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RAMIFICATION AND CLEANLINESS

AHMED ABBES AND TAKESHI SAITO

Abstract. This article is devoted to studying the ramification of Galois torsors and of `-adic
sheaves in characteristic p ¡ 0 (with ` �� p). Let k be a perfect field of characteristic p ¡ 0, X be
a smooth, separated and quasi-compact k-scheme, D be a simple normal crossing divisor on X,
U � X�D, Λ be a finite local Z`-algebra, F be a locally constant constructible sheaf of Λ-modules
on U . We introduce a boundedness condition on the ramification of F along D, and study its main
properties, in particular, some specialization properties that lead to the fundamental notion of
cleanliness and to the definition of the characteristic cycle of F . The cleanliness condition extends
the one introduced by Kato for rank 1 sheaves. Roughly speaking, it means that the ramification
of F along D is controlled by its ramification at the generic points of D. Under this condition, we
propose a conjectural Riemann-Roch type formula for F . Some cases of this formula have been
previously proved by Kato and by the second author (T.S.).

1. Introduction

1.1. The purpose of this article is to study the ramification of Galois torsors and of `-adic sheaves
in characteristic p ¡ 0 (with ` �� p), developing the project started in [2, 3, 4, 5, 21]. More precisely,
this work is a sequel to [21], though it can been read independently. The leitmotiv of our approach,
in particular in this work, is to eliminate the ramification by blow-up.

1.2. Let k be a perfect field of characteristic p ¡ 0, X be a smooth, separated and quasi-compact
k-scheme, D be a simple normal crossing divisor on X, U � X �D; we say for short that pX,Dq
is an snc-pair over k. We fix a prime number ` different from p and a finite local Z`-algebra Λ. Let
F be a locally constant constructible sheaf of Λ-modules on U . The main problems in ramification
theory are the following :

(A) to describe the ramification of F along D;
(B) to give a Riemann-Roch type formula for F , that is, to compute the Euler-Poincaré char-

acteristic with compact support of F on U in terms of its invariants of ramification (provided by
(A)).

In [4], we gave cohomological answers to both problems that rely on the notion of characteristic
class of F . In this article, we develop a more geometric approach to problem (A) and give
a conjectural formula for (B), based on the finer notion of characteristic cycle of F . For this
purpose, we start by studying the ramification of Galois torsors over U , that is, torsors over U for
the étale topology, under finite constant groups.

1.3. Our approach is based on a geometric construction introduced in [4, 5, 21]. Let D1, . . . , Dm

be the irreducible components of D, pX �k Xq
1 be the blow-up of X �k X along Di �k Di for

all 1 ¤ i ¤ m. We define the framed self-product X �k X of pX,Dq over k as the open sub-
scheme of pX �k Xq

1 obtained by removing the strict transforms of D �k X and X �k D (called
the logarithmic self-product in [21]). We give in 5.20 an equivalent definition using logarithmic
geometry, that extends to more general situations. The diagonal morphism δX : X Ñ X �kX lifts
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2 AHMED ABBES AND TAKESHI SAITO

uniquely to a morphism δ : X Ñ X�kX, called the framed diagonal of pX,Dq (and the logarithmic
diagonal in [21]). We consider X �k X as an X-scheme by the second projection.

Let R be an effective rational divisor onX with support inD (i.e., a sum of non-negative rational
multiples of the irreducible components of D). We define in 5.26 the dilatation pX �k Xq

pRq of
X �k X along δ of thickening R. It is an affine scheme over X �k X that fits in a canonical
Cartesian diagram

(1.3.1) U
δU //

j

��

U �k U

jpRq

��
X

δpRq // pX �k Xq
pRq

where jpRq is a canonical open immersion, δpRq is the unique morphism lifting δ, j is the canonical
injection and δU is the diagonal morphism. If R has integral coefficients, then pX �k Xq

pRq is a
dilatation in the sense of Raynaud, more precisely, pX �k Xq

pRq is the maximal open sub-scheme
of the blow-up of X �k X along δpRq, where the exceptional divisor is equal to the pull-back of R
by the second projection to X (cf. 4.1).

1.4. Let V be a Galois torsor over U of group G, R be an effective rational divisor on X with
support in D. We introduce a fundamental boundedness property of the ramification of V {U along
D. We consider V �k V as a Galois torsor over U �k U of group G � G, and denote by W the
quotient of V �k V by ∆pGq, where ∆: GÑ G�G is the diagonal homomorphism. The diagonal
morphism δV : V Ñ V �k V induces a morphism εU : U Ñ W lifting the diagonal morphism
δU : U Ñ U �k U . Note that W represents the sheaf of isomorphisms of G-torsors from U �k V to
V �k U over U �k U , and that εU corresponds to the identity isomorphism of V (identified with
the pull-backs of U �k V and V �k U by δU ). We denote by Z the integral closure of pX �kXq

pRq

in W , by π : Z Ñ pX �k Xq
pRq the canonical morphism and by ε : X Ñ Z the morphism induced

by εU : U ÑW . We have π � ε � δpRq.

(1.4.1) W //

��

Z

π

��
U

εU
11

δU // U �k U // pX �k Xq
pRq X

ε
nn

δpRqoo

Let x P X. We say that the ramification of V {U at x is bounded by R� if the morphism π is
étale at εpxq, and that the ramification of V {U along D is bounded by R� if π is étale over an
open neighborhood of εpXq. We establish several properties of this notion. First, we prove that it
satisfies descent for faithfully flat and log-smooth morphisms (7.7). The second property plays a
key role in this article : if R has integral coefficients, we prove that the ramification of V {U along
D is bounded by R� if and only if there exists an open neighborhood Z0 of εpXq in Z which is
étale over pX �k Xq

pRq and such that πpZ0q contains pX �k Xq
pRq �X R (7.13). Third, we relate

this notion to its analogue for finite separable extensions of local fields (with possibly imperfect
residue fields) defined in [2, 3] : let ξ be a generic point of D, ξ be a geometric point of X above ξ,
S be the strict localization of X at ξ, K be the fraction field of ΓpS,OSq, r be the multiplicity of R
at ξ. We put V �U SpecpKq � SpecpLq, where L �

±n
i�1 Li is a finite product of finite separable

extensions of K. We prove in 7.18 that the ramification of V {U at ξ is bounded by R� if and
only if, for every 1 ¤ i ¤ n, the logarithmic ramification of Li{K is bounded by r� in the sense of
[2, 3].
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1.5. Let V be a Galois torsor over U of group G, Y be the integral closure of X in V , R be
an effective rational divisor on X with support in D. Assume that the following conditions are
satisfied :

(i) for every geometric point y of Y , the inertia group Iy � G of y has a normal p-Sylow
subgroup ;

(ii) for every generic point ξ of D, the ramification of V {U at ξ is bounded by R�.
Then we prove that the ramification of V {U along D is bounded by R� (7.19). This result is an
analogue of the Zariski-Nagata purity theorem ([11] X 3.4).

1.6. Let V be a Galois torsor over U of group G. We define the conductor of V {U relatively to X
to be the minimum effective rational divisor R on X with support in D such that for every generic
point ξ of D, the ramification of V {U at ξ is bounded by R�. This terminology may be slightly
misleading as the ramification of V {U along D may not be bounded by R� in general. However, we
prove in 7.22, as a consequence of 1.5, that under a strong form of resolution of singularities, there
exists an snc-pair pX 1, D1q over k and a proper morphism f : X 1 Ñ X inducing an isomorphism
X 1�D1 �

Ñ U , such that if we denote by R1 the conductor of V {U relatively to X 1, the ramification
of V {U along D1 is bounded by R1�.

1.7. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an effective rational
divisor on X with support in D, x P X, x be a geometric point of X above x. Recall that Λ is a
finite local Z`-algebra (1.2). We denote by pr1,pr2 : U �k U Ñ U the canonical projections and
put

(1.7.1) H pF q � H omppr�2F ,pr�1F q.

We prove in 8.2 that the base change morphism

(1.7.2) α : δpRq�j
pRq
� pH pF qq Ñ j�δ

�
U pH pF qq � j�pE ndpF qq

relatively to the Cartesian diagram (1.3.1) is injective. Furthermore, the following conditions are
equivalent :

(i) The stalk αx of the morphism α at x is an isomorphism.
(ii) There exists a Galois torsor V over U trivializing F such the ramification of V {U at x is

bounded by R�.
We give also other useful equivalent conditions. We say that the ramification of F at x is bounded
by R� if F satisfies these equivalent conditions. We say that the ramification of F along D is
bounded by R� if the ramification of F at x is bounded by R� for every geometric point x of X.
We establish several properties of this notion similar to those for Galois torsors. In particular, we
relate it to the analogue notion for Galois representations of local fields (with possibly imperfect
residue fields) (8.8).

1.8. Let F be a locally constant constructible sheaf of Λ-modules on U . We define the conductor
of F relatively to X to be the minimum of the set of effective rational divisors R on X with support
in D such that for every geometric point ξ of X above a generic point of D, the ramification of F
at ξ is bounded by R�. As for Galois torsors, this terminology may be slightly misleading as the
ramification of F along D may not be bounded by R� in general. However, we prove that under
a strong form of resolution of singularities, there exists an snc-pair pX 1, D1q over k and a proper
morphism f : X 1 Ñ X inducing an isomorphism X 1 �D1 �

Ñ U , such that if we denote by R1 the
conductor of F relatively to X 1, the ramification of F along D1 is bounded by R1� (8.11).
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1.9. The last part of this article is devoted to studying important specialization properties that
lead to the fundamental notion of cleanliness and to the definition of the characteristic cycle. Let
R be an effective divisor on X with support in D.1 We prove (4.6) that pX �k Xq

pRq is smooth
over X and that

(1.9.1) EpRq � pX �k Xq
pRq �X R

is canonically isomorphic to the twisted logarithmic tangent bundleVpΩ1
X{kplogDqbOXOXpRqq�X

R over R (cf. 2.2 for the convention on vector bundles). We denote by ĚpRq the dual vector bundle.
Consider the commutative diagram with Cartesian squares

(1.9.2) EpRq //

��

pX �k Xq
pRq

pr2

��

U �k U

��

jpRqoo

R // X Uoo

Let G be a sheaf of Λ-modules on U �k U . We call R-specialization of G and denote by νRpG , Xq,
the sheaf on EpRq defined by

(1.9.3) νRpG , Xq � j
pRq
� pG q|EpRq.

Let F be a locally constant constructible sheaf of Λ-modules on U such that its ramification
along D is bounded by R�, H pF q be the sheaf on U �k U defined in (1.7.1). We prove in 8.15
that νRpH pF q, Xq is additive, which means that its restrictions to the fibers of EpRq over R are
invariant by translation (cf. 3.1). This important property was first proved in ([21] 2.25); we give
a new proof in 8.15.

We fix a non-trivial additive character ψ : Fp Ñ Λ� and denote by S � ĚpRq the support of
the Fourier-Deligne transform of νRpH pF q, Xq relatively to ψ (cf. (3.4.1)). The additivity of
νRpH pF q, Xq is equivalent to the fact that, for every x P R, the set S X Ě

pRq
x is finite (3.6). We

call S the Fourier dual support of νRpH pF q, Xq. We prove in fact that S is the underlying space
of a closed sub-scheme of ĚpRq which is finite over R (8.18). Note that S is a priori a constructible
subset of ĚpRq and that it is not obvious that it is closed in ĚpRq. We say that νRpH pF q, Xq is
non-degenerate if S does not meet the zero section of ĚpRq over R.

1.10. We need in the following to recall few facts from the ramification theory of local fields with
imperfect residue fields developed in [2, 3, 21]. We refer to § 6 for a more detailed review. Let K
be a discrete valuation field, OK be the valuation ring of K, F be the residue field of OK , K be a
separable closure of K and G be the Galois group of K{K. We assume that OK is henselian and
that F has characteristic p. In ([2] 3.12), we defined a decreasing filtration G r

log pr P Q¥0q of G
by closed normal subgroups, called the logarithmic ramification filtration. For a rational number
r ¥ 0, we put

G r�
log �

¤
s¡r

G s
log,

GrrlogpG q � G r
log{G

r�
log .

For any finite discrete Λ-representation M of G , we have a canonical slope decomposition

(1.10.1) M � `rPQ¥0
M prq,

1We consider rational divisors on X with support in D and integral coefficients as Cartier divisors on X.
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characterised by the following properties (cf. 6.4) : M p0q �MG 0�

and for every r ¡ 0,

(1.10.2) pM prqqG
r
log � 0 and pM prqqG

r�
log �M prq.

The values r ¥ 0 for whichM prq �� 0 are called the slopes ofM . We say thatM is isoclinic if it has
only one slope. IfM is isoclinic of slope r ¡ 0, we have a canonical central character decomposition

(1.10.3) M � `χMχ,

where the sum runs over finite characters χ : GrrlogG Ñ Λ�
χ such that Λχ is a finite étale Λ-algebra

(cf. 6.7).
We denote by OK the integral closure of OK in K, by F the residue field of OK , by ord the

valuation of K normalized by ordpK�q � Z and, for any rational number r, by mr
K

(resp. mr�
K

)
the OK-module of elements x P K such that ordpxq ¥ r (resp. ordpxq ¡ r). Let Ω1

OK
plogq be the

OK-module of logarithmic 1-differential forms of OK , Ω1
F plogq � Ω1

OK
plogq bOK F (cf. 6.11). We

have a canonical exact sequence 0 Ñ Ω1
F Ñ Ω1

F plogq Ñ F Ñ 0.
The additivity property presented in 1.9 is the geometric incarnation of an important property

of the logarithmic ramification filtration proved in ([21] 1.24), namely, for any rational number
r ¡ 0, the group GrrlogG is an Fp-vector space, and we have a canonical injective homomorphism

(1.10.4) rsw: HomZpGrrlogG ,Fpq Ñ HomF pm
r
K
{mr�

K
,Ω1

F plogq bF F q,

called the refined Swan conductor (cf. 6.13).

1.11. Let F be a locally constant constructible sheaf of Λ-modules on U , ξ be a generic point of D,
Xpξq be the henselization of X at ξ, ηξ be the generic point of Xpξq, ηξ be a geometric generic point
of Xpξq, Gξ be the Galois group of ηξ over ηξ. We say that F is isoclinic at ξ if the representation
Fηξ of Gξ is isoclinic, and that F is isoclinic along D if it is isoclinic at all generic points of D.

Assume first that F is isoclinic along D, and let R be its conductor relatively to X. We say
(8.23) that F is clean along D if the following conditions are satisfied :

(i) the ramification of F along D is bounded by R�;
(ii) there exists a log-smooth morphism of snc-pairs f : pX 1, D1q Ñ pX,Dq over k such that the

morphism X 1 Ñ X is faithfully flat, that R1 � f�pRq has integral coefficients, and if we
put U 1 � X 1 �D1 and F 1 � F |U 1, that the R1-specialization ν1R1pH pF 1q, X 1q of H pF 1q
in the sense of (1.9.3) relatively to pX 1, D1q, is additive and non-degenerate.

Note that we may replace (ii) by the stronger condition that it holds for any morphism f satisfying
the same assumptions (cf. 8.24).

This notion can be extended to general sheaves as follows. Let x be a geometric point of X. We
say that F is clean at x if there exists an étale neighborhood X 1 of x in X such that, if we put
U 1 � U �X X 1 and denote by D1 the pull-back of D over X, there exists a finite decomposition

(1.11.1) F |U 1 � `1¤i¤nF
1
i

of F |U 1 into a direct sum of locally constant constructible sheaves of Λ-modules F 1
i p1 ¤ i ¤ nq

on U 1 which are isoclinic and clean along D1 in the previous sense. We say that F is clean along
D if it is clean at all geometric points of X (cf. 8.25). Note that for isoclinic sheaves, the two
definitions are equivalent (8.27).

The notion of cleanliness was first introduced by Kato for rank 1 sheaves in [13]. Our definition
extends his. It was extended to isoclinic sheaves by the second author (T. S.) in ([21] § 3.2).
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Roughly speaking, if F is clean along D, then its ramification along D is controlled by its
ramification at the generic points of D. This is the main idea behind the following definition of
the characteristic cycle of F .

1.12. We assume that X is connected and denote by d the dimension of X, by T�
XplogDq �

VpΩ1
X{kplogDqq the logarithmic cotangent bundle of X and by ξ1, . . . , ξn the generic points of

D. For each 1 ¤ i ¤ n, we denote by Fi the residue field of X at ξi, by Si � SpecpOKiq the
henselization of X at ξi and by ηi � SpecpKiq the generic point of Si. We fix a separable closure
Ki of Ki and denote by Gi the Galois group of Ki{Ki.

Let F be a locally constant constructible sheaf of free Λ-modules on U which is clean along D.
We denote by Mi the ΛrGis-module corresponding to F |ηi, by

(1.12.1) Mi � `rPQ¥0
M

prq
i

its slope decomposition and, for each rational number r ¡ 0, by

(1.12.2) M
prq
i � `χM

prq
i,χ

the central character decomposition of M prq
i . Note that M prq

i,χ is a free Λ-module of finite type for
all r ¡ 0 and all χ. By enlarging Λ, we may assume that for all rational numbers r ¡ 0 and all
central characters χ ofM prq

i (i.e., all characters χ : GrrlogGi Ñ Λ�
χ that appear in the decomposition

(1.12.2)), we have Λχ � Λ. Since GrrlogGi is abelian and killed by p (6.13), χ factors uniquely as

GrrlogGi Ñ Fp
ψ
Ñ Λ�, where ψ is the non-trivial additive character fixed in 1.9. We denote also by

χ : GrrlogGi Ñ Fp the induced character and by

(1.12.3) rswpχq : mr
Ki
{mr�

Ki
Ñ Ω1

Fiplogq b F i

its refined Swan conductor (1.10.4) (where the notation are defined as in 1.10 with K � Ki). Let
Fχ be the field of definition of rswpχq, which is a finite extension of Fi contained in F i. The refined
Swan conductor rswpχq defines a line Lχ in T�

XplogDq bX Fχ. Let Lχ be the closure of the image
of Lχ in T�

XplogDq. For each 1 ¤ i ¤ n, we put

(1.12.4) CCipF q �
¸

rPQ¡0

¸
χ

r � rkΛpM
prq
i,χ q

rFχ : Fis
rLχs,

which is a d-cycle on T�
XplogDq �X Di. It follows from the proof of ([21] 1.26) that the coefficient

of rLχs is an element of Zr 1
p s, and hence gives an element of Λ.

Let σ : X Ñ T�
XplogDq be the zero-section of T�

XplogDq over X. We define the characteristic
cycle of F and denote by CCpF q, the d-cycle on T�

XplogDq defined by

(1.12.5) CCpF q � rkΛpF qrσs �
¸

1¤i¤n

CCipF q.

Recall ([4] 2.1.1) that we associated to j!F a characteristic class, denoted by Cpj!F q, which is
a section of H0pX,KXq, where KX � f !Λ and f : X Ñ Specpkq is the structural morphism.

Conjecture 1.13. Under the assumptions of (1.12), we have in H0pX,KXq

(1.13.1) Cpj!F q � pCCpF q, rσsq,

where the left hand side is the intersection pairing relatively to T�
XplogDq.
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Kato defined the characteristic cycle of a clean sheaf of rank 1 in [15]. The second author (T.
S.) extended the definition to isoclinic and clean sheaves in ([21] 3.6) and proved conjecture 1.13
for these sheaves in (loc. cit. 3.7).

1.14. We may optimistically expect that for any locally constant constructible sheaf F of Λ-
modules on U , there exists an snc-pair pX 1, D1q over k and a proper morphism of snc-pairs
pX 1, D1q Ñ pX,Dq inducing an isomorphism X 1 �D1 �

Ñ U such that F is clean along D1. Kato
proved this property for rank 1 sheaves on surfaces ([15] 4.1).

1.15. We introduce in § 2 the general notation and conventions for this article and prove some
preliminary results. Section 3 is devoted to studying additive sheaves on vector bundles. We recall
in § 4 the classical notion of dilatation. The first part of section 5 contains a detailed review of
the notion of frame in logarithmic geometry and some representability results following [16]. Its
second part is devoted to the study of snc-pairs over k ; we introduce the framed products and
extend the notion of dilatation to rational divisors. Section 6 is a review of ramification theory
of local fields with imperfect residue fields. The last two sections, § 7 and § 8, are the heart of
this article. The former is devoted to studying the ramification of galois torsors and the latter to
studying the ramification of `-adic sheaves.
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2. Notation and preliminaries

2.1. In this article, we fix a prime number p, a perfect field k of characteristic p and an algebraic
closure k of k. All k-schemes are assumed to be separated of finite type over k. We fix also a
prime number ` different from p, a finite local Z`-algebra Λ and a non-trivial additive character
ψ : Fp Ñ Λ�.

2.2. Let X be a scheme, E be a locally free OX -module of finite type. We call vector bundle over
X defined by E and denote by VpE q the spectrum of the quasi-coherent OX -algebra SymOX pE q.

2.3. Let X be a locally noetherian scheme. In this article, a Galois torsor over X of group G
stands for a torsor over X for the étale topology under a finite constant group G, that is, a
principal covering of X of Galois group G in the sense of ([10] V 2.8).

2.4. Let X be a normal and locally noetherian scheme, U be a dense open subscheme of X, V be
a Galois torsor over U of group G, Y be the integral closure of X in V . Then G acts on Y and we
have X � Y {G. Let y be a point of Y , y be a geometric point of Y above y. Recall that the inertia
group Iy of y is the subgroup of elements σ P G such that gpyq � y and that g acts trivially on
κpyq. It is convenient to denote Iy also by Iy and to call it also the inertia group of y. Assume that
X is universally Japanese, which means that every point of X has an affine open neighborhood
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whose ring is universally Japanese ([12] 0.23.1.1). Let x be the image of y in X. Then we have a
canonical isomorphism

(2.4.1) Xpxq �X V �
§

zPYbXκpxq

Ypzq �Y V,

where Ypzq is the strict localization of Y at z. Since Y is normal, Ypzq �Y V is integral. Therefore,
Iy is the stabilizer of Ypyq �Y V in G.

2.5. Recall that a scheme locally of finite type over a universally Japanese scheme is universally
Japanese, and that the ring Z (resp. any field) is universally Japanese ([12] 7.7.4).

2.6. Let X be a k-scheme. We denote by pr1,pr2 : X �k X Ñ X the canonical projections. If
Y is an X-scheme and Z is an pX �k Xq-scheme, we denote by Y �X Z (resp. Z �X Y ) the
fibred product of Y and Z over X, where Z is considered as an X-scheme by pr1 (resp. pr2). In
particular, in Z �X Z, the first factor is considered as an X-scheme by pr2 while the second factor
is considered as an X-scheme by pr1. Let F be an étale sheaf of Λ-modules on X. We denote by
H pF q the sheaf on X �k X defined by

(2.6.1) H pF q � H omppr�2F ,pr�1F q.

If f : Y Ñ X is a morphism of schemes, we denote (abusively) the pull-back f�pF q also by F |Y .

Lemma 2.7. Consider a commutative diagram of finite morphisms of locally noetherian schemes

(2.7.1) Z 1
h //

i1

��

Z

i

��
Y 1

g1 //

f 1

��

Y

f

��
X 1

g // X

and let X0 be a dense open sub-scheme of X, z1 P Z 1, y1 � i1pz1q, x1 � f 1py1q, z � hpz1q, y � ipzq �
g1py1q, x � fpyq � gpx1q. We denote by an index 0 the base change of schemes or morphisms by
the canonical injection X0 Ñ X. Assume that X,X 1, Y and Y 1 are normal, that Y0 is dense in Y ,
that f0 is étale, that Y 1

0 � Y0 �X X 1, that Y 1
0 is dense in Y 1 and that f � i and f 1 � i1 are closed

immersions.
(i) If f is étale at y, then f 1 is étale at y1.
(ii) Assume moreover that the irreducible component of X 1 containing x1 dominates the irre-

ducible component of X containing x, that Z 10 � Z0 �X X 1 and that Z 10 is schematically dense in
Z 1. Then f is étale at y if and only if f 1 is étale at y1.

(i) We denote by V (resp. V 1) the maximal open sub-scheme of Y (resp. Y 1) where f (resp. f 1)
is étale. Since V �X X

1 is étale over X 1, it is normal. But Y 1 is the integral closure of Y �X X
1 in

Y 1
0 . Therefore, V �XX 1 is isomorphic to g1�1pV q, and g1�1pV q � V 1, which implies the proposition.
(ii) Observe first that i and i1 are closed immersions. By (i), it is enough to prove that if f 1

is étale at y1, then f is étale at y. We may replace X (resp. X 1) by its strict henselization at a
geometric point above x (resp. x1) and Y and Z (resp. Y 1 and Z 1) by their pull-back ; so we may
assume X,X 1, Z and Z 1 strictly local. Then we may replace Y by its localization Yy and Y 1 by
g1�1pYyq. Let Y : be a connected component of Y 1. By assumption Y :

0 is dense in Y :. Since the
restriction Y :

0 Ñ X 1
0 of f 1 is finite and étale, it is surjective ; hence f 1pY :q � X 1. If F is a reduced
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closed sub-scheme of Y such that fpF q � X, then F � Y . We deduce that g1pY :q � Y . Since
Z 10 is dense in Z 1, it is not empty. Then g1�1pg1pZ 10qq X Y : � Z 10 X Y : �� H, and hence Z 1 � Y :.
Therefore Y 1 is connected and f 1 is an isomorphism (as it is étale). Let ξ (resp. η) be the generic
point of X (resp. Y ). It follows that f induces an isomorphism η � ξ. Since Y is the integral
closure of X in η, f is an isomorphism.

