

2
+ λi − λi λi+1

)
.

The self-intersection numbers are here denoted D2
i = −ai. We have furthermore set

λn+1 = λ1 in the compact case and λn+1 = 0 in the non-compact case. We discuss
how to determine the intersection matrix of the compactly supported prime divisors in
appendix B.

4.2.2 Crystal melting

To emphasize the similarity with melting crystal combinatorics in six dimensions [3], we
can express the Euler characteristic χ(OY ) = χ(OY0) + χ(OD) in terms of the infinite
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Young tableau π̃i,i+1 as

χ(OY ) =
n+1∑
i=1

|π̃i,i+1|+
n∑
i=1

(
ai
λi (λi − 1)

2
+ λi

)
,

where the box count of the infinite Young tableau is defined as (see Figure 3)

|π̃i,i+1| :=
( ∑

(I,J)∈π̃i,i+1∩[0,1,...,N ]2

1
)
− (N + 1)λi − (N + 1)λi+1 , N � 0

=
( ∑

(I,J)∈πi,i+1

1
)
− λi λi+1 .

This determines the Boltzmann weight for dissolved atoms in a crystal described by
the combinatorial quantities π̃i,i+1 and λi. Note that for the Calabi-Yau case, the self-
intersection numbers are all given by ai = 2 and the Euler characteristic simplifies to

χ(OY ) =
n+1∑
i=1

|π̃i,i+1|+
n∑
i=1

λ2
i .

4.3 The vertex formalism for toric surfaces

We can now easily summarize the computation of the partition function Zcm(X; q, w) in
terms of a simple set of vertex rules:

1. Draw the dual web diagram of the toric fan. 2-cones are dual to vertices, and 1-cones
are dual to legs.

2. Each vertex i carries two positive integer labels λi and λi+1 (“one-dimensional Young
diagrams”), one assigned to each emanating leg, and contributes a vertex factor

Vλi,λi+1
(q) =

1

η̂(q)
q−λi λi+1

to the partition function.

3. Vertices are glued along legs carrying the same integer label λi with a gluing factor

Gλi(q, wi) = qai
λi (λi−1)

2
+λi wλii ,

where the self-intersection numbers −ai are determined graphically as described
below. wi labels the homology class of the curve corresponding to the leg along
which the vertices are glued.

4. Multiplying the vertex and gluing factors together, summing the λi on internal legs
over all non-negative integers while setting those on external legs to zero then yields
the melting crystal partition function Zcm(X; q, w).

We can determine the self-intersection numbers −ai graphically as follows. Recall that
they are given by the relation

ai vi = vi−1 + vi+1
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Figure 4: An example of a curve with self-intersection number −1 (the exceptional divisor of the blow-up
of C2 at the origin). On the right-hand side, we have indicated the dual web diagram with the analogue
of the framing vectors of the six-dimensional vertex formalism [1, 2].

between the generator vi of the 1-cone associated to Di and those of the two neighboring
1-cones, see Figure 4. Note that since the surface X is non-singular by assumption, one
has

vi−1 × vi = vi × vi+1 = 1 ,

where the× product computes the volume of the cell spanned by the generators. Hence

ai = vi−1 × vi+1 .

4.4 Examples

4.4.1 Projective plane

The toric fan and web diagram of the projective space CP2 are depicted in Figure 5. The

Figure 5: The toric fan for CP2, and the corresponding web diagram, with the legs of the vertices
labelled.

self-intersection numbers −ai of the torically invariant divisors are ai = −1. The partition
function is thus

Zcm(CP2; q, w) =
∞∑

λ0,λ1,λ2=0

1

η̂(q)
q−λ0 λ1 q−

λ2
1
2

+ 3
2
λ1 wλ1

1

η̂(q)
q−λ1 λ2 q−

λ2
2
2

+ 3
2
λ2 wλ2

× 1

η̂(q)
q−λ2 λ0 q−

λ2
0
2

+ 3
2
λ0 wλ0

=
1

η̂(q)3

∞∑
λ0,λ1,λ2=0

q−
1
2

(λ0+λ1+λ2)2+ 3
2

(λ0+λ1+λ2)wλ0+λ1+λ2 ,
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with w labeling the hyperplane class.

