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CUTKOSKY RULES AND OUTER SPACE

SPENCER BLOCH AND DIRK KREIMER

Abstract. We derive Cutkosky’s theorem starting from Pham’s
classical work. We emphasize structural relations to Outer Space.

1. Introduction and results

1.1. Introduction. Over the last 50 years, a technique developed by
Landau, Cutkosky, and others has been used to study the variation
of Feynman amplitudes as external momenta wind around threshold
divisors (discriminants). One chooses a subset of edges of the graph and
particular values of the external momenta such that the intersection
of the subset of propagator quadrics has an isolated ordinary double
point. The presence of such a singularity means that a threshold divisor
passes through the given point in external momentum space. Cutkosky
rules say the variation of the Feynman amplitude as external momenta
wind around the threshold divisor is given (upto a power of 2πi) by
putting the subset propagators on shell and integrating over the locus
where the energies are ≥ 0. Techniques developed by Pham [1] can be
used to give a rigorous mathematical justification for Cutkosky rules,
but curiously, to our knowledge this has never been done. There is
a subtlety which is that the mathematical theory of vanishing cycles
is usually treated geometrically as a theory describing monodromy for
families of complex algebraic varieties.

For physicists, however, existence of vanishing cycles and the Picard-
Lefschetz formula is not sufficient. One needs to know that the vanish-
ing cycle (or more precisely the vanishing sphere in the sense of Pham)
is the component of the real locus of the intersection of the quadrics
being cut determined by the on-shell condition. This reality condition
can be reinterpreted as saying that a Hessian matrix at the singular
point is (either positive or negative) definite.

We will embed the study of Cutkosky rules in a study of graphs and
their cubical chain complex. The motivation comes from the fact that
understanding of the analytic structure of the contribution of a graph

DK thanks the Alexander von Humboldt Foundation and the BMBF for support
by an Alexander von Humboldt Professorship.
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to a Feynman amplitude is related to an analysis of its reduced graphs
and the graphs in which internal edges are on the mass-shell. The
former case relates to graphs in which internal edges shrink. The latter
case relates to graphs with cut edges. The set of cut edges is uniquely
determined by the choice of a spanning forest for the graph.

Such pairs of graphs and their spanning forests populate the cubical
chain complex. The latter is based on a given bridge-free graph Γ and
a chosen spanning tree T for it.

A given ordering of the edges of T defines then a sequence of spanning
forests F , and to any pair (Γ, F ) for fixed Γ we can associate:
-a reduced graph ΓF obtained by shrinking all edges of Γ to length zero
which do not connect different components of the spanning forest,
-a cut graph ΓF where all those edges connecting different components
are put on-shell, so are marked by a Cutkosky cut,
-the set of graphs GF = Γ − EΓF

obtained from Γ by removing the
edges which connect distinct components of the spanning tree.

Such data define a cell-complex and also a set of lower triangular
matrices which allow to analyse a graph amplitude from its reduced
graphs and the variations obtained by putting internal edges on-shell.

The combined data stored in all such matrices contains sufficient
information to reconstruct the graph from its variations then through
a sequence of dispersion integrals based on the variations as defined by
the Cutkosky rules.

This is made possible as the above sequence of forests allows an iter-
ative analysis of anomalous thresholds, based on the real analyticity of
Feynman rules. This is an iterated application of the optical theorem
and dispersion using real analyticity with respect to a single kinemat-
ical variable defined for each F . We will exhibit this in a final section
where we discuss an example from physics.

1.2. Results. Our first result is Cutkosky’s theorem. It suffices to
derive it in the case that the disjoint components of GF do not contain
loops.

We also provide an edge-by-edge analysis of a graph using properties
of the parametric representation for Feynman diagrams.

When we combine Cutkosky’s theorem with straightforward prop-
erties of graph polynomials, we arrive at a method to analyse mon-
odromies related to amplitudes multiple-edge by multiple-edge.

A sequence of cuts

ǫ2 → ǫ3 → · · · → ǫvΓ
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will shift the normal threshold s0(ǫ2) associated with a chosen cut ǫ2
to anomalous thresholds

s0(ǫ2) → s1(ǫ3) → · · · → svΓ−2(ǫvΓ).

Remark 1. The resulting sequence of anomalous thresholds si(ǫi+2),
i > 0 is a sequence of values for a channel variable s defined by ǫ2.
They are computed from the divisors associated to ǫi+2. The latter are
functions of all kinematical variables. For example, for the one-loop
triangle discussed in the final section the divisor in C3 associated to ǫ3
is a simple function of

λ(p2
1, p

2
2, p

2
3) = p1.p

2
2−p2

1p
2
2 = p2.p

2
3−p2

2p
2
3 = p3.p

2
1−p2

3p
2
1, p1+p2+p3 = 0.

The three representations of λ allow to compute s1(ǫ3) for s = p2
3 or

s = p2
1 or s = p2

2 respectively.

As a result, to a graph Γ we can assign a collection of lower triangular
matrices MΓ

i with the following properties:

• All entries in the matrix correspond to well-defined integrable
forms under on-shell renormalization conditions.

• Anomalous thresholds si are determined from properties of graph
polynomials. They provide lower boundaries for dispersion in-
tegrals associated to these integrable forms.

• Along the diagonal in the matricesMΓ
i we find leading threshold

entries: all quadrics for all edges in a graph are on the mass-
shell.

• The variation of a column in MΓ
i wrt to a given channel is given

by the column to the right.
• Non-leading thresholds (entries below the diagonal ) correspond

to fibrations over the leading thresholds. They are cones if there
are loops in the uncut edges.

