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Abstract. Recently, the first author has extended the definition of the zeta

function associated with fractal strings to arbitrary bounded subsets A of the
N -dimensional Euclidean space RN , for any integer N ≥ 1. It is defined by

ζA(s) =
∫
Aδ

d(x,A)s−Ndx for all s ∈ C with Re s sufficiently large, and we

call it the distance zeta function of A. Here, d(x,A) denotes the Euclidean
distance from x to A and Aδ is the δ-neighborhood of A, where δ is a fixed

positive real number. We prove that the abscissa of absolute convergence of ζA
is equal to dimBA, the upper box (or Minkowski) dimension of A. Particular
attention is payed to the principal complex dimensions of A, defined as the

set of poles of ζA located on the critical line {Re s = dimBA}, provided ζA
possesses a meromorphic extension to a neighborhood of the critical line. We

also introduce a new, closely related zeta function, ζ̃A(s) =
∫ δ
0 t

s−N−1|At| dt,
called the tube zeta function of A. Assuming that A is Minkowski measurable,

we show that, under some mild conditions, the residue of ζ̃A computed at

D = dimB A (the box dimension of A), is equal to the Minkowski content of
A. More generally, without assuming that A is Minkowski measurable, we show

that the residue is squeezed between the lower and upper Minkowski contents

of A. We also introduce transcendentally quasiperiodic sets, and construct a
class of such sets, using generalized Cantor sets, along with Baker’s theorem

from the theory of transcendental numbers.
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to the Croatian Science Foundation for its support.

1



2 MICHEL L. LAPIDUS, GORAN RADUNOVIĆ, AND DARKO ŽUBRINIĆ
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1. Introduction

In this article, we provide a far-reaching extension of the theory of zeta functions
for fractal strings, to arbitrary fractal sets in Euclidean spaces of any dimension.
Fractal strings have been introduced by the first author (M. L. Lapidus) in the
early 1990s. The related theory of zeta functions of fractal strings, developed in
the course of the last more than two decades of active research, can be seen in an
extensive monograph of the first author with van Frankenhuijsen [Lap-vFr3].

The new zeta function ζA, associated with any fractal set A in RN , has been
introduced in 2009 by the first author, and its definition can be found in Equation
(2.1) below. We refer to it as the distance zeta function of A. Here, by a fractal
set, we mean any bounded set A of the Euclidean space RN , with N ≥ 1. The
reason is that, in this paper, the fundamental role is played by a certain notion
of fractal dimension, more specifically, by the upper box dimension of a bounded
set (also called the upper Minkowski dimension, Bouligand dimension, or limit
capacity, etc.). This new class of zeta functions enables us to obtain a nontrivial
extension of the theory of complex dimensions of fractal strings, studied by the
authors of [Lap-vFr1–3], to arbitrary bounded fractal sets in Euclidean spaces of
any dimension.

A systematic study of the zeta functions associated with fractal strings and frac-
tal sprays was motivated and undertaken, in particular, in the 1990s in papers
of the first author, [Lap1–3], as well as in joint papers of the first author with
C. Pomerance [LapPo1–3] and with H. Maier [LapMa1–2]. In a series of papers,
as well as in three monographs with M. van Frankenhuijsen [Lap-vFr1–3], and in
the book [Lap4], it has grown into a well-established theory of fractal complex di-
mensions, and is still an active area of research, with applications to a variety of
subjects, including spectral theory, harmonic analysis, number theory, dynamical
systems, probability theory and mathematical physics. We also draw the attention
of the reader to [DubSep], [ElLapMacRo], [Es1–2], [EsLi1–2], [Fal2], [HamLap],
[HeLap], [HerLap1–2], [LalLap1–2], [Lap5–6], [LapLéRo], [LapLu], [LapLu-vFr1–2],
[LapPe1–2], [LapPeWi1–2], [LapRaŽu1–7], [LapRo], [LapRoŽu], [LéMen], [MorSep],
[MorSepVi1–2], [Ol1–2], [RatWi], [Tep1–2], along with the relevant references therein.
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The contemporary state of the theory of fractal strings, fractal sprays and their com-
plex dimensions, as well as its trends and developments, is described in the research
monograph [Lap-vFr3] and, in particular, in [Lap-vFr3, Chapter 13].

Other, very different approaches to a higher-dimensional theory of some special
classes of fractal sets, namely, fractal sprays and self-similar tilings, were developed
by the first author and E. Pearse in [LapPe2–3], as well as by the first author,
E. Pearse and S. Winter in [LapPeWi1–2] via fractal tube formulas and the asso-
ciated scaling and tubular zeta functions. (See also [Pe] and [PeWi].) An earlier
approach, based directly on tube formulas but not using any kind of zeta func-
tion was proposed in [LapPe1]. An exposition of these approaches can be found,
respectively, in [Lap-vFr3, Sections 13.1 and 12.2.1].

The definitions of zeta functions introduced in [LapPe2–3] and [LapPeWi1–2]
differ considerably from those studied in this article. Therefore, it would be of
interest to see when they give rise to the same complex dimensions. We note that,
according to an example provided in [LapPe2], complex dimensions of self-similar
sets depend on the choice of the iterated function system generating them. It would
be of great interest to compute the tube zeta function, introduced in this article
in Definition 3.6 below, in the case of the Koch snowflake curve, and to compare
the resulting formula with the one obtained in [LapPe1]. A similar question can
be raised for fractal sprays and self-similar tilings, for the tube formulas obtained
in [LapPe2–3] and [LapPeWi1–2]. We point out that using the fractal zeta functions
introduced in this paper, it is possible to generalize the fractal tube formulas and
a Minkowski measurability criterion obtained for fractal strings in [Lap-vFr3] to
arbitrary compact sets in Euclidean spaces; see [LapRaŽu4–5].

1.1. Contents. The rest of this paper is organized as follows:
In Section 2, the distance zeta function ζA of a bounded set A ⊂ RN is introduced

in Definition 2.1. Then, the main result of Section 2 is obtained in Theorem 2.5,
in which it is shown (among others) that the abscissa of (absolute) convergence of
the distance zeta function ζA of any bounded subset A of RN is equal to dimBA,
i.e., to the upper box dimension (or the upper Minkowski dimension) of A. (All
of the subsets denoted by A appearing in this paper are implicitly assumed to be
nonempty.) As a useful technical tool in the study of fractal zeta functions, we
introduce the notion of ‘equivalence’ between tamed Dirichlet-type integrals (see
Definition 2.22). We also define the set of ‘principal complex dimensions’ of A,
denoted by dimPC A (see Definition 2.18), as a refinement of the notion of the
upper box dimension of A. Moreover, in the one-dimensional case (i.e., in the case
of a bounded fractal string L), we show that ζA, the distance zeta function of A
(the boundary of the string L), and ζL, the geometric zeta function of L, contain
essentially the same information. In particular, ζA and ζL are equivalent in the
above sense, and hence, have the same principal complex dimensions (see Sections
2.3 and 2.4); they also have the same (visible) complex dimensions (with the same
multiplicities) in every domain of C \ {0} to which one (and hence, both) of them
can be meromorphically continued. Finally, we show that the distance zeta function
has a nice scaling property; see Proposition 2.24.

In Section 3, we introduce the so-called ‘tube zeta function’ ζ̃A of the set A
(which is closely related to the distance zeta function ζA; see Theorem 3.1 and the
associated functional equation (3.14)), and study its properties; see, in particular,



4 MICHEL L. LAPIDUS, GORAN RADUNOVIĆ, AND DARKO ŽUBRINIĆ

Definition 3.6 in Section 3.2. Under suitable natural conditions, we show that the
residue of the tube zeta function ζ̃A, computed at D = dimB A (assuming that the
box dimensions exists), always lies between the lower and upper (D-dimensional)
Minkowski contents of A; see Theorem 3.7. In particular, if A is Minkowski mea-
surable, then the residue of ζ̃A at D coincides with the Minkowski content of A.
Similar results are obtained for the distance zeta function ζA of the fractal set A;
see Theorem 3.3. In fact, we also show that ζA and ζ̃A, the distance and tube zeta
functions of A, contain essentially the same information. These results are illus-
trated by means of several examples, including a class of generalized Cantor sets
(Examples 3.4, 3.9 and 3.17), a-strings (Example 3.10), as well as ‘fractal grills’
introduced in Section 3.4; see Theorem 3.15.

In Section 4, we introduce a class of ‘n-quasiperiodic sets’ (Definition 4.10).
The main result is stated in Theorem 4.14, which can be considered as a fractal
set-theoretic interpretation of Baker’s theorem from transcendental number theory
and in which we construct a family of transcendentally n-quasiperiodic sets, for
any integer n ≥ 2. An important role in the construction of quasiperiodic sets is
played by the class of generalized Cantor sets C(m,a) depending on two paramters,
introduced in Definition 4.1. Moreover, in Section 4.4, we close the main part
of this paper by connecting the present work to future extensions (notably, the
construction of transcendentally ∞-quasiperiodic sets), the notion of hyperfractal
(and even, maximally hyperfractal) set, and more broadly, the notion of fractality
within the context of this new general theory of complex dimensions. In short, much
as in [Lap-vFr1–3], we say that a bounded subset A ⊂ RN is fractal if its associated

zeta function (i.e., the distance or the tube zeta function, ζA or ζ̃A, of A or when
N = 1, the geometric zeta function ζL, where L is the fractal string associated
with A) has at least one nonreal complex dimension (with positive real part) or
else has a natural boundary beyond which it cannot be meromorphically continued
(i.e., A is “hyperfractal”). Observe that, unlike in the one-dimensional theory
of complex dimensions developed in [Lap-vFr1–3], we now have at our disposal
precise definitions of fractal zeta functions of arbitrary bounded subsets of RN and
hence, of the complex dimensions of those sets (i.e., of the poles of these fractal
zeta functions); see Definition 2.19 and the beginning of Section 3.2. The complex
dimensions of a variety of classic and less well-known fractals will be computed in
subsequent papers [LapRaŽu2–5] and in the forthcoming monograph [LapRaŽu1].
(See also the survey articles [LapRaŽu6,7].)

The aim of Appendix A is to introduce the class of ‘extended Dirichlet-type inte-
grals’ (or functions), i.e., of EDTIs, which contains all of the fractal zeta functions
studied in the present paper (and in [LapRaŽu1–7]); see Definition A.1. We study
some of the key properties of EDTIs and introduce two closely related (but distinct)
notions of equivalence; see Definitions A.2 and A.6.

1.2. Notation. Throughout this paper, we shall use the following notation. By
|E| = |E|N , we denote the N -dimensional Lebesgue measure of a measurable subset
E of RN . Given r ≥ 0, the lower and upper r-dimensional Minkowski contents
M∗r(A) and Mr

∗(A) of a bounded subset A of RN are defined by

(1.1) Mr
∗(A) = lim inf

t→0+

|At|
tN−r

, M∗r(A) = lim sup
t→0+

|At|
tN−r

.
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Here, At := {x ∈ RN : d(x,A) < t} denotes the t-neighborhood (or tubular neigh-
borhood of radius t) of A, and d(x,A) is the Euclidean distance from x to A. The
function t 7→ |At|, defined for t positive and close to 0, is called the tube func-
tion associated with A. From our point of view, one of the basic tasks of fractal
analysis is to understand the nature of the tube functions for various fractal sets.
The notion of Minkowski content has been introduced by H. Federer in [Fed]; the
above definition coincides with Federer’s definition up to a (positive) multiplicative
constant depending only on N and r, the value of which is not important for the
purposes of this article.

The upper box dimension of A is defined by

(1.2) dimBA = inf{r ≥ 0 :M∗r(A) = 0};
it is easy to see that we also have

(1.3) dimBA = sup{r ≥ 0 :M∗r(A) = +∞}.
The lower box dimension of A, denoted by dimBA, is defined analogously, with
Mr
∗(A) instead of M∗r(A) on the right-hand side of (1.2) and (1.3). Clearly, since

A is bounded, we always have 0 ≤ dimBA ≤ dimBA ≤ N . If both dimBA and
dimBA coincide, their common value is denoted by dimB A and is called the box
dimension ofA (or Minkowski–Bouligand dimension, or else, Minkowski dimension).
Various properties of the box dimension can be found, e.g., in [Fal1], [Lap1–3],
[Mat], [LapPo2], [Tri] and [Lap-vFr3]. A discussion of equivalent forms of the
definition of the Minkowski dimension can be found in [LapRoŽu].

If there exists a nonnegative real number D such that

0 <MD
∗ (A) ≤M∗D(A) <∞,

we say that A is Minkowski nondegenerate. If A is nondegenerate, it then follows
that dimB A exists and is equal to D. If MD

∗ (A) =M∗D(A), their common value
is denoted by MD(A) and called the Minkowski content of A. If, in addition,

MD(A) ∈ (0,+∞),

then A is said to be Minkowski measurable. The notion of Minkowski measura-
bility has been introduced by L. L. Stachó [Sta], inspired by [Fed]. The notion of
Minkowski nondegeneracy has been introduced in [Žu4] (and was studied earlier in
[LapPo2] for N = 1). Throughout, we will assume implicitly that the bounded set
A ⊂ RN is nonempty; see also [LapPo3] when N ≥ 3.

We note that since |At| = |(A)t| for every t > 0, the values of Mr
∗(A), M∗r(A),

dimBA, dimBA (as well as ofMD(A) and dimB A, when they exist) do not change
when we replace the bounded set A ⊂ RN by its closure A in RN . Therefore,
throughout this paper, we might as well assume a priori that A is an arbitrary
(nonempty) compact subset of RN . Observe that, as is well known, this is in sharp
contrast with the Hausdorff dimension (and associated Hausdorff measure HH);
see, e.g., [Fal1]. For example, if A = {1/j : j ∈ N}, then (since A is countable),

dimH A = 0 and HH(A) = 0, while D := dimB A = 1/2 and MD(A) = 2
√

2; see
[Lap1, Example 5.1].

Moreover, for notational simplicity and because this is the case of most fractal
sets of interest in the applications of the theory, we also implicitly assume that the
closure of A has N -dimensional Lebesgue measure zero: |A|N = 0. We refer to
[LapRaŽu1] for a brief discussion of the case when |A| > 0 (and hence, dimBA =
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dimBA = N), which also applies to the broader notion of relative fractal drum
(RFD) that is the object of [LapRaŽu3–5] and of [LapRaŽu1, Chapters 4 and 5].

Finally, given an extended real number α ∈ R∪{±∞}, we denote by {Re s > α}
the open right half-plane {s ∈ C : Re s > α} (which coincides with C or ∅ if α = −∞
or +∞, respectively). Furthermore, if α ∈ R, we denote by {Re s = α} the vertical
line {s ∈ C : Re s = α}. Also, we let i :=

√
−1.

2. Distance and tube zeta functions of fractal sets

2.1. Definition of the distance zeta functions of fractal sets. In this section,
we study some basic properties of the distance zeta function ζA = ζA(s) associated
with an arbitrary bounded subset A of RN , introduced by the first author in 2009.
Throughout this paper, we assume that |A|N = 0.

Definition 2.1. Let δ be any given positive number. The distance zeta function
ζA of a bounded subset A of RN is defined by

(2.1) ζA(s) :=

∫
Aδ

d(x,A)s−Ndx.

Here, the integral is taken in the sense of Lebesgue (hence, the complex-valued
function d( · , A)s−N is absolutely integrable on Aδ) and we assume that s ∈ C is
such that Re s is sufficiently large.

As we shall see in Theorem 2.5, the Lebesgue integral in (2.1) is well defined if
Re s is larger than dimBA, the upper box dimension of A; furthermore, dimBA =
D(ζA), the abscissa of (absolute) convergence of ζA. Moreover, under the additional
hypotheses of Theorem 2.5(c), dimBA also coincides with Dhol(ζA), the abscissa of
holomorphic continuation of ζA. Here, by definition,

(2.2) D(ζA) := inf

{
α ∈ R :

∫
Aδ

d(x,A)α−Ndx <∞
}

while

(2.3) Dhol(ζA) := inf
{
α ∈ R : ζA is holomorphic on {Re s > α}

}
.