As a check, we can use this formula to extract the Euler characteristic χ
(
Inβ(X, d)

)
of

the moduli space of degree d divisorial curves on X = CP2. By our result for the partition
function, it is given by the number of ways to obtain d as the sum of three non-negative
integers,

d = λ0 + λ1 + λ2 .

As |Inβ(X, d)| = P(H0(X,OX(D)) for a choice of divisor D with [D] = β, (see e.g. [28,
p. 137]), and χ(CPn) = n+ 1, this is indeed the correct result.

4.4.2 Hirzebruch-Jung surfaces

A choice of 1-cones describing the Hirzebruch-Jung surfaces Yp,q is given in Appendix B.
The corresponding fan for the example Y3,2 = A2 is depicted in Figure 6, together with
the dual web diagram.

Figure 6: The toric fan for A2, and the corresponding web diagram, with the legs of the vertices labelled.

The vertex rules yield the partition function

Zcm(Yp,q; q, w) =
∞∑

λ1,...,λn=0

1

η̂(q)
q−λ0 λ1 q

1
2
a1λ2

1+λ1(1− 1
2
ai)wλ1

1

1

η̂(q)
q−λ1 λ2 · · ·

×q
1
2
anλ2

n+λn(1− 1
2
an)wλnn

1

η̂(q)
q−λn λn+1

=
1

η̂(q)n+1

∞∑
λ1,...,λn=0

q
1
2
λ·Cλ− 1

2
λ·Ce− 1

2
λ1− 1

2
λn wλ ,

where we have defined e := (1, . . . , 1), λ := (λ1, . . . , λn), and wλ := wλ1
1 · · ·wλnn . The

negative of C is the intersection matrix (B.2) of the compact divisors given in appendix B,
where we also review how to determine the self-intersection numbers −ai.
ALE spaces have vanishing canonical class. By specializing the above formula to this
case, with all ai = 2, we observe the ensuing simplification to

Zcm(An; q, w) =
1

η̂(q)n+1

∞∑
λ1,...,λn=0

q
1
2
λ·Cλwλ .
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5 Gauge theory

On non-compact surfaces, the vertex rules from the previous section only capture part
of the complete gauge theory partition function. To obtain the full partition function,
we need to include contributions from both negative and non-compact divisors. In the
compact case, linear equivalence will furthermore identify divisors in the gauge theory
that correspond to distinct fixed points of the torus action, changing the combinatorics
of the problem.

The factorization (2.2) of rank 1 torsion-free sheaves T ,

T = L ⊗ IZ ,

implies that the moduli space of isomorphism classes of torsion-free sheaves factorizes

MX(β, n) = PicXβ ×X [n−nβ ] ,

with the Picard group PicXβ parametrizing line bundles which contribute nβ = −1
2
β · (β+

KX) to the Euler characteristic of the torsion-free sheaf. It follows that the generating
function (2.5) for the counting problem splits into a discrete and a continuous part,

Zgt(X; q, w) =
∑

β∈H2(X,Z)

∑
L∈PicXβ

q−nβ wβ
∑
n≥0

∫
X[n]

e
(
TX [n]

)
qn .

For the continuous part, we need to count 0 dimensional subschemes. These contribute
identically to Zgt and Zcm, by the factor

1

η̂(q)χ(X)
,

as determined in Section 4.1.

It remains to enumerate the holomorphic line bundles L ∈ PicXβ . In fact, on a toric
manifold, the Picard group is spanned by the classes of torically invariant divisors. Our
task will be to determine an integral generating set among these. We do this for each of
the examples considered in Section 4.4 in turn.9

5.1 Projective plane

The homology of CP2 is spanned by the hyperplane class, with self-intersection number 1.
Holomorphic line bundles on CP2 hence permit self-dual, but not anti-self-dual connec-
tions. Of course, the two conditions are interchanged upon reversing the orientation of
the surface. Let us proceed to determine the gauge theory partition function, in the sense
developed in Section 2.2, upon replacing anti-self-duality by self-duality.

The three torically invariant divisors of the complex projective plane are of course linearly
equivalent (the Picard group of complex projective space in any dimension is spanned by

9Note the deceptive similarities to the case of counting subschemes. The sum over torically invariant
divisors there was due to localization. Furthermore, we will start off here by considering two additional
toric divisors (those of non-compact support), but taking linear equivalence into account will result in
the same number of summations as previously.