• The subdiagonal entries (MΓ
i )k,k−1 are determined from the di-

agonal entries (MΓ
i )k−1,k−1 and (MΓ

i )k,k via a dispersion inte-
gral. This gives (k − 1) two-by-two matrices each of which has
an interpretation via the optical theorem. This hence deter-
mines the first subdiagonal.

• Continuing, all subdiagonals and hence the whole matrix (MΓ
i )r,s

is determined via iterated dispersion. This answers the question
how to continue the optical theorem beyond two-point func-
tions.

• The first column in each matrix MΓ
i corresponds to a path in

the spine of Outer Space from some rose to some cell containing
Γ. The entries of all such matrices which one can assign to a
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pair (Γ, T ) by different choices of the ordering of the edges of T
give a cell for (Γ, T ) in the cubical chain complex.

• There are as many distinct matrices MΓ
i as there are distinct

paths from roses to Γ.
• Graphs in Outer Space are metric graphs. The Feynman inte-

gral in parametric space corresponds to an integral over a cell
in Outer Space.

• The markings at a graph in Outer Space fix the ambiguities re-
lated to the variations associated with thresholds. In particular
this last aspect we reserve to future investigation.

In fact, this first paper on the subject serves only to settle ideas and
provide a starting point for future investigations. In particular, we
will treat the matrices MΓ

i combinatorially, and take them to have as
entries the modified graphs rather than the asssociated amplitudes.
Only when we turn to physics examples we will consider their entries
as given by the associated amplitudes.

The relation to outer space and a Hodge theoretic analysis of the
matrices MΓ

i certainly call for more detailed analysis in future work.
Here, we give a mathematical result -precise formulation of Cutkosky’s

thorem- and analyse normal and anomalous thresholds of amplitudes
-physics notions- in terms of parametric representation of Feynman in-
tegrals. Outer space and its cubical chain complex provides a common
structure to this analysis which fascinates us both.

Acknowledgments. Both authors thank Karen Vogtmann and Hol-
ger Reich for helpful discussions.

2. Graphs and spanning forests

We let Γ be a connected graph. We allow multiple edges between
vertices and self-loops as well.

We let VΓ then be the set of vertices of Γ, |VΓ| = vΓ, and EΓ, |EΓ| = eΓ
be the set and number of edges.

Γ/X , for X ⊆ Γ a (not necessarily connected) graph, denotes the
graph obtained from Γ by shrinking all internal edges of X ⊆ Γ to zero
length:

(1) Γ/X = Γ|l(e)=0,e∈EX
.

A spanning tree T of Γ is a proper subgraph T ⊆ Γ such that VT = VΓ

and T is connected and simply connected.
A spanning k-forest is a disjoint union ∐k

i=1Ti of k trees Ti ( Γ, and
∪iVTi

= VΓ.
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A pair (Γ, F ), F a spanning k-forest for Γ, defines a set GF of k mu-
tually disjoint graphs Γj ( Γ, 1 ≤ j ≤ k. For each edge e ∈ Γi in such a
graph Γi we have that its boundary vertices ∂(e) = {v+(e), v−(e)} ∈ VΓi

belong to the vertices of the same graph.
F also defines a unique set of edges EΓF

which connect vertices of
different such Γi and such that ΓF := Γ/(∪ki=1Γi) is based on those
edges and k vertices. In particular, for a 2-forest, we obtain two vertices
connected by a multiple edge.

Γ−X , for X ⊆ Γ, denotes the graph obtained from Γ by removing
the edges of X . It can contain isolated vertices.

A graph is bridge-free or 1PI or 2-connected if (Γ− e) is connected
for any e ∈ EΓ.

A connected graph Γ which is not bridge-free is a union of 1PI graphs
γ = ∪iγi and trees T = ∪iTi such that Γ/γ = T and Γ/(∪iTi) = γ.

Here we associate the disjoint union of graphs γ = ∪iγi with the
connected graph obtained by shrinking all bridges (edges of the trees
Ti), and similarly for T .

A graph Γ is 1VI (one-vertex irreducible) if Γ − v is connected for
any vertex v ∈ VΓ. Trees of edges are always one-vertex reducible.

We let |Γ| := |H1(Γ)| be the first Betti number. Note |Γ| = |Γ/F |
for any spanning forest F of Γ.

For disjoint unions of graphs h1, h2, we set |h1 ∪ h2| = |h1|+ |h2|.
The length of a path is the number of edges in the path. The dis-

tance between two vertices is the number of edges in the shortest path
between them, a pair of vertices of unit distance is called adjacent.

2.1. Momenta and masses. To each vertex v ∈ VΓ, we assign a
four-momentum pv ∈ M4. For the purposes of this section, we can let
components of these vectors be real.

We require momentum conservation:

(2)
∑

v∈VΓ

pv = 0.

By definition, if vertices vi ∈ VΓ merge together to a vertex w = ∪ivi
in Γ/X , the vertex w has momentum

∑
i pvi

assigned.
Also, to all internal edges e ∈ EΓ, we assign a parameter m2

e − iǫ,
me, ǫ > 0 real and ǫ ≪ 1 infinitesimal (often written m2

e − i0 in the
physics literature).

2.2. Powercounting. To all edges e and vertices v of a graph, we
assign weights w(e), w(v) ∈ Z, and define the weight of a graph to be
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the integer

(3) w(Γ) = 4|Γ| −
∑

v∈VΓ

w(v)−
∑

e∈EΓ

w(e).

We always set w(v) = 0 and w(e) = 2 below.

2.3. Multiple edges. If the set of edges connecting two adjacent ver-
tices x, y has cardinality k, we call this set a multiple edge bk(x, y), a
k-edge banana (often denoted by bk if the vertices are clear). b1 is a
single edge.