Proposition 2.8. Let X be a regular, locally noetherian and universally Japanese scheme, U be
an open dense sub-scheme of X, V be a finite étale covering of U , Y be the integral closure of X
in V , V 1 be the maximal open sub-scheme of Y which is étale over X, T be a closed sub-scheme of
Y . Assume the following conditions satisfied :

(i) All codimension one points of T are contained in V 1.
(ii) There exists a Galois torsor W over U , with nilpotent group G, and a subgroup H of G,

such that V is U -isomorphic to the quotient of W by H.
Then T � V 1.

Let Z be the integral closure of X in W . For every geometric point z of Z, we denote by Iz � G
the inertia group of z. By condition (i), if z is above a codimension one point of T , then Iz � H.
We proceed by induction on rG : Hs. Let n ¥ 1. We assume that the proposition holds true if
rG : Hs   n and prove it if rG : Hs � n. The proposition is obvious if G � H; so we may assume
that n ¡ 1. There exists a normal subgroup G1 of G containing H and different from G such that
G{G1 is abelian ([8] I §6.3 prop. 8). Observe that G1 is nilpotent. We denote by U 1 the quotient
of W by G1, and by X 1 the integral closure of X in U 1. We denote by h : Y Ñ X 1 and g : X 1 Ñ X
the canonical morphisms, and put f � g � h. Let N be the maximal open subscheme of X over
which g is étale (observe that g is finite). It follows from the assumption that g is étale at all
points hptq P X 1, where t is a codimension one point of T . Since g is Galois, we conclude that for
any codimension one point t of T , fptq P N . Let S be the reduced closed subscheme of X with
support X �N . By the Zariski-Nagata purity theorem ([11] X 3.4), S is a Cartier divisor on X.
If fpT q X S �� H, then there exists a codimension one point t of T such that fptq P S, which is a
contradiction. Hence fpT q � N . We may replace X by N and U, V and W by their pull-backs.
Then X 1 is étale above X; in particular, it is regular. The induction assumption implies that h is
étale over an open neighbourhood of T in Y . Then T � V 1.

Remark 2.9. Under the assumptions of (2.8), if moreover V is connected, then condition (ii) is
equivalent to the following condition :

(ii’) V is dominated by a connected finite étale Galois covering W of U with nilpotent Galois
group G (i.e. there exists a dominating U -morphism W Ñ V ).

Lemma 2.10. Let A be a strictly henselian valuation ring, with fraction field K and residue field
of characteristic p, K be a separable closure of K, G be the Galois group of K over K. Then G has
a normal p-Sylow subgroup P , and the quotient It � G{P is abelian. In particular, G is solvable.

Let L be a finite Galois extension of K, GL be the Galois group of L{K. The integral closure
B of A in L is a strictly henselian valuation ring ([20] Theorem 9). Let PL be the large valuation
group of B defined in ([24] VI § 12 page 75), which is a normal subgroup of GL. Then PL is a
p-group (loc. cit., Theorem 24 page 77). The quotient ItL � GL{PL is abelian (by construction),
and its order is prime to p (loc. cit., (23) page 76). Hence PL is a normal p-Sylow subgroup of GL.
The lemma follows by passing to the limit over finite Galois extensions of K contained in K.

Proposition 2.11. Let A be a local ring of maximal ideal m, p be a prime ideal of A, κppq be the
residue field of A at p, ν : A Ñ Ap be the canonical homomorphism. Assume that pAp � νpAq,
and consider the following conditions :
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(i) A is henselian.
(ii) Ap and A{p are henselian.
Then we have (i)ñ(ii). If moreover ν is injective, the two conditions are equivalent.

Observe first that we may assume that ν is injective.
(i)ñ(ii). We need only to prove that Ap is henselian. Let B1 be a finite free Ap-algebra. We

need to prove that B1 is decomposed. By ([12] 8.8.2 and 8.10.5), there exists f P A� p and a finite
Af -algebra of finite presentation B2 such that B1 � B2 bAf Ap. Then by Zariski’s main theorem
([12] 8.12.6), there exists a finite A-algebra B that fits in a commutative digram

SpecpB2q
j //

��

SpecpBq

��
SpecpAf q // SpecpAq

where j is an open immersion. The induced morphism SpecpB2q Ñ SpecpBf q being an open and
closed immersion, we may replace B1 by Bp. By replacing B by its canonical image in Bp, we may
assume that B � Bp. We have isomorphisms of A-modules

Bp{B � B bA pAp{Aq � B bA pκppq{pA{pqq,

where the second follows from the assumption pAp � A � Ap. We deduce that pBp � B.
We put C � B bA κppq � Bp{pBp. Since C is an artinian ring, we have

C �
¹
qPQ

Cq,

where Q is the set of prime ideals of B above p. For each q P Q, we denote by rCq the canonical
image of B in Cq. We put rC �

±
qPQ

rCq and denote by rB its inverse image by the canonical
morphism Bp Ñ Bp{pBp � C. We have an exact sequence of A-modules

(2.11.1) 0 Ñ B{pBp Ñ rC Ñ rB{B Ñ 0.

We deduce that rB is finite over A and that Bp � rBp. On the other hand, since pAp � A � Ap, we
have p � kerpAÑ κppqq � pAp, and hence p rB � pAp

rB � p rBp. Therefore, the canonical morphismrB{p rB Ñ rC is an isomorphism.
Consider the following commutative diagram

idemppBpq
u // idemppCq

idempp rBq v //

OO

β ''OOOOOOOOOOO
idempp rCq

α

OO

γ

��
idempp rB{m rBq

where idempp�q denotes the set of idempotents. Since A is henselian, β and γ are bijective; then
so is v. For each q P Q, since Cq is an artinian ring, rCq is a local ring and α is a bijection. We
deduce that u is surjective and hence that Bp is decomposed. Note that u is always injective.
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(ii)ñ(i) Let B be a finite free A-algebra. We need to prove that B is decomposed. Consider
the commutative diagram

idemppBq
u //

��

idemppB{pBq
w //

��

idemppB{mBq

idemppBpq
v // idemppBp{pBpq

By assumption, v and w are bijections. On the other hand, it follows from the assumption pAp �
A � Ap that the canonical diagram

B //

��

B{pB

��
Bp

// Bp{pBp

is cartesian with injective vertical arrows. We deduce that u is surjective and hence that B is
decomposed.

Definition 2.12. Let X be a locally noetherian and normal scheme, U be a dense open subscheme
of X, V be a Galois torsor over U of group G, Y be the integral closure of X in V , x be a geometric
point of X. We say that V {U has the property (NpS) at x if for every geometric point y of Y above
x, the inertia group Iy of y has a normal p-Sylow subgroup (or equivalently, Iy is a semi-direct
product of a group of order prime to p by a p-group ([23] theorem 4.10)).

Lemma 2.13. Let X be a normal, locally noetherian and universally Japanese scheme, U be a
dense open subscheme of X, V be a Galois torsor over U of group G, Y be the integral closure of X
in V , y and y1 be geometric points of Y , Iy and Iy1 be the inertia groups of y and y1, respectively.
If y is a specialization of y1, then Iy1 � Iy.

Let Ypyq and Ypy1q be the strict localizations of Y at y and y1, respectively, v : Ypy1q Ñ Ypyq be
a specialization map. Let x and x1 be the images of y and y1 in X, respectively, Xpxq and Xpx1q

be the corresponding strict localizations of X. There exists a specialization map u : Xpx1q Ñ Xpxq

such that the diagram

(2.13.1) Ypy1q
v //

��

Ypyq

��
Xpx1q

u // Xpxq

where the vertical arrows are the canonical morphisms, is commutative ([6] VIII 7.4). The mor-
phism

(2.13.2) w � u�X V : Xpx1q �X V Ñ Xpxq �X V

is G-equivariant. If we identify Ypyq�Y V with a connected component of Xpxq�X V and Ypy1q�Y V
with a connected component of Xpx1q �X V (2.4), then we have wpYpy1q �Y V q � Ypyq �Y V . We
deduce that Iy1 � Iy (2.4).

Corollary 2.14. Let X be a normal, locally noetherian and universally Japanese scheme, U be a
dense open subscheme of X, V be a Galois torsor over U of group G, x be a geometric point of X.
Assume that V {U has the property (NpS) at x. Then, there exists an open neighborhood X0 of x
in X such that V {U has the property (NpS) at every geometric point of X0.
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This follows from 2.13, ([6] VIII 7.5) and the fact that if a finite group has a normal p-Sylow
subgroup, then so is any subgroup ([8] I § 6.6 cor. 3 of theo. 3).

Lemma 2.15. Let X,X 1 be normal, locally noetherian and universally Japanese schemes, U be a
dense open subscheme of X, V be a Galois torsor over U of group G, Y be the integral closure of
X in V , f : X 1 Ñ X be a morphism, U 1 � f�1pUq, V 1 � U 1 �U V , Y 1 be the integral closure of
X 1 in V 1, g : Y 1 Ñ Y be the canonical morphism, y1 be a geometric point of Y 1, y � gpy1q, x1 be
the image of y1 in X 1, x � fpx1q, Iy and Iy1 be the inertia groups of y and y1, respectively. Then
Iy1 � Iy. In particular, if V {U has the property (NpS) at x, V 1{U 1 has the property (NpS) at x1.

Replacing X 1 by the schematic closure of U 1 in X 1, we may assume that U 1 is dense in X 1. Let
Ypyq (resp. Y 1

py1q) be the strict localization of Y at y (resp. Y 1 at y1), Xpxq (resp. X 1
px1q) be the

strict localization of X at x (resp. X 1 at x1). The morphism

(2.15.1) h � f �X V : X 1
px1q �X1 V 1 Ñ Xpxq �X V

is G-equivariant. If we identify Ypyq�Y V with a connected component ofXpxq�XV and Y 1
py1q�Y 1V 1

with a connected component of X 1
px1q �X1 V 1 (2.4), then we have hpY 1

py1q �Y 1 V 1q � Ypyq �Y V . We
deduce that Iy1 � Iy (2.4). The second assertion follows immediately from the first one.

Proposition 2.16. Let A be a ring, t P A, X � SpecpAq, U � SpecpAtq, B be a finite sub-A-
algebra of At, Y � SpecpBq. Assume that t is not a zero divor in A. Then the canonical morphism
Y Ñ X is a U -admissible blow-up.

We refer to ([18] § 5.1 and [1] §1.13) for generalities on admissible blow-ups. Let fi p1 ¤ i ¤ nq
be generators of the A-algebra B, ai p1 ¤ i ¤ nq be elements of A, r an integer ¥ 1 such that
ai � trfi P At. We put a0 � tr, I � pa0, a1, . . . , anq and let ϕ : X 1 Ñ X be the blow-up of I in X.
For 0 ¤ i ¤ n, we put

A1i � A

�
a0

ai
, . . . ,

an
ai

�
,

Ai � A1i{Ji,

where Ji is the ideal of ai-torsion in A1i (i.e. the ideal of x P A1i such that ami x � 0 for some m ¥ 1).
We see easily that the SpecpAiq’s p0 ¤ i ¤ nq form an open covering of X 1; for every 0 ¤ i ¤ n,
SpecpAiq is the maximal open sub-scheme of X 1 where ϕ�paiq generates the ideal IOX1 (cf. [1]
3.1.6 and 3.1.7). It is clear that B � A0; so Y is canonically identified with an open sub-scheme of
X 1. Since Y is finite over X, the open immersion Y Ñ X 1 is also closed. On the other hand, as U
is schematically dense in X ([1] 1.8.30.2), ϕ�1pUq is schematically dense in X 1 ([1] 1.13.3(i)). But
ϕ�1pUq � Y , then Y � X 1.

Corollary 2.17. Let X be a quasi-compact and quasi-separated scheme, D be an effective Cartier
divisor on X, U � X�D, f : Y Ñ X be a finite morphism inducing an isomorphism above U such
that f�1pUq is schematically dense in Y . Then, there exists a U -admissible blow-up ϕ : X 1 Ñ X
and an X-morphism g : X 1 Ñ Y .

Let Xi � SpecpAiq p1 ¤ i ¤ nq be a finite affine open covering of X such that, for each i,
D is defined over Xi by one equation in Ai. For each 1 ¤ i ¤ n, we put Yi � Xi �X Y and
let fi : Yi Ñ Xi be the restriction of f . By 2.16, each fi is a pU X Xiq-admissible blow-up. By
([18] 5.3.1), there exists a U -admissible blow-up ϕi : X

1
i Ñ X extending fi. Assume that ϕi is

the blow-up of an ideal of finite type Ai of OX such that Ai|U � OX |U . Let ϕ : X 1 Ñ X be the
blow-up of

±n
i�1 Ai. By the universal property of blow-ups, for each 1 ¤ i ¤ n, there exists an
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X-morphism hi : X
1 Ñ X 1

i. Its restriction above Xi is a morphism gi : X
1 �X Xi Ñ Yi. For each

1 ¤ i, j ¤ n, the restrictions of gi and gj above Xi XXj are canonically identified. By gluing the
gi’s, we get an X-morphism g : X 1 Ñ Y .

2.18. Let X be a coherent scheme (i.e. a quasi-compact and quasi-separated scheme), U be an
open sub-scheme of X. We denote by Sch{X the category of X-schemes and by B the full sub-
category of Sch{X of objects pX 1, ϕq, where ϕ : X 1 Ñ X is a U -admissible blow-up (cf. [18] § 5.1
and [1] §1.13). The Zariski-Riemann space of the pair pX,Uq is the topological space defined by

(2.18.1) XZR � lim
ÐÝ

pX1,ϕqPB

|X 1|,

where |X 1| denotes the topological space underlying to X 1. For every ξ P XZR, we put

(2.18.2) OXZR,ξ � lim
ÝÑ

pX1,ϕqPB�

OX1,ξϕ ,

where ξϕ is the image of ξ in X 1. By ([24] VI §17), XZR is quasi-compact. If U is schematically
dense in X, then the canonical map XZR Ñ |X| is surjective.

2.19. Let X be a coherent scheme, D be an effective Cartier divisor on X, U � X �D. We keep
the notation of (2.18) and denote by C the full sub-category of Sch{X of objects pX2, ψq, where ψ
is composed of two morphisms X2 ρ

Ñ X 1 ϕ
Ñ X satisfying the following conditions :

(a) ϕ is a U -admissible blow-up;
(b) ρ is a finite morphism inducing an isomorphism above U ;
(c) ψ�1pUq is schematically dense in X2.
Then every object of B is an object of C ([1] 1.13.3(i)). We denote by

(2.19.1) ι : B Ñ C

the canonical injection functor. Then ι� is cofinal (cf. [6] I 8.1.1) and C is cofiltered. Indeed,
since B is cofiltered, it is enough to prove that ι� satisfies conditions F1q and F2q of ([6] I 8.1.3).
Condition F1q follows from 2.17 and ([18] 5.1.4), and condition F2q is an immediate consequence
of condition (c) above. We deduce that the canonical morphism

(2.19.2) lim
ÐÝ

pX2,ψqPC

|X2| Ñ lim
ÐÝ

pX1,ϕqPB

|X 1| � XZR

is an isomorphism. For every ξ P XZR, we have a canonical isomorphism

(2.19.3) OXZR,ξ
�
Ñ lim

ÝÑ
pX2,ψqPC�

OX2,ξψ ,

where ξψ is the image of ξ in X2 by the map XZR Ñ |X2| induced by (2.19.2). Note that for any
object pX2, ψq of C , the map XZR Ñ |X2| is surjective (cf. 2.17 and 2.18).

Lemma 2.20. Let X be a coherent scheme, D be a closed sub-scheme of finite presentation of X,
U � X � D, x P D, ξ be a point of XZR above x, J be the ideal of OX,x defined by D. Assume
that U is schematically dense in X, and put Oξ � OXZR,ξ and p � XnJ

nOξ. Then :
(i) Oξ equipped with the J-adic topology, is a prevaluatif ring, which means that it is local and

that every open ideal of finite type is invertible ([1] 1.9.1). Let t P Oξ be a generator of JOξ.
(ii) Oξr

1
t s is a local ring.

(iii) Oξ{p is a valuation ring with fraction field the residue field of Oξr
1
t s. In particular, Oξr

1
t s

is the localization of Oξ at p.
(iv) The ideal pOξr 1

t s is contained in the image of the canonical homomorphism Oξ Ñ Oξr
1
t s.
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Since the transition homomorphisms of the inductive limit (2.18.2) are local, the ring Oξ is local
and J is contained in the maximal ideal of Oξ. By replacing X by its blow-up along D, we may
assume that J is invertible, generated by t P OX,x. For every object pX 1, ϕq of B (2.18), ϕ�1pUq
is schematically dense in X 1 ([1] 1.13.3(i)). It follows that t is not a zero divisor in Oξ. Let I be
an open ideal of finite type of Oξ. Then I is induced by an ideal of finite type I of OX1 for an
object pX 1, ϕq of B such that I |U � OU . By blowing-up I in X 1, we obtain an object pX1, φq of
B ([18] 5.1.4) such that I OX1

is invertible. Therefore, the ideal I is monogenic. Since I is open
and since t is not a zero divisor in Oξ, I is invertible, which proves the proposition (i).

Propositions (ii) and (iii) follow from ([1] 1.9.4). Proposition (iv) is obvious.

Lemma 2.21. Let X be a normal, locally noetherian and universally Japanese scheme, D be an
effective Cartier divisor on X, U � X �D, V be a Galois torsor over U of group G. Then with
the notation of (2.18) and (2.19), for every ξ P XZR, there exists an object pX2, ψq of C satisfying
the following properties :

(i) X2 is normal.
(ii) If πψ : XZR Ñ |X2| is the morphism induced by the isomorphism (2.19.2) and ξψ � πψpξq,

then V {U has property (NpS) at every geometric point ξψ of X2 above ξψ.

We put Oξ � OXZR,ξ and S � SpecpOξq. Let s be a geometric closed point of S, S � SpecpAq be
the corresponding strictly local scheme. For each object pX2, ψq of C , we denote by πψ : XZR Ñ
|X2| the morphism induced by the isomorphism (2.19.2), and put ξψ � πψpξq, Oξψ � OX2,ξψ and
Sψ � SpecpOξψ q. We have a canonical isomorphism (2.19.3)

(2.21.1) S
�
Ñ lim

ÐÝ
pX2,ψqPC

Sψ.

Let pX2, ψq be an object of C . Since the canonical homomorphism Oξψ Ñ Oξ is local, s determines
a geometric closed point of Sψ (also denoted by s). We denote by ξψ the geometric point of X2

above ξψ corresponding to s, and by Sψ the strict localization of Sψ at s. Then the canonical
morphisms S Ñ Sψ induce an isomorphism

(2.21.2) S
�
Ñ lim

ÐÝ
pX2,ψqPC

Sψ.

Indeed, the projective limit above is a strictly local scheme, with the same residue field as S.
We may assume that x � ξid P D. Let J be the ideal of OX,x defined by D, p � XnJ

nOξ. It
follows from 2.20 that the ideal JOξ is invertible, generated by t P Oξ, that Oξ{p is a valuation ring
and that Oξr

1
t s is the localization of Oξ at p. The scheme T � SpecpA{pAq is the strict localization

of T � SpecpOξ{pq at s. Since S has only one point above p P S ([6] VIII 7.6), namely pA, we have
ApA � A bOξ pOξqp � Ar 1

t s. Then it follows from 2.20(iv) that pApA is contained in the image
of the canonical homomorphism A Ñ ApA. Therefore, Ar 1

t s is a henselian local ring by 2.11, and
hence the canonical map

(2.21.3) π0pT �X V q Ñ π0pS �X V q

is bijective.
Since Oξ{p is a valuation ring, A{pA is a strictly henselian valuation ring. This follows from ([7]

§ 2.4, prop. 11) and ([20] Fundamental lemma on the extensions of valuations, page 50). Let K be
the fraction field of A{pA, K be a separable closure of K, G be the Galois group of K over K. By
(2.21.2), (2.21.3) and ([12] 8.4.1), there exists an object pX2, ψq of C such that the canonical map

(2.21.4) π0pT �X V q Ñ π0pSψ �X V q
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is injective. We may assume that X2 is normal. Since the map (2.21.4) is G-equivariant and since
G acts transitively on the source and on the target, it is bijective. Let Y 2 be the normalization of
X2 in V . The set π0pSψ�X V q is isomorphic to Y 2bX2 κpξψq (cf. (2.4.1)). For y2 P Y 2bX2 κpξψq,
we denote by Iy2 � G the inertia group of y2. As Iy2 is the stabilizer in G of the connected
component of Sψ �X V corresponding to y2 (2.4), it follows from the bijection (2.21.4) that Iy2 is
isomorphic to a quotient of G . Therefore, by 2.10, V {U has property (NpS) at ξψ.

Proposition 2.22. Let X be a normal, locally noetherian and universally Japanese scheme, U be
a dense open subscheme, V be a Galois torsor over U . Then there exists a U -admissible blow-up
ϕ : X 1 Ñ X, such that if we denote by X2 the normalization of X 1, V {U has the property (NpS)
at every geometric point of X2.

By replacing X by a U -admissible blow-up, we may assume that there exists an effective Cartier
divisor D on X such that U � X � D; we take again the notation of (2.18) and (2.19). Let D
be the full sub-category of C of objects pX2, ψq such that X2 is normal. It follows from ([6] I
8.1.3(c)) that D� is cofinal in C �. For each object pX2, ψq of D , we denote by πψ : XZR Ñ |X2|
the morphism induced by (2.19.2), and by X2

0 the maximal open sub-scheme of X2 such that V {U
has property (NpS) at every geometric point of X2

0 (2.14). By 2.21, we have

(2.22.1) XZR �
¤

pX2,ψqPD

π�1
ψ pX2

0 q.

Since XZR is quasi-compact (2.18), there exists an object pX2, ψq of D such that XZR � π�1
ψ pX2

0 q.
As πψ is surjective, we deduce that V {U has the property (NpS) at every geometric point of X2.

Lemma 2.23. Let G,G1 be smooth connected group schemes over k, f : G Ñ G1 be an étale
morphism of k-group schemes. Then :

(i) f is finite and surjective.
(ii) If G1 is commutative, then so is G; if G1 is isomorphic to An

k
for some integer n ¥ 1, then

so is G and the kernel of f is a finite dimensional Fp-vector space.

(i) The proposition follows from ([9] VIB 1.3.2 and 1.4.1).
(ii) Assume first that G1 is commutative. Then the derived group pG,Gq is contained in the

kernel of f and hence is the unit group. Therefore G is commutative. Assume next that G1 � An
k
.

Any maximal torus of G is contained in the kernel of f , and hence is the unit group. Therefore,
G is unipotent ([9] XVII 4.1.1). Since pG is contained in the kernel of f and G is connected, we
deduce that pG � 0. Therefore, G is isomorphic to An

k
.

2.24. Let f : X Ñ Y be a morphism of schemes, F be a locally constant and constructible sheaf
of Λ-modules on Y , G be a sheaf of Λ-modules on Y . Then the canonical morphism

(2.24.1) f�pH ompF ,G qq Ñ H ompf�pF q, g�pG qq

is an isomorphism. Indeed, the statement is obviously true if f is étale (even is F is not locally
constant and constructible). Hence, by replacing Y by an étale covering Y 1 and X by X �Y Y

1,
we may assume that F is constant on Y of value a finite Λ-module M . Since Λ is noetherian, we
have an exact sequence Λm Ñ Λn ÑM Ñ 0. We deduce a commutative diagram with exact lines

(2.24.2) 0 // f�pH ompF ,G qq //

α

��

f�pG nq //

β

��

f�pGmq

γ

��
0 // H ompf�pF q, g�pG qq // f�pG qn // f�pG qm
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Since β and γ are clearly isomorphisms, α is an isomorphism.

Proposition 2.25. Let X be a normal scheme, U be a dense open subscheme of X, F be a
locally constant and constructible sheaf of Λ-modules on U , f : Y Ñ X be a morphism. We put
V � f�1pUq and denote by i : U Ñ X and j : V Ñ Y the canonical injections. We assume that V
is schematically dense in Y . Then the base change morphism

(2.25.1) α : i�pF q|Y Ñ j�pF |V q

relatively to f is injective.

Let y be a geometric point of Y , x � fpyq. It is enough to prove that the stalk αy of α at y
is injective. We may replace X and Y by their strict henselizations at x and y. Since V is dense
in Y , it is not empty. Let η be a geometric point of V , η Ñ y be a specialization map, ξ � fpηq.
Then we have a commutative diagram

(2.25.2) pi�pF qqx
u //

αy

��

Fξ

αη

��
pj�pF |V qqy

v // pF |V qη

where u and v are the specialization homomorphisms. Since αη is an isomorphism, it is enough
to prove that u is injective. Since X is normal and strictly local, U is connected and we have
pi�pF qqx � ΓpX, i�pF qq � ΓpU,F q. There exists a connected Galois torsor U 1 over U that
trivializes F . Then u is identified with the canonical morphism ΓpU,F q Ñ ΓpU 1,F q, which is
obviously injective. This concludes the proof.

Lemma 2.26. Let X be a normal, locally noetherian and universally Japanese scheme, U be a
dense open subscheme of X, j : U Ñ X be the canonical injection, V be a Galois torsor over U of
group G, M be a ΛrGs-module. The constant étale sheaf MV on V defines by Galois descente a
locally constant and constructible sheaf F of Λ-modules on U . Let s P M , H be the stabilizer of
s in G, U 1 be the quotient of V by H, X 1 be the integral closure of X in U 1, j1 : U 1 Ñ X 1 be the
canonical injection.