18



the hyperplane divisor). In contrast to the non-compact examples discussed below, we
obtain the gauge theory partition function from the melting crystal partition function
simply by dropping the sum over equivalent bundles and the restriction to effective di-
visors, and by taking into account the change in weight due to KCP2 6= 0. One thereby
finds

Zgt(CP2; q, w) =
1

η̂(q)3

∞∑
u=−∞

q−
1
2
u2

wu .

5.2 Hirzebruch-Jung surfaces

When including non-compact prime divisors, the full set of divisors associated to the 1-
cones of the toric fan of a Yp,q space become linearly dependent. We will now determine an
integer generating set for the Picard group. For clarity, we will first treat the simpler case
of ALE spaces An, though they are of course encompassed by the subsequent treatment
of general Hirzebruch-Jung surfaces Yp,q with (p, q) = (n+ 1, n).

ALE spaces. Consider the vectors (1, 0) and (0, 1) in the toric fan of the resolved
geometry of An = C2/Zn+1 introduced in appendix B.2. They correspond to the two
principal divisors10

div
(
χ(1,0)

)
= D0 −D2 − 2D3 − . . .− nDn+1 ,

div
(
χ(0,1)

)
= D1 + 2D2 + . . .+ (n+ 1)Dn+1 , (5.1)

where we have labelled toric divisors in clockwise order. The two divisors corresponding to
the outermost 1-cones, D0 and Dn+1, have non-compact support. Based on the relations
of linear equivalence induced by eq. (5.1), we now demonstrate that the classes

ei := −
n∑
j=1

(
C−1

)ij
[Dj] , i = 1, . . . , n , (5.2)

with −C the intersection matrix of the compact divisors as given in eq. (B.2) of Ap-
pendix B, constitute an integral generating set for the Picard group A1(X).11 As the
entries of C−1 are fractional, we need to demonstrate both that the elements ei are gen-
erators, and that they are integer linear combinations of the toric divisors (including [D0]
and [Dn+1]). Both properties follow upon providing the following recursive presentation
of the ei (for n > 1; the case n = 1 is trivial, with a single generator [D0] = [D2]). It is
easy to verify that e1 = [D0] and en = [Dn+1]. For i = 2, . . . , n− 1, the ei satisfy

ei = ei−1 − en − [Di]− . . .− [Dn+1] .

It follows that {ei} represents an extension of the set of non-compact torically invariant
divisors {[D0], [Dn+1]} to an integral generating set for the Picard group.

10See e.g. ref. [34] for the notation χu, which assigns a function to the lattice vector u.
11Such a generating set is of course not unique. Our choice provides a dual set, via the intersection

product linearly extended to non-compact divisors, to the compactly supported divisors D1, . . . , Dn, and
as such corresponds to the basis of bundles constructed by Kronheimer and Nakajima in ref. [23].
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Parametrizing the class of a divisor D = Du in terms of the generators ei,

[Du] =
n∑
i=1

ui e
i

with u = (u1, . . . , un) ∈ Zn, we can now compute its second Chern character. Note that
the Chern classes corresponding to divisor classes are integral, irrespective of the support
of the divisor. At the level of Chern classes, we can hence invoke the presentation of
e1 = [D0] and en = [Dn+1] in eq. (5.2) to solve for e1 and en, and the right-hand side,
despite the appearance of the fraction 1

n+1
, maps into integral cohomology. With the

intersection pairing (3.5), we thus arrive at

ch2

(
OX(Du)

)
= 1

2
u · C−1u . (5.3)

General Yp,q spaces. With the parametrization of the toric fan given in appendix B,
the principal divisors corresponding to the lattice vectors (1, 0) and (0, 1) are

div
(
χ(1,0)

)
=

n+1∑
i=0

xiDi ,

div
(
χ(0,1)

)
=

n+1∑
i=0

yiDi ,

where we have introduced the notation vi = (xi, yi). Recalling that v0 = (1, 0), we arrive
at the linear equivalences

[D0] =
1

yn+1

n∑
i=1

(xn+1 yi − xi yn+1) [Di] ,

[Dn+1] = − 1

yn+1

n∑
i=1

yi [Di] .