For two adjacent vertices x, y in a bridge-free graph Γ connected
by a k-edge banana, Γ − bk(x, y) is regarded as a set of trees Ti and
bridge-free components γi as above.

Edges and multiple edges will play an important role, as we will
analyse graphs by removing them, or shrinking them.

2.4. Example. The following figure gives an example.

Γ

1 2

3 4

5 6

7

8

2

7

8

1

Γ− γ

5 6

7

8
T

Γ/γ

1 2
5 6

7

8

43

γ

1 2

g

5 6

In the first row on the left we see the graph Γ on edges 1, . . . , 8. We
let γ ⊂ Γ be the subgraph on edges 3, 4. In the first row next to Γ we
see Γ − γ, and below in the second row to the left we have Γ/γ. On
the right in the first row, we see the tree T on edges 7, 8 obtained by
shrinking the two subgraphs on edges 1, 2 and edges 5, 6 to points. On
the other hand, shrinking edges 7, 8 in Γ−γ, we get the two subgraphs
as a new graph g which is not 1VI: the two vertices of edge 7 unify to
the new vertex which connects the two subgraphs to the graph g in the
second row on the right.

3. The cubical chain complex and M i
Γ

3.1. The cubical chain complex. We follow [2].
Consider a pair (Γ, T ) of a bridge free graph Γ and a chosen spanning

tree T for it. Assume T has k edges. Consider the k-dimensional
unit cube. It has origin (0, · · · , 0) and k unit vectors (1, 0, · · · , 0), . . .,
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(0, · · · , 0, 1) form its edges regarded as 1-cells. A change of ordering of
the edges of T permutes those edges.

The origin is decorated by a rose on |Γ| petals, and the corner
(1, 1, · · · , 1) decorated by (Γ, VΓ), with k = vΓ − 1, and we regard
VΓ as a spanning forest.

The complex is best explained by assigning graphs as in the following
example.

a

b

c

a

b

c

a

b

c

a
b

c

a ∪ b ∪ c

a ∪ c b

a

b ∪ c
a b ∪ c

a ∪ c b

1

2

3 4

The cell is two-dimensional as each of the five spanning trees of the
graph Γ, the dunce’s cap graph, in the middle of the cell has length
two.

We have chosen a spanning tree T provided by the edges e1 and
e3, indicated in red. The boundary of our two-dimensional cell has
four one-dimensional edges, bounded by two of the four 0-dimensional
corners each.

To these lower dimensional cells we assign graphs as well.
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To the vertical edge on the left we assign the pair (Γ/e1, e3), in which
the first edge, e1, of the spanning tree T shrinks to zero length. We
have Γ/e1 = ΓT−e1, as F = T − e1. The edge e3 = T/e1 remains as
its spanning tree. The graph has two vertices, a ∪ c is the vertex onto
which vertices a, c collapse, the other vertex is b.

To the vertical edge on the right we assign the pair (Γ, a∪e3), a∪e3 ≡
T − e1, with the union of the vertex a with edge e3 a spanning forest
for Γ, obtained by removing edge e1 from T . ΓT−e1 is the indicated
graph with the cut edges marked by a zigzag line.

To the horizontal edge below we assign the pair (Γ/e3, e1),in which
the second edge, e3, of the spanning tree T shrinks to zero length. The
edge e1 remains as its spanning tree. The graph has two vertices, b∪ c
is the vertex onto which vertices b, c collapse, the other vertex is a.

To the horizontal edge above we assign the pair (Γ, b ∪ e1), with the
union of the vertex b with edge e1 a spanning forest for Γ, obtained by
removing edge e3 from T .

The lower left corner carries the graph obtained by shrinking both
edges of the spanning tree, a rose on two petals with a single vertex
a ∪ b ∪ c.

The lower right corner carries the graph obtained by shrinking edge
e3 and removing edge e1 from the spanning tree.

The upper left corner carries the graph obtained by shrinking edge
e1 and removing edge e3 from the spanning tree.

The upper right corner finally carries the graph obtained by removing
both edges from the spanning tree, so that the forest is the disjoint
union of the three vertices.

The spanning tree has length two and so there are 2 = 2! orderings
of its edges, and hence two lower triangular 3 × 3 matrices MΓ

i which
we can assign to this cell.
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They look as follows:

a ∪ cb

a b

c

a
b

c

a ∪ cb

a ∪ b ∪ c

a
b

c
1

2
3 4

a
b ∪ c

a
b

c

a b ∪ c

a
b

c

a ∪ b ∪ c

a
b

c
1

2
3 4

MΓ
1 MΓ

2

These square matrices are lower triangular. An entry (MΓ
i )rs, 1 ≤ r ≤

vγ, 1 ≤ s ≤ vγ is given by

(4) (MΓ
i )rs = (Γ/fvΓ−r, T/fvΓ−r − gs−1).

Here, Γ/fi is the graph obtained by shrinking edges e1, · · · ei of the
spanning tree. For Γ/f0 = Γ we shrink none. g0 is the empty set, and
gr is the union of the last r edges of the spanning tree.

Let us now look at these matrices from the viewpoint of a partition
of the set of vertices.

3.2. The matrix MΓ
i . Let Γ be a connected graph with vertex set

V = VΓ and edge set E = EΓ. We will be interested in partitions of V

(5) P = V1 ∐ · · · ∐ Vr.

Associated to a partition is a collection of subgraphs GF = {Γi}, where
the edges of Γi are all edges e of Γ such that the vertices ∂e = {v+

e , v
−
e }

both lie in Vi as before.
We say that the partition P is connected if all the Γi are connected

graphs. Note that if Γi is not connected, there is a natural refinement
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of P given by further partitioning Vi according to the connected com-
ponents of Γi. Unless otherwise specified, we will work throughout with
connected partitions.