Hence, the half-plane of (absolute) convergence of ζA, Π(ζA) := {Re s > D(ζA)}
(resp., the half-plane of holomorphic continuation of ζA,H(ζA) := {Re s > Dhol(ζA)})
is the largest open half-plane of the form {Re s > α}, for some α ∈ R ∪ {±∞}, on
which the Lebesgue integral

∫
Aδ
d(x,A)s−Ndx is convergent or, equivalently, ab-

solutely convergent (resp., to which ζA can be holomorphically continued). It will
follow from our results that D(ζA) ∈ [0, N ] while Dhol(ζA) ∈ [−∞, D(ζA)], and that
both D(ζA) and Dhol(ζA) are independent of the choice of δ > 0; see Proposition
2.23 along with Definition 2.22.

Again, the same comment can be made about D(ζ̃A) and Dhol(ζ̃A), given exactly

as in (2.2) and (2.3), respectively, except for ζA replaced by ζ̃A (the tube zeta

function of A, see Definition 3.6). Actually, if dimBA < N , then D(ζA) = D(ζ̃A)

and Dhol(ζA) = Dhol(ζ̃A); see Corollary 3.2.
Given any meromorphic function f , the abscissa of holomorphic continuation of

f , denoted by Dhol(f), can be defined in exactly the same way as Dhol(ζA), except
with ζA replaced by f in the counterpart of (2.3). The same comment is not true
for D(f), which may not make sense unless f is given by a Dirichlet-type integral
(DTI); see Section 2.4 and Appendix A below.
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As will be shown in Proposition 2.23, the dependence of ζA on the choice of δ
is inessential, since the difference of two distance zeta functions corresponding to
the same set A and different values of δ can be identified with an entire function.
Note that without loss of generality (in fact, simply by replacing A by its closure),
we could assume that A is an arbitrary (nonempty) compact subset of RN . Similar
comments could be made about the tube zeta functions introduced in Definition
3.6 below.

We shall see in Theorem 2.5 below that ζA is holomorphic in the half-plane
{Re s > dimBA}, and that the bound dimBA is the best possible for the Lebesgue
(i.e., absolute) convergence of ζA. Also, we shall extend the definition of the zeta
function so that the value of δ will become unimportant. Furthermore, we will
supplement the original definition of the complex dimensions of fractal strings in-
troduced by the first author and M. van Frankenhuijsen in [Lap-vFr1–3]. Here, we
mostly deal with the principal complex dimensions in the higher-dimensional case;
see Definition 2.18. The situation with general complex dimensions is already quite
nontrivial in the one-dimensional case; see [Lap-vFr1–3].

2.2. Analyticity of the distance zeta functions. The main result of this sec-
tion is stated in Theorem 2.5. It shows that the zeta function ζA is analytic (i.e.,
holomorphic) in the half-plane {Re s > dimBA}, and that (under the mild hypothe-
ses of part (c) of Theorem 2.5) the lower bound is optimal. In other words, the
abscissa of absolute convergence D(ζA) of the Dirichlet-type integral defined by the
right-hand side of (2.1) is always equal to the upper box dimension of A and under
the additional hypotheses of Theorem 2.5(c), it also coincides with the abscissa of
holomorphic continuation Dhol(ζA).

In order to prove Theorem 2.5, we shall need a result due to Harvey and Polking
(see [HarvPo, p. 42]), that we formulate in a different, but equivalent way:

(2.4) If γ ∈ (−∞, N − dimBA), then
∫
Aδ
d(x,A)−γdx <∞,

where δ is an arbitrary positive number. This result and its various extensions is
discussed in [Žu3, Lemma 1 and Theorem 2], [Žu4, Sections 3 and 4] and [Žu5,
Theorem 4.1]. For the sake of completeness, we provide an extension of (2.4), that
we shall need later on. We omit the proofs of the following two lemmas. They
can be obtained by using, e.g., the identity

∫
RN f(x)αdx = α

∫∞
0
tα−1|{f > t}| dt,

where f : RN → [0,+∞] is a Lebesgue measurable function and α ∈ (0,+∞) (see
[Fol, p. 198]) and by using the definition of the upper box dimension dimBA given
in (1.2) and (1.3) above.

Lemma 2.2. Let A be a bounded subset of RN , δ > 0 and γ ∈ (−∞, N − dimBA).
Then

(2.5)

∫
Aδ

d(x,A)−γ dx = δ−γ |Aδ|+ γ

∫ δ

0

t−γ−1|At|dt.

Furthermore, both of the integrals appearing in (2.5) are finite; hence, they are
convergent Lebesgue integrals.

Lemma 2.3. Let A be a bounded subset of RN , δ > 0 and γ > N − dimBA. Then∫
Aδ
d(x,A)−γdx = +∞.

Remark 2.4. If γ := N − dimBA, then the conclusion of Lemma 2.3 does not hold,
in general. Indeed, a class of counterexamples is provided in [Žu4, Theorem 4.3].
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In the formulation of the following theorem, we shall need the abscissa of holo-
morphic continuation of ζA, denoted by Dhol(ζA) and defined so that {Re s >
Dhol(ζA)} be the largest open right half-plane on which ζA is holomorphic; see
(2.3) above and the discussion following it.

On the other hand, recall that the abscissa of Lebesgue (i.e., absolute) conver-
gence of ζA, given by (2.2) is denoted by D(ζA) and defined so that {Re s > D(ζA)}
be the largest open right half-plane on which ζA is Lebesgue (i.e., absolutely) con-
vergent. For a more general setting, see Definition 2.12 below and the ensuing
discussion (from which it will follow that both Π(ζA) and Π(ζ̃A) are well defined
and have the claimed maximality property). We shall also usually say more briefly
that D(ζA) is the abscissa of convergence of ζA, meaning the abscissa of Lebesgue
(i.e., absolute) convergence of ζA; see (2.2) and the comment following it.

Theorem 2.5. Let A be an arbitrary bounded subset of RN and let δ > 0. Then:

(a) The zeta function ζA defined by (2.1) is holomorphic in the half-plane {Re s >
dimBA}, and for all complex numbers s in that region, we have

(2.6) ζ ′A(s) =

∫
Aδ

d(x,A)s−N log d(x,A) dx.

(b) We have

(2.7) dimBA = D(ζA),

where D(ζA) is the abscissa of Lebesgue (i.e., absolute) convergence of ζA. Further-
more, in light of part (a), we always have Dhol(ζA) ≤ D(ζA).

(c) If the box (or Minkowski) dimension D := dimB A exists, D < N , and
MD
∗ (A) > 0, then ζA(s)→ +∞ as s→ D+, s ∈ R. In particular, in this case, we

also have that

(2.8) dimB A = D(ζA) = Dhol(ζA).

Proof. (a) Denoting the right-hand side of (2.6) by I(s), and choosing any s ∈ C
such that Re s > dimBA, it suffices to show that

R(h) :=
ζA(s+ h)− ζA(s)

h
− I(s)(2.9)

=

∫
Aδ

(
d(x,A)h − 1

h
− log d(x,A)

)
d(x,A)s−Ndx

converges to zero as h→ 0 in C, with h 6= 0.
Let d := d(x,A) ∈ (0, δ). Defining

(2.10) f(h) :=
dh − 1

h
− log d =

1

h
(e(log d)h − 1)− log d,

and using the MacLaurin series ez =
∑
j≥0

zj

j! , we obtain that

(2.11) f(h) = h(log d)2
∞∑
k=0

1

(k + 2)(k + 1)
· (log d)khk

k!
.
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Furthermore, assuming without loss of generality that 0 < δ ≤ 1, and hence log d ≤
0, we have

|f(h)| ≤ 1

2
|h| (log d)2

∞∑
k=0

(| log d| |h|)k

k!

=
1

2
|h| (log d)2e−(log d)|h| =

1

2
|h| (log d)2d−|h|.

Therefore,

(2.12) |R(h)| ≤ 1

2
|h|
∫
Aδ

| log d(x,A)|2d(x,A)Re s−N−|h|dx.

Let ε > 0 be a sufficiently small number, to be specified below. Taking h ∈ C such
that |h| < ε, since δ ≤ 1 and hence d(x,A) ≤ 1 for all x ∈ Aδ, we have

|R(h)| ≤ 1

2
|h|
∫
Aδ

| log d(x,A)|2d(x,A)εd(x,A)Re s−N−2εdx.

Since there exists a positive constant C = C(δ, ε) such that | log d|2dε ≤ C for all
d ∈ (0, δ), we see that

(2.13) |R(h)| ≤ 1

2
C|h|

∫
Aδ

d(x,A)Re s−N−2εdx.

Letting γ := 2ε + N − Re s, we see that the integrability condition γ < N −
dimBA stated in (2.4) is equivalent to Re s > dimBA+ 2ε. Observe that this latter
inequality holds for all positive ε small enough, due to the assumption Re s >
dimBA. Hence, R(h)→ 0 as h→ 0 in C, with h 6= 0. This proves part (a).

(b) Lemma 2.3 implies that for any real number α < D = dimBA, we have∫
Aδ
d(x,A)α−N dx = +∞. On the other hand, in light of estimate (2.4), we know

that ζA(α) =
∫
Aδ
d(x,A)α−N dx < ∞ for any α > D. We therefore deduce from

the definition (2.2) of D(ζA) that D(ζA) = dimBA. This completes the proof of
part (b).

(c) Condition MD
∗ (A) > 0 implies that for any fixed δ > 0 there exists C > 0

such that for all t ∈ (0, δ), we have |At| ≥ CtN−D. Using (2.4) and Lemma 2.2, we
see that for any γ ∈ (0, N −D),

∞ > I(γ) :=

∫
Aδ

d(x,A)−γdx = δ−γ |Aδ|+ γ

∫ δ

0

t−γ−1|At| dt

≥ γC

∫ δ

0

tN−D−γ−1dt = γC
δN−D−γ

N −D − γ
.

Therefore, if γ → N −D from the left, then I(γ)→ +∞. Equivalently, if s ∈ R is
such that s→ D+, then ζA(s)→ +∞. Hence, ζA has a singularity at s = D. Since,
in light of part (a), we know that ζA is holomorphic for Re s > D, we deduce that
{Re s > D} is the maximal right half-plane to which ζA can be holomorphically
continued; i.e., H(ζA) = {Re s > D} and so Dhol(ζA) = D. Since, in light of
part (b) (and because dimB A exists, according to the assumptions of part (c)),
D := dimB A = D(ζA), we conclude that (2.8) holds and hence, the proof of part
(c) is complete. This concludes the proof of the theorem. �
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Remark 2.6. An alternative proof of part (a) of Theorem 2.5 can be given by using a
well-known theorem concerning the holomorphicity of functions defined by integrals
on Aδ depending holomorphically on a parameter. In applying this theorem (see
[LapRaŽu1] and the text of Definition 2.12 below) one needs to use the (obvious)
fact according to which the function x 7→ d(x,A) is bounded from above (by δ);
in other words, ζA (as defined by (2.1)) is a tamed DTI (in the sense of Definition
2.12 below).

Next, we comment on some of the hypotheses and conclusions of Theorem 2.5.

Remark 2.7. (i) The condition MD
∗ (A) > 0 in the hypotheses of Theorem 2.5(c)

cannot be omitted. Indeed, for N = 1, there exists a class of subsets A ⊂ [0, 1] such
that D = dimB A exists and MD

∗ (A) = 0, while ζA(D) =
∫
Aδ
d(x,A)D−Ndx <∞;

see [Žu4, Theorem 4.3].
This class of bounded subsets of R can be easily extended to RN for any N ≥ 2

by letting B := A× [0, 1]N−1 ⊂ [0, 1]N .

(ii) The inequality Dhol(ζA) ≤ D(ζA) is sharp. Indeed, there exist compact
subsets of RN such that Dhol(ζA) = D(ζA). For example, A = C× [0, 1]N−1, where
C is the ternary Cantor set or, more generally, C = ∂Ω is the boundary of any
(nontrivial) fractal string Ω ⊂ R. (In that case, we have Dhol(ζA) = D(ζA) =
dimBA = N − 1 + dimB C.) This follows from Theorem 2.10 in Section 2.3 below
and the comment following it.

(iii) The assumptions of part (c) of Theorem 2.5 are satisfied by most fractals
of interest to us. (One notable exception is the boundary A of the Mandelbrot
set (viewed as as a subset of R2 ' C), for which dimH A = 2 (and consequently,
dimB A = 2), according to Shishikura’s well-known theorem [Shi].) We note that,
on the other hand, there exists a bounded subset of RN not satisfying the hypotheses
of part (c) of Theorem 2.5 and such that Dhol(ζA) < D(ζA). Indeed, an easy
computation shows that, for example, for N = 1 and A = [0, 1], we have that
Dhol(ζA) = 0 and D(ζA) = 1. At present, however, we do not know whether there
exist nontrivial subsets A of R (or, more generally, of RN ) for which Dhol(ζA) <
D(ζA).

2.3. Zeta functions of fractal strings and of associated fractal sets. In
Example 2.9 below, we show that Definition 2.1 provides a natural extension of the
zeta function associated with a (bounded) fractal string L = (`j)j≥1, where (`j)j≥1

is a nonincreasing sequence of positive numbers such that
∑∞
j=1 `j <∞:

(2.14) ζL(s) =
∞∑
j=1

`sj ,

for all s ∈ C with Re s sufficiently large. Note that the sequence (`j)j≥1 of positive
numbers is assumed to be infinite.

The study of zeta functions of fractal strings arose naturally in the early 1990s
in joint work of the first author (Michel Lapidus) with Carl Pomerance [LapPo1–3]
and with Helmut Maier [LapMa1–2] (see also, e.g., [Lap1–3] and [HeLap]) while
investigating direct and inverse spectral problems associated with the vibrations of
a fractal string. Such a zeta function, ζL, called the geometric zeta function of L, has
since then been studied in a number of references, including several monographs;
see [Lap-vFr1–3]. (See also the broader list of references given in the introduction.)
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Recall that, geometrically, a fractal string is a bounded open set Ω ⊆ R. It can be
uniquely written as a disjoint union of open intervals Ij (Ω = ∪∞j=1Ij) with lengths
`j (i.e., `j = |Ij | for all j ≥ 1). Without loss of generality, one may assume that
(`j)j≥1 is written in nonincreasing order and that `j → 0 as j →∞: `1 ≥ `2 ≥ · · · .
In order to avoid trivial special cases, we will assume implicitly throughout this
paper that L is nontrivial; i.e., that L consists of an infinite sequence of lengths
(or ‘scales’) and hence, that Ω does not consist of a finite union of bounded open
intervals. If L is trivial, then we must replace Dhol(ζL) by max{Dhol(ζL), 0} in
(2.15) of Theorem 2.8 (since then, Dhol(ζL) = −∞ and D(ζL) = δ∂Ω ≥ 0). From
the point of view of fractal string theory, one may identify a fractal string with the
sequence L of its lengths (or scales): L = (`j)j≥1. The bounded open set Ω is then
called a geometric realization of L. Note that |Ω| =

∑∞
j=1 `j <∞, where |Ω| = |Ω|1

denotes the 1-dimensional Lebesgue measure (or length) of Ω.
We now recall a basic property of ζL, first observed in [Lap2], using a key result

of Besicovich and Taylor [BesTay]. (For a direct proof, see [Lap-vFr3, Theorem
1.10 or Theorem 13.111]; see also [LapLu-vFr2].)

Theorem 2.8. If L is a nontrivial fractal string (i.e., L = (`j)j≥1 is an infinite
sequence), then the abscissa of convergence D(ζL) of ζL coincides with the (inner)
Minkowski dimension δ∂Ω of ∂L = ∂Ω :

(2.15) D(ζL) = Dhol(ζL) = δ∂Ω.

Recall that, by definition,

(2.16) D(ζL) := inf
{
α ∈ R :

∞∑
j=1

`αj <∞
}
,

while δ∂Ω is then defined in terms of the volume (i.e., length) of the inner epsilon
(or tubular) neighborhoods of ∂Ω, namely, (∂Ω)ε ∩ Ω = {x ∈ Ω : d(x, ∂Ω) < ε};
see [Lap-vFr3, Chapter 1]. In [Lap-vFr3], the abscissa of convergence D(ζL) of ζL
is denoted by σL.

In order to establish the equality D(ζL) = Dhol(ζL) from Theorem 2.8, one first
notes that ζL is holomorphic for Re s > D(ζL) and that {Re s > D(ζL)} is the
largest open right half-plane having this property; i.e., D(ζL) = Dhol(ζL). The
latter property follows from the fact that (because ζL(s) is initially given in (2.14)
by a Dirichlet series with positive coefficients) ζL(s) → +∞ as s → D+, s ∈ R,
where D := D(ζL) = δ∂Ω; see, e.g., [Ser, Section VI.2.3]. The proof of the equality
D(ζL) = δ∂Ω requires significantly more work; see the aforementioned references.