By invoking eq. (B.3) from Appendix B and the relation

xi−1 yi+1 − xi+1 yi−1 = ai ,

which follows from eq. (B.3) and the fact that the resolved geometry is non-singular (i.e.
the 2-cones have volume 1), we can easily verify that in A1(Yp,q)⊗Q one has

[D0] = −
n∑
i=1

(
C−1

)1 i
[Di] , (5.4)

[Dn+1] = −
n∑
i=1

(
C−1

)n i
[Di] . (5.5)

We can now complete the set {[D0], [Dn+1]} to an integral generating set for A1(Yp,q) by
setting e1 = [D0], e

n = [Dn+1] and defining ei, i = 2, . . . , n− 1 recursively via

ei = ei−1 −
n∑
j=i

cij [Di]− cin+1 e
n ,
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where

cii = 1 ,

cij = aj−1 c
i
j−1 − 1 , j = i+ 1, . . . , n ,

cin+1 = −cin−1 + an c
i
n .

The generators so defined satisfy

ei = −
n∑
j=1

(
C−1

)ij
[Dj] .

The computation now proceeds as above, yielding, for

[Du] =
n∑
i=1

ui e
i ,

the second Chern character given by (5.3).

Combining the contributions from the line bundles and the ideal sheaves of points, we
obtain the partition function

Zgt(Yp,q; q, v) =
1

η̂(q)χ(Yp,q)

∑
u∈Zd−1

q−
1
2
u·C−1uwu

with wu := wu1
1 · · ·wunn . This coincides with the results obtained in ref. [8].

Acknowledgements

We would like to thank Ugo Bruzzo, Francesco Fucito, Elizabeth Gasparim, Antony Ma-
ciocia, Jose F. Morales, Rubik Poghossian, Alessandro Tanzini and Constantin Teleman
for discussions. AK would like to thank Pierre Cartier, Ofer Gabber, Nicolò Sibilla, and es-
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A Euler characteristic of torus invariant subschemes

In this appendix, we will calculate the Euler characteristic χ(OY ) of torically invariant
subschemes Y using Čech cohomology. We will compute the cohomology with respect to
the canonical torically invariant open cover {Ui} of X, where each Ui corresponds to a
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maximal cone. We choose the index i to enumerate consecutive maximal cones in anti-
clockwise order. In the case that X is compact, we will identify the first and last open
set of our cover. The collection of sets thus defined has the properties

Ui ∩ Uj

{
= (C∗)2 , j 6= i± 1 ,

⊃ (C∗)2 , j = i± 1 ,
(A.1)

and
Ui ∩ Uj ∩ Uk = (C∗)2

for any i, j, k. Our strategy to compute χ(OY ) is as follows. Given

V =
b⋃
i=a

Ui , (A.2)

let
AV = OY (Ua−1 ∪ V ∪ Ub+1)

∣∣
V

be the space of global sections of OY (V ) that lift to OY (Ua−1) and OY (Ub+1), and de-
fine

χV = dimC(AV )− ȟ1
(
OY
∣∣
Ua−1∪V ∪Ub+1

)
.

Note that we avoid the use of ȟ0(OY |Ua−1∪V ∪Ub+1
) in place of dimC(AV ), as the former

could be infinite. We will compute χV for V = Ui, and given two adjacent such sets, such
as V in eq. (A.2) and

W =
c⋃

i=b+1

Ui ,

together with their respective integers χV and χW , we will determine χV ∪W . Applying
this gluing operation a finite number of times will yield χ(OY ).

The monomial generators of OY (Ui) are in one-to-one correspondence with the boxes of a
possibly infinite Young tableau π, such that πk and πTk (with πk/π

T
k the number of boxes

in the k-th row/column of π) stabilize at large k, to λi and λi+1 say. The boxes with
coordinates (k, l), k ≥ λi, l ≥ λi+1 correspond to sections that restrict to 0 outside of Ui.
Each such box contributes one to χ(OY ). In the following, we can hence restrict attention
to subschemes Y without embedded points.