(2.26.1) U 1
j1 //

��

X 1

��
U

j // X

We put F 1 � F |U 1 and consider s as a section of j1�pF 1qpX 1q � F 1pU 1q � F pU 1q � F pV qH . Let
x1 be a geometric point of X 1, x be its image in X. Then the base change morphism

(2.26.2) α : j�pF q|X 1 Ñ j1�pF
1q

relatively to the Cartesian diagram (2.26.1) is injective. Moreover, the following conditions are
equivalent :

(i) The stalk

(2.26.3) αx1 : pj�F qx Ñ pj1�F
1qx1

of the morphism α at x1 is an isomorphism.
(ii) The image of s in pj1�F 1qx1 is in the image of the morphism (2.26.3).
(iii) The morphism X 1 Ñ X is étale at x1.
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Observe first that the implications (iii)ñ(i)ñ(ii) are obvious. Let Y be the integral closure of
X in V , Y Ñ X 1 be the canonical morphism, y be a geometric point of Y above x1, I � G be the
inertia group of y. Then the morphism (2.26.3) can be canonically identified with the canonical
injection

(2.26.4) M I ÑM IXH ,

which proves the first assertion. It follows from (2.26.4) that condition (ii) is equivalent to I � H,
which is also equivalent to each of the conditions (i) and (iii).

Lemma 2.27. Let X be a scheme, U be an open sub-scheme of X, F be a locally constant
constructible sheaf of Λ-modules on X, x be a geometric point of X, Xpxq be the corresponding
strictly local scheme, V1 be a Galois torsor over U1 � Xpxq �X U trivializing F |U1. Then, there
exists an étale morphism f : X 1 Ñ X, a geometric point x1 above x and a Galois torsor V 1 over
U 1 � f�1pUq trivializing F |U 1 such that if we identify the strictly local schemes X 1

px1q and Xpxq by
f , there exists a U1-isomorphism V 1 �X1 X 1

px1q � V1.

It follows from ([12] 8.8.2 and 10.8.5) (cf. [5] 6.2).

3. Additive sheaves on vector bundles

Definition 3.1. Let X be a scheme with residue characteristics different from `, π : E Ñ X be
a vector bundle, F be a constructible sheaf of Λ-modules on E. We say that F is additive if
for every geometric point ξ of X and for every e P Epξq, denoting by τe the translation by e on
Eξ � E �X ξ, τ�e pF |Eξq is isomorphic to F |Eξ.

We can make the following remarks :

(i) We may restrict to the geometric points ξ of X with algebraically closed residue fields.
(ii) If F is additive, then for any X-scheme X 1, denoting by E1 the vector bundle E�XX 1 over

X 1, F |E1 is additive.
(iii) F is additive if and only if for every geometric point ξ of X with algebraically closed residue

field, F |Eξ is additive.

Proposition 3.2. Let X be a scheme with residue characteristics different from `, f : E1 Ñ E be
a morphism of vector bundles over X, F (resp. F 1) be a constructible sheaf of Λ-modules on E
(resp. E1). Then :

(i) If F is additive, f�pF q is additive.
(ii) If F 1 is additive and if f surjective, Rnf!pF 1q is additive for all n ¥ 0.
(iii) Assume f surjective. Then F is additive if and only if f�pF q is additive.

Propositions (i) and (ii) follow immediately from the definition (3.1). To prove (iii), it remains
to show that if f�pF q is additive then so is F . The problem being local on X, we may assume
that there exists a section σ : E Ñ E1 of f . Then the required property follows from (i).

3.3. Let Lψ be the Artin-Schreier sheaf of Λ-modules of rank 1 over the additive group A1
Fp over

Fp, associated to the character ψ fixed in (2.1) ([19] 1.1.3). Then Lψ is additive. Indeed, if
µ : A1

Fp �Fp A1
Fp Ñ A1

Fp denotes the addition, we have an isomorphism

(3.3.1) µ�Lψ � pr�1Lψ b pr�2Lψ.

We will show that to a certain extent, all additive sheaves in characteristic p come from Lψ. If
f : X Ñ A1

Fp is a morphism of schemes, we put Lψpfq � f�Lψ.
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3.4. Let X be a k-scheme, π : E Ñ X be a vector bundle of constant rank d, π̌ : Ě Ñ X be the
dual vector bundle. We denote by x , y : E�X Ě Ñ A1

Fp the canonical pairing, by pr1 : E�X Ě Ñ E

and pr2 : E �X Ě Ñ Ě the canonical projections and by

(3.4.1) Fψ : Db
cpE,Λq Ñ Db

cpĚ,Λq

the Fourier-Deligne transform defined by

(3.4.2) FψpKq � Rpr2!ppr�1K bLψpx , yqq.

We recall some properties of this transform that will be used later.
Let π5 : E5 Ñ X be the bidual vector bundle of π : E Ñ X, a : E

�
Ñ E5 be the anti-canonical

isomorphism defined by apxq � �xx, y, F_ψ be the Fourier-Deligne transform for π̌ : Ě Ñ X. For
every object K of Db

cpE,Λq, we have a canonical isomorphism ([19] 1.2.2.1)

(3.4.3) F_ψ � FψpKq � a�pKqp�dqr�2ds.

Let π1 : E1 Ñ X be a vector bundle of constant rank d1, F1ψ be its Fourier-Deligne transform,
f : E Ñ E1 be a morphism of vector bundles, f̌ : Ě1 Ñ Ě be its dual. For every object K of
Db
cpE,Λq, we have canonical isomorphisms

F1ψ � Rf!pKq
�
Ñ f̌� � FψpKq,(3.4.4)

F1ψ � Rf�pKqpd
1qr2d1s

�
Ñ f̌ ! � FψpKqpdqr2ds,(3.4.5)

and for every object K 1 of Db
cpE

1,Λq, we have a canonical isomorphism

Rf̌! � F
1
ψpK

1qpd1qr2d1s
�
Ñ Fψ � f

�pK 1qpdqr2ds,(3.4.6)

Rf̌� � F
1
ψpK

1q
�
Ñ Fψ � f

!pK 1q.(3.4.7)

Indeed, isomorphism (3.4.4) is proved in ([19] 1.2.2.4). It implies isomorphism (3.4.6) by (3.4.3),
and isomorphism (3.4.5) by duality and (3.4.3). Finally, isomorphism (3.4.7) is obtained from
(3.4.5) by (3.4.3).

For any section e P EpXq and any object K of Db
cpE,Λq, if we denote by τe : E

�
Ñ E the

translation by e, we have a canonical isomorphism ([19] 1.2.3.2)

(3.4.8) Fψpτe�Kq
�
Ñ FψpKq bLψpxe, yq.

3.5. Let X be a scheme, K be an object of Db
cpX,Λq. The support of K is the subset of points of

X where the stalks of the cohomology sheaves of K are not all zero. It is constructible in X. This
definition is in general different from the one introduced in ([6] IV 8.5.2).

Proposition 3.6. Let X be a k-scheme, π : E Ñ X be a vector bundle of constant rank, π̌ : Ě Ñ X
be the dual vector bundle, F be a constructible sheaf of Λ-modules on E, S � Ě be the support of
FψpF q. Then F is additive if and only if for every x P X, the set S X Ěx is finite.

By the proper base change theorem, we may assume X � Specpkq and k algebraically closed.
Then we are reduced to the following :

Proposition 3.7. Assume k algebraically closed and let E be a vector bundle over k, π̌ : Ě Ñ X be
the dual vector bundle, F be a constructible sheaf of Λ-modules over E. The following conditions
are equivalent :

(i) F is additive.
(ii) The support of FψpF q is finite.
(iii) F is isomorphic to a finite direct sum of sheaves of the form M b Lψpfq, where M is a

Λ-module of finite type and f : E Ñ A1
k is a linear form.
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(iv) F is locally constant and all its Jordan-Hölder sub-quotients are of the form Lψpfq bΛ Λ,
where Λ is the residue field of Λ and f : E Ñ A1

k is a linear form.
(v) F is locally constant and all its Jordan-Hölder sub-quotients are additive.

First we prove (i)ñ(ii). For every point e P Epkq, we have (3.4.8)

(3.7.1) FψpF q � FψpF q bLψpxe, yq.

If G is a cohomology sheaf of FψpF q, we have G � G b Lψpxe, yq for every point e P Epkq.
Let U be an integral locally closed subscheme of Ě such that G |U is locally constant and not
zero. It is enough to prove that U is a closed point of Ě. We may assume that Λ is a field. Let
π : V Ñ U be a finite étale connected covering such that π�pG |Uq is constant. Then for every point
e P Epkq, the sheaf π�pLψpxe, yq|Uq is constant; equivalently, for every linear form f : Ě Ñ A1

k,
the sheaf Lψpfq|V is constant. So the equation T p � T � f has a solution in the function field
kpV q of V . If U is not a closed point of Ě, there exists a linear form f : Ě Ñ A1

k such that
f |U : U Ñ A1

k � Specpkrtsq is dominant. For all c P k�, the equation T p�T � ct has a solution in
kpV q. We obtain infinitely many linearly disjoint extensions of degree p of kptq contained in kpV q,
which is not possible. Then U is a closed point.

Next we prove (ii)ñ(iii). By (3.4.3), we may assume that the support of FψpF q is a point
i : Specpkq Ñ Ě; then it is enough to observe that for any Λ-module of finite type M , we have

(3.7.2) F_ψ pi�Mq �M bLψpfq,

which follows from (3.4.8) and (3.4.4).
It is clear that we have (iii)ñ(i), (iii)ñ(iv)ñ(ii) and (vi)ñ(v). Finally, since conditions (i) and

(ii) are equivalent and that the latter is stable by extensions, we have (v)ñ(i).

Definition 3.8. Let X be a k-scheme, π : E Ñ X be a vector bundle of constant rank, π̌ : Ě Ñ X
be the dual vector bundle, F be an additive constructible sheaf of Λ-modules on E. We call the
Fourier dual support of F the support of FψpF q in Ě. We say that F is non-degenerate if the
closure of its Fourier dual support does not meet the zero section of Ě.

We can make the following remarks :

(i) If we replace ψ by aψ for an element a P F�p , then the Fourier dual support of F will be
replaced by its inverse image by the multiplication by a on Ě. In particular, the notion of being
non-degenerate does not depend on ψ.

(ii) Let X 1 be an X-scheme, E1 be the vector bundle E �X X 1 over X 1. Then the Fourier dual
support of F |E1 is the inverse image of the Fourier dual support of F ([19] 1.2.2.9).

(iii) Let f : E Ñ A1
X be a linear form, i : X Ñ Ě be the associated section, M be a non zero

Λ-module of finite type, d be the rank of E. Then the Fourier dual support of M b Lψp�fq is
ipXq. Indeed, by (3.4.3), (3.4.4) and (3.4.8), we have

(3.8.1) FψpM bLψp�fqq � i�Mp�dqr�2ds.

(iv) Assume X � Specpkq and k algebraically closed. Then F is locally constant, and its Fourier
dual support is the union of the Fourier dual supports of its Jordan-Hölder sub-quotients (3.7).

Lemma 3.9. Let f : X 1 Ñ X be a finite morphism of k-schemes, π : E Ñ X be a vector bundle
of constant rank, E1 � E �X X 1, π1 : E1 Ñ X 1 and fE : E1 Ñ E be the canonical projections, F 1

be an additive constructible sheaf of Λ-modules on E1. Then fE�pF 1q is additive and its Fourier
dual support is the image of the Fourier dual support of F 1.
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By the proper base change theorem, we may assume X � Specpkq and k algebraically closed.
Then we may reduce to the case where X 1 is a finite disjoint sum of copies of X, where the assertion
is obvious.

Lemma 3.10. Let X be a k-scheme, π : E Ñ X be a vector bundle of constant rank, F be an
additive constructible sheaf of Λ-modules on E. If F is non-degenerate then Rπ�F � Rπ!F � 0.

It follows from (3.4.3), (3.4.6) and (3.4.7) (applied to f the zero section of the dual vector bundle
Ě of E and K 1 � FψpF q).

Lemma 3.11. Let X be a k-scheme, π : E Ñ X be a vector bundle of constant rank, G be an
additive constructible sheaf of Λ-modules on E, F be a constructible sheaf of Λ-modules on E,
u : G Ñ F be a surjective morphism (resp. v : F Ñ G be an injective morphism). Assume that F
is locally constant on all geometric fibers of π. Then F is additive and its Fourier dual support is
contained in the Fourier dual support of G .

We may assume X � Specpkq and k algebraically closed. Then G is locally constant (3.7), and
the assertion follows from 3.7 and 3.8(iv).

Lemma 3.12. Let X be a k-scheme, π : E Ñ X be a vector bundle of constant rank, G be a group
scheme over X, ρ : G Ñ E be an étale surjective morphism of group schemes over X, F be a
constructible sheaf of Λ-modules on E. Assume that for every geometric point x of X, ρ�pF q|Gx
is constant; then F is additive.

We prove first that ρ�pρ�F q is additive. Let x be a geometric point of X, a P Epxq. There
exists g P Gpxq such that ρpgq � a. If we denote by τa (resp. τg) the translation by a on E (resp.
g on G), then

τ�a ppρ�pρ
�F qq|Exq � ρ�pτ

�
g ppρ

�F q|Gxqq � pρ�pρ
�F qq|Ex.

On the one hand, the adjunction morphism F Ñ ρ�pρ
�F q is injective and F is locally constant

on the geometric fibers of π. Then F is additive by 3.11.

Lemma 3.13 ([21] 2.7). Let X be a normal k-scheme, π : E Ñ X be a vector bundle of constant
rank, π̌ : Ě Ñ X be the dual vector bundle, U be a dense open subscheme of X, F be a constructible
sheaf of Λ-modules on E, S � Ě be the support of FψpF q. We put EU � π�1pUq, ĚU � π̌�1pUq,
SU � S X ĚU , and denote by j : EU Ñ E the canonical injection. Assume that the following
conditions are satisfied :

(i) The adjunction morphism u : F Ñ j�j
�pF q is injective.

(ii) j�pF q is locally constant and additive.
(iii) F is locally constant on all fibers of π.
Then F is additive and its Fourier dual support S is contained in the Zariski closure SU of SU

in Ě. Moreover, if F is locally constant, then S � SU .

It is enough to prove that for every x P X, the set Sx � S X Ěx is finite and is contained in
SU (3.7), moreover, if F is locally constant then Sx � SU X Ěx. We may shrink U . The assertion
is obvious for the generic points of X; so we assume that x is not a generic point of X. Let
f : X 1 Ñ X be a proper surjective morphism such that X 1 is normal and U 1 � f�1pUq is dense in
X 1, E1 � E �X X 1, Ě1 � Ě �X X 1, fE : E1 Ñ E and fĚ : Ě1 Ñ Ě be the canonical projections,
F 1 � f�EpF q, S1 � Ě1 be the support of F1ψpF

1q. We put E1
U � f�1

E pEU q, Ě1
U � f�1

Ě
pĚU q,

S1U � S1 X Ě1
U and denote by j1 : E1

U Ñ E1 the canonical injection. We have S1 � f�1
Ě
pSq,

S � fĚpS
1q and fĚpS1U q � SU . On the other hand, the adjunction morphism u1 : F 1 Ñ j1�j

1�pF 1q
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is composed of

(3.13.1) F 1
f�E puq // f�Ej�j

�pF q
v // j1�j

1�pF 1q ,

where v is the base change morphism relatively to fE . Since v is injective by 2.25, u1 is injective.
Hence, it is enough to prove the assertions after replacing X by X 1 and x by a point x1 of X 1 above
it. By taking for X 1 the normalization of the blow-up of X along the Zariski closure of x in X, we
are reduced to the case where OX,x is a discrete valuation ring.

We may assume X integral. Let η be the generic point of X, K � kpηq be the residue field of η.
By replacing X by its normalization in a finite extension of K, we may assume that Sη � S X Ěη
is a finite set of K-rational points. After shrinking U , we may assume that every f P Sη extends
to a linear form on EU . Then there exists constant sheaves pGf qfPSη on EU such that j�pF q �
`fPSηLψpfqbGf by 3.7 and ([6] IX 2.14.1). Let Sη,x � Sη be the subset of elements f P Sη which
are regular at x. For f P Sη,x, we denote by f P Ěx its reduction. We claim that

(3.13.2) j�pLψpfq b Gf q|Ex �

"
Lψpfq b Gf if f P Sη,x,

0 if f R Sη,x.

Indeed, let f P Sη, t be a geometric generic point of Ex. It follows from ([21] 2.8) that Lψpfq is
ramified at t if and only if f R Sη,x. If f P Sη,x, then j�pLψpfq b Gf q|Ex � Lψpfq b Gf by ([6]
IX 2.14.1). On the other hand, for every geometric point y of Ex and for every specialization map
tÑ y, the specialization homomorphism j�pLψpfq b Gf qy Ñ j�pLψpfq b Gf qt is injective (cf. the
proof of 2.25). Hence j�pLψpfq b Gf q|Ex � 0 if f R Sη,x.

Since F |Ex is locally constant and the adjunction morphism u : F Ñ j�j
�pF q is injective, we

deduce from (3.13.2) that the Jordan-Hölder sub-quotients of F |Ex are of the form Lψpfq b Gf ,
for some f P Sη,x. Hence, F |Ex is additive and Sx � tf |f P Sη,xu � SU X Ěx by 3.7 and 3.8(iv).
Assume that F is locally constant. Then u is an isomorphism ([6] IX 2.14.1), and Sη,x � Sη as
the rank of the stalks of j�j�pF q is constant. Therefore Sx � tf |f P Sη,xu, which conclude the
proof of the required assertion.

Corollary 3.14. Let X be a k-scheme, π : E Ñ X be a vector bundle of constant rank, π̌ : Ě Ñ X
be the dual vector bundle, F be a locally constant, constructible and additive sheaf of Λ-modules
on E. Then the Fourier dual support S of F is the underlying space of a closed sub-scheme of Ě
which is finite over X.

Let f : X 1 Ñ X be a proper surjective morphism, E1 � E �X X 1, Ě1 � Ě �X X 1, fE : E1 Ñ E
and fĚ : Ě1 Ñ Ě be the canonical projections, S1 be the Fourier dual support of f�pF q. We have
S1 � f�1

Ě
pSq and S � fĚpS

1q. First, we take for X 1 the normalization of X. Since S1 is closed
in Ě1 by 3.13, then S is closed in Ě. We denote also by S the reduced closed sub-scheme of Ě of
support S. We prove that S is finite over X. We may assume that X is normal and integral. Let
η be the generic point of X, K � kpηq. By replacing X by its normalization in a finite extension
of K, we may assume that Sη � S X Ěη is a finite set of K-rational points.

We know (3.6) that S is quasi-finite over X. It is enough to prove that it is proper over X. Let
R be a discrete valuation ring, Y � SpecpRq, y (resp. κ) be the closed (resp. generic) point of Y .
Consider a commutative diagram

(3.14.1) κ
β //

ρ

��

S

��
Y

α // X
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where ρ is the canonical injection. It is enough to prove that there exists an X-morphism γ : Y Ñ S
such that β � γ � ρ. We may replace X by any normal scheme X 1 such that α factors into
Y Ñ X 1 f

Ñ X, where f is proper and surjective. By replacing X successively by the normalization
of the blow-up of X along the Zariski closure of x � αpyq in X, we may assume that OX,x is
a discrete valuation ring. Then the assertion follows from the proof of 3.13. Indeed, with the
notation of loc. cit., we have Sη,x � Sη because u : F Ñ j�j

�pF q is an isomorphism.

4. Dilatations

4.1. Let X be a scheme, u : P Ñ X be a morphism, Y be a closed sub-scheme of P defined by a
quasi-coherent ideal IY of OP , R be a closed sub-scheme of X defined by a quasi-coherent ideal
J of OX , RY � R�X Y .

RY //

  BBBBBBBB Y //

��@@@@@@@@ P

u

��
R // X

Let I be the ideal of OP associated to the closed immersion RY Ñ P ; we have I � IY �J OP .
We denote by X 1 the blow-up of X along R and by P 1 the blow-up of P along RY . We call
dilatation of P along Y of thickening R and denote by P pRq the maximal open sub-scheme W of
P 1 where we have J OW � I OW (also called dilatation of RY in P relatively to R in [5] 2.4; see
loc. cit. 2.8). There is a unique X-morphism P pRq Ñ X 1.

P pRq //

��

P 1 // P

u

��
X 1 // X

Lemma 4.2. We keep the assumptions of (4.1) and assume moreover that R is a Cartier divisor
on X and that JY is of finite type. We put U � X �R and denote by jP : PU Ñ P the canonical
injection. Then P pRq is affine over P and it corresponds to the quasi-coherent sub-OP -algebra of
jP�pOPU q generated by the image of the canonical morphism u�pOXpRqq bOP IY Ñ jP�pOPU q.

We may assume that X � SpecpAq and P � SpecpBq are affine, that R is defined in X by an
equation t P A and that Y is defined by an ideal of finite type JY of B. Let I be the ideal of B
generated by JY and t, P 1 be the blow-up of P along I. Then P pRq is the maximal open sub-scheme
of P 1 where the exceptional divisor IOP 1 is generated by t. Let a1, . . . , an P B be generators of
JY . We put

C 1 � Br
a1

t
, . . . ,

an
t
s �

Brξ1, . . . , ξns

pa1 � tξ1, . . . , an � tξnq
,

C � C 1{C 1
t-tor,

where C 1
t-tor is the ideal of C 1 of elements annihilated by a power of t. Then we have P pRq �

SpecpCq, which implies the assertion.
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4.3. Let X be a scheme, u : P Ñ X and g : Q Ñ P be morphisms, i : Y Ñ P and j : Z Ñ Q be
closed immersions, h : Z Ñ Y be a morphism such that g � j � i � h, so the diagram

Z
j //

h

��

Q

g

��
Y

i // P

is commutative. Let R be a closed sub-scheme of X, P pRq (resp. QpRq) be the dilatation of P
(resp. Q) along Y (resp. Z) of thickening R. By the functorial property of dilatations ([5] 2.6),
there is a canonical morphism

(4.3.1) gpRq : QpRq Ñ P pRq

lifting g.

Lemma 4.4. We keep the assumptions of (4.3) and assume moreover that Z � Y �P Q. We put
RY � R �X Y and RZ � R �X Z and denote by P 1 (resp. Q1) the blow-up of P along RY (resp.
Q along RZ). Then :

(i) There exists a unique morphism g1 : Q1 Ñ P 1 lifting g; we have QpRq � g1�1pP pRqq and gpRq
is the restriction of g1.

(ii) If g is flat, the morphism QpRq Ñ P pRq �P Q induced by gpRq is an isomorphism.

Since RZ � RY �P Q, there exists a unique morphism g1 : Q1 Ñ P 1 lifting g. We know ([5] 2.6)
that g1pQpRqq � P pRq and that gpRq is the restriction of g1. On the other hand, g1�1pP pRqq � QpRq by
([5] 2.7). Therefore, QpRq � g1�1pP pRqq, which proves assertion (i). Assertion (ii) is an immediate
consequence of (i).

4.5. Let X be a scheme, u : P Ñ X be a separated morphism, σ : X Ñ P be a section of u, R be
an effective Cartier divisor on X, U � X � R, P pRq be the dilatation of P along σ of thickening
R. Then we have a canonical isomorphism

(4.5.1) P pRq �X U � PU .

By the universal property of dilatations ([5] 2.7), there exists a unique X-morphism

(4.5.2) σpRq : X Ñ P pRq

lifting σ.

Lemma 4.6. We keep the assumptions of (4.5) and assume moreover that X is locally noetherian
and that u is smooth. Then P pRq is smooth over X, and we have a canonical R-isomorphism

(4.6.1) P pRq �X R
�
Ñ Vpσ�pΩ1

P {Xq bOX OXpRqq �X R.

The isomorphism (4.6.1) follows from ([5] 3.5). Since P pRq �X R is a Cartier divisor on X, the
isomorphisms (4.5.1) and (4.6.1) imply that P pRq is flat over X ([1] 1.12.9). Since all fibers of P pRq

over X are smooth, P pRq is smooth over X.

Lemma 4.7. Let X be a locally noetherian scheme, R be a Cartier divisor on X, u : P Ñ X and
v : Q Ñ X be separated morphisms of finite type, σ : X Ñ P and τ : X Ñ Q be sections of u and
v, respectively. We denote by P pRq (resp. QpRq, resp. pP �X QqpRq) the dilatation of P (resp. Q,
resp. P �X Q) along σ (resp. τ , resp. pσ, τq) of thickening R. If P or Q is smooth over X, then
the canonical morphism

(4.7.1) w : pP �X QqpRq Ñ P pRq �X QpRq
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is an isomorphism.

We denote by JP (resp. JQ, resp. JP�XQ) the ideal of OP (resp. OQ, resp. OP�XQ) defined
by σ (resp. τ , resp. pσ, τq). Since JP�XQ � JPOP�XQ � JQOP�XQ, it follows from 4.2 that
the canonical morphism w (4.7.1) is a closed immersion. By construction, PU (resp. QU , resp.
PU �U QU ) is schematically dense in P pRq (resp. QpRq, resp. pP �X QqpRq). Since P pRq or QpRq

is smooth over X (4.6), PU �U QU is schematically dense in P pRq �X QpRq. Therefore w is an
isomorphism.

4.8. Consider a commutative diagram of morphisms of finite type of locally noetherian schemes

(4.8.1) Y
τ //

f

��

Q
v //

g

��

Y

f

��
X

σ // P
u // X

such that u and v are smooth and separated, u � σ � idX and v � τ � idY . Let R be a Cartier
divisor on X such that RY � R �X Y is a Cartier divisor on Y . We denote by P pRq (resp. QpRqq
the dilatation of P (resp. Q) along σ (resp. τ) of thickening R and by

(4.8.2) gpRq : QpRq Ñ P pRq

the morphism induced by g (4.3.1). Note that QpRq is also the dilatation of Y in Q of thickening
RY . Let NX{P and NY {Q be the conormal bundles of X in P and Y in Q, respectively. Then the
morphism gpRq �X R : QpRq �X RÑ P pRq �X R can be identified with the morphism

(4.8.3) VpNY {Q bOY OY pRY qq �Y RY Ñ VpNX{P bOX OXpRqq �X R

induced by the canonical morphism f�pNX{P q Ñ NY {Q ([5] 3.4).