Given a connected partition P(V (Γ)), define

(6) EΓF
≡ EP := E(Γ)\(

∐

i

E(Γi)) =

{e ∈ E(Γ) | vertices of e lie in distinct Vi}.
Let Γ//

∐
Γi be the graph obtained from Γ by shrinking all the Γi

to (distinct) points. (Note that the Γi are disjoint.) Our assumption
that the Γi are connected is easily seen to imply an exact sequence on
the level of first homology with Z-coefficients:

(7) 0 →
⊕

i

H1(Γi) → H1(Γ) → H1(Γ//
∐

i

Γi) → 0.

We write

(8) ΓF ≡ ΓP := Γ//
∐

i

Γi.

We have EΓP = EP .
Given a connected partition P = P(Γ) the corresponding cut graph

is by definition the graph Γ with the edges EP removed (“cut”)1. I.e.
the cut graph is

∐
i Γi. Note that some of the Γi may be isolated

vertices. In other words, cutting an edge does not mean removing its
endpoints. We also use the notation (Γ,P) a bit abusively to denote
the pair (Γ, EP). Thus (Γ,P) represents the graph Γ together with the
choice of a cut EP .

We are particularly interested in the case of connected 2-partitions
VΓ = V1 ∐ V2.

Lemma 2. Let Γ be a connected graph with at least 1 edge and no
self-loops. Then Γ admits a connected 2-partition.

Proof. For v ∈ VΓ, write Γv for the graph obtained from Γ by removing
v and all edges containing v. We claim there exists a v such that Γv is
connected. This is clear if Γ is a tree, because we can take v to be a
unary vertex. If Γ is not a tree, then there exists an edge e such that
Γ − e is still connected. Since Γ is not a tree, Γ − e has at least one
edge and no self-loops, so by induction on the number of edges, there
exists v ∈ Γ− e such that (Γ− e)v is connected. But this implies Γv is
connected as well. The 2-partition {v} ∐ VΓv is thus connected. �

1For the purposes of this section, edges which are on-shell, i.e. ’cut’, are simply
removed.
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Partitions can be refined in an evident sense. A refinement of the
partition VΓ =

∐
i Vi consists of refinements Vi =

∐
Vi,j for all i. (We

admit the trivial refinement Vi = Vi.) The refinement is connected
if all the Γi,j are connected. We refer to a sequence of refinements
as binary if each non-trivial refinement is a connected 2-partition, viz.
Vi1,...,ik = Vi1,...,ik,1 ∐ Vi1,...,ik,2.

Recall a spanning tree in a connected graph Γ is a subgraph T ⊂ Γ
which is a tree (connected, with no loops) containing all vertices of Γ.
Suppose we are given a connected 2-partition P : VΓ = V1 ∐ V2. Let
Ti be a spanning tree for Γi, i = 1, 2, and let e ∈ EΓ be an edge in ΓP .
Then

(9) T = T1 ∪ {e} ∪ T2

is a spanning tree for Γ. Such a T is said to be adapted to the partition
P. More generally, a spanning tree T is adapted to a connected binary
refinement if it contains exactly one edge from each “subcut”. For
example, if V = (V11∐V12)∐V2 is a connected refinement of V = V1∐V2,
then an adapted spanning tree would have the form

(10) T = T11 ∪ T12 ∪ e1;1,2 ∪ e1,2 ∪ T2.

Here e1;1,2 is an edge of Γ1 connecting the vertex sets V11 and V12.
There is a maximal (finest) partition of VΓ where each Vi consists of

a single vertex. As a consequence of lemma 2 we can find a sequence of
connected binary refinements of a given connected partition abutting
to the maximal partition. Fix such a maximal sequence P, and let T
be a spanning tree for Γ which is adapted to it. We want to associate
to (Γ,P, T ) a matrix M whose entries are “graphs with cuts”.

We define a height function ht : ET → {1, 2, 3, . . .} by taking ht(e) =
k if e ∈ ET connects Γi1,...,ik−1,1 to Γi1,...,ik−1,2. For example ht(e) = 1
means e connects V1 and V2. Note that for k > 1, a given height k may
correspond to several cuts. We choose some ordering for these cuts
compatible with the heights and display the graphs from left to right:

(11) Γ, Γ(unique ht 1 cut), Γ(ht 1 cut, one ht 2 cut),

Γ(ht 1 cut, two ht 2 cuts) · · ·Γ(all cuts).

Next, over each entry Γ(...cuts...) we move upward shrinking edges
from T starting with the edges of largest height. Again there is some
ambiguity but we choose an ordering among edges of equal height.
By shrinking edges of largest height while cutting edges of smallest
height, we build a triangular matrix of graphs with entries along the
diagonal having only cut edges and tadpoles. Matrices MΓ

1 ,M
Γ
2 above

are examples.



12 SPENCER BLOCH AND DIRK KREIMER

3.3. Graphs and their Hopf algebra structure.

3.3.1. Hopf algebra structure. Consider the free commutative Q-algebra

(12) H = ⊕i≥0H
(i), H(0) ∼ QI,

generated by 2-connected graphs as free generators (disjoint union is
product m, labelling of edges and of vertices by momenta as declared).