We turn to the calculation of χUi . Without loss of generality, we can assume

OY (Ui−1) = C
[

1
x
, xai−1 y

] / (
( 1
x
)λi−1 (xai−1y)λi

)
,

OY (Ui) = C[x, y]
/ (
xλi+1 yλi

)
,

OY (Ui+1) = C
[
x yai , 1

y

] / (
(x yai)λi+1 ( 1

y
)λi+2

)
,

together with

OY (Ui−1,i) = C
[
x , 1

x
, y
] / (

yλi
)
,

OY (Ui,i+1) = C
[
x , y , 1

y

] / (
xλi+1

)
,
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and
OY (Ui−1,i,i+1) = 0 .

We have introduced the notation Ui,...,j = Ui ∩ . . .∩Uj. A moment’s thought yields

dimC(AUi) =

λi−1∑
s=0

ai−1 s∑
r=0

1 +

λi+1−1∑
s=0

ai s∑
r=0

1− λi+1 λi

= ai−1
(λi − 1)λi

2
+ λi + ai

(λi+1 − 1)λi+1

2
+ λi+1 − λi+1 λi ,

and
ȟ1
(
OY
∣∣
Ui−1∪Ui∪Ui+1

)
= 0 ,

hence
χUi = dimC(AUi) .

Next, we turn to the compution of χV ∪W given χV and χW , using the notation for V and
W introduced above. Note that by eq. (A.1), V ∩W = Ub ∩Ub+1. If we consider the sum
χV + χW as an approximation to χV ∪W , then we make the following mistakes:

• We count generators of AV and AW that have the same restriction to V ∩W twice.

• We count generators of AV |V ∩W that do not lift to AW , and likewise elements of
AW |V ∩W that do not lift to AV .

• We do not subtract new contributions to ȟ1, i.e. generators in OY (V ∩W ) that are
not exact.

Now consider the space BV,W = OY (Ub∪Ub+1)|Ub∩Ub+1
. Generators of this space either lift

to both AV and AW , or to either AV or AW but not both, or to neither. By the following
lemma, the generators of BV,W are hence in one-to-one correspondence with the elements
over-counted above.

Lemma A.1. Elements in BV,W that lift neither to AV nor to AW lie in Ȟ1(V ∪W ).

Proof. A preimage r under the Čech differential δ of an element in Č1(V ∪W ) of the form

sij =

{
a if {i, j} = {b, b+ 1} ,

0 otherwise

must satisfy

ri − rj
∣∣
Ui,j

=

{
± a if {i, j} = {b, b+ 1} ,

0 otherwise .

Such an element exists if and only if a lifts to AV or AW .

Finally, the number of generators of BV,W already entered into our computation of the
dimension of AUi above,

dimC(BV,W ) =

λb+1−1∑
s=0

ab s∑
r=0

1 .
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Combining all of these observations, we arrive at the desired formula for the holomorphic
Euler characteristic of Y ,

χ(OY ) =
n∑
i=1

(
ai
λi (λi − 1)

2
+ λi − λi λi+1

)
.

B Toric surfaces

B.1 General non-singular toric surfaces

A non-singular toric surface is determined by a sequence of integral vectors vi in Z2,
taken in counter-clockwise order, that generate the 1-cones of the toric fan. For compact
surfaces, we will enumerate these v1 through vn. Any two adjacent vectors span a 2-cone
in this case, and by non-singularity, generate the lattice. For non-compact surfaces, two
of the 2-cones have only one neighbor. For this case, we denote the outer-most vectors
by v0 and vn+1, giving rise to a total of n+ 2 1-cones.

The coordinate transformation between neighboring 2-cones is of the form

(x, y) 7−→
(

1
x
, xa y

)
.

For each 2-cone, generated by integral vectors vi and vi+1, one determines the integer
a by considering the generator vi+1 of the neighboring cone, counter-clockwise, which
satisfies

vi+1 = −vi−1 + ai vi . (B.1)

The torically invariant prime divisors of a toric manifold are in one-to-one correspondence
with the integral generators of the 1-cones. In the conventions introduced above, the
number of compactly supported divisors is n, both in the compact and the non-compact
case. The intersection matrix of the compactly supported divisors is determined as follows.
Two divisors whose associated 1-cones span a 2-cone of the fan intersect transversally,
while all others are disjoint. The self-intersection number D2

i = −ai is determined by the
constant ai in eq. (B.1) (recall that we are excluding i = 0 and i = n+ 1; indeed, due to
the non-compact support of the associated divisors, the naive intersection number here
is not defined). The intersection matrix −C for the compactly supported toric divisors
therefore has the form

C =


a1 −1 0 . . . 0
−1 a2 −1 . . . 0

0 −1
. . .