Lemma 4.9. We keep the assumptions of (4.8), and assume moreover that g is smooth and that
f is an isomorphism. Then gpRq : QpRq Ñ P pRq is smooth.

Observe first that P pRq and QpRq are smooth over X (4.6). We put U � X � D. Then
gpRq �X U � gU , which is smooth by assumption. On the other hand, gpRq �X R is the morphism
of vector bundles over R induced by the canonical morphism NX{P Ñ NX{Q (4.8.3). Since the
latter is locally left invertible, gpRq �X R is smooth. Then the assertion follows from ([12] 17.8.2).

5. Frames and strict normal crossing pairs

5.1. In this article, a monoid stands for a commutative monoid. If M is a monoid, we denote
by Mgp the associated group, by M� the group of units in M and by M the orbit space M{M�

(which is also the quotient of M by M� in the category of monoids). We say that a monoid M
is integral if the canonical homomorphism M Ñ Mgp is injective, that M is fine if it is finitely
generated and integral and that M is saturated if it is integral and equal to its saturation in Mgp

(i.e., equal to tm P Mgp|mn P M for some n ¥ 1u). If a monoid M is integral, M is integral. We
say that a homomorphism of monoids u : M Ñ N is strict if the induced morphism u : M Ñ N is
an isomorphism. We denote by Mon the category of monoids and by Monfs the full sub-category
of fine and saturated monoids (usually called fs-monoids for short).
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5.2. A pre-logarithmic structure on a scheme X is a pair pM , αq where M a sheaf of abelian
monoids on the étale site of X and α is a homomorphism from M to the multiplicative monoid OX .
A pre-logarithmic structure pM , αq is called a logarithmic structure if α induces an isomorphism
α�1pO�

Xq
�
Ñ O�

X . Pre-logarithmic structures on X form naturally a category, containing the
full subcategory of logarithmic structures on X. The canonical injection from the category of
logarithmic structures on X to the category of pre-logarithmic structures on X has a left adjoint.
It associates to a pre-logarithmic structure pP, βq the logarithmic structure pM , αq, where M is
defined by the co-cartesian diagram

(5.2.1) β�1pO�
Xq

//

��

P

��
O�
X

//M

We say that pM , αq is the logarithmic structure associated to pP, βq.
If f : X Ñ Y is a morphism of schemes and pM , αq is a pre-logarithmic structure on Y , the sheaf

of monoids f�1pM q equipped with the composed homomorphism f�1pM q Ñ f�1pOY q Ñ OX is
a pre-logarithmic structure on X called the inverse image of pM , αq and denoted by f�1pM , αq.

5.3. A logarithmic scheme is a triple pX,MX , αXq, usually simply denoted by pX,MXq or even
by X, consisting of a scheme X and a logarithmic structure pMX , αXq on X. Logarithmic schemes
form a category; we refer to [14] for more details. If pX,MX , αXq is a logarithmic scheme, we denote
by M�

X the sheaf of units in MX , by M gp
X the sheaf associated to the presheaf U ÞÑ ΓpU,MXq

gp

and by M̄X the sheaf associated to the presheaf U ÞÑ ΓpU,MXq{ΓpU,MXq
� (which is the quotient

of MX by M�
X in the category of sheaves of monoids). Observe that αX identifies M�

X with O�
X .

We say that a morphism of logarithmic schemes f : pX,MX , αXq Ñ pY,MY , αY q is strict if
pMX , αXq is the logarithmic structure associated to the pre-logarithmic structure f�1pMY , αY q
on X, or equivalently if the canonical morphism f�1pM̄Y q Ñ M̄X is an isomorphism.

We say that a logarithmic scheme pX,MX , αXq is integral (resp. fine, resp. saturated) if for
every x P X, there exists an étale neighbourhood U of x in X such that pMX |U,αX |Uq is associated
to a pre-logarithmic structure pPU , βq on U , where PU is a constant sheaf of monoids on U of value
an integral (resp. a fine, resp. a saturated) monoid P . If pX,MX , αXq is integral (resp. saturated),
the monoid ΓpX,MXq is integral (resp. saturated). If pX,MX , αXq is integral (resp. fine), for
every geometric point x of X, the monoid M̄X,x is integral (resp. fine).

5.4. LetM be a monoid, X be a logarithmic scheme. We denote by BrM s the scheme SpecpZrM sq
equipped with the logarithmic structure induced by the pre-logarithmic structure M Ñ ZrM s
(denoted by SrM s in [16] §4.1), and by MX the constant sheaf of monoids on X of value M . Then
the following data are equivalent (and will be identified in what follows) :

(i) A homomorphism M Ñ ΓpX,MXq;
(ii) A homomorphism MX Ñ MX ;
(iii) A morphism of logarithmic schemes X Ñ BrM s.
Moreover, the following conditions are equivalent :
(a) MX is associated to the pre-logarithmic structure induced on MX .
(b) The morphism X Ñ BrM s is strict.
We say then that M is a chart for X.
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5.5. We denote by LS the category of fine and saturated logarithmic schemes (usually called fs-
logarithmic schemes for short) and by xLS the category of presheaves of sets over LS. Since the
canonical functor LSÑ xLS is fully faithful, we will identify the objects of LS with their canonical
images in xLS. Fibred products are representable in the category LS. For morphisms X Ñ S and
Y Ñ S of LS, we will denote by X �log

S Y the fibered product in the category LS and reserve the
notation X�S Y for the fibered product of the underlying schemes. To avoid any risk of confusion,
we will usually use the same notation for fibered products in xLS (but not for products as there is
no risk of confusion).

5.6. We have a functor

(5.6.1) Mon�fs Ñ LS, M ÞÑ BrM s.

Let g : N Ñ M , g1 : N Ñ M 1 be two morphisms of Monfs. We denote by Mgp `Ngp M 1gp the
cokernel of the homomorphism ggp � g1gp : Ngp Ñ Mgp `M 1gp and by M `sat

N M 1 the saturation
of the image of the canonical homomorphism M � M 1 Ñ Mgp `Ngp M 1gp (M `sat

N M 1 is the
amalgamated sum of g and g1 in Monfs). Then we have a canonical isomorphism in LS

(5.6.2) BrM `sat
N M 1s

�
Ñ BrM s �log

BrNs BrM
1s.

Consider a commutative diagram of LS

(5.6.3) X //

��

Y

��

X 1oo

��
BrM s // BrN s BrM 1soo

where the vertical arrows are strict and the lower horizontal morphisms are induced by g and g1.
Then we have a canonical isomorphism of underlying schemes

(5.6.4) X �log
Y X 1 �

Ñ pX �Y X
1q �BrM�M 1s BrM `sat

N M 1s

and X �log
Y X 1 is strict over BrM `sat

N M 1s.

5.7. Following ([16] 4.1.1), we denote by

(5.7.1) Mon�fs Ñ
xLS, M ÞÑ rM s,

the functor defined, for a fin and saturated monoid M and X P ObpLSq, by

(5.7.2) rM spXq � HompM,ΓpX, M̄Xqq.

We denote by MLS the following category. Objects of MLS are triples pX,M, uq, where X P

ObpLSq, M is a fine and saturated monoid and u : X Ñ rM s is a morphism of xLS. Let pX,M, uq,
pY,N, vq be two objects of MLS. A morphism from pX,M, uq to pY,N, vq is a pair pf, gq made of
a morphism f : X Ñ Y of LS and a homomorphism of monoids g : N ÑM such that the diagram

(5.7.3) X
u //

f

��

rM s

rgs

��
Y

v // rN s

is commutative. An object pX,M, uq of MLS is called a framed logarithmic scheme (and pM,uq
is called a frame on X) if for every geometric point x of X, there exists an étale neighbourhood U
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of x in X such that the morphism U Ñ rM s induced by u factors as U v
Ñ BrM s

w
Ñ rM s, where v

is a strict morphism and w is the canonical morphism ([16] 4.1.2); we say also that u is strict.

Proposition 5.8 ([16] 4.2.1). Let g : N ÑM be a morphism of Monfs such that ggp : Ngp ÑMgp

is surjective. Then :
(i) The morphism rgs : rM s Ñ rN s is representable, log étale and affine, i.e., for every X P

ObpLSq and every morphism u : X Ñ rN s, the fibre product X �log
rNs rM s is representable by an

object of LS which is log-étale and affine over X.
(ii) Let �M be the inverse image of M by ggp : Ngp Ñ Mgp. Then the canonical morphism

rM s Ñ r�M s is an isomorphism, and for every morphism u : X Ñ BrN s, the canonical morphism

(5.8.1) X �log
BrNs Br

�M s Ñ X �log
rNs r

�M s

is an isomorphism.

5.9. Let X,Y, S be objects of LS, M be a finitely generated and saturated monoid, X Ñ S�rM s,
Y Ñ S�rM s be two morphisms of xLS. We will denote such a diagram by X,Y ⇒ S�rM s and its
projective limit by X �log

S�rMs Y . Let µ : M �M ÑM be the multiplication, i1, i2 : M ÑM �M

be the homomorphisms defined by i1pmq � pm, 1q and i2pmq � p1,mq. Since the diagram

(5.9.1) M
i1 //
i2
// M �M

µ // M

is co-exact in the category of monoids (i.e., µ is the cokernel of the pair of morphisms i1 and i2),
the diagram

(5.9.2) X �log
S�rMs Y

//

��

rM s

rµs

��
X �log

S Y
u�v // rM �M s

where u� v is induced by u and v, is cartesian in xLS.
Corollary 5.10 ([16] 4.2.3). For every diagram X,Y ⇒ S � rM s of xLS, X �log

S�rMs Y is repre-

sentable by an object of LS, which is log-étale and affine over X �log
S Y .

Proposition 5.11 ([16] 4.2.5). Let g : N Ñ M be a homomorphism of finitely generated and
saturated monoids, X,Y, S be objects of LS,

(5.11.1) X //

��

S

��

Yoo

��
rM s

rgs // rN s rM s
rgsoo

be a commutative diagram. Assume that X Ñ rM s and S Ñ rN s are strict. Then the canonical
projection X �log

S�rMs Y Ñ Y is strict.

Corollary 5.12. Under the assumptions of (5.11), if moreover X Ñ S is log-smooth, then the
canonical projection X �log

S�rMs Y Ñ Y is strict and smooth.

It follows from 5.10 and 5.11 as X�log
S�rMsY Ñ Y is composed of X�log

S�rMsY Ñ X�log
S Y Ñ Y .
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5.13. Let pX,M, uq be an object of MLS, Y Ñ X Ñ S be two morphisms of LS. Then we can
form a diagram X,Y ⇒ S � rM s, and the canonical morphism

(5.13.1) X �log
S�rMs Y Ñ pX �log

S�rMs Xq �
log
X Y

is an isomorphism. In particular, if the morphism X Ñ S can be extended to a morphism of
framed logarithmic schemes pX,M, uq Ñ pS,N, vq, the canonical morphism of underlying schemes

(5.13.2) X �log
S�rMs Y Ñ pX �log

S�rMs Xq �X Y

is an isomorphism, and X �log
S�rMs Y is strict over Y (5.11).

5.14. Let pX,M, uq, pY,N, vq be two objects of MLS, X Ñ S, Y Ñ S be two morphisms of LS,
g : M Ñ N be a homomorphism; so we can form a diagram X,Y ⇒ S � rM s. We denote by
θ : M �N Ñ N the homomorphism defined by θpm,nq � gpmq � n. Since the diagram

(5.14.1) M �M
µ //

id�g

��

M

g

��
M �N

θ // N

is co-cartesian in the category of monoids, the diagram

(5.14.2) X �log
S�rMs Y

w //

��

rN s

rθs

��
X �log

S Y
u�v // rM �N s

where w is the composed morphism X �log
S�rMs Y Ñ Y

v
Ñ rN s, is cartesian in xLS.

5.15. Let pf, gq : pY,N, vq Ñ pX,M, uq be a morphism of MLS, h : X Ñ S be a morphism of LS;
so we have a commutative diagram

(5.15.1) Y
v //

f

��

rN s

rgs

��
X

h

��

u // rM s

S

Then the canonical projection pr2 : X �log
S�rMs Y Ñ Y induces an isomorphism

(5.15.2) Y �log
X�rNs pX �log

S�rMs Y q
�
Ñ Y �log

S�rNs Y.

Indeed, the commutative diagram

(5.15.3) Y �log
S�rNs Y

//

pr1

��

X �log
S�rMs Y

id�v

��
Y

f�v // X � rN s
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defines an inverse.

5.16. Let X be a regular noetherian scheme, D be a normal crossing divisor on X, U � X �D,
j : U Ñ X be the canonical injection. There is a canonical fine and saturated logarithmic structure
pMD, αDq on X defined by MD � OX �j�pOU q j�pO

�
U q. We denote pX,MD, αDq by XlogD. The

sheaf M̄D is canonically isomorphic to the sheaf ΓDpDiv
�
Xq of effective Cartier divisors on X with

support in D. Assume that D has simple normal crossing, and let D1 . . . , Dm be the irreducible
components of D. We denote by MD the free abelian monoid generated by D1, . . . , Dm. Then the
canonical morphism uD : XlogD Ñ rMDs defines a frame on X.

5.17. A strict normal crossing pair over k (or an snc-pair over k for short) stands for a pair pX,Dq
where X is a smooth k-scheme and D is a simple normal crossing divisor on X. Let pX,Dq and
pY,Eq be two snc-pairs over k. A morphism f : pY,Eq Ñ pX,Dq is a k-morphism f : Y Ñ X such
that the support of f�1pDq is contained in E. We denote by SNCPk the category of snc-pairs
over k. We have a canonical functor

(5.17.1) SNCPk ÑMLS, pX,Dq ÞÑ pXlogD,MD, uDq

where XlogD, MD and uD are defined in (5.16). We say that a morphism f : pY,Eq Ñ pX,Dq
of snc-pairs over k is log-smooth (resp. log-étale) if the associated morphism YlogE Ñ XlogD is
log-smooth (resp. log-étale).

Lemma 5.18. Let f : pX 1, D1q Ñ pX,Dq be a log-smooth morphism of snc-pairs over k such that
the morphism of underlying schemes X 1 Ñ X is flat, x P fpX 1q � X, D1, . . . , Dn be the irre-
ducible components of D containing x. Then there exists x1 P X 1 contained in exactly n irreducible
components D1

1, . . . , D
1
n of D1 such that fpx1q � x and D1

i dominates Di for all 1 ¤ i ¤ n.

We may shrink X, so we may assume that the irreducible components of D are D1, . . . , Dn.
Let y1 P X 1 such that fpy1q � x. Since f is flat, for each 1 ¤ i ¤ n, there exists an irreducible
component D1

i of D1 containing y1 and dominating Di. We put Y � X1¤i¤nDi and Y 1 � X1¤i¤nD
1
i

and denote by g : Y 1 Ñ Y the restriction of f . We equip Y 1 with the strictly normal crossing divisor
E1 defined by the irreducible components of D1 different from D1

1, . . . , D
1
n. We have a canonical

commutative diagram of OY 1 -modules with exact lines

(5.18.1) 0 // g�pΩ1
Y {kq //

��

g�pΩ1
X{kplogDq bOX OY q

g�presq//

��

On
Y 1

// 0

0 // Ω1
Y 1{kplogE1q // Ω1

X1{kplogD1q bOX1 OY 1
res // On

Y 1
// 0

Therefore, the morphism g�pΩ1
Y {kq Ñ Ω1

Y 1{kplogE1q is injective and its cokernel is locally free.
Then the morphism of snc-pairs pY 1, E1q Ñ pY,Hq induced by g is log-smooth ([14] 3.12), which
implies that g is smooth (in the usual sense) and that E1 is a strict normal crossing divisor on Y 1

relatively to Y ([14] 3.5). In particular, Y 1
x is smooth over kpxq and E1

x is a divisor on Y 1
x. Hence,

there exists x1 P Y 1
x � E1

x.

Lemma 5.19. Let f : pX:, D:q Ñ pX,Dq and g : pX 1, D1q Ñ pX,Dq be two morphisms of snc-
pairs over k, x: P X:. Assume that g is log-smooth, that the morphism X 1 Ñ X is flat and that
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fpx:q P gpX 1q. Then there exists a commutative diagram of snc-pairs over k

(5.19.1) pX;, D;q
f 1 //

g:

��

pX 1, D1q

g

��
pX:, D:q

f // pX,Dq

such that g: is log-smooth, that the morphism X; Ñ X: is flat and that x: P g:pX;q. Moreover, if
f is log-smooth, then we can choose pX;, D;q such that f 1 is log-smooth.

We denote by M ,M 1 and M : the sheaves of monoids over X,X 1 and X: defined by the divisors
D,D1 and D: respectively; we use the notation of § 5. Let x: be a geometric point of X: above x:,
x � fpx:q, x1 be a geometric point of X 1 above x. We put M � M̄x, M 1 � M̄ 1

x1 and M
: � M̄ :

x:
.

By 5.18, we may assume the following condition is satisfied :
(C1) The canonical homomorphism u : M ÑM 1 induces an isomorphismMgpbZQ

�
ÑM 1gpbZQ

and M is the inverse image of M 1 by the morphism ugp : Mgp ÑM 1gp.
Replacing X 1 by an étale neighborhood of x1, we may assume that the following condition is

satisfied :
(C2) The divisors D1 and g�pDq have the same support.
Let N be an integer annihilating the cokernel of ugp. We put Q � pM :qgp �M : and denote

by q : M : Ñ Q the morphism defined by t ÞÑ pt, tN q. Replacing X: by an étale neighborhood
of x:, we may assume that there exists a chart X: Ñ BrM :s. We put X1 � X: �log

BrM:s
BrQs.

Then X1 Ñ X: is log-smooth and the underlying morphism of schemes is faithfully flat. Hence,
by replacing X: by X1, we may further assume that the following condition is satisfied :

(C3) The canonical homomorphism u: : M ÑM : factors into M u
ÑM 1 v

ÑM :.
Under assumptions (C1), (C2) and (C3), we put X; � X:�log

X X 1. The saturationM :`sat
M M 1 of

the amalgamated sum ofM : andM 1 overM , is equal toM : (5.6). Hence, the canonical projection
g: : X; Ñ X: is strict. Since g: is log-smooth, the underlying morphism of schemes is smooth. Let
D; be the inverse image of D: by g:. Then the logarithmic structure on X; is induced by D;. On
the other hand, X; is the normalization of X: �X X 1. Hence X; Ñ X: �X X 1 is surjective. The
first assertion is proved, and the second one is obvious from the definition of X;.

5.20. Let pX,Dq, pY,Eq be two snc-pairs over k, g : MD Ñ ME be a homomorphism of monoids
(5.17); so we can form the diagram XlogD, YlogE ⇒ Specpkq� rMDs. We call the g-framed product
of pX,Dq and pY,Eq over k and denote by X �k,g Y the logarithmic scheme

(5.20.1) X �k,g Y � XlogD �log
Specpkq�rMDs

YlogE .

We know that the canonical morphism X �k,g Y Ñ XlogD �log
k YlogE is log-étale (5.10) and that

the second projection X �k,g Y Ñ Y is strict and smooth (5.12). Observe that XlogD �log
k YlogE

is the logarithmic scheme associated to the snc-pair pX �k Y, pr�1 pDq � pr�2 pEqq.

5.21. Let f : pY,Eq Ñ pX,Dq be a morphism of snc-pairs over k. Then f induces a homomorphism
of monoids g : MD Ñ ME . We call the f -framed product of pX,Dq and pY,Eq over k and denote
by X �k,f Y the logarithmic scheme X �k,g Y (5.20.1); we omit f from the terminology and the
notation if there is no risk of confusion. In particular, we call X �k,id X the framed self-product of
pX,Dq over k and denote it simply by X �k X.

There is a canonical morphism

(5.21.1) γf : YlogE Ñ X �k,f Y
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called the framed graph of f . The framed graph of the identity δ : X Ñ X�kX is called the framed
diagonal of pX,Dq.

The formation of X �k,f Y is functorial in f . In particular, we have canonical morphisms

(5.21.2) Y �k Y
f1ÝÑ X �k Y

f2ÝÑ X �k X.

We put rf � f2 � f1. By (5.13.2), the canonical morphism of underlying schemes

(5.21.3) X �k Y Ñ pX �k Xq �X Y

is an isomorphism.

Proposition 5.22. Let pX,Dq be an snc-pair over k, D1, . . . , Dm be the irreducible components
of D. For 1 ¤ i ¤ m, let Ii be the ideal of the closed sub-scheme Di �k Di of X �k X, and let
pX �k Xq

1 be the blow-up of X �k X along the ideal
±

1¤i¤m Ii. Then X �k X is canonically
isomorphic to the open sub-scheme Z of pX �k Xq

1 complementary of the strict transforms of
D �k X and X �k D.

Let V � SpecpAq, W � SpecpBq be affine open sub-scheme of X such that for all 1 ¤ i ¤ m,
Di|V (resp. Di|W ) is defined by an equation ti P A (resp. si P B). The inverse image of V �k W
in Z is the affine scheme of ring

(5.22.1)
Abk Bru

�1
1 , . . . , u�1

m s

pti b 1� ui � 1b si p1 ¤ i ¤ mqq
.

Hence, Z equipped with the exceptional divisor E is an snc-pair over k. By construction, for all
1 ¤ i ¤ m, the ideals pr�1 pOXp�DiqqOZ and pr�2 pOXp�DiqqOZ are equal and invertible. Therefore,
the canonical morphism Z Ñ X �k X lifts to a morphism Z Ñ X �k X, which is an isomorphism
as it can be easily checked from the local description (5.22.1).

Remarks 5.23. We keep the assumptions of (5.22).
(i) The universal property of X �k X can be restated without logarithmic geometry as follows.

Let ϕ : Y Ñ X �k X be a morphism such that for all 1 ¤ i ¤ m, the ideals pr�1 pOXp�DiqqOY and
pr�2 pOXp�DiqqOY are equal and invertible. Then there exists a unique morphism ψ : Y Ñ X�kX
lifting ϕ.

(ii) Let U � X �D. Then, with the conventions of 2.6, we have canonical isomorphisms

(5.23.1) U �X pX �k Xq � U �k U � pX �k Xq �X U.

(iii) The canonical projections X �k X Ñ X will be denoted also by pr1 and pr2; they are
smooth. The framed diagonal δ : X Ñ X�kX is a regular closed immersion with conormal bundle
canonically isomorphic to the sheaf of logarithmic differentials Ω1

XplogDq ([16] 4.2.8).

Proposition 5.24. Let f : pY,Eq Ñ pX,Dq be a log-smooth (resp. log-étale) morphism of snc-pairs
over k. Then the canonical morphism Y �k Y Ñ X �k Y is smooth (resp. étale).

By (5.15.2), the canonical morphism

(5.24.1) Y �k Y Ñ YlogE �
log
XlogD�rMEs

pX �k Y q

is an isomorphism. Therefore Y �k Y is log-étale over YlogE �log
XlogD

pX �k Y q (5.10). Hence
Y �k Y Ñ X �k Y is log-smooth (resp. log-étale). Since the second projections Y �k Y Ñ Y and
X �k Y Ñ Y are strict, Y �k Y Ñ X �k Y is smooth (resp. étale).
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5.25. Let pX,Dq be a snc-pair over k, D1, . . . , Dm be the irreducible components of D. A rational
divisor on X with support in D is an element R �

°m
i�1 riDi of the Q-vector space generated by

D1, . . . , Dm. We say that R is effective if ri ¥ 0 for all i, and that R has integral coefficients if ri
is integral for all i. We call generic points of R the generic points of the Di’s such that ri �� 0. For
every integer n ¥ 0, we denote by tnRu the divisor

°m
i�1tnriuDi on X, where tnriu is the integral

part of nri. If R and R1 are two rational divisors on X with support in D, we say that R1 is
bigger than R and denote by R1 ¥ R if R1 �R is effective. If f : pY,Eq Ñ pX,Dq is a morphism of
snc-pairs over k and R is an effective rational divisor on X with support in D, we can define the
pull-back f�pRq as a rational divisor on Y with support in E.

5.26. Let pX,Dq be a snc-pair over k, R be an effective rational divisor on X with support in D,
u : P Ñ X be a smooth separated morphism of finite type, s : X Ñ P be a section of u. We put
U � X �D, and denote by j : U Ñ X and jP : PU Ñ P the canonical injections and by IX the
ideal of X in P . We call dilatation of P along s of thickening R and denote by P pRq the affine
scheme over P defined by the quasi-coherent sub-OP -algebra of jP�pOPU q

(5.26.1)
¸
n¥0

u�pOXptnRuqq �I
n
X .

This notion extends the one introduced in 4.1 if R has integral coefficients (cf. 4.2). We have a
canonical isomorphism

(5.26.2) P pRq �X U � PU .

The image of the algebra (5.26.1) by the surjective homomorphism jP�pOPU q Ñ s�j�pOU q is
canonically isomorphic to s�pOXq. Hence we have a canonical section

(5.26.3) spRq : X Ñ P pRq

lifting s.
Let R1 be another rational divisor on X with support in D such that R1 ¥ R. Then for every

n ¥ 0, there is a canonical injection OXptnRuq Ñ OXptnR1uq. We deduce a canonical P -morphism

(5.26.4) P pR1q Ñ P pRq

that fits in the commutative diagram

(5.26.5) P pR1q

��
X

spR
1q

==zzzzzzzz spRq // P pRq PU

bbEEEEEEEE
oo

Proposition 5.27. We keep the assumptions of (5.26), moreover, let λ be an integer ¥ 1 such
that λR has integral coefficients, Xpλq be the λ-th infinitesimal neighbourhood of s : X Ñ P , P : be
the dilatation of P along Xpλq of thickening λR in the sense of (4.1). Then P pRq is canonically
isomorphic to the integral closure of P : in PU .