Consider the Hopf algebras H(m, I,∆, Î, S) and H(m, I,∆c, Î, Sc),
given by

(13) I : Q → H, q → qI,

(14) ∆ : H → H⊗H,∆(Γ) = Γ⊗ I+ I⊗Γ+
∑

γ(Γ,γ=∪iγi,w(γi)≥0

γ⊗Γ/γ,

(15) ∆c : H → H ⊗H,∆c(Γ) = Γ⊗ I + I⊗ Γ +
∑

γ(Γ,γ=∪iγi

γ ⊗ Γ/γ,

(16) Î : H → Q, qI → q,H> → 0,

(17) S : H → H,S(Γ) = −Γ−
∑

γ(Γ,γ=∪iγi,w(γi)≥0

S(γ)Γ/γ,

(18) Sc : H → H,S(Γ) = −Γ−
∑

γ(Γ,γ=∪iγi

S(γ)Γ/γ,

where H> = ⊕i≥1H
(i) is the augmentation ideal.

Both Hopf algebras will be needed in the following for renormaliza-
tion in the presence of variations.

Edges in Γ which have one vertex in Γ− γ and the other in γ merge
in Γ/γ into k distinct vertices vi. In this merging, momentum labels
at vertices are additive as stated before: qvi

=
∑

v∈Vγi
qv.
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Here is an example for both (reduced) coproducts.

2

3 4 3 4

1

2
p1

p2

p3

p2

p3

p1

p2 + p3

1

= ⊗∆̃

2

3 4 3 4

1

2
p1

p2

p3

p2

p3

p1

p2 + p3

1

= ⊗∆̃C

p2 p2

+
⊗

p1

p2

p3

p1 + p2 + p3

1

2

3
4

+
⊗

p1

p2

p3

p1 + p2 + p3

1

2

4

3

The first reduced coproduct ∆̃ only produces a single term: the sub-
graph γ on edges 3, 4 has w(γ) = 0 and hence contributes, while all
other subgraphs have a weight < 0.

We have no such restriction on the other reduced coproduct and
hence collect the indicated three terms on the right.

3.3.2. The Hopf algebra and pairs (Γ, F ). Let (Γ, T ) be a pair of a
graph and a spanning tree for it with a choice of ordering for its edges.
Let F(Γ,T ) be the set of corresponding forests.

Then, to any pair (Γ, F ), with F a k-forest (1 ≤ k ≤ vΓ), F ∈ F(Γ,T )

we can assign a set of k disjoint graphs GF . We let ΓF := Γ/GF be the
graph obtained by shrinking all internal edges of these graphs.

For each such F , we call EΓF
a cut. In particular, for F the unique

2-forest assigned to T (by removing the first edge from the ordered
edges of T ), we call ǫ2 = EΓF

the Cutkosky cut of (Γ, T ).
Note that the ordering of edges defines an ordering of cuts ∅ = ǫ1 (

ǫ2 ( · · · ( ǫk = EΓ.
For a Cutkosky cut, we have GF = (Γ1,Γ2) and we call

(19) s = (
∑

v∈VΓ1

qv)
2 = (

∑

v∈VΓ2

qv)
2

the channel associated to (Γ, T ).
These notions are recursive in an obvious way: the difference between

a k and a k + 1 forest defines a Cutkosky cut for some subgraph.
We define |GF | =

∑
γ∈GF |γ|. Also, we let Fk(Γ) be the set of all

k-forests for a graph Γ.
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For a disjoint union of r graphs γ = ∪ri=1γi, we say a disjoint union
of trees T = ∪iti spans γ and write T |γ, if ti is a spanning tree for γi.

We have then an obvious decomposition of all possible spanning
forests using the coproduct ∆c. A spanning forest decomposes into
a spanning forest which leaves no loop intact in the cograph together
with spanning trees for the subgraph:

Lemma 3.

(20)
∑

T |Γ′



Γ, T ∪
vΓ∑

k=1

∑

F∈Fk(Γ′′),|GF |=0

F



 =

vΓ∑

k=1

∑

F∈Fk(Γ)

(Γ, F ).

Remark 4. This lemma ensures that uncut subgraphs with loops can
have their loops integrated out. The resulting integrals are part of the
integrand of the full graph and its variations determined by the cut
edges.

4. Kinematics

For a graph Γ with momenta qv and masses me, we consider the real
vectorspace

(21) QΓ = ReΓ+vΓ(vΓ−1)/2

of dimension eΓ + vΓ(vΓ − 1)/2 generated by m2
e and qv · qw (ignoring

constraints from finite dimensionality of Minkowski space).
Note that QΓ/(QΓ/bk) is a real vector space of dimension vΓ − 1 + k.
A point p ∈ QΓ is of the form

(22) p =
∑

e∈EΓ

rem
2
e +

∑

i≤j,i,j∈VΓ

rijqi · qj ,

with rr, rij ∈ R and qi · qj :=
∑3

µ=0 qiµq
µ
j = q0

i q
0
j − q1

i q
1
j − q2

i q
2
j − q3

i q
3
j .

The quadric l(e) ≡ Q(e) assigned to edge e with momentum q(e)
and mass m(e) is

(23) Q(e) := q(e) · q(e)−m2
e.

We say an edge e is on shell if l(e) = 0 and q0(e) > 0.
Here, q(e) is fixed by assigning an internal momentum k(e) to each

oriented edge e outside a spanning tree. These edges together with a
choice of a spanning tree define a basis for H1(Γ), and we require that
k(e), a loop momentum, is routed through the spanning tree in the
orientation given by e. Furthermore we require that external momenta
assigned to vertices traverse only through edges in the spanning tree
and we require momentum conservation at each vertex. All external
momenta are considered incoming.
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5. Landau singularities

We consider the universal quadric

(24) Q : ϑ =

eΓ∑

i=1

aiℓi = 0; ℓi = q2
i −m2

i

Here Q →֒ PeΓ−1 × CgD (D = 4 in four dimensions of spacetime). The
external momenta and masses are viewed as fixed. Writing xij , 1 ≤ i ≤
g, 1 ≤ j ≤ D for the coordinate functions on CDg, we have ϑ = ϑ(a, x)
and we are interested in singular points of ϑ.