Note that, more precisely, dimBAL = δ∂Ω is equal to dimB(∂Ω,Ω), the Minkowski
dimension of ∂Ω relative to Ω (also called the inner Minkowski dimension of ∂Ω,
or, equivalently, of L) which is defined (as in [Lap1–3] and [Lap-vFr3, Chapter 1])
in terms of the volume (i.e., length) of the inner tubular neighborhoods of Ω. More
specifically, δ∂Ω is given by (1.2) or (1.3), except for |At| replaced by |At∩Ω|1, with
A := ∂Ω, in the counterpart of the second equality of (1.1).

In fractal string theory, one is particularly interested in the meromorphic con-
tinuation of ζL to a suitable region (when it exists), along with its poles, which are
called the complex dimensions of L. In particular, in the theory of complex dimen-
sions developed in [Lap-vFr1–3], are obtained explicit formulas applicable to various
counting functions associated with the geometry and the spectra of fractal strings,
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as well as to V (ε), now defined as the volume of the inner tubular neighborhood
of ∂Ω (i.e., of L). These explicit formulas are expressed in terms of the complex
dimensions (i.e., the poles of ζL) and the associated residues. Furthermore, they
enable one to obtain a very precise understanding of the oscillations underlying
the geometry and spectra of fractal strings (as well as of more general fractal-like
objects); see [Lap-vFr3], especially Chapters 5–8.

From the perspective of the theory developed in the present work, a convenient
choice for the set AL corresponding to the fractal string L = (`j)j≥1 is

(2.17) AL := {ak : k ≥ 1}, where ak :=
∑
j≥k `j for each k ≥ 1.

As follows easily from Theorem 2.8 and the definition of AL, the function ζL in
(2.14) is holomorphic for s ∈ C with Re s > dimBAL. Moreover, this bound is
optimal. In other words, dimBA coincides with the abscissa of convergence of L.
Furthermore, ζL(s) → +∞ as s ∈ R converges to dimBAL from the right (see
[Lap-vFr3, p. 15]); compare with Theorem 2.5 above. In light of Theorem 2.8,
Theorem 2.5(b) and Equation (2.15), we then have the following equalities:

(2.18) dimBAL = D(ζAL) = D(ζL) = Dhol(ζL) = δ∂Ω.

The following example shows that the study of the geometric zeta function ζL
of any (bounded) fractal string L can be reduced to the study of the distance zeta
function ζAL of the associated bounded set AL on the real line. (See also Remark
2.11 below.)

Example 2.9. Let (Ik)k≥1 be a sequence of bounded intervals, Ik = (ak+1, ak),
k ≥ 1, where the ak’s are defined by (2.17), and let s be a complex variable. Using
(2.1), we see that the distance zeta function of A = AL is given by

(2.19) ζA(s) = 2

∫ δ

0

xs−1dx+
∞∑
k=1

∫
Ik

d(x, ∂Ik)s−1dx = 2s−1δs +
∞∑
k=1

Jk(s),

where the first term in this last expression corresponds to the boundary points of
the interval (0, a1). Assuming that δ ≥ `1/2, we have that for all k ≥ 1,

(2.20) Jk(s) = s−121−s`sk.

We also assume that s ∈ C is such that Re s > D(ζL), so that the series
∑∞
k=1 Jk(s)

appearing in (2.19) is convergent. In light of (2.14)–(2.17) and (2.19), we then
obtain the following relation:

(2.21) ζA(s) = s−121−sζL(s) + 2s−1δs.

The case when 0 < δ < `1/2 yields an analogous relation:

(2.22) ζA(s) = u(s)ζL(s) + v(s),

where again u(s) := s−121−s, with a simple pole at s = 0. Note that here, u(s) and
v(s) = v(s, δ) are holomorphic functions in the right half-plane {Re s > 0}. Hence,
by the principle of analytic continuation and since ζL is holomorphic for Re s >
dimBA, the same relation still holds for the meromorphic extensions of ζA and of
ζL (when they exist, see Theorem 2.10) within the right half-plane {Re s > 0}.

The following result is in accordance with Theorem 2.8.
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Theorem 2.10. Let L = (`j)j≥1 be a (nontrivial) fractal string such that
∑
j≥1 `j <

∞, and let AL =
{
ak =

∑
j≥k `j : k ≥ 1

}
. Then

(2.23) D(ζAL) = D(ζL) = Dhol(ζL) = dimBAL.

Furthermore, given c ≥ 0, the sets of poles of the meromorphic extensions of ζAL
and ζL (if one, and therefore both, of the extensions exist) to the open right half-
plane {Re s > c} coincide. Moreover, the poles of ζAL and ζL (in such a half-plane)
have the same multiplicities.

More generally, given any subdomain U of C \ {0}, ζAL has a meromorphic
continuation to U if and only ζL does, and in that case, ζAL and ζL have the same
visible poles in U and with the same multiplicities.

Proof. The first claim follows from Theorem 2.8 combined with parts (a) and (b)
of Theorem 2.5. The second and the third claims are an immediate consequence of
the identity (2.22) in Example 2.9. �

Remark 2.11. An entirely similar proof shows that, in Example 2.9 and Theorem
2.10, we can replace AL with A := ∂Ω, where the bounded open set Ω ⊂ R is any
geometric realization of the (nontrivial) fractal string L, provided dimBA := δ∂Ω, as
defined in the comments following (2.16). Hence, with the notation used in (2.16),
we also have the following counterpart of (2.18) in this more general situation:

(2.24) D(ζL) = Dhol(ζL) = D(ζ∂Ω) = δ∂Ω := dimB(∂Ω,Ω).

2.4. Equivalent zeta functions. In this section, we shall introduce an equivalence
relation ∼ on the set of zeta functions (see Definition 2.22). Let us illustrate its
purpose in the case of the distance zeta function ζA of a given decreasing infinite
sequence A = (ak)k≥1, converging to zero in R. As we saw in Example 2.9, it makes
sense to identify it with its simpler form ζL, where L = (`j)j≥1 is the associated
bounded fractal string, defined by `j = aj − aj+1. This is done by removing the
inessential functions u(s) and v(s) appearing in Equation (2.22) above. Therefore,
ζA ∼ ζL.

Throughout this section (and Appendix A in which this topic is further de-
veloped), we will assume that E is a locally compact, Hausdorff topological (and
metrizable) space and that µ is a local (roughly speaking, locally bounded) positive
or complex measure (in the sense of [DolFr], [JohLap], [JohLapNi] or [Lap-vFr3,
Chapter 4]). In short, a local measure is a [0,+∞]-valued or C-valued set-function
on B := B(E) (the Borel σ-algebra of E), whose restriction to B(K), where K is
an arbitrary compact subset of E, is a bounded positive measure or is a complex
(and hence, bounded) measure, respectively. The total variation measure of µ (see,
e.g., [Coh] or [Ru]) is denoted by |µ|; it is a (local) positive measure and, if µ is
itself positive, then |µ| = µ. We refer to [Coh, Fol, Ru] for the theory of standard
positive or complex measures.

We assume that the µ-measurable function ϕ : E → R ∪ {+∞} appearing in
Definition 2.12 just below is tamed, in the following sense: there exists a positive
constant C = C(ϕ) such that

(2.25) |µ|({ϕ > C}) = 0;

i.e., ϕ is essentially bounded from above with respect to |µ|. We then say that f ,
defined by (2.26) below, is a tamed DTI.
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Definition 2.12. Given a tamed Dirichlet-type integral (tamed DTI, in short) func-
tion f = f(s) of the form

(2.26) f(s) :=

∫
E

ϕ(x)s dµ(x),

where µ is a suitable (positive or complex) local (i.e., locally bounded) measure
on a given (measurable) space E [i.e., µ : B → [0,+∞] or µ : B → C], and
ϕ : E → R ∪ {+∞} is a µ-measurable function such that ϕ ≥ 0 µ-a.e. on E, we
define the abscissa of convergence D(f) ∈ R ∪ {±∞} by

(2.27)
D(f) := inf

{
α ∈ R :

∫
E

ϕ(x)αd|µ|(x) <∞
}

= inf
{
α ∈ R : ϕ(x)s is Lebesgue integrable for Re s > α

}
.

It follows that the half-plane of (absolute) convergence of f , namely, Π(f) :=
{Re s > D(f)}, is the maximal open right half-plane (of the form {Re s > α},
for some α ∈ R ∪ {±∞}) on which the function x 7→ ϕ(x)s is absolutely (i.e.,
Lebesgue) integrable. (Note that D(f) is well defined for any tamed Dirichlet-type
integral f .)

In (2.27), by definition, inf ∅ := +∞ and inf R = −∞. Using a classic theorem
about the holomorphicity of integrals depending analytically on a parameter, one
can show that f is holomorphic on {Re s > D(f)}. Hence, it follows that Dhol(f) ≤
D(f). Here, Dhol(f) ∈ R ∪ {±∞}, the abscissa of holomorphic continuation of f ,
is defined exactly as Dhol(ζA) in (2.3), except for ζA replaced by f .

In (2.27), the integral is taken with respect to |µ|, the total variation measure
of µ; recall that if µ is positive, then |µ| = µ. Note that we may clearly replace
ϕ(x)s by ϕ(x)Re s in the second equality of (2.27), since for a measurable function,
Lebesgue integrability is equivalent to absolute integrability.

Remark 2.13. There are many examples for which Dhol(f) = D(f) (see, e.g., Equa-
tion (2.23) in Theorem 2.10) and other examples for which Dhol(f) < D(f) (this
is so for Dirichlet L-functions with a nontrivial primitive character, in which case
Dhol(f) = −∞ but D(f) = 1; see, e.g., [Ser, Section VI.3]).

Remark 2.14. All of the fractal zeta functions encountered in this work, namely, the
distance and tube zeta functions (see Section 2.1 above and Section 3.2 below), their
counterparts for relative fractal drums (see [LapRaŽu3] along with [LapRaŽu1–2]),
the geometric zeta function of (possibly generalized) fractal strings ([Lap-vFr3,
Chapters 1 and 4]), as well as the spectral zeta functions of (relative) fractal drums
(see [Lap2–3], along with [LapRaŽu1,6]) are tamed DTIs, i.e., they are Dirichlet-
type integrals (in the sense of (2.26), and for a suitable choice of set E, function
ϕ and measure µ) satisfy condition (2.25). This justifies, in particular, the use of
the expression “abscissa of (absolute) convergence” and “half-plane of (absolute)
convergence” for all of these fractal zeta functions, including the tube and distance
zeta functions which are key objects in the present paper.

For example, for the distance zeta function ζA (as in Definition 2.1 above), we
can choose E := Aδ (or else, E := Aδ \A), ϕ(x) := d(x,A) for x ∈ E and µ(dx) :=
d(x,A)−Ndx, while for the tube zeta function (as in Definition 3.6 below), we can
choose E := (0, δ), ϕ(t) := t for t ∈ E and µ(dx) := t−N−1|At|dt = t−N |At| (dt/t).
In both cases, it is easy to check that the tameness condition (2.25) is satisfied,
with C := δ.



DISTANCE AND TUBE ZETA FUNCTIONS OF FRACTALS 15

In closing, we note that the class of tamed Dirichlet-type integrals also contains
all arithmetic zeta functions (that is, all zeta functions occurring in number the-
ory); see, e.g., [ParSh1–2, Ser, Tit], [Lap-vFr3, Appendix A] and [Lap4], including
Appendices B, C and E, as well as the relevant references therein.

Recall from part (b) of Theorem 2.5 that we have the following result, which
is very useful for the computation of the upper box dimension of fractal sets (for
applications, we refer the interested reader to [LapRaŽu1–3]).

Corollary 2.15. Let A be any bounded subset of RN . Then

(2.28) dimBA = D(ζA).

Hence, we have 0 ≤ D(ζA) ≤ N .

Following [Lap-vFr3, Sections 1.2.1 and 5.1], assume that the set A has the
property that ζA can be extended to a meromorphic function defined on G ⊆ C,
where G is an open and connected neighborhood of the window W defined by

W := {s ∈ C : Re s ≥ S(Im s)}.
Here, the function S : R → (−∞, D(ζA)], called the screen, is assumed to be
Lipschitz continuous. Note that the closed set W contains the critical line (of
convergence) {Re s = D(ζA)}. In other words, we assume that A is such that
its distance zeta function can be extended meromorphically to an open domain
G containing the closed right half-plane {Re s ≥ D(ζA)}. (Following the usual
conventions, we still denote by ζA the meromorphic continuation of ζA to G, which
is necessarily unique due to the principle of analytic continuation. Furthermore, as
in [Lap-vFr3], we assume that the screen does not contain any poles of ζA.) A set
A satisfying this property and for which ζA is ‘languid’ (in the sense of [Lap-vFr3,
Definition 5.2], that is, grows at most polynomially along the screen and a suitable
sequence of horizontal lines avoiding the poles of ζA) is said to be admissible. (There
exist nonadmissible fractal sets; see [Lap-vFr3, Example 5.32] and [LapRaŽu1].) In
the present article, we will need to consider the set of poles of ζA located on the
critical line {Re s = D(ζA)}, where D(ζA) is assumed to be a real number (see
Definition 2.18):

(2.29) Pc(ζA) = {ω ∈W : ω is a pole of ζA and Reω = D(ζA)}.
It is a subset of the set of all poles of ζA in W , that we denote by P(ζA) or P(ζA,W )
(see Definition 2.19).

Remark 2.16. We assume in the definition of Pc(ζA) that D(ζA) ∈ R, which is the
case for example if A is bounded, according to Corollary 2.15. Note that clearly
(and in contrast to P(ζA) = P(ζA,W ), to be introduced in Definition 2.19), Pc(ζA)
is independent of the choice of the window W .

Remark 2.17. We stress that because, in this paper, we will not use or extend
the pointwise and distributional explicit formulas obtained in [Lap-vFr1–3] (and
for the validity of which the above polynomial growth conditions are essential, see
[Lap-vFr3, Chapters 5 and 8]), we do not need to include these polynomial growth
conditions in the above definition of admissibility. (Fractal tube formulas in the
context of the present higher-dimensional theory of fractal dimensions, are obtained
in [LapRaŽu4–5]; see also [LapRaŽu1, Chapter 5].) Therefore, throughout this
article, an admissible set A is one for which a meromorphic continuation of ζA exists
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in a connected open neighborhood of the given window W (but without requiring
any growth conditions on ζA). The problem of constructing meromorphic extensions
of fractal zeta functions is studied in [LapRaŽu2], under suitable hypotheses on the
geometry of A; see also [LapRaŽu1, Sections 2.3, 4.3 and 4.5].

In [LapRaŽu2] (as well as in [LapRaŽu3], the counterpart for relative fractal
drums of the present paper and of its continuation in [LapRaŽu2]), we will provide
many examples of computations of the set of complex dimensions P(ζA) (in Defi-
nition 2.19 below) and of principal complex dimensions Pc(ζA) (in Equation (2.29)
above and in Definition 2.18 just below) for a variety of fractals (and relative fractal
drums).

The following definition is a slight modification of the notion of complex dimen-
sion for fractal strings introduced by the first author and Machiel van Frankenhui-
jsen in [Lap-vFr1], which depends not only on the string, but also on the window
W ; see [Lap-vFr3, Section 1.2.1].

Definition 2.18. Let A be an admissible subset of RN such that D(ζA) ∈ R. The
set of principal complex dimensions of A, denoted by dimPC A, is defined as the
set of poles of ζA which are located on the critical line {Re s = D(ζA)}:

(2.30) dimPC A := Pc(ζA),

where Pc(ζA) is given by (2.29).

As we see, in Definition 2.18, if A ⊂ RN is bounded, the singularities of ζA we
are interested in are located on the vertical line {Re s = dimBA}.

Following and extending the definition of complex dimensions of fractal strings
(and other fractals) provided in [Lap-vFr1–3], we also introduce the following nat-
ural higher-dimensional generalization in our context.

Definition 2.19. Let A be an admissible subset of RN . Then, the set of visible
complex dimensions of A with respect to a given window W (often called in short,
the set of complex dimensions of A relative to W , or simply the set of (visible)
complex dimensions of A if no ambiguity may arise or if W = C), is defined as the
set of all the poles of ζA which are located in the window W :

(2.31) P(ζA) = {ω ∈W : ω is a pole of ζA}.