...
...

...
. . . −1

0 0 . . . −1 an

 . (B.2)

B.2 Hirzebruch-Jung surfaces

Hirzebruch-Jung spaces X = Yp,q are non-compact toric surfaces, parametrized by two
positive coprime integers p and q with p > q. They are defined as the resolutions of Ap,q
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quotients, i.e. the quotients of C2 by the action of the cyclic group Zp generated by

Γ =

(
ξ 0
0 ξq

)
,

where ξ = e 2π i /p. The toric fan for the singular space is given by the two 1-cones
generated by the integral vectors v0 = (1, 0) and vn+1 = (−q, p) respectively, and the
2-cone generated by the pair. The resolution is obtained via subdivision with 1-cones
generated by integral vectors v1, . . . , vn such that

vi−1 + vi+1 = ai vi (B.3)

for i = 1, . . . , n. The integers ai can be read off from the continued fraction expansion of
p/q,

p

q
= a1 −

1

a2 − 1

...an−1− 1
an

.

With these entries, C of eq. (B.2) is positive definite, the intersection matrix hence neg-
ative definite.

Topologically, ALE spaces are resolutions of An singularities. These are the Hirzebruch-
Jung spaces Yn+1,n. For these surfaces, ai = 2 for i = 1, . . . , n, and a choice of integral
vectors generating the 1-cones of the toric fan is given by

v0 = (1, 0) , v1 = (0, 1) , . . . , vn+1 = (−n, n+ 1) .

We have depicted the fan for the surface A2 in Figure 7.

Figure 7: The toric fan for A2, with the torically invariant divisors indicated.

C Characteristic classes of coherent sheaves

In physics, we are most familiar with characteristic classes assigned to vector bundles
on a manifold X, taking values in H∗(X,Z) ⊗ Q (the sheaf cohomology of the locally
constant sheaf); we often deal with the image in de Rham cohomology. Chern classes
form basic building blocks for all characteristic classes. The total Chern class satisfies the
multiplicative property

ct(E) = ct(E ′ ) · ct(E ′′ ) (C.1)
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whenever the bundles E , E ′, and E ′′ fit into an exact sequence

0 // E ′ // E // E ′′ // 0 .

The product in eq. (C.1) is the cup product or the wedge product, respectively.

A refined version of characteristic classes takes values in the Chow ring A∗(X)⊗Q of X.
One path between the two definitions is via the splitting principle and the relation of line
bundles to divisors. We take the image of an irreducible closed subscheme Y in the Chow
ring to be the underlying closed subset endowed with the reduced induced structure, Yred,
with multiplicity given by the length of the local ring Oy,Y at the generic point y of Yred
(we will unravel this perhaps unfamiliar sounding definition below in the simple case of a
zero dimensional subscheme).

The Grothendieck group K(X) of a scheme X is the free abelian group generated by the
coherent sheaves on X, modulo the relation F−F ′−F ′′ whenever these sheaves fit into an
exact sequence. As coherent sheaves on well-behaved schemes allow for a finite locally free
resolution, the property (C.1) allows for the extension of the definition of characteristic
classes to all of K(X).

For a complete scheme X of dimension n, there is a degree map An(X) → Z. In the
cohomological description, this corresponds to taking the integral over the underlying
compact manifold of X. This map can be defined on non-compact X for cycles of An(X)
that have a representative with compact support.

With these definitions, we can derive the Euler characteristic (3.1) of the structure sheaf
of a subscheme Y as follows. The ideal sheaf IY associated to Y is defined via the exact
sequence

0 // IY // OX // OY // 0 .

By additivity of the Euler characteristic, one has

χ(OY ) = χ(OX)− χ(IY ) . (C.2)

If we consider IY as an abstract sheaf, forgetting about its embedding into OX , then it
is isomorphic to an invertible sheaf on X, i.e. a line bundle. This is simply the familiar
correspondence between divisors D = [Y ] and line bundles OX(D),

OX(−D) = IY .