We can complete the square and rewrite ([3])

(25) ϑ(a, x) = ~x′A~x′
t
+ Φ(a)/ψ(a)

Here ψ(a) = det(A) is the first Symanzik, x′ denotes a certain affine
linear change of coordinates, and φ(a) is the second Symanzik. (We
omit masses and external momenta from the notation because we view
these as fixed.)

We consider a point (a0, x0) which is a singular point of Q such that
ψ(a0) 6= 0. For a physical singularity, all the a0

e > 0 so this condition
holds. (ψ is a sum of monomials with coefficient +1.) We can, in fact,
weaken this positivity condition. We might say a singularity (a0, x0)
of Q is weakly physical if all a0

e ≥ 0 and the set of edges e such that
a0
e = 0 does not support a loop on the graph. It is straightforward to

check in this case that ψ(a0) > 0.

Lemma 5. The mapping (a0, x0) 7→ a0 gives a bijection between weakly
physical singularities of Q and singularities a0 of the second Symanzik
φ(a) such that a0

e ≥ 0 for all edges e and ψ(a0) 6= 0.

Proof. One can obtains the locus Φ(a)/ψ(a) = 0 in PeΓ−1 − {ψ = 0}
by intersecting Q with the gD affine linear forms ∂ϑ/∂xij = 0. Said
another way, this intersection in (PeΓ−1 − {ψ(a) = 0})× CgD projects
isomorphically to the locus φ(a)/ψ(a) = 0 in PeΓ−1 − {ψ = 0}. Since
∂ϑ/∂xij necessarily vanishes at any singular point of Q, and since each
intersection cuts down the tangent space dimension by at most one,
we see that singular points on Q give rise to singular points on the
intersection.

Conversely, given a singular point a0 of φ such that ψ(a0) 6= 0, it
follows from (25) that the point (a0, x′′ = 0) is a singular point of
Q. �
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A Landau singularity is a point p = (pA, pQ) ∈ PeΓ−1×QΓ such that

(26) Φ(p) = 0,

(
∂

∂Ae
Φe

)
(p) = 0, ∀e.

A Landau singularity is leading if pA lies in the interior of the simplex
σΓ,

(27) σΓ : {
∏

e

Ae = 0},

so if it is physical as opposed to weakly physical.

6. Thresholds

The cut ǫ2 defines a normal threshold given by

(28) s0 = s0(ǫ2) = (
∑

e∈EΓ2

me)
2,

the corresponding pseudo thresholds allow for negative signs:

(29) (
∑

e∈EΓ2

±me)
2,

and are unphysical thresholds.
The normal threshold corresponds to a Landau singularity of the

reduced graph Γ2. Given as a singular point of the second Symanzik
polynomial ΦΓ2

it is at p = (pA, pQ):

(30) pQ : s = (
∑

e∈EΓ2

me)
2,

and

(31) pA : {Aimi = Ajmj}.
We call the thresholds sj−2 assigned to cut ǫj , j > 2, anomalous.

They are defined with respect to the channel s defined by the Cutkosky
cut ǫ2.

They can be computed studying discriminants of graph polynomials
as points on a one-dimensional real subspace of QΓ defined by the
associated channel s. See Thm.(11).

Remark 6. The divisor assigned to a cut ǫj is a function of complex
variables in QΓFj

⊆ QΓ, Fj the j-forest assigned to ǫj. Physical Lan-

dau singularities determine a function s(pA), pA ∈ P
eΓFj

−1
for fixed real

kinematical variables on the co-dimenion one subspace of QΓFj
deter-

mined by the channel variable s. Anomalous thresholds minimize this
function.
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Remark 7. If we shrink all edges in a spanning tree T of Γ we are left
with |Γ| edges which constitute a rose r|Γ| with |Γ| petals. There are no
possible cuts, and hence no threshold.

7. Graph Polynomials and Feynman rules

7.1. Symanzik polynomials. Let ψ(Γ), φ(Γ) be the two usual graph
polynomials, and

(32) Φ(Γ) = φ(Γ)−M(Γ)ψ(Γ),

the full second graph polynomial with masses. Here,

(33) M(Γ) :=

(
∑

e∈EΓ

m2
eAe

)
.

We have

(34) ψ(Γ) = ψ(Γ/γ)ψ(γ) +RΓ
γ ,

(35) φ(Γ) = φ(Γ/γ)ψ(γ) + R̃Γ
γ .

(36) Φ(Γ) = φ(Γ/γ)ψ(γ) + R̄Γ
γ .

(37) ψ(Γ1Γ2) = ψ(Γ1)ψ(Γ2),

(38) φ(Γ1Γ2) = φ(Γ1)ψ(Γ2) + φ(Γ2)ψ(Γ1),

(39) Φ(Γ1Γ2) = Φ(Γ1)ψ(Γ2) + Φ(Γ2)ψ(Γ1).

Here, the remainders RΓ
γ , R̃

Γ
γ , R̄

Γ
γ are all of higher degrees in the sub-

graph variables than ψ(γ). This is crucial to achieve renormalizability
[4].

For two adjacent vertices x, y ∈ VΓ and R ∋ r > 0 let us also define

(40) φrx,y(Γ) =
∑

T1∪T2

(Q(T1) ·Q(T2))
r
∏

e 6∈T1∪T2

Ae,

where

(41) (Q(T1) ·Q(T2))
r = (Q(T1) ·Q(T2))− r,

if T1 ∪ T2 separates x, y, and

(42) (Q(T1) ·Q(T2))
r = (Q(T1) ·Q(T2)),

if it does not (a 2-tree separates two vertices x, y if each of the two
trees contains one of them).