Instead of P(ζA) we can also write P(ζA,W ), in order to stress that the set depends
on W as well.

Next, we would like to extend the class of zeta functions to which a slight modi-
fication of Definition 2.18 and Definition 2.19 can be applied. Given a meromorphic
function f on a domain G ⊆ C containing the vertical line {Re s = D(f)} (as in
Remark 2.16 above, we assume here that D(f) ∈ R), and which (for all s ∈ C with
Re s sufficiently large) is given by a convergent Dirichlet-type integral of the form
(2.26) and satisfying condition (2.25), so that D(f) <∞ is well defined by (2.27)),
we define the set Pc(f) in much the same way as in (2.29):

(2.32) Pc(f) = {ω ∈ G : ω is a pole of f and Reω = D(f)}.

It is a subset of the set P(f) of all the poles of f belonging to G. In other words,

(2.33) P(f) = {ω ∈ G : ω is a pole of f}.
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Remark 2.20. If f = ζA, where A is an admissible set for a given window W , then
(with G := W̊ , the interior of the window) Pc(f) = Pc(ζA), the set of principal

complex dimensions of A, while P(f, W̊ ) = P(f) = P(ζA) = P(ζA,W ), the set
of (visible) complex dimensions of A (relative to W ). This follows from the fact
that since A is admissible, ζA does not have any poles along the screen S; see the
discussion following Corollary 2.15.

Remark 2.21. Observe that Pc(f) is independent of the choice of the domain G
containing the vertical line {Re s = D(f)}. Moreover, since as was noted earlier,
the function f is holomorphic for Re s > D(f), there are no poles of f located in
the open half-plane {Re s > D(f)}; this is why we could equivalently require that
the domain G ⊆ C contains the closed half-plane {Re s ≥ D(f)} in order to define

Pc(f) and P(f).
Finally, we note that since P(f) is the set of poles of a meromorphic function, it

is a discrete subset of C; in particular, it is at most countable. Since Pc(f) ⊆ P(f),
the same is true for Pc(f). (An entirely analogous comment can be made about

Pc(ζA) and P(ζA) in Definition 2.18 and Definition 2.19, respectively.)

We next define the equivalence of a given distance zeta function f to a suitable
meromorphic function g (of a preferably simpler form), a notion which will be useful
to us in the sequel. Note that the relation ∼ introduced in Definition 2.22 is clearly
an equivalence relation on the set of all tamed DTIs.

Definition 2.22. Let f and g be tamed Dirichlet-type integrals, as in Definition
2.12, both admitting a (necessarily unique) meromorphic extension to an open
connected subset U of C which contains the closed right half-plane {Re s ≥ D(f)}.
(As follows from the complete definition, this closed half-plane is actually the closure
of the common half-plane of convergence of f and g, given by Π := Π(f) = Π(g).)
Then, the function f is said to be equivalent to g, and we write f ∼ g, if D(f) =
D(g) (and this common value is a real number) and furthermore, the sets of poles
of f and g, located on the common critical line {Re s = D(f)}, coincide. Here, the
multiplicities of the poles should be taken into account. In other words, we view
the set of principal poles Pc(f) of f as a multiset. More succinctly,

(2.34) f ∼ g def.⇐⇒ D(f) = D(g) (∈ R) and Pc(f) = Pc(g).

If a tamed Dirichlet-type integral f is given (for example, a distance zeta func-
tion ζA corresponding to a given fractal set A), the aim is to find an equivalent
meromorphic function g, defined by a simpler expression. Satisfactory results can
already be obtained with functions g of the form g(s) = u(s)f(s) + v(s), for a
suitable choice of the functions u and v, as we have seen in Example 2.9.

We refer to Definition A.2 in Appendix A to this paper for an extension of
Definition 2.22 to the broader class of Dirichlet-type integrals (extended DTIs, for
short), as introduced in Definition A.1.

We also refer to Definition A.6 (and the comments surrounding it) at the end
of Appendix A for a closely related, but somewhat different (and perhaps more
practical) definition, allowing the meromorphic function g not to be a DTI (or
more generally, an EDTI of type I, in the terminology of Appendix A). These new
definitions (Definitions A.2 and A.6) can be applied to (essentially) all the examples
of interest in this paper and in [LapRaŽu1–7]. Towards the end of Appendix A, the
interested reader can find a large class of functions g giving the “leading behavior”
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of fractal zeta functions f . They will arise in practice in the theory developed in
this paper and in [LapRaŽu1–7]. (See Theorem A.3 in Appendix A, along with its
consequences.)

In the following proposition, we consider the dependence of the distance zeta
function ζA on δ > 0. For this reason, we denote ζA by ζA( · , Aδ).

Proposition 2.23. Let A be a bounded subset of RN . Then, for any two positive
real numbers δ1 and δ2, we have ζA( · , Aδ1) ∼ ζA( · , Aδ2).

Proof. We assume without loss of generality that δ1 < δ2, since for δ1 = δ2 there is
nothing to prove. For Re s > dimBA, the difference of the functions ζA(s,Aδ2) and
ζA(s,Aδ1) is equal to

(2.35)

∫
Aδ2\Aδ1

d(x,A)s−Ndx.

Note that δ1 ≤ d(x,A) < δ2 for every x ∈ Aδ2 \ Aδ1 . Hence, the integral given by
(2.35) is an entire function. �

The following result deals with the scaling property of the distance zeta function.
Here, we write ζA(s,Aδ) :=

∫
Aδ
d(x,A)s−Ndx for s ∈ C with Re s > dimBA.

Proposition 2.24 (Scaling property of distance zeta functions). For any bounded
subset A of RN , δ > 0 and λ > 0, we have D(ζλA( · , λ(Aδ))) = D(ζA( · , Aδ)) =
dimBA and

(2.36) ζλA(s, λ(Aδ)) = λsζA(s,Aδ),

for all s ∈ C with Re s > dimBA. Furthermore, if ω ∈ C is a simple pole of the
meromorphic extension of ζA(s,Aδ) to some open connected neighborhood of the
critical line {Re s = dimBA} (we use the same notation for the meromophically
extended function), then

(2.37) res(ζλA( · , λ(Aδ)), ω) = λω res(ζA, ω).

Proof. Equation (2.36) follows easily by noting that λ(Aδ) = (λA)λδ; we leave the
details to the interested reader. To prove Equation (2.37), note that ζλA(s,Aδ) −
ζλA(s, λ(Aδ)) is an entire function; see Proposition 2.23. Therefore, also using
(2.36), we obtain that

res(ζλA( · , Aδ), ω) = res(ζλA( · , λ(Aδ)), ω) = lim
s→ω

(s− ω)ζλA(s, λA)

= lim
s→ω

(s− ω)λsζA(s,A) = λω res(ζA, ω),

which concludes the proof of the proposition. �

This scaling result is useful, in particular, in the study of fractal sprays and
self-similar sets in Euclidean spaces; see [LapRaŽu3,5], as well as [LapRaŽu1].

3. Residues of zeta functions and Minkowski contents

In this section, we show that the residue of any suitable meromorphic extension
of the distance zeta function ζA of a fractal set A in RN is closely related to the
Minkowski content of the set; see Theorems 3.3 and 3.7. Therefore, the distance
zeta functions, as well as the tube zeta functions that we introduce below (see
Definition 3.6), can be considered as a useful tool in the study of the geometric
properties of fractals.
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3.1. Distance zeta functions of fractal sets and their residues. Here we use
the notation ζA(s,Aδ) for the distance zeta function instead of ζA(s), in order to
stress the dependence of the zeta function on δ. We start with an identity, which
will motivate us to introduce a new class of zeta functions, described by (3.6).

Theorem 3.1. Let A be a bounded subset of RN , and let δ be a fixed positive
number. Then, for all s ∈ C such that Re s > dimBA, the following identity holds:

(3.1)

∫
Aδ

d(x,A)s−Ndx = δs−N |Aδ|+ (N − s)
∫ δ

0

ts−N−1|At|dt.

Furthermore, the function ζ̃A(s) :=
∫ δ

0
ts−N−1|At|dt is absolutely convergent (and

hence, holomorphic) on {Re s > dimBA}. The function ζ̃A, which we have just
introduced, is called the tube zeta function of A (see Definition 3.6) and will be
studied in Section 3.2.

Proof. Equality (3.1) holds for all real numbers s ∈ (D,+∞), where D := dimBA.
Indeed, it follows immedately from Lemma 2.2, if we take γ := N − s (note that
then γ < N −D).

Let us denote the left-hand side of (3.1) by f(s), and the right-hand side by g(s).
Since f(s) = g(s) on the subset (D,+∞) ⊂ C, to prove the theorem, it suffices to
show that f(s) and g(s) are both holomorphic in the region {Re s > D}. Indeed,
the fact that (3.1) then holds for all s ∈ C with Re s > D follows from the principle
of analytic continuation; see, e.g., [Con, Corollary 3.8]. The holomorphicity of f(s)
in that region is precisely the content of Theorem 2.5(a).

In order to prove the holomorphicity of g(s) on {Re s > D}, it suffices to

show that ζ̃A(s) is absolutely convergent on {Re s > dimBA}. Note that ζ̃A(s)

is the Dirichlet-type integral, ζ̃A(s) =
∫
E
ϕ(t)sdµ(x), where E := (0, δ), ϕ(t) := t,

dµ(x) := t−N−1|At| dt, and the latter measure is positive. Therefore, it suffices to

show that for any s ∈ C such that Re s > D, the Dirichlet-type integral ζ̃A(s) is
well defined. To see this, let ε > 0 be small enough, so that Re s > D + ε. Since

M∗(D+ε)(A) = 0, there exists Cδ > 0 such that |At| ≤ Cδt
N−D−ε for all t ∈ (0, δ].

Then

|ζ̃A(s)| ≤
∫ δ

0

tRe s−N−1|At|dt

≤ Cδ
∫ δ

0

tRe s−D−ε−1dt = Cδ
δRe s−D−ε

Re s−D − ε
<∞,

which concludes the proof of the theorem. �

Corollary 3.2. If dimBA < N , then

(3.2) D(ζA) = D(ζ̃A) and Dhol(ζA) = Dhol(ζ̃A).

Proof. This follows at once from Equation (3.1) of Theorem 3.1 and from the defi-

nition of D(f) and Dhol(f), for f = ζA or f = ζ̃A. �

The following theorem is, in particular, a higher-dimensional generalization of
[Lap-vFr3, Theorem 1.17] and yields more information than the latter result, when
N = 1. (The problem of constructing meromorphic extensions of fractal zeta
functions is studied in [LapRaŽu2] and in the monograph [LapRaŽu1].)
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Theorem 3.3. Assume that the bounded set A ⊂ RN is Minkowski nondegenerate
(that is, 0 < MD

∗ (A) ≤ M∗D(A) < ∞, and, in particular, dimB A = D), and
D < N . If ζA( · , Aδ) can be extended meromorphically to a neighborhood of s = D,
then D is necessarily a simple pole of ζA( · , Aδ), and the value of the residue of
ζA( · , Aδ) at D, res(ζA( · , Aδ), D), does not depend on δ > 0. Furthermore,

(3.3) (N −D)MD
∗ (A) ≤ res(ζA( · , Aδ), D) ≤ (N −D)M∗D(A),

and in particular, if A is Minkowski measurable, then

(3.4) res(ζA( · , Aδ), D) = (N −D)MD(A).

Proof. Since MD
∗ (A) > 0, using Theorem 2.5(c) we conclude that s = D is a pole

of ζA = ζA( · , Aδ). Therefore, it suffices to show that the order of the pole at s = D
is not larger than 1. Let us take any fixed δ > 0, and let

(3.5) Cδ = sup
t∈(0,δ]

|At|
tN−D

.

Note that Cδ < ∞ because M∗D(A) < ∞. Then, in light of (3.1), for all s ∈ R
with D < s < N , we have

(3.6)

ζA(s,Aδ) =

∫
Aδ

d(x,A)s−Ndx = δs−N |Aδ|+ (N − s)
∫ δ

0

ts−N−1|At|dt

≤ Cδδs−D + Cδ(N − s)
δs−D

s−D
= Cδ(N −D)δs−D

1

s−D
.

Therefore, 0 < ζA(s,Aδ) ≤ C1(s−D)−1 for all s ∈ (D,N). This shows that s = D
is a pole of ζA(s,Aδ) which is at most of order 1, and the first claim is established.
Namely, D is a simple pole of ζA(s,Aδ).

The fact that the residue of ζA(s,Aδ) at s = D is independent of the value of
δ > 0 follows immediately from Proposition 2.23. In order to prove the second
inequality in (3.3), is suffices to multiply (3.6) by s−D, with s real, and take the
limit as s→ D+ along the real axis:

(3.7) res(ζA( · , Aδ), D) ≤ (N −D) lim
s→D+

Cδδ
s−D = (N −D)Cδ.

Since the residue of ζA(s,Aδ) at D does not depend on δ, (3.3) follows from (3.7) by
recalling the definition of Cδ given in (3.5) and passing to the limit as δ → 0+ (note
that the function δ 7→ Cδ is nondecreasing and that Cδ →M∗D(A) as δ → 0+) on
the right-hand side of (3.7). The first inequality in (3.3) is proved analogously by
replacing the supremum by an infimum in the definition of Cδ given in (3.5). �

Example 3.4 (Residues of the zeta function of the generalized Cantor set). Let
A = C(a) be the generalized Cantor set defined by the parameter a ∈ (0, 1/2).
Recall that C(a) is obtained by deleting the middle interval of length 1 − 2a from
the interval [0, 1], and then continuing in the usual way, scaling by the factor a at
each step (for a = 1/3, we obtain the middle third Cantor set, which is studied
in detail in [Lap-vFr1–3] from the point of view of geometric zeta functions and
the associated complex dimensions). (An even more general class of Cantor sets,
depending on two auxilliary paramteres, will be introduced in Definition 4.1.) By
a direct computation, or using [Žu3, Equation (15) with γ := N − s], we obtain the
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corresponding zeta function:

(3.8) ζA(s,Aδ) :=
21−s(1− 2a)s

s(1− 2as)
+ 2δss−1.

Its residue computed at D = D(a) := dimB A = log1/a 2 is given by

(3.9) res(ζA( · , Aδ), D) =
2

log 2

(
1

2
− a
)D

.

On the other hand, the values of the lower and upper D-dimensional Minkowski
contents are respectively equal to (see [Žu2, Equations (3.12) and (3.13) for m = 2]):

(3.10) MD
∗ (A) =

1

D

(
2D

1−D

)1−D

, M∗D(A) = 2(1− a)

(
1

2
− a
)D−1

,

and thus MD
∗ (A) <M∗D(A) (see also Remark 3.5 below). It follows that C(a) is

not Minkowski measurable (for a much more general result, see [Lap-vFr3, Theorem
2.16]). (We note that in the case of the classical Cantor set, where a = 1/3 and
D = log3 2, the values in (3.10), and hence, the Minkowski nonmeasurability of
C(1/3), have been first obtained in [LapPo2, Theorem 2.4].) Therefore, for any
generalized Cantor set A = C(a), with a ∈ (0, 1/2), we have that

(3.11) (1−D)MD
∗ (A) < res(ζA( · , Aδ), D) < (1−D)M∗D(A).

This is in agreement with (3.3) in Theorem 3.3. In particular, since the functions
(0, 1/2) 3 a 7→ MD

∗ (A) and a 7→ M∗D(A) are bounded, and D = log1/a 2→ 1− as

a→ 1/2−, we have that for any positive δ,

lim
a→1/2−

res(ζA( · , Aδ), D) = 0.

The residues of ζA(s,Aδ) at the poles sk := D + kpi, k ∈ Z, on the critical line
{Re s = D}, expressed in terms of the residue at D and the ‘oscillatory period’ (see
[Lap-vFr3]) p := 2π/ log(1/a), are the following:

(3.12) res(ζA( · , Aδ), sk) =
D2−kpi(1− 2a)kpi

skakpi
res(ζA( · , Aδ), D), k ∈ Z.