Recall (4.2) that P : is the affine scheme over P defined by the quasi-coherent sub-OP -algebra
of jP�pOPU q generated by the image of the canonical morphism u�pOXpλRqq � I λ

X Ñ jP�pOPU q.
Therefore, there is a canonical integral P -morphism P pRq Ñ P : extending the identity of PU . To
prove the proposition, it is enough to show that P pRq is normal. We put R1 � λR. The canonical
morphism ρ : P pRq Ñ P is an isomorphism above u�1pX �R1q, and ρpP pRq �X R1q � spR1q. Then
P pRq is normal at all points above P � spR1q. Hence, it is enough to prove that P pRq is normal at
spxq for x P R1.
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By the Jacobian criterion of smoothness, there exists an open neighborhood V of spxq in P and
sections g1, . . . , gm P ΓpV,IXq such that g1, . . . , gm generate IX at spxq and dg1, . . . , dgm generate
Ω1
P {X at spxq. Let g : V Ñ AmX be the X-morphism defined by g1, . . . , gm. Then g is étale at spxq

by ([12] 17.11.1). After shrinking V , we may assume that spXq X V coincides with the inverse
image by g of the zero section of AmX . Hence, we are reduced to the case where P � AmX and s is
the zero section. By shrinking X, we may further assume that there exists a smooth morphism
X Ñ Adk such that D is the pull-back of the union of the coordinates hyperplanes of Adk. Hence, we
are further reduced to the case where X � Adk and D is the union of the coordinates hyperplanes.

We denote by M the free monoid Nd with basis T1, . . . , Td, and by N the free monoid Nm
with basis Td�1 . . . , Td�m. We identify X with SpecpkrM sq and let f �

±d
i�1 T

ai
i be an equation

defining the divisor λR on X. Let H be the sub-monoid of Mgp�N generated by Ti for 1 ¤ i ¤ d
and Tλj {f for d � 1 ¤ j ¤ d �m. We denote by Hsat the saturation of H and by σ : N Ñ N the
homomorphism sending Td�1, . . . , Td�m to 1. Then Hsat is the sub-monoid ofMgp�N of elements
pα, βq such that if we write α � pα1, . . . , αdq P Zd �Mgp, we have for all 1 ¤ i ¤ d,

(5.27.1) λαi � aiσpβq ¥ 0.

Therefore, we have

(5.27.2) Hsat �
º
n¥0

tpα, βq PMgp �N | α ¥ tnRu and σpβq � nu,

where R is considered as an element of Mgp bZ Q. Hence, we have a canonical isomorphism
P pRq � SpecpkrHsatsq, and P pRq is normal as Hsat is saturated.

5.28. Let f : pY,Eq Ñ pX,Dq be a morphism of snc-pairs over k, U � X �D, V � Y �E, R be a
rational effective divisor on X with support in D, RY � f�pRq. Let u : P Ñ X and v : QÑ Y be
smooth separated morphisms of finite type, s : X Ñ P be a section of u, t : Y Ñ Q be a section of
v, g : QÑ P be a morphism such that the diagram

(5.28.1) Y
t //

f

��

Q

g

��

v // Y

f

��
X

s // P
u // X

is commutative. We denote by P pRq (resp. QpRY q) the dilatation of P (resp. Q) along s (resp.
t) of thickening R (resp. RY ) and by spRq : X Ñ P pRq (resp. tpRY q : Y Ñ QpRY q) the canonical
lifting of s (resp. t). Let IX be the ideal of X in P , IY be the ideal of Y in Q, jP : PU Ñ P
and jQ : QV Ñ Q be the canonical injections. The morphism g induces a homomorphism of
OQ-algebras

(5.28.2) g�jP�pOPU q Ñ jQ�pOQV q.

We have g�pIXqOQ � IY and f�ptnRuq ¤ tnRY u for every n ¥ 0. Therefore, (5.28.2) induces a
homomorphism of OQ-algebras g�pOP pRqq Ñ OQpRY q , and hence a morphism

(5.28.3) gpRq : QpRY q Ñ P pRq

lifting g. We clearly have

(5.28.4) gpRq � tpRY q � spRq � f.

If R has integral coefficients, gpRq is the morphism defined in (4.8.2).
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Proposition 5.29. We keep the assumptions of (5.28) and assume moreover that Q � P �X Y
and g and v are the canonical projections. Then QpRY q is the integral closure of P pRq�P Q in QV .

Let n be an integer ¥ 1 such that nR has integral coefficients, Xpnq (resp. Y pnq) be the n-th
infinitesimal neighbourhood of s (resp. t), P : (resp. Q:) be the dilatation of P along Xpnq (resp.
Q along Y pnq) of thickening nR in the sense of (4.1). We denote by F (resp. G) the inverse image
of nR in Xpnq (resp. Y pnq) and by P 1 (resp. Q1) the blow-up of P (resp. Q) along F (resp. G).
Since Y pnq � Xpnq �P Q, g lifts to a morphism g1 : Q1 Ñ P 1 and we have Q: � g1�1pP :q (4.4). Let
g: : Q: Ñ P : be the restriction of g1. By 5.27, P pRq (resp. QpRY q) is the integral closure of P :

(resp. Q:) in PU (resp. QV ). It is clear that the canonical morphism gpRq : QpRY q Ñ P pRq (5.28.3)
is induced by g:. The morphism Q1 Ñ P 1 �P Q induced by g1 is a closed immersion ([5] 2.5).
Therefore, the morphism Q: Ñ P : �P Q induced by g: is a closed immersion, and the integral
closures in QV of Q: and P : �P Q are isomorphic. The proposition follows because the integral
closures in QV of P pRq �P Q and P : �P Q are isomorphic.

Proposition 5.30. We keep the assumptions of (5.28) and assume moreover that g is étale and
that f is an isomorphism. Then gpRq : QpRq Ñ P pRq is étale.

Let n be an integer ¥ 1 such that nR has integral coefficients, Xpnq (resp. Y pnq) be the n-
th infinitesimal neighborhood of s (resp. t), P : (resp. Q:) be the dilatation of P along Xpnq

(resp. Q along Y pnq) of thickening nR in the sense of (4.1). We prove first that the morphism
g: : Q: Ñ P : induced by g is étale (4.3.1). Since g is étale, Y pnq is an open and a closed sub-scheme
of Z � Xpnq �P Q. Let Q; be the dilatation of Q along Z of thickening nR. Then the canonical
morphism Q: Ñ Q; is an open immersion. Since the morphism g; : Q; Ñ P : induced by g is
étale by 4.4(iii), then g: is étale. On the other hand, by 5.27, P pRq (resp. QpRq) is the integral
closure of P : in PU (resp. Q: in QV ), and gpRq is induced by g:. We deduce that the morphism
QpRq Ñ P pRq �P : Q: induced by gpRq is an isomorphism, which implies that gpRq is étale.

5.31. Let pX,Dq be an snc-pair over k, U � X �D, R be an effective rational divisor on X with
support in D. We consider X �k X as an X-scheme by pr2, and denote by δ : X Ñ X �k X the
framed diagonal of pX,Dq and by pX �k Xq

pRq the dilatation of X �k X along δ of thickening R
(5.26). We can make the following remarks :

(i) If we consider X �k X as an X-scheme by pr1 instead of pr2, then the dilatation of X �k X
along δ of thickening R is equal to pX �k Xq

pRq. In particular, the automorphism of X �k X
switching the factors induces an isomorphism

(5.31.1) σ : pX �k Xq
pRq �

Ñ pX �k Xq
pRq.

(ii) There is a canonical morphism

(5.31.2) δpRq : X Ñ pX �k Xq
pRq

lifting δ, and a canonical open immersion

(5.31.3) jpRq : U �k U Ñ pX �k Xq
pRq.

(iii) If R has integral coefficients, then the canonical projections pX �k Xq
pRq Ñ X are smooth

(4.6) and we have canonical R-isomorphisms (4.6.1)

(5.31.4) R�X pX �k Xq
pRq �

Ñ VpΩ1
X{kplogDq bOX OXpRqq �X R

�
Ñ pX �k Xq

pRq �X R.



RAMIFICATION AND CLEANLINESS 35

5.32. Let f : pY,Eq Ñ pX,Dq be a morphism of snc-pairs over k, U � X �D, V � Y �E, R be a
rational effective divisor on X with support in D, RY � f�pRq. We have a commutative diagram

(5.32.1) Y

δY
��

Y
f //

γf

��

X

δX
��

Y �k Y
f1 // X �k Y

f2 // X �k X

where f1 and f2 are the morphisms defined in (5.21.2), δX and δY are the framed diagonals and
γf is the framed graph of f . We put rf � f2 � f1. We consider Y �k Y and X �k Y as Y -schemes
and X �k X and an X-scheme by the second projections. We denote by pY �k Y q

pRY q (resp.
pX �k Y q

pRY q) the dilatation of Y �k Y (resp. X �k Y ) along δY (resp. γf ) of thickening RY ,
and by pX �k Xq

pRq the dilatation of X �k X along δX of thickening R. Then we have canonical
morphisms

(5.32.2) Y

δ
pRY q

Y
��

Y
f //

γ
pRY q

f
��

X

δ
pRq
X
��

pY �k Y q
pRY q

f
pRY q

1 // pX �k Y q
pRY q

f
pRq
2 // pX �k Xq

pRq

.

where f pRY q1 and f pRq2 are defined in (5.28.3) and the vertical morphisms are the canonical liftings
of the vertical morphisms in (5.32.1); we have rf pRq � f

pRq
2 � f

pRY q
1 .

Since the canonical morphism X �k Y Ñ pX �k Xq �X Y is an isomorphism (5.21.3), the
morphism f

pRq
2 is described by the proposition 5.29.

Proposition 5.33. We keep the assumptions of (5.32).
(i) If f is log-étale, then the morphism

(5.33.1) f
pRY q
1 : pY �k Y q

pRY q Ñ pX �k Y q
pRY q

is étale.
(ii) If f is log-smooth and if RY � f�pRq has integral coefficients, then the morphism f

pRY q
1 is

smooth.

(i) Indeed, f1 is étale by 5.24, and hence f pRY q1 is étale by 5.30.
(ii) Indeed, f1 is smooth by 5.24, and hence f pRY q1 is smooth by 4.9.

5.34. Let pX,Dq be an snc-pair over k. We put

(5.34.1) X �k X �k X � XlogD �log
Specpkq�rMDs

XlogD �log
Specpkq�rMDs

XlogD.

We denote by pri : X�kX�kX Ñ X p1 ¤ i ¤ 3q and prij : X�kX�kX Ñ X�kX p1 ¤ i   j ¤ 3q
the canonical projections, by ∆: X Ñ X�kX�kX the unique morphism such that pri �∆ � idX
for all 1 ¤ i ¤ 3 and by δ : X Ñ X �k X the framed diagonal of pX,Dq. It follows immediately
from the definition that the diagram

(5.34.2) X �k X �k X
pr23 //

pr12

��

X �k X

pr1

��
X �k X

pr2 // X
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is cartesian. The projection pr23 is strict and smooth by 5.12. Then so is pr13 by symmetry.
Let R be an effective divisor on X with support in D. We consider X�kX�kX (resp. X�kX)

as an X-scheme by pr3 (resp. pr2) and denote by pX �k X �k Xq
pRq (resp. pX �k Xq

pRq) the
dilatation of X �k X �k X (resp. X �k X) along ∆ (resp. δ) of thickening R. Observe that if we
consider X �k X �k X as an X-scheme by any of the projections pri p1 ¤ i ¤ 3q, the dilatation of
X�kX�kX along ∆ of thickening R does not change. We deduce by 4.7 that we have a canonical
isomorphism

(5.34.3) pX �k X �k Xq
pRq �

Ñ pX �k Xq
pRq �X pX �k Xq

pRq.

By the universal property of dilatations (4.3), pr13 induces a morphism

(5.34.4) µ : pX �k Xq
pRq �X pX �k Xq

pRq Ñ pX �k Xq
pRq

that fits in the commutative diagram

(5.34.5) pX �k Xq
pRq �X pX �k Xq

pRq
µ //

��

pX �k Xq
pRq

��
pX �k Xq �X pX �k Xq X �k X �k X

pr13 // X �k X

Proposition 5.35 ([21] 2.24). Under the assumptions of (5.34), µ is smooth and µ �X R is the
addition of the vector bundle E � pX �k Xq

pRq �X R over R (5.31.4).

Since pr13 is smooth, µ is smooth (4.9). The closed subscheme R�X pX�kXq
pRq of pX�kXq

pRq

is equal to E, and the canonical projections pX�kXq
pRq ⇒ X induce the same morphism E Ñ R.

On the other hand, α � µ �X R is a linear morphism of vector bundles E �R E Ñ E (4.8). Let
i1, i2 : E ⇒ E �R E be the homomorphisms defined by i1pxq � px, 0q and i2pxq � p0, xq. To prove
that α is the addition of E, it is enough to prove that α� i1 � α� i2 � idE . Consider the morphism
ι1 � id�X δpRq : pX �k Xq

pRq Ñ pX �k X �k Xq
pRq. We have i1 � ι1 �X R : E Ñ E �R E. Since

µ � ι1 � idpX�kXqpRq , then α � i1 � idE . The same argument shows that α � i2 � idE .

6. Review of ramification theory of local fields with imperfect residue fields

6.1. In this section, K denotes a discrete valuation field, OK the valuation ring of K, mK the
maximal ideal of OK , F the residue field of OK , K a separable closure of K, G the Galois group
of K{K and ord the valuation of K normalized by ordpK�q � Z. We assume that OK is henselian
and that F has characteristic p. In ([2] 3.12), we defined a decreasing filtration G r

log pr P Q¡0q of
G by closed normal subgroups, called the logarithmic ramification filtration. Unlike the convention
in loc. cit., it is more convenient to extend it by letting G 0

log be the inertia subgroup of G . For a
rational number r ¥ 0, we put

G r�
log �

¤
s¡r

G s
log,(6.1.1)

GrrlogpG q � G r
log{G

r�
log .(6.1.2)

Then P � G 0�
log is the wild inertia subgroup of G , i.e., the p-Sylow subgroup of G 0

log ([2] 3.15).
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6.2. Let L be a finite separable extension of K, r be a rational number ¥ 0. Then G acts on
HomKpL,Kq via its action on K. We say that the ramification of L{K is bounded by r (resp. by
r�) if G r

log (resp. G r�
log ) acts trivially on HomKpL,Kq. We define the conductor c of L{K as the

infinimum of rational numbers r ¡ 0 such that the ramification of L{K is bounded by r. Then
c is a rational number, and the ramification of L{K is bounded by c� ([2] 9.5). If c ¡ 0, the
ramification of L{K is not bounded by c.

Theorem 6.3 ([3] Theorem 1). For every rational number r ¡ 0, the group G r
log{G

r�
log is abelian

and is contained in the center of the pro-p-group P{G r�
log .

Lemma 6.4 ([17] 1.1). LetM be a Zr 1
p s-module on which P acts through a finite discrete quotient,

say by ρ : P Ñ AutZpMq. Then,
(i) M has a unique direct sum decomposition

(6.4.1) M � `rPQ¥0
M prq

into P-stable submodules M prq, such that M p0q �MP and for every r ¡ 0,

(6.4.2) pM prqqG
r
log � 0 and pM prqqG

r�
log �M prq.

(ii) If r ¡ 0, then M prq � 0 for all but the finitely many values of r for which ρpG r
logq ) ρpG r�

log q.
(iii) For variable M but fixed r, the functor M ÞÑM prq is exact.
(iv) For M,N as above, we have HomP-modpM

prq, N pr1qq � 0 if r �� r1.

Definition 6.5. The decomposition M � `rPQ¥0M
prq of lemma 6.4 is called the slope decompo-

sition of M . The values r ¥ 0 for which M prq �� 0 are called the slopes of M . We say that M is
isoclinic if it has only one slope.

These notions apply in particular to the case whereM is a Zr 1
p s-module on which G acts through

a finite discrete quotient.

Lemma 6.6 ([17] 1.4). If A is a Zr 1
p s-algebra and M is a left A-module on which P acts A-

linearly through a finite discrete quotient, then in the slope decomposition M � `rM
prq, each M prq

is an A-submodule of M . For any A-algebra B, the slope decomposition of B bA M is given by
B bAM � `rpB bAM

prqq.

Lemma 6.7. Let M be a Λ-module on which P acts Λ-linearly through a finite discrete quotient,
which is isoclinic of slope r ¡ 0; so the subgroup G r�

log acts trivially on M .
(i) Let Xprq be the set of isomorphism classes of finite characters χ : G r

log{G
r�
log Ñ Λ�

χ such that
Λχ is a finite étale Λ-algebra, generated by the image of χ, and having a connected spectrum. Then
M has a unique direct sum decomposition

(6.7.1) M � `χPXprqMχ

into P-stable sub-Λ-modules Mχ, such that ΛrG r
logs acts on Mχ through Λχ for every χ.

(ii) There are finitely many characters χ P Xprq for which Mχ �� 0.
(iii) For variable M but fixed χ, the functor M ÞÑMχ is exact.
(iv) For M,N as above, we have HomΛrPspMχ, Nχ1q � 0 if χ �� χ1.

Let P be a finite discrete quotient of P{G r�
log through which P acts on M , C be the image of

G r
log{G

r�
log in P . We know by 6.3 that C is contained in the center of P . The connected components

of SpecpΛrCsq correspond to the isomorphism classes of characters χ : C Ñ A�, where A is a finite
étale Λ-algebra, generated by the image of χ, and having a connected spectrum. We deduce a set
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of orthogonal idempotents eχ of ΛrCs, indexed by such characters, that sum to 1, and are clearly
central in ΛrP s. The lemma follows.

Remark 6.8. If pnC � 0 and Λ contains a primitive pn-th root of unity, then Λχ � Λ for every
χ such that Mχ �� 0.

Definition 6.9. The decomposition M � `χMχ of lemma 6.7 is called the central character
decomposition of M . The characters χ : G r

log{G
r�
log Ñ Λ�

χ for which Mχ �� 0 are called the central
characters of M .

Lemma 6.10. If A is a Λ-algebra, and M is a left A-module on which P acts A-linearly through a
finite discrete quotient, which is isoclinic, then in the central character decomposition M � `χMχ,
each Mχ is an A-submodule of M . For any A-algebra B, the central character decomposition of
B bAM is given by B bAM � `χpB bAMχq.

This is clear from the proof of 6.7.

6.11. In the following of this section, we assume that K has characteristic p and that F is of finite
type over k. We denote by Ω1

OK
plogq the OK-module of logarithmic 1-differential forms

(6.11.1) Ω1
OK plogq � pΩ1

OK ` pOK bZ K
�qq{S,

where S is the sub-OK-module of Ω1
OK

`pOK bZK
�q generated by elements of the form pda, 0q�

p0, a b aq, for a P OK � t0u. For every a P K�, we denote by d logpaq P Ω1
OK

plogq the class of
p0, 1b aq. Let π be a uniformizer of OK . The morphism Ω1

OK
`OK Ñ Ω1

OK
plogq that maps pω, aq

to ω � ad logpπq is surjective, and its kernel is generated by pdπ, 0q � p0, πq.
We put Ω1

F plogq � Ω1
OK

plogqbOK F and denote by d logrπs the class of d logpπq. It is easy to see
that Ω1

F plogq is canonically isomorphic to the quotient of Ω1
F ` pF bZ K

�q by the sub-F -module
generated by elements of the form pda, 0q � p0, ab aq, for a P OK �t0u and a it residue class in F .
Then we have an exact sequence

(6.11.2) 0 ÝÑ Ω1
F ÝÑ ΩF plogq

res
ÝÑ F ÝÑ 0,

where respp0, ab bqq � a � ordpbq for a P F and b P K�. In particular, Ω1
F plogq is an F -vector space

of finite dimenison.

6.12. Let OK be the integral closure of OK in K, F be its residue field. For a rational number r,
we put mr

K
� tx P K | ordpxq ¥ ru, mr�

K
� tx P K | ordpxq ¡ ru and

(6.12.1) Θ
prq

F
� HomF pΩ

1
F plogq,mr

K
{mr�

K
q,

which is an F -vector space of finite dimension. We consider Θ
prq

F
as a smooth additive F -group-

scheme. Let πalg
1 pΘ

prq

F
q be the quotient of the abelianized fundamental group πab

1 pΘ
prq

F
q of Θ

prq

F
classifying étale isogenies; it is an abelian profinite group killed by p. Recall that Lang’s isogeny
A1
F
Ñ A1

F
, defined by x ÞÑ xp � x (where x is the canonical parameter of A1

F
), is a basis of the

F -vector space HomZpπ
alg
1 pA1

F
q,Fpq. Therefore, we have a canonical isomorphism

(6.12.2) HomZpπ
alg
1 pΘ

prq

F
q,Fpq

�
Ñ HomF pm

r
K
{mr�

K
,Ω1

F plogq bF F q.

Theorem 6.13 ([21] 1.24). For every rational number r ¡ 0, there exists a canonical surjective
homomorphism

(6.13.1) πalg
1 pΘ

prq

F
q Ñ GrrlogG .
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Consequently, the group GrrlogG is killed by p, and we have a canonical injective homomorphism

(6.13.2) rsw: HomZpGrrlogG ,Fpq Ñ HomF pm
r
K
{mr�

K
,Ω1

F plogq bF F q.

The homomorphism (6.13.2) is called the refined Swan conductor. This theorem has been
recently extended to the unequal characteristic case by one of the authors (S.) [22].

7. Ramification of Galois torsors

7.1. In this section, we fix an snc-pair pX,Dq over k, and put U � X�D. We denote by j : U Ñ X
the canonical injection, by X �k X the framed self-product of pX,Dq and by δ : X Ñ X �k X the
framed diagonal (5.21). We will no longer consider the logarithmic structure of X �k X, only the
underlying scheme will be of interest for us. We consider X �k X as an X-scheme by the second
projection. For any effective rational divisor R on X with support in D, we denote by pX�kXq

pRq

the dilatation of X �k X along δ of thickening R (5.31), by

(7.1.1) δpRq : X Ñ pX �k Xq
pRq

the canonical lifting of δ, and by

(7.1.2) jpRq : U �k U Ñ pX �k Xq
pRq

the canonical open immersion. Then we have a Cartesian diagram

(7.1.3) U
δU //

j

��

U �k U

jpRq

��
X

δpRq // pX �k Xq
pRq

7.2. Let V be a Galois torsor over U of group G, R be an effective rational divisor on X with
support in D. We consider V �kV as a Galois torsor over U�kU of group G�G, and denote byW
the quotient of V �k V by the group ∆pGq, where ∆: GÑ G�G is the diagonal homomorphism.
The diagonal morphism δV : V Ñ V �k V induces a morphism εU : U Ñ W above the diagonal
morphism δU : U Ñ U �k U . Note that W represents the sheaf of isomorphisms of G-torsors
from U �k V to V �k U over U �k U , and that εU corresponds to the identity isomorphism of V
(identified with the pull-backs of U �k V and V �k U by δU ). We denote by Z the integral closure
of pX �k Xq

pRq in W , by π : Z Ñ pX �k Xq
pRq the canonical morphism and by ε : X Ñ Z the

morphism induced by εU : U ÑW . We have π � ε � δpRq.

(7.2.1) W //

��

Z

π

��
U

εU
11

δU // U �k U // pX �k Xq
pRq X

ε
nn

δpRqoo

Definition 7.3. We keep the assumptions of (7.2) and let x P X. We say that the ramification of
V {U at x is bounded by R� if the morphism π : Z Ñ pX �k Xq

pRq is étale at εpxq, and that the
ramification of V {U along D is bounded by R� if π is étale over an open neighborhood of εpXq.

Lemma 7.4. Let V be a Galois torsor over U , R be an effective rational divisor on X with support
in D, x P X. The ramification of V {U at x is bounded by R� if and only if there exists an open
neighborhood X 1 of x in X such that if we put U 1 � U�XX

1 and V 1 � V �XX
1 and if we denote by

D1 and R1 the pull-backs of D and R over X 1, then the ramification of V 1{U 1 along D1 is bounded
by R1�.
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Only the necessity of the condition requires a proof. Assume that the ramification of V {U at x
is bounded by R�. Then with the notation of (7.2), there exists an open neighborhood X 1 of x in
X such that the morphism π : Z Ñ pX �k Xq

pRq is étale at each point εpx1q for x1 P X 1. It is clear
that X 1 satisfies the required property.

Lemma 7.5. Let V be a Galois torsor over U , x P X, R,R1 be effective rational divisors on X
with supports in D such that R1 ¥ R. Then if the ramification of V {U at x (resp. along D) is
bounded by R�, it is also bounded by R1�.

We use the notation of (7.2) both for R and R1; we equip objects relative to R1 with a prime.
There is a canonical morphism u : pX�kXq

pR1q Ñ pX�kXq
pRq (5.26.4) that fits in the commutative

diagram

(7.5.1) pX �k Xq
pR1q

u

��
X

δpR
1q

99ttttttttttt δpRq // pX �k Xq
pRq U �k U

ffMMMMMMMMMMM
oo

It induces a canonical morphism v : Z 1 Ñ Z that fits in the commutative diagram

(7.5.2) Z 1

v

��

// pX �k Xq
pR1q

u

��
X

ε1
@@�������� ε // Z // pX �k Xq

pRq

Moreover, Z 1 is the integral closure of u�pZq in W . Let Z (resp. Z 1) be the maximal open
subscheme of Z (resp. Z 1) which is étale over pX�kXq

pRq (resp. pX�kXq
pR1q). Since pX�kXq

pR1q

is normal (5.27), u�pZq is normal. Therefore, we can identify u�pZq with v�1pZq � Z 1, and we
have v�1pZq � Z 1, which implies the proposition.