(43) Φr
x,y(Γ) = φrx,y(Γ− bk)−M(Γ)ψ(Γ).
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One checks Φr
x,y(Γ1Γ2) = Φr

x,y(Γ1)ψ(Γ2) + Φr
x,y(Γ2)ψ(Γ1) when x, y

are adjacent in any one of the two graphs. If x, y are clear from the
context, they are often omitted.

7.1.1. Relations. Let x, y be two adjacent vertices of Γ connected by a
k-edge γ = bk for some k. Let rk be the rose rk obtained by identifying
the two vertices x, y.

We have

Lemma 8.

Φ(Γ) = Φ(Γ/γ)ψ(γ)︸ ︷︷ ︸
k−1

+ Φ(Γ− γ)ψ(rk)−M(γ)ψ(Γ/γ)ψ(γ)︸ ︷︷ ︸
k

−M(γ)ψ(Γ− γ)ψ(rk)︸ ︷︷ ︸
k+1

,

where we indicate the order in the subgraph variables.

Proof. Elementary from the definition of graph polynomials ψ, φ,Φ.
Indeed, for k-edges as subgraphs one confirms immediately RΓ

γ = ψ(rk)

ψ(Γ− γ), R̃Γ
γ = ψ(γ)φ(Γ− γ) and M(Γ) = M(Γ− γ) +M(γ). �

7.2. Feynman Rules.

7.2.1. renormalized Feynman rules. For graphs of a renormalizable field
theory, we get renormalized Feynman rules for an overall logarithmi-
cally divergent graph Γ (w(Γ) = 0) with logarithmically divergent sub-
graphs as

(44) ΦR =

∫

PΓ

∑

F∈FΓ

(−1)|F |
ln

ΦΓ/FψF +Φ0

FψΓ/F

Φ0

Γ/F
ψF +Φ0

FψΓ/F

ψ2
Γ/Fψ

2
F

ΩΓ.

Formula for other degrees of divergence for sub- and cographs can be
found in [4]. In particular, also overall convergent graphs are covered.

The Hopf algebra in use in the above is based on the renormalization
coproduct ∆.

The antipode S(Γ) in this Hopf algebra can be written as a forest
sum:

(45) S(Γ) = −Γ−
∑

F∈FΓ

(−1)|F |F × (Γ/F ).

This covers the generic graphs we treat here (of which the graphs appar-
ent in a renormalizable field theory are just a subset), where Φ0 eval-
uates using renormalization conditions which agree with Lagrangean
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renormalization conditions whenever Φ0 acts on a graph Γ ⊂ HR ⊂ H
so that such conditions are defined.

To renormalize generic graphs we need more general kinematic renor-
malization conditions. There is freedom in the corresponding choice
which shall not concern us here: the analytic structure of graphs is
independent of the chosen renormalization point, as long as we stay in
the realm of kinematic renormalization schemes.

7.2.2. Renormalized Feynman rules for cut graphs. We now give the
Feynman rules for a graph with some of its internal edges cut. This
can be regarded as giving Feynman rules for a pair (Γ, F ). Set G :=
Γ/fvΓ−r, F = T/fvΓ−r − gr−1.

(46) ΥF
G :=

∫ 

ΦR(G′)
∏

e∈(G′′−EΓF
)

1

P (e)

∏

e∈EΓF

δ+(P (e))



 d4|G/G′|k.

We use Sweedler’s notation for the copoduct provided by ∆c.
Note that in this formula ΦR(G′) has to stay in the integrand. The

internal loops of G′ have been integrated out by ΦR, but ΦR(G′) is still
an obvious function of loop momenta apparent in G/G′. The existence
of this factorization into integrated subgraphs times cut cographs is a
consequence of Lem.(3).

7.2.3. Anomalous thresholds. Let us come back to a generic graph Γ.
We want to determine anomalous thresholds.

For a multiple-edge γ = bk(x, y), k ≥ 1 between vertices x, y ∈ VΓ,
there is an obvious bijection between spanning trees of Γ/γ and span-
ning 2-trees of Γ− γ which separate x, y. We set u = (

∑
e∈Eγ

me)
2.

We analyse the Landau singularities of Γ in terms of Γ/γ, where γ is
such a bk multiple-edge. To completely analyse the graph, we have to
consider all possibilities to shrink it multiple-edge after multiple-edge.

Corollary 9.

Φ(Γ− γ)Eγ
k −M(γ)ψ(Γ/γ)Eγ

k−1 = Φu(Γ− γ).

Remark 10. This setting is correct for physical Landau singularities
of interest at Aeme = Afmf , e, f ∈ Eγ. Else, u has to be modified
according to Thm.(11).

For the multiple edge subgraph γ we switch to variables Ai = tγbi,
and for the edges in EΓ/γ = EΓ−γ , we switch to Ai = tΓ/γai.
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The equation for a zero of the second Symanzik polynomial becomes

Φ(Γ) = t
eΓ/γ

Γ/γ Φ(Γ/γ)({a})tk−1
γ ψ(γ)({b})

+t
eΓ/γ−1

Γ/γ tkγΦ
u(Γ− γ)({a})

−teΓ/γ−2

Γ/γ tk+1
γ Mγ({b})ψ(γ)({b})ψ(Γ− γ)({a})

= 0.

Divide by t
eΓ/γ−2

Γ/γ tk−1
γ to get an quadratic equation of the form

(47) − t2Γ/γX({a, b}) + tΓ/γtγY ({a}))− t2γZ({a, b})) = 0.