Remark 3.5. As we have already noted, the two inequalities in (3.11) are in agree-
ment with (3.3) in Theorem 3.3. In [LapRaŽu2] (see also [LapRaŽu1]), we shall
prove that the strict inequalities in (3.3) are not just a coincidence: indeed, they
hold for a large class of Minkowski nonmeasurable sets in Euclidean spaces. An
analogous remark applies to the inequalities (3.16) in Theorem 3.7 below, dealing
with tube zeta functions. Also, it is shown in [Lap-vFr3, Section 8.4, Theorem 8.23]
that all lattice self-similar strings (and hence, under mild assumptions, all lattice
self-similar sets in R satisfying the open set condition) are not Minkowski measur-
able. In [Lap3], the same result is conjectured to hold in higher dimensions, and we
suspect that the methods developed in this paper (as well as in [LapRaŽu1–7] and,
especially, in [LapRaŽu4,5]) combined with those of [Lap-vFr3, Section 8.4] should
eventually enable one to prove it.
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3.2. Tube zeta functions of fractal sets and their residues. Going back to
Theorem 3.1, we see that it is natural to introduce a new fractal zeta function of
bounded subsets A of RN .

Definition 3.6. Let δ be a fixed positive number, and let A be a bounded subset
of RN . Then, the tube zeta function of A, denoted by ζ̃A, is defined by

(3.13) ζ̃A(s) =

∫ δ

0

ts−N−1|At|dt,

for all s ∈ C with Re s sufficiently large. As we know from Theorem 3.1, the tube
zeta function is (absolutely) convergent (and hence, holomorphic) on the open right
half-plane {Re s > dimBA}.

We call ζ̃A the tube zeta function of A since its definition involves the tube
function (0, δ) 3 t 7→ |At|. Relation (3.1) can be written as follows (with ζA(s) =

ζA(s,Aδ), as before, and ζ̃A(s) = ζ̃A(s,Aδ), for emphasis):

(3.14) ζA(s,Aδ) = δs−N |Aδ|+ (N − s)ζ̃A(s,Aδ),

for any δ > 0 and for all s ∈ C such that Re s > dimBA.
From the functional equation (3.14) relating ζA and ζ̃A, it would seem that ζ̃A

has a singularity at s = N . However, from the second part of Theorem 3.1 we see
that for dimBA < N , the value s = N is regular (i.e., holomorphic) for ζ̃A. It then

follows from (3.14) that the two fractal zeta functions ζA and ζ̃A contain essentially
the same information.

In particular, still assuming that dimBA < N , ζ̃A has a meromorphic continua-
tion to a given domain U ⊆ C if and only if ζA does, and in that case (according
to the principle of analytic continuation), the unique meromorphic continuations

to U of ζA and ζ̃A are still related by the functional equation (3.14). Also in that

case, the residues (or, more generally, the principal parts) of ζA and ζ̃A of a given
simple (resp., multiple) pole of s = ω ∈ U are related in a very simple manner; see,
e.g., Equation (3.15) below in the case of the simple pole s = dimBA. Furthermore,

P(ζA) = P(ζ̃A) and (assuming that U contains the critical line {Re s = dimBA}),
Pc(ζA) = Pc(ζ̃A).

Moreover, we have that D(ζ̃A) = D(ζA), Dhol(ζ̃A) = Dhol(ζA) and Dmer(ζ̃A) =
Dmer(ζA). (Here, Dmer(f), the abscissa of meromorphic continuation of a given
meromorphic function f , is defined exactly as Dhol(f) in Equation (2.3) and the sur-
rounding text, except for “holomorphic” replaced by “meromorphic”; and similarly
for the half-plane of meromorphic continuation of f .) Also, we have Π(ζ̃A) = Π(ζA)

and H(ζ̃A) = H(ζA); similarly, the half-planes of meromorphic continuation of ζ̃A
and ζA coincide.

Still in light of (3.14), it follows from Theorem 3.1 that ζ̃A is holomorphic on
{Re s > dimBA} and that (provided dimBA < N), the lower bound dimBA is
optimal from the point of the convergence of the Lebesgue integral defining ζA
in (3.13); i.e., D(ζ̃A) (= D(ζA)) = dimBA. More generally, the exact analog of

Theorem 2.5 holds for ζ̃A (instead of ζA), except for the fact that in the counterpart
of part (c) of Theorem 2.5 we no longer need to assume that D < N (where
D := dimB A).

Assuming that there exists a meromorphic extension of ζA(s,Aδ) to an open
connected neighborhood of D := dimBA, and D is a simple pole, D < N , then it
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easily follows from (3.14) that

(3.15) res(ζ̃A, D) =
1

N −D
res(ζA( · , Aδ), D).

Indeed,

res(ζA( · , Aδ), D) = lim
s→D

(s−D)[δs−N |Aδ|+ (N − s)ζ̃A(s)]

= (N −D) lim
s→D

(s−D)ζ̃A(s)

= (N −D) res(ζ̃A, D).

Hence, the following result, in the case of D < N , is an immediate consequence
of Theorem 3.3 and relation (3.1) (or, equivalently, (3.14)), while in the case when
D = N , it can be shown directly.

Theorem 3.7. Assume that A is a bounded subset of RN such that D := dimB A
exists, 0 <MD

∗ (A) ≤M∗D(A) <∞, and there exists a meromorphic extension of

ζ̃A to an open neighborhood of D. Then D is a simple pole, and for any positive δ,
the value of res(ζ̃A, D) is independent of δ. Furthermore, we have

(3.16) MD
∗ (A) ≤ res(ζ̃A, D) ≤M∗D(A),

and, in particular, if A is Minkowski measurable, then

(3.17) res(ζ̃A, D) =MD(A).

In the following example, we compute the complex dimensions of the unit (N−1)-
dimensional sphere in RN , using the tube zeta function of the sphere.

Example 3.8. Let A := ∂B1(0) be the unit (N − 1)-dimensional sphere in RN
centered at the origin. We would like to compute its complex dimensions. To this
end, we first compute the corresponding tube zeta function ζ̃A. Let us fix any
δ ∈ (0, 1). Since |At| = ωN (1 + t)N − ωN (1 − t)N , where t ∈ (0, 1) and ωN is the
N -dimensional Lebesgue measure of the unit ball in RN , we have that for any fixed
δ ∈ (0, 1),

ζ̃A(s) =

∫ δ

0

ts−N−1|At|dt = ωN

∫ δ

0

ts−N−1((1 + t)N − (1− t)N ) dt

= ωN

∫ δ

0

ts−N−1

(
N∑
k=0

(
N

k

)(
1− (−1)k

)
tk

)
dt

= ωN

N∑
k=1

(
1− (−1)k

)(N
k

)
δs−N+k

s− (N − k)
,

for all s ∈ C with Re s > N − 1. The last expression can be meromorphically
extended to the whole complex plane, and we still denote it by ζ̃A(s). Therefore,
we have

(3.18) ζ̃A(s) = ωN

N∑
k=0

(
1− (−1)k

)(N
k

)
δs−N+k

s− (N − k)
,

for all s ∈ C, where the constants ck are defined as above. It follows that

(3.19)
dimB A = D(ζ̃A) = D(ζA) = N − 1,

Pc(ζ̃A) = Pc(ζA) = {N − 1},
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as expected. (Note that dimB A = N − 1 < N , so that Pc(ζ̃A) = Pc(ζA) and

P(ζ̃A) = P(ζA).) Moreover, still in light of (3.18), the set of complex dimensions
of A is given by

(3.20)
P(ζ̃A) = P(ζA) =

{
N − (2j + 1) : j = 0, 1, 2, . . . ,

⌊N − 1

2

⌋}
=
{
N − 1, N − 3, . . . , N −

(
2
⌊N − 1

2

⌋
+ 1
)}
.

For odd N , the last number in this set is equal to 0, while for even N , it is equal
to 1. Furthermore, the residue of the tube zeta function ζ̃A at any of its poles
N − k ∈ P(ζ̃A) is given by res(ζ̃A, N − k) = 2ωN

(
N
k

)
; that is,

(3.21) res(ζ̃A,m) = 2ωN

(
N

m

)
, for all m ∈ P(ζ̃A).

Note that in the case where m = D := N − 1, we obtain

(3.22) res(ζ̃A, D) = 2NωN =MD(A),

where the last equality is easily obtained from the definition of the Minkowski
content, as follows:

MD(A) = lim
t→0+

|At|
tN−D

= lim
t→0+

ωN (1 + t)N − ωN (1− t)N

t
= 2NωN .

In other words, A is Minkowski measurable and

(3.23) MD(A) = 2HD(A),

where HD denotes the D-dimensional Hausdorff measure. (Equation (3.23) is a
special case of a much more general result proved by Federer in [Fed, Theorem
3.2.39].) Equation (3.22) is in agreement with Equation (3.17) in Theorem 3.7.

3.3. Residues of tube zeta functions of generalized Cantor sets and a-
strings. We provide here two simple examples illustrating some of the main results
of this section.

Example 3.9 (Generalized Cantor sets, Example 3.4 continued). As an illustration
of inequality (3.16), we consider generalized Cantors sets, A = C(a), a ∈ (0, 1/2).
We obtain

(3.24) MD
∗ (A) < res(ζ̃A( · , Aδ), D) <M∗D(A),

where the values of the lower and upper Minkowski contents,MD
∗ (A) andM∗D(A),

are given by (3.10) and D = D(a) = log1/a 2. It is worth observing that C(a)

becomes almost like a Minkowski measurable set for a close to 1/2, since both
M∗D(A) andMD

∗ (A) tend to the common limit 1 as a→ 1/2−. Intuitively, this is
to be expected, since in the limit where a→ (1/2)−, C(a) tends (with respect to the
Hausdorff metric) to the unit interval [0, 1], for which D = 1 and M1([0, 1]) = 1.
Therefore, both MD

∗ (C(a)) and M∗D(C(a)) tend to 1 =M1([0, 1]) as a→ (1/2)−.
(Using the definition of upper and lower Minkowski content, it is easy to prove
that for any bounded subset A of RN we have that MN (A) exists and, moreover,
MN (A) = |A|N . This shows that Federer’s theorem stated in [Fed, Theorem 3.2.39]
holds without any rectifiability assumption on A, provided we let m = N in the
statement of that theorem.)
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On the other hand, in the limit where a → 0+, C(a) remains Minkowski non-
measurable since

(3.25) lim
a→0+

M∗D(A) = 4, lim
a→0+

MD
∗ (A) = 2.

Example 3.10 (a-strings). Given a > 0, the associated a-string is defined by
L = (`j)j≥1, where `j = j−a − (j + 1)−a. Let A = AL = {j−a : j ∈ N} be
the associated set; see Example 2.9 and the discussion preceding it. This set is
Minkowski measurable,

(3.26) MD(A) =
21−D

D(1−D)
aD, D = D(a) =

1

1 + a
.

This fractal string, introduced by the first author, has been studied from various
points of view in [Lap1, Example 5.1], [Lap2–3], [HeLap], [LapPo3] and [Lap-vFr3,
Section 6.5.1]. Due to (3.4) and (3.17), we know that

(3.27) res(ζA( · , Aδ), D) = (1−D)MD(A), res(ζ̃A, D) =MD(A).

3.4. Distance and tube zeta functions of fractal grills. It is of interest to
understand the dependence of the distance and tube zeta functions with respect to
the Cartesian products of sets. In this section, we restrict our attention to Cartesian
products of the form A× [0, 1]k ⊂ RN+k, which we call fractal grills. Here, A is a
bounded subset of RN and k is any positive integer.

Since the set A can be naturally identified with A × {0} ⊂ RN+1, it will be
convenient to introduce the following notation for all s ∈ C with Re s sufficiently
large:

(3.28) ζ
[N ]
A (s) :=

∫
Aδ

d(x,A)s−N dx, ζ̃
[N ]
A (s) :=

∫ δ

0

ts−N−1|At|Ndt,

where the index [N ] indicates that we view A as a subset of RN and |At|N is
the N -dimensional Lebesgue measure of the t-neighborhood of A in RN . Hence,

ζ̃
[N+1]
A (s) =

∫ δ
0
ts−N−2|At|N+1dt. Note that, by writing |At|N+1, we interpret At

as the t-neighborhood of A × {0} in RN+1. Furthermore, observe that, in (3.28),

ζ
[N ]
A and ζ̃

[N ]
A , are, respectively, the usual distance and tube zeta functions of A

(viewed as a bounded subset of RN ) whereas, for example, ζ̃
[N+1]
A is the tube zeta

function of A, but now viewed instead as a subset of RN+1. Moreover, in (3.30) and

(3.31) of Lemma 3.14 just below, ζ
[N+1]
A×[0,1] and ζ̃

[N+1]
A×[0,1] stand, respectively, for the

usual distance and tube zeta functions of A× [0, 1] (naturally viewed as a subset of
RN+1).

In the sequel, if Σ is a given set of complex numbers and m ∈ C a fixed complex
number, we let Σ + m := {s + m : s ∈ Σ}. We shall also need the following
definition.

Definition 3.11. Assume that f(s) and g(s) are two tamed Dirichlet-type integrals
(DTIs, in short) which are (absolutely) convergent on an open right half-plane
{Re s > α}, for some α ∈ R. Let their difference h(s) := f(s) − g(s) be a tamed
DTI such that D(h) < D(g). (Or, equivalently, that there exists a real number
β, with β < D(g), such that the integral defining h is absolutely convergent (and
hence, holomorphic) on {Re s > β}.) Then we say that f and g are weakly equivalent
and write f ' g.



26 MICHEL L. LAPIDUS, GORAN RADUNOVIĆ, AND DARKO ŽUBRINIĆ

Remark 3.12. It can be checked that if f and g are tamed DTIs, then f − g (or,
more generally, any linear combination of f and g) is a tamed DTI (as is required
in Definition 3.11 just above) provided both the DTIs f and g are based on the
same underlying pair (E,ϕ) in the notation of Defintion 2.12. Therefore, D(h) and
Π(h) are well defined in that case. This situation arises, for example, for the tube
zeta function discussed in the present section. We then have E := (0, δ), ϕ(t) := t
for all t ∈ E.

Note that in Definition 3.11, we do not assume that g possesses a meromorphic
continuation to a neighborhood of any point on its critical line {Re s = D(g)}. Case
(c) of Lemma 3.13 below provides a simple and useful condition for the implication
f ' g =⇒ f ∼ g to hold, where the equivalence ∼ is described in Definition 2.22
above.

Lemma 3.13. Assume that f and g are two tamed Dirichlet-type integrals such
that f ' g. Then, the following properties hold:

(a) We have D(f) = D(g).

(b) The relation ' is reflexive and symmetric.

(c) If there exists a connected open set U ⊆ {Re s > D(h)} containing the critical
line {Re s = D(g)} and such that g can be meromorphically continued to U , then
f has the same property and Pc(f) = Pc(g). In particular, f ∼ g in the sense of
Definition 2.22.

Proof. (a) Since, by Definition 3.11, f(s) = g(s) + h(s) and D(h) < D(g), we
conclude that D(f) ≤ D(g). If we had D(f) < D(g), then we would have

(3.29) max{D(f), D(h)} < D(g).

On the other hand, the function (i.e., the DTI) g(s) = f(s) − h(s) is absolutely
convergent on {Re s > max{D(f), D(h)}}, which is impossible due to (3.29). This
contradiction proves that D(f) = D(g).

Property (b) follows at once from (a) and Definition 3.11. Finally, property (c)
follows easily from the relation f(s) = g(s) + h(s). �

Lemma 3.14. Let A be a bounded subset of RN . Then

(3.30) ζ
[N+1]
A×[0,1](s) = ζ

[N ]
A (s− 1) + ζ

[N+1]
A (s)

and

(3.31) ζ̃
[N+1]
A×[0,1](s) = ζ̃

[N ]
A (s− 1) + ζ̃

[N+1]
A (s)

for all s ∈ C with Re s > dimBA + 1. In particular, if A is such that ζA or
(equivalently, provided dimBA < N) ζ̃A admits a (necessarily unique) meromor-
phic continuation to a connected open neighborhood of the critical line of Lebesgue
(absolute) convergence {Re s = D(ζA)} (recall from Theorem 2.5 that D(ζA) =
dimBA), then

(3.32) ζ
[N+1]
A×[0,1](s) ' ζ

[N ]
A (s− 1) and ζ̃

[N+1]
A×[0,1](s) ' ζ̃

[N ]
A (s− 1).

Hence, if ζA can be meromorphically continued to a connected, open set U con-

taining the critical line {Re s = D(ζA)}, then Pc(ζ [N+1]
A×[0,1]) = Pc(ζ [N ]

A ) + 1; that

is,

(3.33) dimPC(A× [0, 1]) = dimPC A+ 1.