Proposition 7.6. Let V be a Galois torsor over U of group G, x P X, H be a normal subgroup of
G, V 1 be the quotient of V by H. Then if the ramification of V {U at x (resp. along D) is bounded
by R�, the ramification of V 1{U at x (resp. along D) is bounded by R�.

It is enough to prove the proposition relative to x. We use the notation of (7.2) for the Galois
torsor V over U . We put G1 � G{H and denote by ∆1 : G1 Ñ G1�G1 the diagonal homomorphism,
by W 1 the quotient of V 1 �k V

1 by ∆1pG1q and by Z 1 the integral closure of pX �k Xq
pRq in W 1.

Let H 1 be the subgroup of G � G of elements pg, g1q such that g1g�1 P H (i.e., the inverse image
of ∆1pG1q in G�G). Then W 1 is the quotient of V �k V by H 1. Since ∆pGq � H 1, there exists a
canonical pV �k V q-morphism W ÑW 1, which induces an pX �kXq

pRq-morphism ρ : Z Ñ Z 1. By
assumption, there exists an open neighborhood Z0 of εpxq in Z, which is étale over pX �k Xq

pRq.
Then Z0 is unramifed over Z 1, and by ([12] 18.10.1), Z0 is étale over Z 1; in particular, Z0 is flat
over Z 1 and ρpZ0q is an open sub-scheme of Z 1. We conclude by ([12] 17.7.7) that ρpZ0q is étale
over pX �k Xq

pRq, which implies that the ramification of V 1{U at x is bounded by R�.

Proposition 7.7. Let V be a Galois torsor over U , R be an effective rational divisor on X with
support in D, f : pX 1, D1q Ñ pX,Dq be a morphism of snc-pairs, U 1 � X 1 � D1, V 1 � V �U U

1,
R1 � f�pRq, x1 P X 1, x � fpx1q. Then :

(i) If the ramification of V {U at x (resp. along D) is bounded by R�, the ramification of V 1{U 1

at x1 (resp. along D1) is bounded by R1�.
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(ii) Assume that f is log-smooth (5.17) and that the morphism X 1 Ñ X is flat at x1. Then the
ramification of V {U at x is bounded by R� if and only if the ramification of V 1{U 1 at x1 is bounded
by R1�.

(iii) Assume that f is log-smooth and that the morphism X 1 Ñ X is faithfully flat. Then the
ramification of V {U along D is bounded by R� if and only if the ramification of V 1{U 1 along D1

is bounded by R1�.

Let G be the Galois group of V {U . We denote by W (resp. W 1) the quotient of V �k V (resp.
V 1 �k V

1) by ∆pGq (cf. 7.2). We have a commutative diagram (5.32.1)

(7.7.1) X 1

δX1

��

X 1
f //

γf

��

X

δX

��
X 1 �k X

1
f1 // X �k X

1
f2 // X �k X

where f1 and f2 are the morphisms defined in (5.21.2), δX and δX1 are the framed diagonals and
γf is the framed graph of f . We put rf � f2 � f1. Let U1 � f�1pUq, U1 �k U1 be the framed
self-product of pU1, D

1|U1q. Then we have U1 �k U1 � pX 1 �k X
1q �pX1�kX1q pU1 �k U1q. We put

W1 � W �pU�kUq pU �k U1q and �W � W �pU�kUq pU1 �k U1q. We have a commutative diagram
(cf. 7.2)

(7.7.2) U 1 //

��

U1

��

U1
//

��

U

��
W 1 //

��
l

�W //

��
l

W1
//

��
l

W

��
U 1 �k U

1 //

&&MMMMMMMMMM U1 �k U1
//

��
l

U �k U1
//

��
l

U �k U

��
X 1 �k X

1
f1 // X �k X

1
f2 // X �k X

We denote by pX 1�kX
1qpR

1q (resp. pX �kX
1qpR

1q) the dilation of X 1�kX
1 (resp. X �kX

1) along
δX1 (resp. γf ) of thickening R1. Let Z (resp. Z1, resp. Z 1) be the integral closure of pX�kXq

pRq in
W (resp. pX �k X

1qpR
1q in W1, resp. pX 1 �k X

1qpR
1q in W 1). Since W 1 is a dense open sub-scheme

of �W and since the latter is regular, Z 1 is identified with the integral closure of pX 1 �k X
1qpR

1q in�W . Then we have a commutative diagram (5.32.2)

(7.7.3) X 1

ε1

��

X 1 h //

ε1

��

X

ε

��
Z 1

f 11 //

π1

��

Z1

f 12 //

π1

��

Z

π

��
pX 1 �k X

1qpR
1q

f
pR1q
1 // pX �k X

1qpR
1q

f
pRq
2 // pX �k Xq

pRq
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We put rf pRq � f
pR1q
2 � f

pRq
1 and rf 1 � f 12 � f

1
1. Let Z (resp. Z 1, resp. Z1) be the maximal open

sub-scheme of Z (resp. Z 1, resp. Z1) where π (resp. π1, resp. π1) is étale.
(i) It is enough to prove the local proposition. We denote by Z: (resp. Z:) the base change

of Z (resp. Z) by rf pRq. Since pX 1 �k X
1qpR

1q is normal (5.27), Z: is normal. Therefore, we can
identify Z: with rf 1�1pZq � Z 1, and we have rf 1�1pZq � Z 1. We have εpxq P Z by assumption ; then
ε1px1q P Z 1.

(ii) By (i), there is only one implication to prove : we assume that π1 is étale at ε1px1q and prove
that π is étale at εpxq. We proceed in three steps.

A) Assume first that the morphism f : X 1 Ñ X is smooth (in the usual sense) and that R1
has integral coefficients. Since f is log-smooth, the first condition is satisfied if for instance the
morphism X 1

logD1 Ñ XlogD is strict (5.17). By 5.33(ii), the morphism f
pR1q
1 is smooth. Then the

diagram

(7.7.4) Z 1
f 11 //

π1

��

Z1

π1

��
pX 1 �k X

1qpR
1q

f
pR1q
1 // pX �k X

1qpR
1q

is cartesian, and hence π1 is étale at ε1px
1q. On the other hand, f2 induces an isomorphism (5.21.3)

(7.7.5) X �k X
1 �
Ñ pX �k Xq �X X 1.

It follows from 5.29 that the diagram

(7.7.6) pX �k X
1qpR

1q
f
pRq
2 //

��

pX �k Xq
pRq

��
X 1

f // X

is cartesian. Then f pRq2 is smooth and the diagram

(7.7.7) Z1

f 12 //

π1

��

Z

π

��
pX �k X

1qpR
1q

f
pRq
2 // pX �k Xq

pRq

is cartesian. Hence π is étale at εpxq.
B) Assume next that the following conditions are satisfied :
(a) The irreducible componentsD1, . . . , Dm ofD are defined by equations t1, . . . , tm P ΓpX,OXq.
(b) There exists integers a1, . . . , am ¥ 1 such that

(7.7.8) X 1 �
XrSi, U

�1
i ; 1 ¤ i ¤ ms

pUiS
ai
i � ti; 1 ¤ i ¤ mq

,

and that the divisor D1 is defined by the equation
±m
i�1 Si. Observe that pX 1, D1q is an snc-pair

over k, that pX 1, D1q Ñ pX,Dq is log-smooth and that X 1 Ñ X is faithfully flat.
(c) R1 has integral coefficients.
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It follows from the first half of the proof of case A) that π1 is étale at ε1px
1q. Consider the

X-scheme

(7.7.9) X2 �
XrTi, U

�1
i ; 1 ¤ i ¤ ms

pUiTi � ti; 1 ¤ i ¤ mq
,

and denote by h : X2 Ñ X the structural morphism (which is smooth). Let g : X 1 Ñ X2 be the
finite X-morphism defined by Ti ÞÑ Saii p1 ¤ i ¤ mq, x2 � gpx1q. The morphism f2 factors as

(7.7.10) X �k X
1 g2ÝÑ X �k X

2 h2ÝÑ X �k X

We put R2 � h�pRq, U2 � h�1pUq, W2 � W �pU�kUq pU �k U2q, and denote by pX �k X
2qpR

2q

the dilatation of X �k X
2 along the framed graph of h of thickening R2, and by Z2 the integral

closure of pX �k X
2qpR

2q in W2. We have a commutative diagram

(7.7.11) X 1
g //

ε1

��

X2 h //

ε2

��

X

ε

��
Z1

g12 //

π1

��

Z2

h12 //

π2

��

Z

π

��
pX �k X

1qpR
1q

g
pR2q
2 //

��

pX �k X
2qpR

2q
h
pRq
2 //

��

pX �k Xq
pRq

��
X 1

g // X2 h // X

By 5.29, each irreducible component of pX �k X
1qpR

1q dominates an irreducible component of
pX �k X

2qpR
2q. Then it follows from 2.7 that π2 is étale at ε2px

2q. Since h is smooth, we deduce,
as in the second half of the proof of case A), that π is étale at εpxq.

C) We consider finally the general case. We may assume that the morphism X 1 Ñ X is flat
and that the ramification of V 1{U 1 along D1 is bounded by R1� (7.4). Let D1, . . . , Dn be the
irreducible components of D containing x. By 5.18, we may assume that x1 is contained in exactly
n irreducible components D1

1, . . . , D
1
n of D1 such that D1

i dominates Di for all 1 ¤ i ¤ n. Moreover,
we may assume that D �

�
1¤i¤nDi and D1 �

�
1¤i¤nD

1
i, and that for each 1 ¤ i ¤ n, Di is

defined by an equation ti P ΓpX,OXq and D1
i is defined by an equation si P ΓpX 1,OX1q. We write

R �
°n
i�1 riDi and f�pDiq � eiD

1
i p1 ¤ i ¤ nq; so we have ti � uis

ei
i , where ui P ΓpX,O�

Xq. For
each 1 ¤ i ¤ n, let bi be an integer ¥ 1 such that biri is an integer. We put ai � biei p1 ¤ i ¤ nq
and

(7.7.12) Y �
XrSi, U

�1
i ; 1 ¤ i ¤ ns

pUiS
ai
i � ti; 1 ¤ i ¤ nq

,

that we equip with the simple normal crossing divisor E defined by
±n
i�1 Si. Consider the loga-

rithmic scheme (5.17)

(7.7.13) Y 1 � YlogE �
log
XlogD

X 1
logD1 .

Since ei divides ai for all 1 ¤ i ¤ n, the morphism Y 1 Ñ YlogE is strict, and since it is log-smooth,
the morphism of underlying schemes Y 1 Ñ Y is smooth. Hence, if E1 denotes the pull-back of E
on Y 1, pY 1, E1q is an snc-pair over k, and the logarithmic structure on Y 1 is defined by E1. On the
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other hand, Y 1 Ñ X 1 �X Y is finite and dominant. Since Y Ñ X is faithfully flat, there exists a
point y1 P Y 1 above x1. We have a commutative diagram of SNCPk

(7.7.14) pY 1, E1q
α //

γ

��

pY,Eq

β

��
pX 1, D1q

f // pX,Dq

By applying first (i) to the morphism γ at the point y1, then (ii) case A) to the morphism α at
the point y1, and finally (ii) case B) to the morphism β at the point αpy1q, we conclude that the
ramification of V {U at x is bounded by R�.

(iii) It follows from (ii).

Corollary 7.8. Let V be a Galois torsor over U of group G, I be a subgroup of G, R be an effective
rational divisor on X with support in D. We denote by U 1 the quotient of V by I, by X 1 the integral
closure of X in U 1, by f : X 1 Ñ X the structural morphism. Let X 1

0 be an open subscheme of X 1

which is étale over X, x1 P X 1
0, x � fpx1q. We put U 1

0 � U 1 �X1 X 1
0, V0 � V �U 1 U 1

0 and denote
by D1

0 and R10 the pull-backs of D and R over X 1
0; so pX 1

0, D
1
0q is an snc-pair over k. Then the

ramification of V {U at x is bounded by R� if and only if the ramification of V0{U
1
0 at x1 is bounded

by R10�.

By 7.7(i), we may replace X 1
0 by the maximal open subscheme of X 1 which is étale over X. So

we may assume that U 1
0 � U 1 � X 1

0 and V0 � V . We put V 1 � V �U U
1 and consider it as a G

torsor over U 1. We have a U 1-isomorphism

(7.8.1)
º
IzG

V
�
Ñ V 1.

The action of G on V 1 induces an action on
²
IzG V defined, for g, g1 P G and x P V , by

(7.8.2) gpxIg1q � pgpxqqIg1g�1 .

Let ∆: G Ñ G �G be the diagonal homomorphism, W be the quotient of V �k V by ∆pGq, W1

be the quotient of V �k V by ∆pIq, W 1 be the quotient of V 1 �k V
1 by ∆pGq. We denote by

$ : V �k V ÑW1 the canonical morphism and by ε : U ÑW , ε1 : U 1 ÑW1 and ε1 : U 1 ÑW 1 the
sections induced by the diagonal morphisms V Ñ V �k V and V 1 Ñ V 1 �k V

1.
The isomorphism (7.8.1) induces an isomorphism

(7.8.3)
º

IzG�IzG

V �k V
�
Ñ V 1 �k V

1.

We denote also by ∆: IzG Ñ IzG � IzG the diagonal map. Then
²

∆pIzGq V �k V is an open
subscheme of V 1 �k V

1 stable under the action of ∆pGq. Moreover, the diagonal morphism V 1 Ñ
V 1�k V

1 is induced by the disjoint sum over ∆pIzGq of the diagonal morphisms V Ñ V �k V . On
the other hand, the morphism

(7.8.4)
º

∆pIzGq

V �k V ÑW1

sending ppx, yqIgq to $ppgpxq, gpyqqq makes
²

∆pIzGq V �k V as a G-torsor over W1. It follows that
W1 is an open and closed subscheme ofW 1 and that ε1 is induced by ε1. Therefore, the ramification
of V 1{U 1 at x1 is bounded by R10� if and only if the ramification of V {U 1 at x1 is bounded by R10�.
On the other hand, by 7.7(ii), the ramification of V {U at x is bounded by R� if and only if the
ramification of V 1{U 1 at x1 is bounded by R10�, hence the proposition.
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Remark 7.9. Let R be an effective rational divisor on X with support in D. Then there exists
a log-smooth morphism of snc-pairs f : pX 1, D1q Ñ pX,Dq such that the underlying morphism of
schemes X 1 Ñ X is faithfully flat and that f�pRq has integral coefficients. Indeed, let x P X,
D1, . . . , Dn be the irreducible components of D containing x. The question being local on X, we
may assume that D �

�
1¤i¤nDi and that for each 1 ¤ i ¤ n, Di is defined by an equation

ti P ΓpX,OXq. We write R �
°n
i�1 riDi. For each 1 ¤ i ¤ n, let ai be an integer ¥ 1 such that

airi is an integer. Then

(7.9.1) X 1 �
XrSi, U

�1
i ; 1 ¤ i ¤ ns

pUiS
ai
i � ti; 1 ¤ i ¤ nq

equipped with the normal crossing divisor D1 defined by
±n
i�1 Si answers the question.

7.10. Let V be a Galois torsor over U of group G, ∆: GÑ G�G be the diagonal homomorphism.
We denote by W the quotient of V �k V by the group ∆pGq. The diagonal morphism δV : V Ñ
V �k V induces a morphism εU : U ÑW above the diagonal morphism δU : U Ñ U �k U .

We claim that the quotient of V �kV �kV by the diagonal action of G is canonically isomorphic
to W �UW . Indeed, the quotient of V �k V �k V by ∆pGq�G (resp. G�∆pGq) is W �k U (resp.
U �k W ).

V �k V �k V
G�∆pGq

''OOOOOOOOOOO
∆pGq�G

wwooooooooooo

W �k U

''OOOOOOOOOOO U �k W

wwooooooooooo

U �k U �k U

Since p∆pGq �Gq X pG�∆pGqq is the image of the diagonal homomorphism GÑ G�G�G, we
deduce that the quotient of V �k V �k V by the diagonal action of G is canonically isomorphic to
pW �k Uq �pU�kU�kUq pU �k W q, and hence to W �U W .

The morphism $13 : V �k V �k V Ñ V �k V defined by $13px1, x2, x3q � px1, x3q is equivariant
for the diagonal actions of G on both sides. By taking quotients, we obtain a morphism

(7.10.1) W �U W ÑW

that fits in the commutative diagram

(7.10.2) W �U W //

��

W

��
pU �k Uq �U pU �k Uq U �k U �k U

pr13 // U �k U

where the morphism pr13 is defined by pr13px1, x2, x3q � px1, x3q. If we considerW as the G-torsor
of isomorphisms of G-torsors from U �k V to V �k U over U �k U , then the morphism (7.10.1) is
the composition of isomorphisms.

Let R be an effective divisor on X with support in D. We denote by Z the integral closure
of pX �k Xq

pRq in W , by π : Z Ñ pX �k Xq
pRq the canonical morphism, by ε : X Ñ Z the

morphism induced by εU (cf. 7.2) and (abusively) by pr1,pr2 : Z ⇒ X the morphisms induced by
the canonical projections pr1 and pr2 of pX �k Xq

pRq. We put X � pX �k Xq
pRq �X pX �k Xq

pRq

and denote by Y be the integral closure closure of X in W �U W . Recall (5.34.4) that there is
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a canonical morphism µ : X Ñ pX �k Xq
pRq extending pr13. Then diagram (7.10.2) induces a

morphism ν : YÑ Z that fits in a commutative diagram

(7.10.3) Y ν //

��

Z

��
X

µ // pX �k Xq
pRq

Let Z0 be the maximal open subscheme of Z which is étale over pX�kXq
pRq. Observe that Y is

the integral closure of Z �X Z in W �U W . The canonical projections pr1,pr2 : pX �kXq
pRq Ñ X

are smooth. Then X is smooth over X, and hence regular. Since Z0 �X Z0 is étale over X, it is
regular. Therefore, we can identify Z0 �X Z0 with an open sub-scheme of Y. We claim that

(7.10.4) Z0 �X Z0 � ν�1pZ0q.

We denote by µ�pZq (resp. µ�pZ0q) the base change of Z (resp. Z0) by µ. Then ν induces a finite
X-morphism Y Ñ µ�pZq. Since µ is smooth (5.35), µ�pZ0q is the maximal open-scheme of µ�pZq
which is étale over X. Since Z0 �X Z0 is étale over X, it is unramified over µ�pZq. Then by ([12]
18.10.1), Z0 �X Z0 is étale over µ�pZq; in particular, it is flat over µ�pZq. Hence the inclusion
(7.10.4) follows from ([12] 17.7.7). By (7.10.4), ν induces a morphism that we denote also by

(7.10.5) ν : Z0 �X Z0 Ñ Z0.

The automorphism i of V �k V switching the factors is equivariant for the diagonal action of G.
By taking quotients, we obtain an automorphism ιU of W that lifts the automorphism of U �k U
switching the factors. Then ιU extends to an automorphism ι of Z that fits in the commutative
diagram

(7.10.6) Z
ι //

π

��

Z

π

��
pX �k Xq

pRq σ // pX �k Xq
pRq

where σ is the automorphism (5.31.1). It is clear that ιpZ0q � Z0; we denote also by ι the
automorphism of Z0 induced by ι. Let

(7.10.7) α : Z0 �X Z0 Ñ Z0 �X Z0

be the morphism defined by αpx, yq � pιpyq, ιpxqq. It is well defined because of the following
commutative diagram

(7.10.8) Z0 �X Z0

pr2 //

pr1

��

Z0

pr1

��

ι // Z0

pr2

��

Z0

pr2 //

ι

��

X

AAAAAAAA

AAAAAAAA

Z0

pr1 // X

Lemma 7.11. We keep the assumptions of (7.10).
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(i) The diagrams

(7.11.1) Z0 �X Z0 �X Z0
id�ν //

ν�id

��

Z0 �X Z0

ν

��
Z0 �X Z0

ν // Z0

(7.11.2) Z0 �X Z0
α //

ν

��

Z0 �X Z0

ν

��
Z0

ι // Z0

are commutative.
(ii) Assume moreover that the ramification of V {U along D is bounded by R�. So we have

εpXq � Z0; we denote also by ε : X Ñ Z0 the morphism induced by ε. Then the diagrams

(7.11.3) Z0
id�ε //

ε�id

��
id

SSSSSSSSS

))SSSSSSSSS

Z0 �X Z0

ν

��
Z0 �X Z0

ν // Z0

(7.11.4) Z0

pr1 //

id�ι

��

X

ε

��

Z0

pr2oo

ι�id

��
Z0 �X Z0

ν // Z0 Z0 �X Z0
νoo

are commutative.

(i) The diagram

(7.11.5) V �k V �k V �k V
$124 //

$134

��

V �k V �k V

$13

��
V �k V �k V

$13 // V �k V

where $1i4px1, x2, x3, x4q � px1, xi, x4q for i P t2, 3u, is commutative and equivariant for the
diagonal actions of G. It induces by taking quotients the commutative diagram

(7.11.6) W �U W �U W
id�νU //

νU�id

��

W �U W

νU

��
W �U W

νU // W

Indeed, if we denote by ∆: G Ñ G � G and ∇ : G Ñ G � G � G the diagonal homomorphisms,
then the quotient of V �k V �k V �k V by ∆pGq �G�G (resp. by G�∇pGq) is W �k U �k U
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(resp. U �k W �U W ).

(7.11.7) V �k V �k V �k V
∆pGq�G�G

uukkkkkkkkkkkkkk
G�∇pGq

))SSSSSSSSSSSSSS

W �k U �k U

))SSSSSSSSSSSSSS U �k W �U W

uukkkkkkkkkkkkkk

U �k U �k U �k U

Since p∆pGq�G�GqXpG�∇pGqq is the image of the diagonal homomorphism GÑ G�G�G�G,
we deduce that $124 induces by quotient by the diagonal actions of G the morphism id�νU : W�U
W �U W ÑW �U W . By switching the second and the third factor, we prove that $134 induces
by quotient by the diagonal actions of G the morphism νU � id : W �U W �U W Ñ W �U W .
Therefore, diagram (7.11.6) is commutative, and hence so is the diagram (7.11.1).

The diagram

(7.11.8) V �k V �k V
β //

$13

��

V �k V �k V

$13

��
V �k V

i // V �k V

où βpx, y, zq � pz, y, xq and ipx, yq � py, xq, is commutative and equivariant for the diagonal actions
of G. It induces by taking quotients the commutative diagram

(7.11.9) W �U W
αU //

νU

��

W �U W

νU

��
W

ιU // W

The latter proves that diagram (7.11.2) is commutative.
(ii) The diagram

(7.11.10) V �k V
id�δV //

δV �id

��
id

QQQQQQ

((QQQQQQ

V �k V �k V

$13

��
V �k V �k V

$13 // V �k V

is commutative and equivariant for the diagonal actions of G. It induces by taking quotients the
commutative diagram

(7.11.11) W
id�εU //

εU�id

��
id

SSSSSSSSS

))SSSSSSSSS

W �U W

νU

��
W �U W

νU // W

The latter proves that diagram (7.11.3) is commutative.
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The diagram

(7.11.12) V �k V
pr1 //

α

��

V

δV

��
V �k V �k V

$13 // V �k V

where αpx, yq � px, y, xq is commutative and equivariant for the diagonal actions of G. It induces
by taking quotients the commutative diagram

(7.11.13) W
pr1 //

id�ιU
��

U

εU

��
W �U W

νU // W

The latter proves that the left square in diagram (7.11.4) is commutative. The same argument
shows that the right square is also commutative.

Proposition 7.12. We keep the assumptions of (7.10) (so R has integral coefficients) and assume
moreover that the ramification of V {U along D is bounded by R�. We put F � Z0 �X R and
E � pX �k Xq

pRq �X R, which is a vector bundle over R (5.31.4). Then :
(i) F is a commutative group scheme over R, and the morphism πR : F Ñ E induced by π is a

surjective étale morphism of group schemes over R.
(ii) For every geometric point x of R, the neutral connected component F �

x of Fx is isomorphic
to a product of additive groups over x, the morphism πx : F �

x Ñ Ex is finite étale and surjective
and its kernel is an Fp-vector space of finite dimension.

(i) The closed subscheme R �X pX �k Xq
pRq of pX �k Xq

pRq is equal to E, and the canonical
projections pr1,pr2 : pX �k Xq

pRq ⇒ X induce the same morphism E Ñ R. Hence, the closed
subscheme R �X Z0 of Z0 is equal to F , and the canonical morphisms pr1,pr2 : Z0 ⇒ X induce
the same morphism F Ñ R. Then it follows from 7.11 that F is a commutative group scheme over
R. We deduce from 5.35 and the commutative diagram

(7.12.1) Z0 �X Z0
ν //

π

��

Z0 �X Z0

π

��
pX �k Xq

pRq �X pX �k Xq
pRq

µ // pX �k Xq
pRq

that πR is a morphism of group schemes over R. By the definition of Z0, πR is étale, and it follows
from (ii) that it is surjective.

(ii) It follows from 2.23

Corollary 7.13. We keep the assumptions of (7.2) and assume moreover that R has integral
coefficients. Then the following conditions are equivalent :

(i) The ramification of V {U along D is bounded by R�.
(ii) There exists an open neighbourhood Z0 of εpXq in Z which is étale over pX �k Xq

pRq and
such that πpZ0q contains E � pX �k Xq

pRq �X R.