To calculate χ(OY ) using eq. (C.2), we invoke the Hirzebruch-Riemann-Roch theorem to
compute χ(OX) and χ(OX(−D)). It states that the Euler characteristic of a locally free
sheaf E of rank r on a nonsingular projective variety X of dimension n is given by

χ(E) = deg
(
ch(E) · td (X)

)
n
,

where (− )n denotes the component of degree n in the Chow ring A∗(X) ⊗ Q and a dot
denotes intersection product.

When X is a surface, the Todd class is given by

td (X) = 1− 1
2
KX + 1

12

(
K2
X + c2(X)

)
,
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where KX = −c1(X) is the canonical divisor. Since ch(OX) = 1 one finds

χ(OX) = 1
12

(
K2
X + c2(X)

)
.

For a line bundle OX(−D), one has ch(OX(−D)) = exp(−D). Therefore,

χ
(
OX(−D)

)
= 1

2
D · (D +KX) + 1

12

(
K2
X + c2(X)

)
.

Collecting these results, we arrive at formula (3.1).

Finally, we present a simple application of the definition of degree presented above to the
case of zero dimensional subschemes.

Lemma C.1. The degree of an irreducible zero dimensional subscheme Y of a scheme X
of finite type over an algebraically closed field k is given by dimk(H

0(Y,OY )).

Proof. The question is local, so we can assume X affine with coordinate ring A, and
Y = SpecA/I. The generic point y of Yred is

√
I (this is prime by the irreducibility

assumption). The local ring at the generic point is Oy,Y = (A/I)√I = A/I. The second
equality follows from dimA/I = 0. As the length of A/I as a module over k is equal to
its dimension as a vector space, the lemma follows.

D The Hilbert scheme of CP2

The Hilbert scheme of hypersurfaces in projective space (zero sets of homogeneous polyno-
mials in Pr) is easily obtained. For a hypersurface Y of degree d, whose Hilbert polynomial
is given by

P Pr
Y (t) =

(
r + t

r

)
−
(
r + t− d

r

)
,

it is given by projective space PN , with N = h0(Pr,OPr(−dH))−1 and H the hyperplane
divisor of Pr. Consider in particular the case r = 2. As defined above, the hypersurfaces
can be non-reduced and reducible, but they cannot include embedded points (as principal
ideals do not possess embedded components). Including such points increases the Euler
characteristic of the subscheme. Hence the constant term of P P2

Y (t),

P P2

Y (0) =
3d− d2

2
,

is a lower bound for the Euler characteristic of a degree d subscheme of P2. In fact, this
follows from a corollary of Hartshorne [35].

Theorem D.1. Let k be a field, r > 0 an integer and p ∈ Q[z] a numerical polynomial.
Then a necessary and sufficient condition that p be the Hilbert polynomial of a proper
closed subscheme of Prk is that when p is written in the form

p(z) =
∞∑
t=0

[(
z + t

t+ 1

)
−
(
z + t−mt

t+ 1

)]
,

one has m0 ≥ m1 ≥ . . . ≥ mr−1 ≥ 0 and mr = mr+1 = . . . = 0.
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In the case of interest,

p(z) = m1 z +
2m0 +m1 −m2

1

2
,

from which our claim follows.

This observation suggests a factorization of the Hilbert scheme of curves on P2 as

HilbP2

d t+n = HilbP2

d t+nd
×
(
P2
)[n−nd] ,

for n ≥ nd = 3d−d2
2

. It follows from Theorem A.1 that the left-hand side is empty for
n < nd.

At the level of the underlying topological spaces, this decomposition follows easily. With
S = C[x0, x1, x2] the homogeneous coordinate ring of P2, the subschemes of P2 are in
one-to-one correspondence with homogeneous ideals I of S, via the map I 7→ ProjS/I.
Since S is a unique factorization domain, we can decompose I uniquely into irreducible
ideals

I =
( ∏

i

I i1

) ( ∏
j

Ij0

)
,

where the I i1 are generated by one element and correspond to subschemes of dimension 1,
and the Ij0 are generated by more than one element and correspond to subschemes of
dimension 0.
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