DISTANCE AND TUBE ZETA FUNCTIONS OF FRACTALS 27

In particular, if dimBA < N , then

(3.34)
D(ζ

[N+1]
A×[0,1]) = D(ζ

[N ]
A ) + 1 = D(ζ̃

[N ]
A ) + 1 = D(ζ̃

[N+1]
A×[0,1])

= dimB(A× [0, 1]) = dimBA+ 1.

Proof. Let us first prove Equation (3.31). It is easy to see (cf. [Res, Remark 1])
that:

(3.35) |(A× [0, 1])t|N+1 = |At|N · 1 + |At|N+1.

Substituting into the second equality of (3.28), we conclude that

(3.36)

ζ̃
[N+1]
A×[0,1](s) =

∫ δ

0

ts−N−2(|At|N + |At|N+1) dt

=

∫ δ

0

t(s−1)−N−1|At|Ndt+

∫ δ

0

ts−(N+1)−1|At|N+1dt

= ζ̃
[N ]
A (s− 1) + ζ̃

[N+1]
A (s)

for all s ∈ C with Re s > dimBA+ 1. (Here, we also use the fact that dimBA is the
same in the case of A ⊂ RN+1, as in the case of A ⊂ RN ; that is, the upper box
dimension of a set, as well as the lower box dimension, does not depend on N ; see
[Res, Proposition 1].)

Let us next establish Equation (3.30). To this end, we use (3.14), which we write
in the following form:

(3.37) ζ̃
[N ]
A (s) =

ζ
[N ]
A (s)− δs−N |Aδ|N

N − s
,

for s ∈ C with Re s > dimBA and s 6= N . Making use of Equation (3.36), we

deduce that

(3.38)

ζ
[N+1]
A×[0,1](s)− δ

s−N−1|(A× [0, 1])δ|N+1

(N + 1)− s
=
ζ

[N ]
A (s− 1)− δ(s−1)−N |Aδ|N

N − (s− 1)

+
ζ

[N+1]
A (s)− δs−(N+1)|Aδ|N+1

(N + 1)− s
,

for all s ∈ C with Re s > dimBA and s 6= N + 1. Since, in light of (3.35), we have
|(A× [0, 1])δ|N+1 = |Aδ|N + |Aδ|N+1, after a short computation we conclude from
(3.38) that

(3.39) ζ
[N+1]
A×[0,1](s) = ζ

[N ]
A (s− 1) + ζ

[N+1]
A (s),

for all s ∈ C with Re s > dimBA + 1, where we have also used the principle

of analytic continuation. Note that, according to Theorem 2.5, both ζ
[N ]
A (s − 1)

and ζ
[N+1]
A×[0,1](s) are holomorphic on {Re s > dimBA + 1} (recall that dimB(A ×

[0, 1]) = dimBA+ 1, see [Fal1]), while, according to the same theorem, the function

ζ
[N+1]
A×[0,1](s)−ζ

[N ]
A (s−1) = ζ

[N+1]
A (s) is holomorphic on {Re s > dimBA}. Therefore,

since D(ζ
[N+1]
A ) = dimBA < dimBA+1 = D(ζ

[N ]
A ( · −1)), it follows from Definition

3.11 that ζ
[N+1]
A×[0,1](s) ' ζ

[N ]
A (s− 1).

The remaining part of Lemma 3.14 can be deduced from part (c) of Lemma
3.13 by noting that since ζA(s) can be meromorphically continued to the set U ,
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then ζA(s − 1) can be meromorphically continued to the set U + 1. Hence, by

Lemma 3.13(c), we have ζ
[N+1]
A×[0,1](s) ∼ ζ

[N ]
A (s − 1) in the sense of Definition 2.22,

and therefore,

Pc
(
ζ

[N+1]
A×[0,1]

)
= Pc

(
ζ

[N ]
A ( · − 1)

)
= Pc

(
ζ

[N ]
A

)
+ 1,

or, equivalently, dimPC(A× [0, 1]) = dimPC A+ 1. This completes the proof of the
lemma. �

Theorem 3.15. Let A be a bounded subset of RN and let m be a positive integer.
Then the following properties hold:

(a) The distance and tube zeta functions of A × [0, 1]m ⊂ RN+m are given,
respectively, by

(3.40) ζ
[N+m]
A×[0,1]m(s) =

m∑
k=0

(
m

k

)
ζ

[N+k]
A (s−m+ k)

and

(3.41) ζ̃
[N+m]
A×[0,1]m(s) =

m∑
k=0

(
m

k

)
ζ̃

[N+k]
A (s−m+ k),

for all s ∈ C with Re s > dimBA+m.

(b) If the distance zeta function ζA (or equivalently, the tube zeta function ζ̃A)
can be meromophically extended to a connected open set containing the critical line
{Re s = dimBA}, then

(3.42) ζ
[N+m]
A×[0,1]m(s) ∼ ζ [N ]

A (s−m), ζ̃
[N+m]
A×[0,1]m(s) ∼ ζ̃ [N ]

A (s−m)

and Pc(ζA×[0,1]m) = Pc(ζA) +m; that is,

(3.43) dimPC(A× [0, 1]m) = dimPC A+m.

In particular, if dimBA < N , then

(3.44)
D(ζ

[N+m]
A×[0,1]m) = D(ζ

[N ]
A ) +m = D(ζ̃

[N ]
A ) +m = D(ζ̃

[N+m]
A×[0,1]m)

= dimB(A× [0, 1]m) = dimBA+m.

Proof. (a) Let us first prove Equation (3.40). We do so by using mathematical
induction on m. The case where m = 1 has already been established in Lemma
3.14.

Now, let us assume that the claim holds for some fixed positive integer m ≥ 1.
From (3.30) we see that

ζ
[N+m+1]
A×[0,1]m+1(s) = ζ

[N+m]
A×[0,1]m(s− 1) + ζ

[(N+1)+m]
A×[0,1]m (s).
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Therefore,

ζ
[N+m+1]
A×[0,1]m+1(s) =

m∑
k=0

(
m

k

)
ζ

[N+k]
A (s− 1−m+ k) +

m∑
k=0

(
m

k

)
ζ̃

[N+1+k]
A (s−m+ k)

= ζ
[N ]
A (s−m− 1) +

m−1∑
k=0

(
m

k + 1

)
ζ

[N+k+1]
A (s−m+ k)

+

m−1∑
k=0

(
m

k

)
ζ

[N+1+k]
A (s−m+ k) + ζ

[N+1+m]
A (s)

=

m+1∑
k=0

(
m+ 1

k

)
ζ

[N+k]
A (s− (m+ 1) + k),

where in the last equality we have used the fact that
(
m
k

)
+
(
m
k+1

)
=
(
m+1
k+1

)
. This

completes the proof of Equation (3.40).
Equation (3.41) can be proved by mathematical induction in much the same way

as in the case of the distance zeta function. This completes the proof of part (a) of
the theorem.

(b) To prove that ζ
[N+m]
A×[0,1]m(s) ∼ ζ [N ]

A (s−m), it suffices to note that, by Equation

(3.40), the function

(3.45) ζ
[N+m]
A×[0,1]m(s)− ζ [N ]

A (s−m) =
m∑
k=1

(
m

k

)
ζ

[N+k]
A (s−m+ k) =: h(s)

has for abscissa of convergence D(h) = dimBA + (m − 1)} < dimBA + m =

D(ζ
[N ]
A ( · − m)), so that ζ

[N+m]
A×[0,1]m(s) ' ζ

[N ]
A (s − m). Using part (c) of Lemma

3.13, we deduce that ζ
[N+m]
A×[0,1]m(s) ∼ ζ

[N ]
A (s − m) in the sense of Definition 2.22,

which proves the first relation in (3.42) The second relation in (3.42) can be proved
along the same lines. This completes the proof of claim (b), as well as of the entire
theorem. �

Remark 3.16. The relations appearing in (3.42) can be written in a less precise
form as follows:

(3.46) ζA×[0,1]m(s) ∼ ζA(s−m) and ζ̃A×[0,1]m(s) ∼ ζ̃A(s−m).

We propose to call these two properties the shift properties of the distance and tube
zeta functions, respectively.

Example 3.17. Assume that C(m,a) is the generalized Cantor set introduced below
in Definition 4.1 below and d is a positive integer. Then, using (3.42) and (4.6)
below, we obtain that

ζC(m,a)×[0,1]d(s) ∼ 1

1−mas−d
.

Furthermore, from (3.43) we conclude that

(3.47) dimPC(C(m,a) × [0, 1]d) = (log1/am+ d) +
2π

logm
iZ.

Moreover, by noticing that ζC(m,a)×[0,1]d can be meromorphically extended to the

whole complex plane, we conclude from Equation (3.40) above and from the first
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part of Equation (4.7) below that the set of all complex dimensions of C(m,a)×[0, 1]d

is well defined in C and given by

(3.48) P(ζC(m,a)×[0,1]d) = {0, 1, . . . , d} ∪
d⋃
k=0

(
(log1/am+ k) +

2π

logm
iZ
)
.

The sets of the form C(m,a) × [0, 1]d (with m = 2, a = 1/3, d = 1) appear, for
example, in the study of the Smale horseshoe map; see, e.g., [Sma]. They also
appear in the study of the singularities of Sobolev functions and of weak solutions
of elliptic equations; see, e.g., [Žu1] and [HorŽu], where they are called the ‘Cantor
grills’.

Example 3.18. Similarly as in Example 3.17, sets of the form ∂Ω × [0, 1]N−1,
where Ω = Ωa is a geometric realization of a fractal string (for example, the so-
called a-string, Ω = ∪∞j=1((j + 1)−a, j−a)), where a > 0 and for which ∂Ω = {j−a :

j ≥ 1}∪{0} satisfies dimB∂Ω = 1/(a+1), are used in the study of fractal drums to
extend certain results from one to higher dimensions N ≥ 2; see [Lap1, Examples
5.1 and 5.1’]. The open set Ω× (0, 1)N−1, whose boundary is

(3.49) (∂Ω× [0, 1]N−1) ∪
(
[0, 1]× ∂((0, 1)N−1)

)
,

and where ∂
(
([0, 1]N−1

)
is taken in the space RN−1, is called a ‘fractal comb’ in

[Lap1–3]. (See also [LapRaŽu6].) The subset ∂
(
(0, 1)N−1

)
of RN−1 is an (N − 2)-

dimensional Lipschitz surface (which for N = 2 degenerates to a pair of points),
so that the box dimension of [0, 1]× ∂((0, 1)N−1) is equal to N − 1. Therefore, by
the property of ‘finite stability’ of the upper box dimension (see [Fal1]), we have
dimB(Ω×(0, 1)N−1) = max{dimB(∂Ω×[0, 1]N−1), N−1} = dimB(∂Ω×[0, 1]N−1) =
dimB∂Ω +N − 1.

Since, according to [Lap-vFr3, Theorem 6.21],

(3.50) P(ζ∂(Ωa)) = {ρ,−ρ,−2ρ,−3ρ, . . . },

where ρ := 1/(a+ 1), we deduce from Theorem 3.15 that

(3.51)
P(ζ∂(Ωa×(0,1)N−1)) = P(ζ∂(Ωa)×[0,1]N−1)

= {N − 1 + ρ,N − 1− ρ,N − 1− 2ρ,N − 1− 3ρ, . . . },

still with ρ = 1/(a+ 1). Furthermore, all of these complex dimensions are simple.

Remark 3.19. More precisely, it could be that beside ρ, which is always a (simple)
pole of ζ∂Ω, some of the numbers −nρ (n ≥ 1) appearing in (3.50) are not the
poles of ζ∂Ω (because the coresponding residue of ζ∂Ω happens to vanish, for some
arithmetic reason connected with the value of a). And, hence, similarly, in (3.51).

Note that if, in Example 3.18 just above, Ω = ΩCS is the Cantor string (i.e., the
complement of the classic ternary Cantor set in [0, 1]), then according to [Lap-vFr3,
Subsection 1.2.2, Equation (1.30)] and Equation (3.51), we have

(3.52) dimPC ∂(Ω× (0, 1)N−1) =
(
(N − 1) + log3 2

)
+

2π

log 3
iZ,

which is a special case of (3.47).
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4. Transcendentally n-quasiperiodic sets and their distance zeta
functions

The goal of this section is to describe a construction of some of the simplest
classes of quasiperiodic sets, a notion which we introduce in Definition 4.10 below.
The main result is obtained in Theorem 4.14. The construction will be carried out
by using a class of generalized Cantor sets depending on two auxiliary parameters.
We note that, as will be briefly discussed in Section 4.4 below, this construction and
its natural generalizations will play a key role in future developments of the present
higher-dimensional theory of complex dimensions of fractals; see [LapRaŽu1–7].

4.1. Generalized Cantor sets defined by two parameters. Let us introduce a
class of generalized Cantor sets C(m,a), depending on two parameters. As a special
case, we obtain the Cantor sets of the form C(a) := C(2,a) discussed in Example 3.4.
The classical ternary Cantor set C(1/3) corresponds to the case where m = 2 and
a = 1/3.

Definition 4.1. The generalized Cantor sets C(m,a) are determined by an integer
m ≥ 2 and a positive real number a such that ma < 1. In the first step of the
analog of Cantor’s construction, we start with m equidistant, closed intervals in
[0, 1] of length a, with m− 1 holes, each of length (1−ma)/(m− 1). In the second
step, we continue by scaling by the factor a each of the m intervals of length a; and
so on, ad infinitum. The (two-parameter) generalized Cantor set C(m,a) is defined
as the intersection of the decreasing sequence of compact sets constructed in this
way.

It can be shown that the generalized Cantor sets C(m,a) have the following prop-
erties, which extend the ones established for the sets C(a). Apart from the proof
of (4.5), which is easily obtained, the proof of the proposition is similar to that for
the standard Cantor set (see [Lap-vFr3, Equation (1.11)]), and therefore, we omit
it.

Proposition 4.2. If C(m,a) ⊆ R is the generalized Cantor set introduced in Defi-
nition 4.1, then

(4.1) D := dimB C
(m,a) = D(ζA) = log1/am.

Furthermore, the tube formula associated with C(m,a) is given by

(4.2) |C(m,a)
t | = t1−DG

(
log

1

t

)
for all t ∈ (0, 1−ma

2(m−1) ), where G = G(τ) is the following nonconstant, positive and

bounded periodic function, with minimal period equal to T = log(1/a), and defined
by

(4.3) G(τ) = cD−1(ma)g(
τ−c
T ) + 2 cDmg( τ−cT ).

Here, c = 1−ma
2(m−1) , and g : R→ R is the 1-periodic function defined by g(x) = 1− x

for x ∈ (0, 1].



32 MICHEL L. LAPIDUS, GORAN RADUNOVIĆ, AND DARKO ŽUBRINIĆ

Moreover, the lower and upper Minkowski contents of C(m,a) are respectively
given by

(4.4)

MD
∗ (C(m,a)) = minG =

1

D

(
2D

1−D

)1−D

,

M∗D(C(m,a)) = maxG =

(
1−ma

2(m− 1)

)D−1
m(1− a)

m− 1
.

Therefore, C(m,a) is Minkowski nondegenerate but is not Minkowski measurable.
Finally, if we assume that δ ≥ 1−ma

2(m−1) , then, the distance zeta function of A :=

C(m,a) is given by

(4.5) ζA(s) :=

∫ 1+δ

−δ
d(x,A)s−2dx =

(
1−ma

2(m− 1)

)s−1
1−ma

s(1−mas)
+

2δs

s
.

As a result, ζA(s) admits a meromorphic continuation to all of C, given by the last
expression in (4.5). In particular,

(4.6) ζA(s) ∼ 1

1−mas
,

and the set of poles of ζA (in C) and the residue of ζA at s = D are respectively
given by

(4.7)

P(ζA) = (D + piZ) ∪ {0},

res(ζA, D) =
1−ma
DT

(
1−ma

2(m− 1)

)D−1

,

where p := 2π/T is the oscillatory period of C(m,a) (in the sense of [Lap-vFr3]).
Finally, each pole in P(ζA) is simple.

Remark 4.3. The values of the upper and lower Minkowski contents of C(m,a)

have been obtained earlier in [Žu2, Equations (3.12) and (3.13)]. In the case of
the classical Cantor set, that is, for m = 2 and a = 1/3, we recover the values
first obtained in [LapPo2, Theorem 2.4]. (See also [Lap-vFr2–3, Chapter 11] for
further generalizations.) Finally, the tube formula (4.2) extends the one obtained
in [Lap-vFr3, Equation (1.11)].