Remark 7.14. We can deduce 7.13 from (7.10.4) by a shorter argument using only 5.35.
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7.15. Let R be an effective divisor on X with support in D, ξ be a generic point of D, ξ be a
geometric point of X above ξ, S be the strict localization of X at ξ, η be the generic point of S,
η1 be an integral finite étale extension of η, S1 be the integral closure of S in η1. We put

(7.15.1) pX �k S
1qpRq � pX �k Xq

pRq �X S1.

(This notation could be justified by 5.29). The morphism δpRq induces a section δ
pRq
S1 : S1 Ñ

pX �k S
1qpRq of the canonical projection pX �k S

1qpRq Ñ S1.
Let V be a Galois torsor over U of group G, Y be the integral closure of X in V , f : Y Ñ X

be the canonical morphism, ∆: G Ñ G � G be the diagonal homomorphism, W be the quotient
of V �k V by the group ∆pGq. The diagonal morphism δV : V Ñ V �k V induces a morphism
εU : U ÑW above the diagonal morphism δU : U Ñ U �k U . We denote by Z the integral closure
of pX �k Xq

pRq in W , by π : Z Ñ pX �k Xq
pRq the canonical morphism and by ε : X Ñ Z the

morphism induced by εU : U ÑW . We have π�ε � δpRq (cf. (7.2.1)). Let rZS1 be the normalization
of ZS1 � Z �X S

1, or equivalently, the integral closure of pX �k S
1qpRq in W �U η

1. The morphism
ε induces a section εS1 : S

1 Ñ rZS1 of the canonical morphism rZS1 Ñ S1, that lifts δpRqS1 . Observe
that rZS � ZS .

We denote by QS1 the normalization of Y �X pX �k S
1qpRq, or equivalently, the integral closure

of pX �k S
1qpRq in V �k η

1. If the canonical morphism S1 Ñ X factors into S1 Ñ Y
f
Ñ X, then we

have canonical isomorphisms

(7.15.2) V �k η
1 � pV �k V q �V η

1 � pW �U V q �V η
1 �W �U η

1.

Hence, we deduce an isomorphism

(7.15.3) QS1
�
Ñ rZS1 .

Lemma 7.16. We keep the assumptions of (7.15) and let σ : S1 Ñ QS1 be a section of the canonical
morphism QS1 Ñ S1 lifting the section δ

pRq
S1 : S1 Ñ pX �k S

1qpRq. If the canonical morphism
QS1 Ñ pX �k S

1qpRq is étale on an open neighborhood of σ, then it is étale everywhere.

Observe first that pX �k S
1qpRq is regular since it is smooth over S1. The group G acts on QS1 ,

and the quotient of QS1 by G is pX �k S
1qpRq. Therefore, the morphism QS1 Ñ pX �k S

1qpRq is
étale above an open neighborhood of δpRqS1 pS

1q. Then the assertion follows from Zariski-Nagata’s
purity theorem ([11] X 3.4).

Lemma 7.17. Under the assumptions of (7.15), the following conditions are equivalent :
(i) The canonical morphism ZS Ñ pX �k Sq

pRq is étale on an open neighborhood of εSpSq.
(ii) For any integral finite étale extension η1 of η, the canonical morphism rZS1 Ñ pX �k S

1qpRq

is étale on an open neighborhood of εS1pS1q.
(iii) There exists an integral finite étale extension η1 of η such that the canonical morphismrZS1 Ñ pX �k S

1qpRq is étale on an open neighborhood of εS1pS1q.
(iv) For any connected component T of Y �X S, the canonical morphism QT Ñ pX �k T q

pRq is
étale.

(v) There exists an integral finite étale extension η1 of η such that the canonical morphism
QS1 Ñ pX �k S

1qpRq is étale.

Conditions (i), (ii) and (iii) are equivalent by 2.7. We have (ii)ñ(iv) by (7.15.3) and 7.16. It is
clear that we have (iv)ñ(v). If condition (v) holds true, then it holds under the extra assumption
that the canonical morphism S1 Ñ X factors into S1 Ñ Y

f
Ñ X. Then we have (v)ñ(iii) by

(7.15.3).
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Proposition 7.18. Let V be a Galois torsor over U , R be a rational divisor on X with support in
D, ξ be a generic point of D, ξ be a generic point of X above ξ, S be the strict localization of X at ξ,
K be the fraction field of ΓpS,OSq, r be the multiplicity of R at ξ. We put V �USpecpKq � SpecpLq,
where L �

±n
i�1 Li is a finite product of finite separable extensions of K. Then the following

conditions are equivalent :
(i) The ramification of V {U at ξ is bounded by R�.
(ii) For every 1 ¤ i ¤ n, the logarithmic ramification of Li{K is bounded by r� (6.2).

By 7.7(ii), 7.9 and ([3] 5.2), we may assume that R has integral coefficients. We take again the
notation of 7.15. Condition (i) is equivalent to condition 7.17(i). Condition (ii) is equivalent to
condition 7.17(v) by ([21] 1.13 and the remark after its proof). Hence, the proposition follows from
7.17.

Proposition 7.19. Let V be a Galois torsor over U of group G, Y be the integral closure of X in
V , R be an effective rational divisor on X with support in D. Assume that the following conditions
are satisfied :

(i) V {U has the property (NpS) at every geometric point of X (2.12), that is, for every geo-
metric point y of Y , the inertia group Iy � G of y has a normal p-Sylow subgroup ;

(ii) for every generic point ξ of D, the ramification of V {U at ξ is bounded by R�.
Then the ramification of V {U along D is bounded by R�.

It is enough to prove that for every x P X, the ramification of V {U at x is bounded by R�.
Let y be a geometric point of Y localized at a point y P Y above x. We denote by U 1 the quotient
of V by the inertia group Iy of y, by X 1 the integral closure of X in U 1, by f : X 1 Ñ X the
structural morphism, by X 1

0 the maximal open subscheme of X 1 which is étale over X and by D1
0

and R10 the pull-backs of D and R over X 1
0; so pX 1

0, D
1
0q is an snc-pair over k and U 1 � X 1

0. Since
x P fpX 1

0q, it is enough to prove that the ramification of V {U 1 along D1
0 is bounded by R10� (7.8).

Replacing V {U and pX,Dq by V {U 1 and pX 1
0, D

1
0q ([2] 3.15) (cf. 7.20), we may assume that G

has a normal p-Sylow subgroup. By 7.7, 7.9, 7.18 and ([2] 3.15), we may also assume that R has
integral coefficients.

Assume next that G has a normal p-Sylow subgroup H and that R has integral coefficients.
It is enough to prove that for every x P X, the ramification of V {U at x is bounded by R�.
Let U1 be the quotient of V by H; so U1 is a Galois torsor over U which is tamely ramified
along D. By Abhyankar’s lemma ([10] XIII 5.2 and 5.4), there exists a morphism of snc-pairs
h : pX 1, D1q Ñ pX,Dq satisfying the following properties :

(P) The morphism h is log-smooth, the morphism X 1 Ñ X is flat and x P hpX 1q.
(Q) We put U 1 � X 1 �D1 and U 1

1 � U1 �U U
1, and denote by X 1

1 the integral closure of X 1 in
U 1

1 ; then X 1
1 is étale over X 1.

We put V 1 � V �U U
1 and denote by D1

1 and R11 the pull-backs of D and R over X 1
1. By 7.7,

7.8, it is enough to prove that the ramification of V 1{U 1
1 along D1

1 is bounded by R11. Hence, we
are reduced to the case where G is nilpotent and R has integral coefficients ([2] 3.15) (cf. 7.20).

Assume finally that G is nilpotent and that R has integral coefficients. Let ∆: GÑ G�G be
the diagonal homomorphism, W be the quotient of V �k V by ∆pGq, εU : U Ñ W the morphism
induced by the diagonal morphism δV : V Ñ V �k V . We denote by Z the integral closure of
pX �k Xq

pRq in W and by ε : X Ñ Z the morphism induced by εU . Since pX �k Xq
pRq is smooth

over X, it is regular (4.6). Then the proposition follows from 2.8 applied to the open sub-scheme
U �k U of pX �k Xq

pRq, to the finite étale covering W of U �k U and to the closed sub-scheme
εpXq of Z.



52 AHMED ABBES AND TAKESHI SAITO

Remark 7.20. We keep the assumptions of 7.19 and consider the following conditions
(i’) G has a normal p-Sylow subgroup.
(i”) G is nilpotent.
Then we have (i”)ñ(i’)ñ(i). Indeed, the first implication follows from ([8] chap. I § 6.7 theo. 4)

and the second is a consequence of ([8] chap. I § 6.6 cor. 3 of theo. 3).

Definition 7.21. Let V be a Galois torsor over U of group G. We define the conductor of V {U
relatively to X to be the minimum effective rational divisor R on X with support in D such that
for every generic point ξ of D, the ramification of V {U at ξ is bounded by R�.

This terminology may be slightly misleading as the ramification of V {U along D may not be
bounded by R� in general. However, we have the following :

Proposition 7.22. Let V be a Galois torsor over U of group G. Assume that the following strong
form of resolution of singularities holds :
(RS) For any U -admissible blow-up Y of X, there exists an snc-pair pY 1, E1q over k, a morphism

of pairs pY 1, E1q Ñ pX,Dq and a proper X-morphism Y 1 Ñ Y inducing an isomorphism
Y 1 � E1 �

Ñ U .
Then, there exists an snc-pair pX 1, D1q over k and a proper morphism of snc-pairs f : pX 1, D1q Ñ

pX,Dq inducing an isomorphism X 1�D1 �
Ñ U such that if we denote by R1 the conductor of V {U

relatively to X 1, the ramification of V {U along D1 is bounded by R1�.

By 2.22, there exists a U -admissible blow-up Y Ñ X such that if we denote by Y 1 the normal-
ization of Y , V {U has the property (NpS) at every geometric point of Y 1. By assumption (RS),
there exists an snc-pair pX 1, D1q over k, a morphism of pairs pX 1, D1q Ñ pX,Dq and a proper
X-morphism X 1 Ñ Y inducing an isomorphism X 1 �D1 �

Ñ U . Then V {U has the property (NpS)
at every geometric point of X 1 (2.15). Let R1 the conductor of V {U relatively to X 1. It follows
from 7.19 that the ramification of V {U along D1 is bounded by R1�.

8. Ramification of `-adic sheaves

8.1. In this section, we fix an snc-pair pX,Dq over k, and put U � X�D. We denote by j : U Ñ X
the canonical injection, by X �k X the framed self-product of pX,Dq and by δ : X Ñ X �k X
the framed diagonal map (5.21). We will no longer consider the logarithmic structure of X �k X,
only the underlying scheme will be of interest for us. We consider X �k X as an X-scheme by
the second projection. For any effective rational divisor R on X with support in D, we denote by
pX �k Xq

pRq the dilatation of X �k X along δ of thickening R (5.31), by

(8.1.1) δpRq : X Ñ pX �k Xq
pRq

the canonical lifting of δ, and by

(8.1.2) jpRq : U �k U Ñ pX �k Xq
pRq

the canonical open immersion. Then we have a Cartesian diagram

(8.1.3) U
δU //

j

��

U �k U

jpRq

��
X

δpRq // pX �k Xq
pRq
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Proposition 8.2. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective rational divisor on X with support in D, x P X, x be a geometric point of X above x,
H pF q be the sheaf on U �k U defined in (2.6.1). Then the base change morphism

(8.2.1) α : δpRq�j
pRq
� pH pF qq Ñ j�δ

�
U pH pF qq � j�pE ndpF qq

relatively to the Cartesian diagram (8.1.3) is injective. Furthermore, the following three conditions
are equivalent :

(i) The stalk

(8.2.2) αx : pδpRq�j
pRq
� pH pF qqqx Ñ j�pE ndpF qqqx

of the morphism α at x is an isomorphism.
(ii) The image of the identity endomorphism of F in j�pE ndpF qqqx is contained in the image

of αx (8.2.2).
(iii) There exists a Galois torsor V over U trivializing F such the ramification of V {U at x is

bounded by R�.
Assume moreover that there exists a Galois torsor V0 over U of group G0 satisfying the following

condition :
p�q There exists a Λ-module M equipped with a faithful representation ρ of G0 and an isomor-

phism of sheaves (with Galois descent data) F |V0 � MV0
, where MV0

is the constant sheaf on V0

of value M equipped with the descent datum defined by ρ.
Then conditions (i), (ii) and (iii) are equivalent to the following condition :
(iv) The ramification of V0{U at x is bounded by R�.

It follows from 2.25 that α is injective. For the second proposition, we may assume that X and
hence U are connected; in particular, we may assume that there exists a Galois torsor V0 over U
of group G0 satisfying condition p�q. We clearly have (i)ñ(ii) and (iv)ñ(iii).

Let V be a Galois torsor over U of group G trivializing F , Y be the integral closure of X in
V . We denote by ∆: G Ñ G �G the diagonal homomorphism, by W the quotient of V �k V by
∆pGq, by Z (resp. Σ) the integral closure of pX�kXq

pRq inW (resp. V �k V ) and by jW : W Ñ Z
the canonical injection (cf. 7.2). The diagonal morphism δV : V Ñ V �k V induces a morphism
εU : U ÑW above the diagonal morphism δU : U Ñ U �k U . Let ε : X Ñ Z and σ : Y Ñ Σ be the
morphisms induced by εU and δV , respectively. Then the following diagram is commutative

(8.2.3) V
δV //

��

V �k V

��

// Σ

��

Y
σoo

��
U //

δU ##FFFFFFFFF W
jW //

��

Z

��

X
εoo

δpRqyyssssssssss

U �k U
jpRq // pX �k Xq

pRq

Each canonical projection V �k V Ñ V induces a morphism Σ Ñ Y for which σ is a section. Let y
be a geometric point of Y above x, Iy � G�G be the inertia group of σpyq, Jy � G be the inertia
group of y. Since σ is a closed immersion, we have Jy � ∆�1pIyq. Hence the following conditions
are equivalent :

(a) The ramification of V {U at x is bounded by R�.
(b) We have Iy � ∆pGq.
(c) We have Iy � ∆pJyq.
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Let Y 1 be the connected component of Y containing y, V 1 � V X Y 1. The stabilizer G1 � G of
V 1 acts on N � ΓpV 1,F q. We have Iy � G1, and the morphism αx (8.2.2) is canonically identified
with the injective morphism

(8.2.4) pEndpNqqIy Ñ pEndpNqq∆pJyq.

Hence, by the equivalence (a)ô(c) above, we deduce the implication (iii)ñ(i).
It remains to prove that (ii)ñ(iv). We keep the previous notation and assume moreover that

V � V0 and G � G0. Consider the following commutative diagram with Cartesian squares

(8.2.5) U
j //

εU

��

X

ε

��
δpRq

��

W
jW //

��

Z

��
U �k U

jpRq // pX �k Xq
pRq

By ([1] 1.2.4(i)), the base change morphism α (8.2.1) is composed of

(8.2.6) δpRq�pj
pRq
� pH pF qqqq

ε�β // ε�pjW�pH pF q|W qq
γ // j�pE ndpF qq ,

where β : j
pRq
� pH pF qq|Z Ñ jW�pH pF q|W q and γ are the base change morphisms relatively to

the lower and the upper squares of (8.2.5) respectively.
If we equip EndpMq with the canonical action of G�G, we deduce from the isomorphism F |V �

MV an isomorphism (of sheaves with Galois descent data) H pF q|pV �k V q � EndpMqpV�kV q.
Since the action of G onM is faithful, ∆pGq is the stabilizer of id P EndpMq in G�G. In particular,
we may consider id as a section of ΓpZ, jW�pH pF q|W qq. Since γ is injective by 2.25, condition
(ii) is equivalent to the following condition :

(ii’) The image of id in jW�pH pF q|W qεpxq is contained in the image of βεpxq.
The latter is equivalent to the fact that the ramification of V {U at x is bounded by R� by 2.26.

Definition 8.3. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective rational divisor on X with support in D, x P X, x be a geometric point of X above x.
We say that the ramification of F at x is bounded by R� if F satisfies the equivalent conditions
of (8.2), and that the ramification of F along D is bounded by R� if the ramification of F at x
is bounded by R� for every geometric point x of X.

Proposition 8.4. Let F be a locally constant constructible sheaf of free Λ-modules of rank one
on U , R be an effective rational divisor on X with support in D. Then the ramification of F

along D is bounded by R� if and only if jpRq� pH pF qq is locally constant constructible over an open
neighborhood of δpRqpXq in pX �k Xq

pRq.

We may assume thatX and hence U are connected. Let V be a Galois torsor over U with abelian
group G, χ : GÑ Λ� be an injective homomorphism such that we have an isomorphism (of sheaves
with Galois descent data) F |V � ΛpχqV , where ΛpχqV is the constant sheaf on V of value Λ with
the descent datum defined by χ. We keep the same notation as in the proof of 8.2. Then W
is an abelian Galois torsor over U �k U trivializing H pF q. Assume first that the ramification
of F along D is bounded by R�; so π : Z Ñ pX �k Xq

pRq is étale over an open neighborhood
of εpXq in Z by 8.2. It follows that π is étale over an open neighborhood P of of δpRqpXq in
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pX �kXq
pRq. Therefore, H pF q extends to a locally constant constructible sheaf on P , and hence

j
pRq
� pH pF qq is locally constant constructible over P ([6] IX 2.14.1). Conversely, if jpRq� pH pF qq
is locally constant constructible over an open neighborhood of δpRqpXq in pX �k Xq

pRq, then the
base change morphism

(8.4.1) α : δpRq�j
pRq
� pH pF qq Ñ j�pE ndpF qq � j�pΛq � Λ

is an isomorphism since its restriction to U is an isomorphism ([6] IX 2.14.1).

Lemma 8.5. Let F be a locally constant constructible sheaf of Λ-modules on U , x be a geometric
point of X, R,R1 be rational divisors on X with support in D such that R1 ¥ R. If the ramification
of F at x (resp. along D) is bounded by R�, then it is also bounded by R1�.

It follows from 7.5 and 8.2.

Proposition 8.6. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective rational divisor on X with support in D, f : pX 1, D1q Ñ pX,Dq be a morphism of snc-
pairs over k, U 1 � f�1pUq, F 1 � F |U 1, R1 � f�pRq, x1 P X 1, x1 be a geometric point of X 1 above
x1, x � fpx1q.

(i) If the ramification of F at x (resp. along D) is bounded by R�, then the ramification of F 1

at x1 (resp. along D1) is bounded by R1�.
(ii) Assume that the morphism X 1 Ñ X is étale at x1 and that the divisors D1 and f�pDq are

equal on an open neighborhood of x1 in X 1. Then the ramification of F at x is bounded by R� if
and only if the ramification of F 1 at x1 is bounded by R1�.

(iii) Assume that the morphism X 1 Ñ X is étale and surjective and that D1 � f�pDq. Then
the ramification of F along D is bounded by R� if and only if the ramification of F 1 along D1 is
bounded by R1�.

(i) It follows from 7.7(i) and 8.2.
(ii) By (i), it is enough to prove that if the ramification of F 1 at x1 is bounded by R1�, then

the ramification of F at x is bounded by R�. Also by (i), we may assume that X 1 Ñ X is étale
and that D1 � f�pDq. The morphism f induces morphisms (5.32.1)

(8.6.1) X 1 �k X
1

f1 // X �k X
1

f2 // X �k X ,

from which we obtain the morphisms (5.32.2)

(8.6.2) pX 1 �k X
1qpR

1q
f
pR1q
1 // pX �k X

1qpR
1q

f
pRq
2 // pX �k Xq

pRq .

We put rf � f2 � f1 and rf pRq � f
pRq
2 � f

pR1q
1 . Since X �k X

1 � pX �k Xq �X X 1, f pRq2 is smooth
by 5.29. On the other hand, f pR

1q
1 is étale by 5.33(i). Therefore, rf pRq is smooth. Consider the
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commutative diagram

(8.6.3) X 1

f

��

δpR
1q &&LLLLLLLLLLL

'&%$ !"#1

U 1
j1oo

δU1{{vvvvvvvvv

fU

��

'&%$ !"#4

pX 1 �k X
1qpR

1q

rfpRq

��
'&%$ !"#2

U 1 �k U
1

j1pR
1q

oo

��
pX �k Xq

pRq U �k U
jpRqoo

X

δpRq
88rrrrrrrrrrr

'&%$ !"#5

U

δU

ddHHHHHHHHHH
joo

'&%$ !"#3

where the square p4q is the analogue of the square p5q for pX 1, D1, R1q. We denote by p6q the face
given by the exterior square. Then all squares are cartesian except p1q and p3q. Observe that
H pF q|pU 1 �k U

1q � H pF 1q and E ndpF q|U 1 � E ndpF 1q. It follows from ([1] 1.2.4(i)) that we
have a commutative diagram

(8.6.4) f�δpRq�j
pRq
� pH pF qq

f�pαq // f�j�δ�U pH pF qq

γ1

��

f�j�pE ndpF qq

γ

��

δpR
1q� rf pRq�jpRq� pH pF qq

β

��

j1�f
�
Uδ

�
U pH pF qq

δpR
1q�j

1pR1q
� pH pF 1qq

α1 // j1�δ
�
U 1pH pF 1qq j1�pE ndpF

1qq

where α : δpRq�j
pRq
� pH pF qq Ñ j�δ

�
U pH pF qq, α1, β, γ and γ1 are the base change morphisms. Since

f and rf pRq are smooth, β and γ are isomorphisms. Hence, we can identify the stalks αx and α1x1
of α at x and α1 at x1 respectively, which implies the required assertion.

(iii) It follows from (ii).

Proposition 8.7. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective rational divisor on X with support in D, x be a geometric point of X. Then the following
conditions are equivalent :

(i) The ramification of F at x is bounded by R�.
(ii) There exists an étale neighborhood f : X 1 Ñ X of x such that if we put U 1 � f�1pUq,

D1 � f�pDq and R1 � f�pRq, then the ramification of F |U 1 along D1 is bounded by R1�.
(iii) Condition (ii) holds for f an open immersion.

Indeed, (i)ñ(iii) follows 7.4 and 8.2, (iii)ñ(ii) is obvious and (ii)ñ(i) is a consequence of 8.6.

Proposition 8.8. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective rational divisor on X with support in D, ξ be a generic point of D, ξ be a geometric
point of X above ξ, Xpξq be the corresponding strictly local scheme, η be its generic point, r be the
multiplicity of R at ξ. Then the following conditions are equivalent :

(i) The ramification of F at ξ is bounded by R�.
(ii) The ramification of F |η is bounded by r� in the sense of ([21] 1.28).
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(iii) The sheaf F |η is trivialized by a finite étale connected covering η1 of η such that the loga-
rithmic ramification of η1{η is bounded by r� (6.2).

Indeed, (ii)ô(iii) is the definition and (i)ñ(iii) follows from 7.18 and 8.2. We prove (iii)ñ(i).
We may assume that η1 is Galois over η. By 2.27, there exists an étale morphism f : X 1 Ñ X, a
geometric point ξ

1
of X 1 above ξ and a Galois torsor V 1 over U 1 � f�1pUq trivializing F |U 1 such

that if we identify the strictly local schemes X 1
pξ
1
q
and Xpξq by f , there exists an η-isomorphism

V 1�U 1 η � η1. It follows from 7.18 and 8.2 that the ramification of F |U 1 at ξ
1
is bounded by R1�.

Then the ramification of F at ξ is bounded by R� by 8.6(ii).

Proposition 8.9. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective rational divisor on X with support in D. Assume that the following conditions are satis-
fied :

(i) For every geometric point x of X, if we denote by Xpxq the corresponding strictly local scheme
and put U1 � Xpxq�X U , the sheaf F |U1 is trivialized by a Galois torsor over U1 whose group has
a normal p-Sylow subgroup.

(ii) For every geometric point ξ of X above a generic point of D, the ramification of F at ξ is
bounded by R�.

Then the ramification of F along D is bounded by R�.

Let x be a geometric point of X, V1 be a Galois torsor over U1 � Xpxq �X U trivializing F |U1

whose group G has a normal p-Sylow subgroup. It is enough to prove that the ramification of F at
x is bounded by R�. By 2.27 and 8.6(ii), we may assume that there exists a Galois torsor over U
of group G trivializing F . Hence, there is a minimal Galois torsor V over U trivializing F whose
group has a normal p-Sylow subgroup. Then it follows from 8.2 and 7.19 that the ramification of
F along D is bounded by R�.

Definition 8.10. Let F be a locally constant constructible sheaf of Λ-modules on U .
(i) Let ξ be a generic point of D, ξ be a geometric point of X above ξ, Xpξq be the corresponding

strictly local scheme, η be the generic point of Xpξq. We define the conductor of F at ξ to be the
minimum of the set of rational numbers r ¥ 0 such that the ramification of F |η is bounded by
r� in the sense of ([21] 1.28), that is, F |η is trivialized by a finite étale connected covering η1 of
η such that the logarithmic ramification of η1{η is bounded by r� (6.2).

(ii) We define the conductor of F relatively to X to be the effective rational divisor on X with
support in D whose multiplicity at any generic point ξ of D is the conductor of F at ξ. By 8.8, it
is also the minimum of the set of effective rational divisors R on X with support in D such that
for every geometric point ξ of X above a generic point of D, the ramification of F at ξ is bounded
by R�.

The terminology in (ii) may be slightly misleading as the ramification of F along D may not
be bounded by R� in general. However, we have the following :

Proposition 8.11. Let F be a locally constant constructible sheaf of Λ-modules on U . Assume
that the strong form of resolution of singularities (RS) in 7.22 holds. Then, there exists an snc-pair
pX 1, D1q over k and a proper morphism of snc-pairs f : pX 1, D1q Ñ pX,Dq inducing an isomorphism
X 1�D1 �

Ñ U such that if we denote by R1 the conductor of F relatively to X 1, the ramification of
F along D1 is bounded by R1�.