Definition 4.4. According to the terminology introduced in [Lap-vFr3], the value
of p = 2π/ log(1/a), appearing in Proposition 4.2, is called the oscillatory period of
the generalized Cantor set A = C(m,a).

As we see from Equation (4.5) and from the equivalence in (4.6), the set of
all complex dimensions of the generalized Cantor set A = C(m,a) and the set of
principal complex dimensions of A are given, respectively, by

P(ζA) = (D + piZ) ∪ {0} Pc(ζA) = D + piZ.

4.2. Construction of transcendentally 2-quasiperiodic sets. In Example 4.5
below, we provide some basic ideas for further definitions and constructions. The
main result of this subsection is obtained in Theorem 4.11.

Example 4.5. Let us define two generalized Cantor sets A = C(a) := C(2,a) ⊂
[0, 1], a ∈ (0, 1/2), and B = C(3,b) ⊂ [2, 3], where b ∈ (0, 1/3). We choose b so that
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D := log1/a 2 = log1/b 3. We may take, for example, a = 1/3 and b = 3− log2 3.

Note that we then have 3b = 31−log2 3 < 1. Also, we have

|At| = t1−DG1(log tt−1), |Bt| = t1−DG2(log tt−1).

The functions G1 and G2 corresponding to A and B are T and S-periodic, respec-
tively, with T = log(1/a) = log 3 and S = log(1/b). Furthermore, the quotient
T/S = log 3/ log(1/b) = log3 2 is transcendental, which is a well-known result going
back to F. von Lindemann and K. Weierstrass; see [Ba, p. 4].

For our later needs, it will be convenient to introduce the following definition,
which partly follows [Vin].

Definition 4.6. We say that a function G = G(τ) : R → R is transcendentally
n-quasiperiodic if it is of the form G(τ) = H(τ, . . . , τ), where H : Rn → R is
a function which is nonconstant and Tk-periodic in its k-th component, for each
k = 1, . . . , n, and the periods T1, . . . , Tn are algebraically independent (that is,
linearly independent over the field of algebraic real numbers). The values of Ti are
called the quasiperiods of G. The least positive integer n for which this definition
is valid is called the order of quasiperiodicity of G.

Remark 4.7. It is possible to define analogously a class of algebraically n-quasiperiodic
functions, but we do not study them here; see [LapRaŽu1].

Example 4.8. If G(τ) = G1(τ) +G2(τ), where the functions Gi are nonconstant
and Ti-periodic (for i = 1, 2), such that T1/T2 is transcendental, then G is tran-
scendentally 2-quasiperiodic (in the sense of Definition 4.6). In this case and in the
notation of Definition 4.6, we have H(τ1, τ2) = G1(τ1) +G2(τ2).

In the sequel, we shall need a classic result due to Gel’fond and Schneider (see
[Gel]), proved independently by these two authors in 1934. We state it in a form
that will be convenient for our purposes.

Theorem 4.9 (Gel’fond–Schneider, [Gel]). Let m be a positive algebraic number
different from one, and let x be an irrational algebraic number. Then mx is tran-
scendental.

Definition 4.10. Given a bounded subset A ⊂ RN , we say that a function G :
R → R is associated with the set A (or corresponds to A) if A has the following
tube formula:

(4.8) |At| = tN−D(G(log(1/t)) + o(1)) as t→ 0+,

where 0 < lim infτ→∞G(τ) ≤ lim supτ→∞G(τ) < ∞. Note that it then follows
that dimB A exists and is equal to D.

In addition, we say that A is a transcendentally n-quasiperiodic set if the corre-
sponding function G = G(τ) is transcendentally n-quasiperiodic.

Generalizing the idea of Example 4.5 above, we obtain the following result.

Theorem 4.11. Let A1 = C(m1,a1) ⊂ [0, 1] and A2 = C(m2,a2) ⊂ [2, 3] be two
generalized Cantor sets (see Definition 4.1 ) such that their box dimensions coincide,
with the common value D ∈ (0, 1). Let {p1, p2, . . . , pk} be the set of all distinct
prime factors of m1 and m2, and write

(4.9) m1 = pα1
1 pα2

2 . . . pαkk , m2 = pβ1

1 pβ2

2 . . . pβkk ,
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where αi, βi ∈ N ∪ {0} for i = 1, . . . , k. If the exponent vectors

(4.10) (α1, α2, . . . , αk) and (β1, β2, . . . , βk),

corresponding to m1 and m2, are linearly independent over the rationals, then
the function G = G1 + G2, associated with A = A1 ∪ A2, is transcendentally
2-quasiperiodic; that is, the quotient T1/T2 of the quasiperiods of G (i.e., of the
periods of G1 and G2) is transcendental.

Moreover, we have that

ζA(s) ∼ 1

1−m1as1
+

1

1−m2as2
, D(ζA) = D, Dmer(ζA) = −∞,

and hence, the set dimPC A = Pc(ζA) of principal complex dimensions of A coin-
cides with the following nonarithmetic set:

dimPC A = D +
(2π

T1
Z ∪ 2π

T2
Z
)
i.

Besides (dimPC A)∪ {0}, there are no other poles of the distance zeta function ζA.
In other words, P(ζA) = Pc(ζA)∪{0}. Furthermore, all of the complex dimensions
are simple.

Finally, exactly the same results hold for the tube zeta function ζ̃A (instead of ζA).

Proof. First of all, using (4.2), applied to both A1 and A2, we conclude that for all
t ∈ (0, 1/2),

|(A1 ∪A2)t| = t1−D (G1(log 1/T ) +G2(log 1/t)) .

It thus suffices to show that the quotient T1/T2 of the quasiperiods T1 and T2 of
the function G(τ) := G1(τ) +G2(τ) is transcendental.

From D = log1/a1
m1 = log1/a2

m2 and Ti = logmi, i = 1, 2, we deduce that x :=

T1/T2 satisfies the equation (m2)x = m1. The exponent x cannot be an irrational
algebraic number, since otherwise, by the Gel’fond-Schneider theorem (Theorem
4.9), (m2)x would be transcendental. If x were rational, say, x = b/a, with a, b ∈ N
(note that x > 0, since m1 ≥ 2), this would then imply that (m1)a = (m2)b; that
is,

paα1
1 paα2

2 . . . paαkk = pbβ1

1 pbβ2

2 . . . pbβkk .

Therefore, using the fundamental theorem of arithmetic, we would have

a(α1, α2, . . . , αk) = b(β1, β2, . . . , βk).

However, this is impossible due to the assumption of linear independence over the
rationals of the above exponent vectors. Consequently, x is transcendental.

The claims about the zeta function ζA1∪A2 follow from Proposition 4.2 applied
to both A1 and A2. Indeed, since A1 and A2 are subsets of two disjoint compact
intervals, then ζA(s) ∼ ζA1

(s) + ζA2
(s), and on the other hand, ζA1

(s) + ζA2
(s) ∼

(1−m1a
s
1)−1 + (1−m2a

s
2)−1. This completes the proof of the theorem. �

Remark 4.12. Theorem 4.11 provides a construction of the set A = A1 ∪ A2, such
that the set dimPC A := Pc(ζA) of principal complex dimensions of A is equal to the
union of two (discrete) sets of complex dimensions, each of them composed of poles
in infinite vertical arithmetic progressions, but with algebraically incommensurable
oscillatory quasiperiods p1 = 2π/T1 and p2 = 2π/T2 of A1 and A2, respectively;
that is, such that p1/p2 is transcendental. These oscillatory quasiperiods of A are
equal to the oscillatory periods of A1 and A2, respectively.
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4.3. Transcendentally n-quasiperiodic sets and Baker’s theorem. The main
result of this subsection is stated in Theorem 4.14 below, which extends Theo-
rem 4.11 to any integer n ≥ 2 and also provides further helpful information. In the
sequel, we shall need the following important theorem from transcendental number
theory, due to Baker [Ba, Theorem 2.1]. It represents a nontrivial extension of
Theorem 4.9, due to Gel’fond and Schneider [Gel]. Recall that an algebraic num-
ber is a complex root of a polynomial with integer coefficients and that the field of
algebraic numbers is isomorphic to the algebraic closure of Q, the field of rational
numbers.

Theorem 4.13 (Baker, [Ba, Theorem 2.1]). Let n ∈ N with n ≥ 2. If m1, . . . ,mn

are positive algebraic numbers such that logm1, . . . , logmn are linearly independent
over the rationals, then

1, logm1, . . . , logmn

are linearly independent over the field of all algebraic numbers.

We now state the main result of this section, which can be considered as a fractal
set-theoretic interpretation of Baker’s theorem. It extends Theorem 4.11 even in
the case where n = 2.

Theorem 4.14. Let n ∈ N with n ≥ 2. Assume that Ai = C(mi,ai), i = 1, . . . , n,
are generalized Cantor sets (in the sense of Definition 4.1) such that their box
dimensions are all equal to a fixed number D ∈ (0, 1). Assume that there is a
disjoint family of closed unit intervals I1, . . . , In on the real line, such that Ai ⊂ Ii
for each j = 1, . . . , n. Let Ti := log(1/ai) be the associated periods, and Gi be the
corresponding (nonconstant) Ti-periodic functions, for i = 1, . . . , n. Let {pj : j =
1, . . . , k} be the union of all distinct prime factors which appear in the integers mi,
for i = 1, . . . , n; that is, mi = pαi11 . . . pαikk , where αij ∈ N ∪ {0}.

If the exponent vectors ei of the numbers mi,

(4.11) ei := (αi1, . . . , αik), i = 1, . . . , n,

are linearly independent over the rationals, then the numbers

(4.12)
1

D
,T1, . . . , Tn

are linearly independent over the field of all algebraic numbers. In particular, the
set A := A1 ∪ · · · ∪An ⊂ R is transcendentally n-quasiperiodic; see Definition 4.10.
Furthermore, in the notation of Definition 4.10, an associated function G is given
by G := G1 + · · ·+Gn.

Moreover, we have that

ζA(s) ∼
n∑
i=1

1

1−miasi
, D(ζA) = D, Dmer(ζA) = −∞,

and hence, the set dimPC A = Pc(ζA) of principal complex dimensions of A consists
of simple poles and coincides with the following nonarithmetic set:

dimPC A = D +
( n⋃
i=1

2π

Ti
Z
)
i.

Besides (dimPC A)∪ {0}, there are no other poles of the distance zeta function ζA.
That is, P(A) = Pc(A) ∪ {0}. Furthermore, all of these complex dimensions are
simple.
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Finally, exactly the same results hold for the tube zeta function ζ̃A (instead of
ζA).

Proof. As in the proof of Theorem 4.11, using (4.2), applied to each Ai, for i =
1, . . . , n, we see that for all t > 0 small enough,

|At| = t1−D
n∑
i=1

Gi

(
log

1

t

)
,

and for each i = 1, . . . , n, Gi = Gi(τ) is Ti-periodic, where Ti := log 1/ai. We next
proceed in three steps:

Step 1: It is easy to check that the numbers log pj (for j = 1, . . . , n) are rationally

independent. Indeed, if we had
∑k
j=1 λj log pj = 0 for some integers λj , then∏k

j=1 p
λj
j = 1. This implies that λj = 0 for all j, since otherwise it would contradict

the fundamental theorem of arithmetic.

Step 2: Let us show that logm1, . . . , logmn are linearly independent over the ra-
tionals. Indeed, assume that for i = 1, . . . , n, µi ∈ Q are such that

∑n
i=1 µi logmi =

0. Then

(4.13)
n∑
i=1

µi

k∑
j=1

αij log pj = 0.

Changing the order of summation, we have

(4.14)
k∑
j=1

(
n∑
i=1

µiαij

)
log pj = 0.

Since, by Step 1, the numbers log pj are rationally independent, we have that for
all j = 1, . . . , k,

n∑
i=1

µiαij = 0;

that is,
∑n
i=1 µiei = 0, where the ei’s are the exponent vectors given by (4.11).

According to the hypotheses of the theorem, the exponent vectors ei are rationally
independent, and we therefore conclude that µi = 0 for all i = 1, . . . , n, as desired.

Step 3: Using [Ba, Theorem 2.1], that is, Theorem 4.13 above, we conclude that
1, logm1, . . . , logmn are linearly independent over the field of algebraic numbers.
Since Ti = 1

D logmi, for i = 1, . . . , n, it then follows that the numbers listed in
(4.12) are also linearly independent over the field of algebraic numbers. Therefore,
the function

G := G1 + · · ·+Gn, G(τ) = G1(τ) + · · ·+Gn(τ),

associated with A, is transcendentally n-quasiperiodic; that is, the set A is transcen-
dentally n-quasiperiodic. Note that here, H(τ1, . . . , τn) := G1(τ1) + · · · + Gn(τn),
in the notation of Definition 4.6.

The last claim, about the distance zeta function ζA and its complex dimensions,
now follows from Proposition 4.2 applied to each of the bounded sets Ai (i =
1, . . . , n). This concludes the proof of the theorem. �
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Remark 4.15. In Theorem 4.14, we have constructed a class of bounded subsets
of the real line possessing an arbitrary prescribed finite number of algebraically
incommensurable quasiperiods. As will be further discussed in Section 4.4, this
result will be extended in [LapRaŽu1,4], where we shall construct a bounded subset
A0 of the real line which is transcendentally∞-quasiperiodic set; that is, A0 contains
infinitely many algebraically incommensurable quasiperiods.

In the following proposition, by a quasiperiodic set we mean a set which has one of
the following types of quasiperiodicity: it is either n-transcendentally quasiperiodic
(see Definition 4.10), or n-algebraically quasiperiodic (see Remark 4.7), for some
n ∈ {2, 3, . . . } ∪ {∞} (the case when n = ∞ is treated in [LapRaŽu1]). We
adopt a similar convention for the quasiperiodic functions G = G(τ) appearing in
Definition 4.6.

Proposition 4.16. Assume that A is a quasiperiodic set in RN of a given type,
with an associated quasiperiodic function G = G(τ). If m is a positive integer and
L > 0, then the subset A× [0, L]m of RN+m is also quasiperiodic of the same type,
with the associated quasiperiodic function equal to Lm ·G. In particular, if n ≥ 2 is
an integer and A is the n-quasiperiodic subset of R constructed in Theorem 4.14,
then the subset A× [0, L]m of R1+m is also n-quasiperiodic.

Proof. Let us first prove the claim for m = 1. By assumption, we have that

(4.15) |At|N = tN−D(G(1/t) + o(1)) as t→ 0+,

where G = G(τ) is a quasiperiodic function; see Equation (4.8). Much as in Equa-
tion (3.35), we can write

(4.16)
|(A× [0, L])t|N+1 = |At|N · L+ |At|N+1

= t(N+1)−(D+1)(L ·G(1/t) + o(1)) + |At|N+1

as t→ 0+. Since, obviously, |At|N+1 ≤ |At|N · t, we have that

(4.17)
|At|N+1 ≤ tN+1−D(G(1/t) + o(1)) = t(N+1)−(D+1) · t(G(1/t) + o(1))

= t(N+1)−(D+1) ·O(t) as t→ 0+.

Therefore,

(4.18)
|(A× [0, L])t|N+1 = t(N+1)−(D+1)(L ·G(1/t) + o(1) +O(t))

= t(N+1)−(D+1)(L ·G(1/t) + o(1)) as t→ 0+.

Hence, by Definition 4.10, the set A × [0, L] is quasiperiodic, with the associated
quasiperiodic function L ·G. This completes the proof of the proposition for m = 1.
The general case is easily obtained by induction on m. �

4.4. Future applications and extensions: ∞-quasiperiodic sets, hyperfrac-
tals, and the notion of fractality. The results of Section 4 and their various
generalizations (and, especially, the construction of n-quasiperiodic sets carried out
in Section 4.3 above, once it has been extended to the case where n =∞) will play
a key role in the later applications of the higher-dimensional theory of complex
dimensions developed in the present paper and in [LapRaŽu1–7]. This will be so,
in particular, in relation to the construction of (transcendentally)∞-quasiperiodic,
maximally hyperfractal sets (for which the associated fractal zeta functions have
a natural boundary along the critical line {Re s = dimBA}) and, in fact, have a
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singularity at every point of that line). (See [LapRaŽu2–3], along with [LapRaŽu1,
Section 4.6].) Such sets are as “fractal” as possible since, in some sense, they have
a continuum of nonreal “complex dimensions” (interpreted here as singularities of
the fractal zeta functions attached to A), in striking contrast with the more usual
case where the fractal zeta functions can be meromorphically extended to an open
connected neighborhood of the critical line {Re s = dimBA} and therefore have at
most countably nonreal complex dimensions.

Recall that following [Lap-vFr3, Sections 12.1 and 13.4] (naturally extended to
higher dimensions within the framework of our new theory), a bounded subset A
of RN is said to be “fractal” if its associated fractal zeta function (here, ζA or

ζ̃A) has a nonreal complex dimension or else, if it has a natural boundary along a
suitable curve (a screen S, in the sense of [Lap-vFr1–3] and of Section 2.4 above);

that is, the tube zeta function ζ̃A (or, equivalently, the distance zeta function ζA if
dimBA < N) cannot be meromorphically extended beyond S.

We close these comments by noting that throughout Section 4, we have worked
with bounded subsets of the real line, R. However, using the results of Section 3.4
(especially, Theorem 3.15), one can easily obtain corresponding constructions of
transcendentally ∞-quasiperiodic compact sets A in RN (for any N ≥ 1), with
dimBA ∈ (N−1, N). (See also Proposition 4.16 at the end of Section 4.3.) Likewise,
using Theorem 3.15, one can construct ∞-quasiperiodic maximally hyperfractal
compact subsets A of RN (for any N ≥ 1) such that dimBA ∈ (N−1, N). (Actually,
by considering the Cartesian product of the original subset of R by [0, 1]m, with
0 ≤ m ≤ N − 1, one may assume that dimBA ∈ (m,N); the same comment can be
made about all of the results obtained in Section 4.) Such a construction can also
be extended to the more general setting of relative fractal drums (in the sense of
[LapRaŽu3]); see [LapRaŽu1–7].

Finally, these results can also be applied in a key manner in order to establish the
optimality of certain inequalities associated with the meromorphic continuations of
the spectral zeta functions of (relative) fractal drums (see [LapRaŽu1, Section 4.3]
and [LapRaŽu6, Section 6]).

Appendix A: Equivalence relation and extended Dirichlet-type
integrals

One problem with the notion of “equivalence” provided in Definition 2.22 of
Section 2.4 is that, strictly speaking, it is not an equivalence relation because,
a priori, f and g do not belong to the same class of functions. (Indeed, f is a
Dirichlet-type integral, abbreviated DTI in the sequel, while g is merely assumed
to be meromorphic; in particular, the abscissa of convergence of g need not be well
defined.) The situation is very analogous, in spirit, to the evaluation of the “leading
part” (g = g(s), in the present case) of a function (f = f(s), here) in the theory of
asymptotic expansions. In that situation, the “leading part” g belongs to a scale
of typical functions (describing the possible asymptotic behaviors of the function f
in the given asymptotic limit).

In our present situation, just as in the theory of asymptotic expansions, formally,
the relation ∼ is both reflexive and (when it makes sense) transitive. Of course, it
is also symmetric when it acts on the same class of functions (for example, DTIs).

However, it is also possible to modify both the definition of ∼ and the class of
functions on which it acts so that it becomes a true equivalence relation on a single
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space of functions, namely, the class of extended DTIs. The latter class of (tamed)
extended DTIs contains the class of (tamed) DTIs (hence, all of the functions f we
wanted to work with in Definition 2.22) and it also contains (essentially) all of the
functions g occurring in practice (when applying Definition 2.22).

By definition, given r ∈ (0, 1), a DTI of base r is a function of the form

(A.1) g(s) = ζE,ϕ,µ(r−s),

where f(s) := ζE,ϕ,µ(s) is a (standard) DTI defined by

(A.2) ζE,ϕ,µ(s) :=

∫
E

ϕ(x)sdµ(x).

(See also Definition 2.12.) It is then easy to check (using the analogous result
for ordinary DTIs) that if g is tamed (i.e., if f is tamed), then the abscissa of
convergence D(g) of g and the half-plane of convergence Π(g) := {Re s > D(g)}
are not well defined. Indeed, note that

ϕ(x)r
s

= ϕ(x)r
Re s(cos((log r) Im s)+i sin((log r) Im s),

so that the open set V of complex numbers s for which ϕ(x)r
s

is Lebesgue integrable
on E (typically) consists of countably many connected components, and, hence,
does not have the form of a half-plane. The indicated open set V is analyzed in
[LapRaŽu1, Appendix A, Section A.4].

Definition A.1. An extended Dirichlet-type integral (an extended DTI or EDTI,
in short) h = h(s) is either of the form

(A.3) h(s) := ρ(s)ζE,ϕ,µ(s)

or of the form

(A.4) h(s) := ρ(s)ζE,ϕ,µ(r−s), for some r ∈ (0, 1),

where ρ = ρ(s) is a nowhere vanishing entire function and ζE,ϕ,µ = ζE,ϕ,µ(s) is
a DTI. More generally, ρ can be a holomorphic function which does not have any
zeros in the given domain U ⊆ C under consideration, where U contains the closed
half-plane {Re s > D(ζE,ϕµ)}.

If the extended DTI is of the form (A.3), it is said to be of type I, and if it is of
the form (A.4), it is said to be of type II (or of type IIr if one wants to keep track
of the underlying base r). Note that EDTIs of type I include all ordinary DTIs as
a special case (by taking ρ ≡ 1).

Let us denote by f(s) := ζE,ϕ,µ(s) the (standard) DTI and by g(s) := ζE,ϕ,µ(r−s)
the DTI of base r occurring in (A.4). Then, by definition (and in accordance with
Definition A.1), if h is of the form (A.3), its abscissa of convergence D(h) is given by
D(h) := D(f), while if h is of the form (A.4), then D(h) = +∞, that is, Π(h) = ∅.

If the DTI f(s) := ζE,ϕ,µ is tamed, then the extended DTI h from Definition
A.1 (either in (A.3) or in (A.4)) is said to be tamed.

Finally, given any tamed extended DTI of type I, h = h(s) (as in the first part
of Definition A.1), we call

(A.5) Π(h) := {Re s > D(h)}
the half-plane of convergence of h (which is maximal, in an obvious sense), and
(assuming that D(h) ∈ R) we call {Re s = D(h)} the critical line of h. (The
tameness condition enables us to show that this half-plane exists and is indeed,



40 MICHEL L. LAPIDUS, GORAN RADUNOVIĆ, AND DARKO ŽUBRINIĆ

maximal.) Using a classic theorem about the holomorphicity of integrals depending
on a parameter, one can show that h is holomorphic on Π(h). Hence, Dhol(h) ≤
D(h).

Here, much as in Definition 2.12, D(h) and Dhol(h) denote, respectively, the
abscissa of (absolute) convergence and the abscissa of holomorphic continuation
of h. Furthermore, if h is given by (A.3) above, we set D(h) = D(ζE,ϕ,µ) and
Dhol(h) = Dhol(ζE,ϕ,µ), where D(ζE,ϕ,µ) and Dhol(ζE,ϕ,µ) are defined in Definition
2.12.

Moreover, if h = h(s) admits a meromorphic continuation to an open connected
set U containing the closed half-plane {Re s ≥ D(h)}, we denote (much as was
done in Definition 2.18 for the special case of DTIs) by Pc(h) the set of principal
complex dimensions of h; that is, the set of poles of h (in U) located on the critical
line {Re s = D(h)} of h:

(A.6) Pc(h) := {ω ∈ U : ω is a pole of h and Reω = D(h)}.

Clearly, Pc(h) does not depend on the choice of the domain U satisfying the above
condition.

We define similarly P(h) = P(h, U), the set of (visible) complex dimensions of
h, relative to U :

(A.7) P(h) := {ω ∈ U : ω is a pole of h}.

Clearly, since h is of type I (i.e., is given as in (A.3)), then Pc(h) = Pc(f) and

P(h) = P(f), where f(s) := ζE,ϕ,µ(s).

We can now modify as follows the definition of the “equivalence relation” pro-
vided in Definition 2.22 of Section 2.4.

Definition A.2. Let h1 and h2 be arbitrary tamed, extended DTIs of type I (as
in Definition A.1) such that D(h1) = D(h2) =: D, with D ∈ R. Assume that each
of h1 and h2 admits a (necessarily unique) meromorphic continuation to an open
connected neighborhood U of the closed half-plane {Re s ≥ D}. Then the functions
h1 and h2 are said to be equivalent, and we write h1 ∼ h2, if the sets of poles of
h1 and h2 on their common vertical line {Re s = D} (and the corresponding poles
have the same multiplicities): Pc(h1) = Pc(h2) (where the equality holds between
multisets).

We conclude this appendix by providing a class of tamed extended DTIs which
can be used to determine the “leading behavior” of most of the fractal zeta functions
used in the present theory.

Theorem A.3. Let P ∈ C[x] be a polynomial with complex coefficients. Then
f(s) := 1/P (s) is a tamed DTI of type I.

More specifically, if degP = n ≥ 1, then

(A.8) f(s) :=
1

P (s)
= ζE,ϕ,µ(s),

where E := [1,+∞)n, ϕ(x) = (x1 · · ·xn)−1 for all x ∈ E, and

(A.9) µ(dx1, . . . ,dxn) := c xa1
1

dx1

x1
. . . xann

dxn
xn

,
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so that its total variation measure |µ| (in the sense of local measures) is given by

|µ|(dx1, . . . ,dxn) := c xRe a1
1

dx1

x1
. . . xRe an

n

dxn
xn

,

where c := 1
n!P

(n)(0) and a1, . . . , an are the zeros of P = P (s) (counted according
to their multiplicities, so that P (s) = cΠn

m=1(s− am)).
Moreover, D(f) = D(ζE,ϕ,µ) ≤ max{Re a1, . . . ,Re an}.

Remark 4.17. If, in Theorem A.3, we assume that degP = 0, i.e., if P is constant,
say P ≡ 1, then clearly, f(s) = 1/P (s) = 1 = ζE,ϕ,µ(s), where E := [1,+∞),
ϕ(t) := 1 for all x ∈ E, and µ = δ1 (the Dirac measure concentrated at 1). In
particular, f is also tamed in this case.

Theorem A.3 is a consequence of the following two facts:

(i) If fa(s) := 1/(s−a), where a ∈ C is arbitrary, then f is a tamed DTI of type
I, given by

(A.10) f(s) :=
1

s− a
= ζE,ϕa,µa(s),

where E := [1,+∞), ϕa(x) := x−1 for all x ∈ E, and

(A.11) µa(dx) := xa
dx

x
;

so that |µa|(dx) := xRe adx/x. Furthermore, D(fa) = Re a. Note that fa :=
ζE,ϕa,µa is obviously tamed because ϕa(x) ≤ 1 for all x ≥ 1. An entirely analogous
comment can be made about f = ζE,ϕ,µ in the theorem.

(ii) The tensor product of two tamed DTIs is tamed. More specifically, if the
DTIs ζE,ϕ,µ and ζF,ψ,η are tamed, then their tensor product is given by the following
tamed DTI:

(A.12) h(s) := (ζE,ϕ,µ ⊗ ζF,ψ,η)(s) = ζE×F,ϕ⊗ψ,µ⊗η(s),

where the tensor product ϕ⊗ψ is defined by (ϕ⊗ψ)(x, y) := ϕ(x)ψ(y) for (x, y) ∈
E × F and the tensor product µ ⊗ η is the product measure of µ and η (see, e.g.,
[Coh]). It is easy to check that the DTI h is tamed because (since ζE,ϕ,µ and ζF,ψ,η
are tamed), we have 0 ≤ ϕ(x) ≤ C(ϕ) |µ|-a.e. on E and 0 ≤ ψ(x) ≤ C(ψ) |η|-a.e.
on F , so that 0 ≤ (ϕ⊗ ψ)(x, y) ≤ C(ϕ)C(ψ) |(µ⊗ η)|-a.e. on E × F .

Furthermore, D(h) ≤ max{D(ζE,ϕ,µ), D(ζF,ψ,η)}.
Statement (i) above follows from a direct computation, while statement (ii) is

proved by an application of the Fubini–Tonelli theorem (for iterated integrals with
respect to positive measures) combined with the inequality (between local positive
measures) |µ⊗η| ≤ |µ|⊗|η|, followed by an application of the classic Fubini theorem
(for iterated integrals with respect to possibly signed or complex measures).

Corollary A.4. The meromorphic function (on all of C) given by

(A.13) h2(s) :=
ρ(s)

P (r−s)
,

where r ∈ (0, 1), P ∈ C[x] is an arbitrary polynomial with complex coefficients and
ρ is a nowhere vanishing entire function, is a tamed extended DTI of type II.
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More specifically, h2(s) = ρ(s)ζE,ϕ,µ(r−s), where E, ϕ and µ are given in The-
orem A.3 above.

As was alluded to earlier, in practice, when we apply the (modified) definition
of the equivalence relation (see Definition A.2 above),

(A.14) h1 ∼ h2

the meromorphic function h1 is a fractal zeta function (an ordinary DTI of type I),
as well as the function h2 (which gives the “leading behavior” of h1, to mimick
the terminology of the theory of asymptotic expansions). Hence, the importance of
Theorem A.3 in the theory developed in the present paper as well as in its sequels
[LapRaŽu2–3], the survey article [LapRaŽu6], and the monograph [LapRaŽu1].
(See, however, Definition A.6 below and the comments surrounding it.)

We refer the interested reader to [LapRaŽu1, Appendix A] for more details about
the topics discussed in the present appendix, along with detailed proofs of the main
results.

Remark A.5. The two definitions of the notion of equivalence ∼ provided in Def-
inition 2.22 and Definition A.2 are compatible in the sense that if, in Definition
2.22, we assume that f (denoted by h1 in Definition A.2) is a DTI (as is the case
in Definition 2.22), the meromorphic function g is an extended DTI, then f ∼ g in
the sense of Definition A.2. Note that the functions f and g of Definition 2.22 are
denoted by h1 and h2 in Definition A.2. (In particular, D(g) and Pc(g) are well
defined, D(f) = D(g) and Pc(f) = Pc(g).) The converse statement clearly holds
as well.

Finally, it is possible, even likely, that in future applications of the current theory
of fractal zeta functions developed in this paper and in [LapRaŽu1–7], we will need
to deal with functions g which are no longer extended DTIs (of type I), but are
meromorphic functions of a suitable kind. In that case, we propose to use the
following definition, which is a suitable modification of Definition 2.22 and seems
well suited to various applications. Strictly speaking, it no longer gives rise to an
equivalence relation (since f and g belong to different classes of functions) but in

this new sense, the statement f
asym∼ g captures appropriately the idea that “f is

asymptotic to g”.

Definition A.6. Let f be a tamed EDTI and let g be a meromorphic function,
both defined and meromorphic on an open and connected subset U of C containing
the closed right half-plane {Re s ≥ D(f)}. Then, the function f is said to be

asymptotically equivalent to g, and we write f
asym∼ g, if D(f) = Dhol(g) (and

this common value is a real number), and the poles of f and g located on the
convergence critical line {Re s > D(f)} of f (which, by assumption, is also the
holomorphy critical line of g) coincide (and have the same multiplicities).

More succinctly, and with the obvious notation (compare with Equation (2.34)
in Definition 2.22 above), we have

(A.15) f
asym∼ g

def.⇐⇒ D(f) = Dhol(g) (∈ R) and Pc(f) = Pc,hol(g).

More specifically, we let

Pc,hol(g) := {ω ∈ U : ω is a pole of g and Reω = Dhol(g)}.



Furthermore, much as in Definition 2.22, D(f) and Dhol(g) are viewed as multisets
in Equation (A.15).

Remark A.7. Observe that even if g is assumed to be a tamed EDTI, Definition
A.6 may differ from its counterpart used in the rest of this appendix (Definition
A.2) or, in particular, in Definition 2.22. Indeed, there are examples of tamed DTIs
g for which Dhol(g) < D(g). Therefore, strictly speaking, Definition A.6 does not
extend Definition 2.22 (or Definition A.2). However, it is stated in the same spirit
and seems to often be what is needed, in practice.

References

[Ba] A. Baker, Transcendental Number Theory, Cambridge University Press, Cambridge,

1975.

[BesTay] A. S. Besicovitch and S. J. Taylor, On the complementary intervals of a linear closed
set of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449–459.

[Coh] D. L. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
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plex dimensions of relative fractal drums, J. Fixed Point Theory and Appl. No. 2,

15 (2014), 321-378. Festschrift issue in honor of Haim Brezis’ 70th birthday. (DOI

10.1007/s11784-014-0207-y.) (Also: e-print, arXiv:1407.8094v3 [math-ph], 2014.)
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