This follows from 7.22 and 8.2.
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Lemma 8.12 ([21] 2.21). Let F be a locally constant constructible sheaf of Λ-modules on U . Then
the following conditions are equivalent :

(i) F is tamely ramified along D.
(ii) The conductor of F vanishes.
(iii) The ramification of F along D is bounded by 0�.

8.13. Let R be an effective divisor on X with support in D. We know (4.6) that pX �k Xq
pRq is

smooth over X and that

(8.13.1) EpRq � pX �k Xq
pRq �X R

is canonically isomorphic to the vector bundle VpΩ1
X{kplogDq bOX OXpRqq �X R over R (5.31.4).

We denote by ĚpRq the dual vector bundle.
Let Y be an X-scheme separated of finite type over X. We put V � Y �X U , RY � R �X Y ,

E
pRq
Y � EpRq �X Y and Ě

pRq
Y � ĚpRq �X Y , and denote by jY : V Ñ Y and j

pRq
Y : U �k V Ñ

pX �k Xq
pRq �X Y the canonical injections. Consider the commutative diagram with Cartesian

squares

(8.13.2) E
pRq
Y

//

��

pX �k Xq
pRq �X Y

pr2

��

U �k V

��

j
pRq
Yoo

RY // Y Voo

Let G be a sheaf of Λ-modules on U �k V . We call R-specialization of G and denote by νRpG , Y q,
the sheaf over EpRq

Y defined by

(8.13.3) νRpG , Y q � j
pRq
Y � pG q|E

pRq
Y .

Let f : Z Ñ Y be a separated morphism of finite type, W � f�1pV q. We denote by

f pRq : pX �k Xq
pRq �X Z Ñ pX �k Xq

pRq �X Y(8.13.4)

f
pRq
E : E

pRq
Z Ñ E

pRq
Y(8.13.5)

the morphisms induced by f . Then we have a base change morphism

(8.13.6) f pRq�j
pRq
Y � pG q Ñ j

pRq
Z� pG |pU �k W qq,

from which we deduce the morphism

(8.13.7) f
pRq�
E pνRpG , Y qq Ñ νRpG |pU �k W q, Zq.

Proposition 8.14. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective divisor on X with support in D, f : Y Ñ X be a separated morphism of finite type,
V � f�1pUq. Assume that the ramification of F along D is bounded by R�. Then with the
notation of (8.13) :

(i) The sheaves jpRqY � pΛU � pF |V qq and pr�2 pjY �pF |V qq are isomorphic over pX �kXq
pRq�X Y .

(ii) There exists an étale morphism Z0 Ñ pX �k Xq
pRq whose image contains EpRq, such that

the pull-backs over Z0 �X Y of the sheaves jpRqY � pF � ΛV q and j
pRq
Y � pΛU � pF |V qq are isomorphic.

(iii) There exists a canonical surjective morphism

(8.14.1) f
pRq�
E pνRpH pF q, Xqq b νRpΛU � pF |V q, Y q Ñ νRpF � ΛV , Y q.
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(iv) Assume moreover that Y is normal, that V is dense in Y and that F |V is constant. Then
νRpF �ΛV , Y q is locally constant and additive (3.1); in particular, its Fourier dual support is the
underlying space of a closed sub-scheme of ĚpRq

Y which is finite over RY (3.8).

Note that statement (iv) will be extended and reinforced in 8.19.
(i) It follows from the smooth base change theorem as pr2 : pX �k Xq

pRq Ñ X is smooth.
(ii) Let rV be a Galois torsor over U of group G trivializing F such that the ramification ofrV {U is bounded by R� (8.2). We denote by ∆: G Ñ G � G the diagonal homomorphism, by

W the quotient of rV �k rV by ∆pGq, by Z the integral closure of pX �k Xq
pRq in W and by

π : Z Ñ pX �k Xq
pRq the canonical morphism. Let Z0 be the maximal open sub-scheme of Z

which is étale over pX�kXq
pRq. We know by 7.12(i) that Z0�X R is a commutative group scheme

and that π �X R : Z0 �X R Ñ EpRq is a surjective étale morphism of group schemes over R. Let
j1 : W Ñ Z0 be the canonical injection ; so we have a Cartesian diagram

(8.14.2) W �U V
j1Y //

��

Z0 �X Y

��
U �k V

j
pRq
Y // pX �k Xq

pRq �X Y

By the smooth base change theorem, the pull-back over Z0�X Y of the sheaves jpRqY � pF �ΛV q and
j
pRq
Y � pΛU � pF |V qq are isomorphic to j1Y �ppF � ΛU q|pW �U V qq and j1Y �ppΛU � F q|pW �U V qq

respectively. On the other hand, we have an isomorphism pΛ
rV � pF |rV qq �

Ñ ppF |rV q � Λ
rV q. We

deduce by Galois descente an isomorphism

(8.14.3) s : pΛU � F q|W
�
Ñ pF � ΛU q|W,

and hence an isomorphism

(8.14.4) j1Y �ppΛU � F q|pW �U V qq
�
Ñ j1Y �ppF � ΛU q|pW �U V qq.

Note that the isomorphism s can also be obtained by Galois descente from the universal isomor-
phism of G-torsors over W (7.2)

(8.14.5) pU �k V q �U�kU W
�
Ñ pV �k Uq �U�kU W.

(iii) We have a morphism on pX �k Xq
pRq �X Y

(8.14.6) j
pRq
Y � pH pF q|pU �k V qq b j

pRq
Y � pΛU � pF |V qq Ñ j

pRq
Y � pF � ΛV q

deduced by adjunction from the natural morphism on U �k V

(8.14.7) pH pF q|pU �k V qq b pΛU � pF |V qq Ñ F � ΛV .

We deduce from (8.14.6) by pull-back to EY a morphism

(8.14.8) νRpH pF q|pU �k V q, Y q b νRpΛU � pF |V q, Y q Ñ νRpF � ΛV , Y q.

On the other hand, we have a canonical morphism (8.13.7)

(8.14.9) f
pRq�
E pνRpH pF q, Xqq Ñ νRpH pF q|pU �k V q, Y q.

We take for (8.14.1) the morphism induced by (8.14.8) and (8.14.9). We will prove that it is
surjective. By the smooth base change theorem, the pull-back of the morphism (8.14.6) over
Z0 �X Y is the morphism

(8.14.10) j1Y �pH pF q|pW �U V qq b j1Y �ppΛU � F q|pW �U V qq Ñ j1Y �ppF � ΛU q|pW �U V qq
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deduced by adjunction from the pull-back of the morphism (8.14.7) over W �U V . We also have
a canonical isomorphism

(8.14.11) ΓpZ0, j
pRq
� pH pF qqq � ΓpW,H |W q.

So we may consider the isomorphism s (8.14.3) as a section in ΓpZ0, j
pRq
� pH pF qqq. It is clear that

the pairing (8.14.10) evaluated at the image of f pRq�psq in ΓpZ0 �X Y, j1Y �pH pF q|pW �U V qqq

induces the isomorphism (8.14.4). Since EpRq � πpZ0q, we conclude that (8.14.1) is surjective.
(iv) Since jY �pF |V q is constant ([6] IX 2.14.1), the pull-back of νRpF �ΛV , Y q over Z0�X RY

is constant by (i) and (ii). Hence νRpF � ΛV , Y q is locally constant. For every geometric point
x of R, if we denote by Gx the neutral connected component of Z0 �X x, then the morphism
Gx Ñ E

pRq
x induced by π, is a finite étale surjective morphism of group schemes over x by 7.12(ii).

Therefore, νRpF � ΛV , Y q is additive by 3.12. The last assertion follows from 3.14.

Corollary 8.15 ([21] 2.25). Let F be a locally constant constructible sheaf of Λ-modules on U , R
be an effective divisor on X with support in D such that the ramification of F along D is bounded
by R�. Then νRpH pF q, Xq is additive.

Let V be a finite Galois torsor over U trivializing F such that the ramification of V {U along
D is bounded by R� (8.2). We denote by Y the integral closure of X in V and by f : Y Ñ X
the canonical morphism. In the following we take again the notation of 8.14 and its proof (withrV � V ). Consider the commutative diagram with Cartesian squares

(8.15.1) W
j1 //

��

Z0

π

��
U �k U

jpRq //

��

pX �k Xq
pRq

pr2

��
U

j // X

By 2.24, the isomorphism s (8.14.3) induces isomorphisms

(8.15.2) H pF q|W
�
Ñ E ndppΛU � F q|W q

�
Ñ pE ndpF qq|W.

Since π and pr2 are smooth, by the smooth base change theorem relatively to (8.15.1), we deduce
an isomorphism

(8.15.3) π�pj
pRq
� pH pF qqq

�
Ñ π�ppr�2 pj�pE ndpF qqqq.

It follows that νXpH pF q, Xq is locally constant on the geometric fibers of EpRq Ñ R. Since πpZ0q
contains EpRq, we conclude that νRpH pF q, Xq is locally constant on all geometric fibers of the
vector bundle EpRq Ñ R.

On the other hand, the open immersion j
pRq
Y is schematically dense. Hence the morphism

(8.14.9) is injective by 2.25. We fix a surjective morphism Λn Ñ F |V , from which we deduce an
injective morphism H pF q|pU �k V q Ñ F �ΛnV (2.24). The latter induces an injective morphism

(8.15.4) νRpH pF q|pU �k V q, Y q Ñ νRpF � ΛnV , Y q.

Composing with (8.14.9), we obtain an injective morphism

(8.15.5) f
pRq�
E pνRpH pF q, Xqq Ñ νRpF � ΛnV , Y q.

Then f pRq�E pνRpH pF q, Xqq is additive by 3.11. Since f is surjective, νRpH pF q, Xq is additive.
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Corollary 8.16. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective divisor on X with support in D, f : Y Ñ X be a separated morphism of finite type,
V � f�1pUq. Assume that the ramification of F along D is bounded by R�. Then νRpF �ΛV , Y q
is additive, and its Fourier dual support is contained in the inverse image by the canonical projection
Ě
pRq
Y Ñ ĚpRq of the Fourier dual support of νRpH pF q, Xq.

It follows from 8.14(i) that νRpΛU � pF |V q, Y q is constant on the fibers of the vector bundle
E
pRq
Y Ñ RY . Hence by 8.14(ii), νRpF � ΛV , Y q is locally constant on the geometric fibers of

E
pRq
Y Ñ RY . Then the proposition follows from 3.11, 8.14(iii) and 8.15.

Corollary 8.17. We keep the assumptions of (8.16) and assume moreover that Y is normal, that
V is dense in Y and that F |V is constant. Then the Fourier dual support of νRpF � ΛV , Y q

is the inverse image by the canonical projection Ě
pRq
Y Ñ ĚpRq of the Fourier dual support of

νRpH pF q, Xq.

By 8.16, it is enough to prove that the inverse image of the Fourier dual support of νRpH pF q, Xq

by the canonical projection ĚpRq
Y Ñ ĚpRq is contained in the Fourier dual support of νRpF�ΛV , Y q.

This follows from the second part of the proof of 8.15. Indeed, since the sheaves νRpH pF q, Xq and
νRpF � ΛnV , Y q are additive by 8.15 and 8.14(iv), the required assertion follows from the injective
morphism (8.15.5) by 3.11.

Corollary 8.18. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective divisor on X with support in D such that the ramification of F along D is bounded by
R�. Then the Fourier dual support of νRpH pF q, Xq is the underlying space of a closed sub-scheme
of ĚpRq which is finite over R.

Let V be a Galois torsor over U trivializing F , Y be the integral closure of X in V . It follows
from 8.17 that the Fourier dual support of νRpH pF q, Xq is the image by the canonical projection
Ě
pRq
Y Ñ ĚpRq of the Fourier dual support of νRpF � ΛV , Y q. Hence, the assertion follows from

8.14(iv).

Proposition 8.19. Let F be a locally constant constructible sheaf of Λ-modules on U , R be an
effective divisor on X with support in D, f : Y Ñ X be a separated morphism of finite type,
V � f�1pUq. Assume that the ramification of F along D is bounded by R�. Then :

(i) νRpH pF q, Xq is additive and its Fourier dual support is the underlying space of a closed
sub-scheme of ĚpRq which is finite over R.

(ii) νRpF � ΛV , Y q is additive, and its Fourier dual support is contained in the inverse image
by the canonical projection ĚpRq

Y Ñ ĚpRq of the Fourier dual support of νRpH pF q, Xq.
(iii) Assume moreover that Y is normal, that V is dense in Y and that F |V is constant. Then

νRpF � ΛV , Y q is locally constant and additive, and its Fourier dual support is the inverse image
by the canonical projection ĚpRq

Y Ñ ĚpRq of the Fourier dual support of νRpH pF q, Xq.

This is a summary of results proved in 8.14, 8.15, 8.16, 8.17 and 8.18.

8.20. Let f : pX 1, D1q Ñ pX,Dq be a log-smooth morphism of snc-pairs over k, R be an effective
divisor on X with support in D, U1 � X 1 � D1, U 1 � f�1pUq, R1 � f�pRq. The morphism f
induces morphisms (5.32.1)

(8.20.1) X 1 �k X
1

f1 // X �k X
1

f2 // X �k X ,
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from which we obtain the morphisms (5.32.2)

(8.20.2) pX 1 �k X
1qpR

1q
f
pR1q
1 // pX �k X

1qpR
1q

f
pRq
2 // pX �k Xq

pRq .

We put

EpRq � pX �k Xq
pRq �X R,(8.20.3)

E1pR1q � pX 1 �k X
1qpR

1q �X1 R1.(8.20.4)

We denote by ĚpRq and Ě1pR1q the dual vector bundles. For a sheaf of Λ-modules G (resp. G 1)
on U �k U (resp. U 1 �k U

1), we denote by νRpG , Xq (resp. ν1R1pG
1, X 1q) its R-specialization (resp.

R1-specialization) in the sense of (8.13.3) relatively to the snc-pair pX,Dq (resp. pX 1, D1q).
The morphism f induces an exact sequence

(8.20.5) 0 Ñ f�pΩ1
X{kplogDqq Ñ Ω1

X1{kplogD1q Ñ Ω1
pX1,D1q{pX,Dq Ñ 0,

which is locally split. Hence, we have a surjective morphism of vector bundles over R1

(8.20.6) φ : E1pR1q Ñ E
pRq
X1 .

We denote by φ̌ : Ě
pRq
X1 Ñ Ě1pR1q the dual morphism of φ, which is a closed immersion.

Proposition 8.21. We keep the notation of (8.20) and let F be a locally constant constructible
sheaf of Λ-modules on U , F1 � F |U1, F 1 � F |U 1. Assume that the ramification of F along D
is bounded by R� and that f is log-smooth. Then the Fourier dual support of ν1R1pH pF1q, X

1q is
the image by φ̌ of the inverse image of the Fourier dual support of νRpH pF q, Xq by the canonical
projection ĚpRq

X1 Ñ ĚpRq.

Let V 1 be a Galois torsor over U 1 trivializing F 1, V1 � V 1 �U 1 U1, Y 1 be the integral closure of
X 1 in V 1. We denote by νRpF � ΛV 1 , Y 1q the R-specialization of F � ΛV 1 over EpRq

Y 1 in the sense
of (8.13.3). It is an additive sheaf by 8.14(iv), and its Fourier dual support is the inverse image
of the Fourier dual support of νRpH pF q, Xq by the canonical projection Ě

pRq
Y 1 Ñ ĚpRq (8.17).

On the other hand, the ramification of F1 along D1 is bounded by R1� by 8.6(i). We denote by
ν1R1pF1 � ΛV1 , Y

1q the R1-specialization of F1 � ΛV1 over E1pR1q
Y 1 in the sense of (8.13.3) relatively

to the snc-pairs pX 1, D1q. It is an additive sheaf and its Fourier dual support is the inverse image
of the Fourier dual support of ν1R1pH pF1q, X

1q by the canonical projection Ě1pR1q
Y 1 Ñ Ě1pR1q. Since

the canonical morphism Y 1 Ñ X 1 is surjective, it is enough to prove that the Fourier dual support
of ν1R1pF1 � ΛV1

, Y 1q is the image by φ̌Y 1 of the Fourier dual support of νRpF � ΛV 1 , Y 1q.
On the one hand, f pR

1q
1 is smooth by 5.33(ii). On the other hand, since the canonical morphism

X �k X
1 Ñ pX �k Xq �X X 1 is an isomorphism (5.21.3), the morphism

(8.21.1) pX �k X
1qpR

1q Ñ pX �k Xq
pRq �X X 1
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induced by f pRq2 is an isomorphism by 5.29. We denote by U 1 �k U
1 the framed self-product of

pU 1, D1|U 1q; so U 1 �k U
1 � pX 1 �k X

1q �pX1�kX1q pU
1 �k U

1q. We have a commutative diagram

(8.21.2) E
1pR1q
Y 1

//

φY 1

��

pX 1 �k X
1qpR

1q �X1 Y 1

f
pR1q
1 �X1Y 1

��

pU 1 �k U
1q �U 1 V 1oo

��

U1 �k V1
uoo

wwoooooooooooooo

j
1pR1q

Y 1

uu

E
pRq
Y 1

// pX �k X
1qpR

1q �X1 Y 1 U �k V
1

j
pRq

Y 1oo

with Cartesian squares, where u, jpRqY 1 and j1pR
1q

Y 1 are the canonical injections.
Since U 1 �k U

1 is smooth over U 1, pU 1 �k U
1q �U 1 V 1 is normal and u is dominant. Therefore,

the adjunction morphism

(8.21.3) pF � ΛV 1q|ppU 1 �k U
1q �U 1 V 1q Ñ u�pF1 � ΛV1

q

is an isomorphism by ([6] IX 2.14.1). Then by the smooth base change theorem relatively to the
Cartesian right square in (8.21.2), we have an isomorphism

(8.21.4) φ�Y 1pνR1pF � ΛV 1 , Y 1qq
�
Ñ ν1R1pF1 � ΛV1 , Y

1q.

Since φ̌ is a closed immersion, the required assertion follows from (8.21.4) and (3.4.6).

Definition 8.22. Let F be a locally constant constructible sheaf of Λ-modules on U .
(i) Let ξ be a generic point of D, Xpξq be the henselization of X at ξ, ηξ be the generic point of

Xpξq, ηξ be a geometric generic point of Xpξq, Gξ be the Galois group of ηξ over ηξ. We say that
F is isoclinic at ξ if the representation Fηξ of Gξ is isoclinic (6.5).

(ii) We say that F is isoclinic along D if it is isoclinic at all generic points of D.

Definition 8.23. Let F be a locally constant constructible sheaf of Λ-modules on U which is
isoclinic along D, R be the conductor of F relatively to X (8.10). We say that F is clean along
D if the following conditions are satisfied :

(i) the ramification of F along D is bounded by R�;
(ii) there exists a log-smooth morphism of snc-pairs f : pX 1, D1q Ñ pX,Dq over k such that the

morphism X 1 Ñ X is faithfully flat, that R1 � f�pRq has integral coefficients, and if we
put U 1 � X 1 �D1 and F 1 � F |U 1, that the R1-specialization ν1R1pH pF 1q, X 1q of H pF 1q
in the sense of (8.13.3) relatively to pX 1, D1q, is additive and non-degenerate (3.8).

Note that condition (i) implies that the ramification of F 1 along D1 is bounded by R1� by 8.6(i).
Therefore, ν1R1pH pF 1q, X 1q is additive by 8.15, and its Fourier dual support is the underlying space
of a closed subscheme S1 of Ě1pR1q � pX 1�kX

1qpR
1q�X1 R1, which is finite over R1 by 8.18. Hence,

condition (ii) is equivalent to the fact that S1 does not meet the zero-section of Ě1pR1q.

Proposition 8.24. Let F be a locally constant constructible sheaf of Λ-modules on U , R be the
conductor of F relatively to X, f : pX:, D:q Ñ pX,Dq be a log-smooth morphism of snc-pairs over
k, U : � X: �D:, F : � F |U :, R: � f�pRq. Assume that F is isoclinic and clean along D and
that R: has integral coefficients. Then the R:-specialization ν:

R:
pH pF :q, X:q of H pF :q in the

sense of (8.13.3) relatively to pX:, D:q, is additive and non-degenerate.
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By 5.19, there exists a commutative diagram of log-smooth morphisms of snc-pairs over k

(8.24.1) pX;, D;q
f 1 //

g:

��

pX 1, D1q

g

��
pX:, D:q

f // pX,Dq

such that X 1 Ñ X and X; Ñ X: are faithfully flat and if we put U 1 � X 1 � D1, F 1 � F |U 1

and R1 � g�pRq, that the R1-specialization ν1R1pH pF 1q, X 1q of H pF 1q in the sense of (8.13.3)
relatively to pX 1, D1q, is additive and non-degenerate. We put U ; � X; � D;, F ; � F |U ; and
R; � f 1�pR1q, and denote by ν;

R;
pH pF ;q, X;q the R;-specialization of H pF ;q in the sense of

(8.13.3) relatively to pX;, D;q. We put

E1pR1q � pX 1 �k X
1qpR

1q �X1 R1,(8.24.2)

E:pR:q � pX: �k X
:qpR

:q �X: R:,(8.24.3)

E;pR;q � pX; �k X
;qpR

;q �X; R;,(8.24.4)

and denote by Ě1pR1q, Ě:pR:q and Ě;pR;q the dual vector bundles. Let S1 (resp. S:, resp. S;) be
the Fourier dual support of ν1R1pH pF 1q, X 1q (resp. ν:

R;
pH pF :q, X;q, resp. ν;

R;
pH pF ;q, X;q) in

Ě1pR1q (resp. Ě:pR:q, resp. Ě;pR;q). The morphisms f 1 and g: induce, as in (8.20.6), surjective
morphisms of vector bundles

φ : E;pR;q Ñ E
1pR1q
X; ,(8.24.5)

ψ : E;pR;q Ñ E
:pR1q
X; .(8.24.6)

Consider the commutative diagram

(8.24.7) E
1pR1q
X;

φ̌ //

π1

��

E;pR;q E
:pR:q
X;

ψ̌oo

π:

��
E1pR1q E:pR:q

where π1 and π: are the canonical projections, and φ̌ and ψ̌ the morphisms dual to φ and ψ
respectively. Note that φ̌ and ψ̌ are closed immersions. Then by 8.21, we have

(8.24.8) φ̌pπ1�1pS1qq � S; � ψ̌pπ:�1pS:qq.

By assumption S1 does not meet the zero-section of Ě1pR1q. Hence, π:�1pS:q does not meet the
zero-section of Ě:pR:q

X; . Since X; Ñ X: is surjective, we deduce that S: does not meet the zero
section of E:pR:q, which implies the required assertion.

Definition 8.25. Let F be a locally constant constructible sheaf of Λ-modules on U , x be a
geometric point of X. We say that F is clean at x if there exists an étale neighborhood X 1 of x
in X such that, if we put U 1 � U �X X 1 and denote by D1 the pull-back of D over X, there exists
a finite decomposition

(8.25.1) F |U 1 � `1¤i¤nF
1
i
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of F |U 1 into a direct sum of locally constant constructible sheaves of Λ-modules F 1
i p1 ¤ i ¤ nq

on U 1 which are isoclinic and clean along D1 in the sense of (8.23). We say that F is clean along
D if it is clean at all geometric points of X.

We will prove in 8.27 that for isoclinic sheaves, definitions 8.23 and 8.25 are equivalent.

Lemma 8.26. Let F be a locally constant constructible sheaf of Λ-modules on U , R be the con-
ductor of F relatively to X, x be a geometric point of X. If F is clean at x, then the ramification
of F at x is bounded by R�. In particular, if F is clean along D then the ramification of F along
D is bounded by R�.

By assumption, there exists an étale neighborhoodX 1 of x inX such that, if we put U 1 � U�XX
1

and denote by D1 the pull-back of D over X, there exists a finite decomposition F |U 1 � `1¤i¤nF 1
i

of F |U 1 into a direct sum of locally constant constructible sheaves of Λ-modules F 1
i p1 ¤ i ¤ nq

on U 1 which are isoclinic and clean along D1. For each 1 ¤ i ¤ n, let R1i be the conductor of
F 1
i relatively to X 1. The conductor f�pRq of F |U 1 relatively to X 1 is the maximum of the R1i

p1 ¤ i ¤ nq. Therefore, the ramification of F |U 1 along D1 is bounded by f�pRq. Then by 8.6(ii),
the ramification of F at x is bounded by R�.

Proposition 8.27. Let F be a locally constant constructible sheaf of Λ-modules on U which is
isoclinic along D. Then F is clean along D in the sense of (8.23) if and only if it is clean along
D in the sense of (8.25).

We only need to prove that if F is clean along D in the sense of (8.25), then it is clean along
D in the sense of (8.23). Let R be the conductor of F relatively to X. We know by 8.26 that
the ramification of F along D is bounded by R�. For every geometric point x of X, there exists
an étale neighborhood X 1 of x in X such that, if we put U 1 � U �X X 1 and denote by D1 the
pull-back of D over X, there exists a finite decomposition

(8.27.1) F |U 1 � `1¤i¤nF
1
i

of F |U 1 into a direct sum of locally constant constructible sheaves of Λ-modules F 1
i p1 ¤ i ¤ nq

on U 1 which are isoclinic and clean along D1 in the sense of (8.23). Since F is isoclinic along D,
F |U 1 is isoclinic along D1. Hence, for each 1 ¤ i ¤ n, the conductor of F 1

i is equal to the pull-back
R1 of R over X 1. Then it follows from 8.24 that F is clean in the sense of (8.23).
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