We set

(48) X({a, b}) = −Φ(Γ/γ)({a})ψ(γ)({b}),

(49) Y ({a}) = Φu(Γ− γ)({a}),

(50) Z({a, b}) = Mγ({b})ψ(γ)({b})ψ(Γ− γ)({a}).
we note that X({a, b}) does not only depend on edge variables but also
on masses and momenta X({a, b}) = X({a, b}, s, {Q,M}). It is linear
in the channel variable s and we can write

(51) X({a, b}) = Xs({a, b})s+N({a, b}, {Q,M}).
We also have Y ({a}) = Y ({a}, {Q,M}) and Z({a, b}) = Z({a, b}, {M}).
The graph Γ/γ has a Landau singularity (p

Γ/γ
A , p

Γ/γ
Q ). Define Y0 :=

Y (p
Γ/γ
A , {Q,M}).

Define also the discriminant

(52) D := Y 2 + 4ZX

and the function

(53) s({a, b}, {Q,M}) =
Y 2 − 4ZN

4ZXs
.

Let T Γ
s be the set of all ordered spanning trees T of a fixed graph Γ

which allow for the same associated channel variable s.
We have the following result.

Theorem 11. i) A necessary and sufficient condition for a physical
Landau singularity is Y0 > 0 with D = 0.
ii) The corresponding anomalous threshold sF for fixed masses and mo-
menta {M,Q} is given as the minimum of s({a, b}, {Q,M}) varied over
edge variables {a, b}. It is finite (sF > −∞) if the minimum is a point
inside p ∈ PeΓ−1 in the interior of the simplex σΓ (see (27)). If it is on
the boundary of that simplex, sF = −∞.
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iii) If for all T ∈ T Γ
s and for all their forests (Γ, F ) we have sF > −∞,

the Feynman integral ΦR(Γ)(s) is real analytic as a function of s for
s < minF{sF}.
Proof. i) follows from the definition of a physical Landau singularity.

ii) follows from analysing ∂e
Y 2−4ZN

4ZXs
= 0, using that the denominator

vanishes along the boundaries Ae = 0.
iii) follows as for sufficiently low s as indicated ΦR(Γ)(s) is real. �

Remark 12. We treat massive quantum fields here, me > 0, ∀e. Qua-
dratic equations turn linear, discriminants do not exist and the analysis
proceeds differently in the massless case.

8. Cutkosky’s theorem

Our objective in this section is a proof of Cutkosky’s theorem (theo-
rem 24). We give the proof in the general case subject to the existence
of a convenient renormalization scheme. In the case where the cuts
leave no remaining loops, the argument does not require renormaliza-
tion and is much simpler.

8.1. Thom’s First Isotopy Lemma. We want to study the mon-
odromy of a family of unions of propagator quadrics which are affine
varieties of the form (x − p)2 −m2 where x, p ∈ AD and the square is
a Minkowski or Euclidean quadratic form. This is a “dirty” picture in
the sense that there are many complicating features which do not play
a role and which we will need to filter out. For example, the quadrics
have “trivial” singularities (e.g. if m = 0 and p = 0, the locus x = 0
is singular.) Further, we will need to compactify, and compactification
will introduce new singularities at infinity. The first isotopy lemma of
Thom enables us to disguard this “noise” and focus on the vanishing
cycle which is the phenomenon of physical interest. For more details on
this material, the reader is referred to the wonderful notes of Mather
[5].

Let M be a smooth manifold, and let S ⊂ M be a closed subset
which admits a Whitney pre-stratification. We do not go into detail
about Whitney pre-stratifications. The condition that S admit one is
very weak. It is always the case, for example, when M is a smooth
algebraic variety over C and S is a (singular) closed subvariety. For
complete details, see (op. cit.). Let P be another smooth manifold,
and let f : M → P be a smooth map.

Theorem 13 (Thom’s first isotopy lemma). Suppose f |S : S → P
is proper, and f |X : X → P is a submersion for every stratum X ⊂
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S. Then (S, f |S, P ) is a locally trivial bundle. In particular, if P is
contractible, then for p ∈ P we have S ∼= f−1(p)× P .

We will apply the isotopy lemma as follows. We are given T ⊂ M
closed, admitting a pre-stratification, and a point m ∈ T . Let Bε be a
small, open ball about m in M , and let S = T −T ∩Bε. Let p = f(m).
We replace P by a small contractible neighborhood U of p in P and
then we replace M,T, S by their intersections with f−1(U). We can
arrange that S, T have Whitney pre-stratifications. Suppose it is the
case that f is a submersion on the strata of S. We are interested in
the monodromy on the homology of the fibres of fT : T → U along
a closed path φ : [0, 1] → U − {p}. Let φ(0) = φ(1) = q 6= p. We
reduce by pullback to the case where U ⊂ C is an open disk and
f : T → U is submersive on strata when restricted over U − {p}.
Applying the isotopy lemma to the pullback of S ⊂ T over [0, 1], we
obtain isomorphisms

(54)

f−1
S (φ(0))

⊂−−−→ f−1
T (φ(0))y∼=
y∼=

f−1
S (φ(1))

⊂−−−→ f−1
T (φ(1)).

For fS, the isotopy lemma applies over the full contractible U which
implies that the isomorphism f−1

S (φ(0)) ∼= f−1
S (φ(1)) can be taken to be

the identity. (See Proposition (2.4) and Corollaries (2.1) and (2.11) in
[7].) Using this, the variation var := φ− id : H∗(f

−1
T (q)) → H∗(f

−1
T (q))

can be studied locally around m. Namely, we have a commutative
diagram

(55)

H∗(f
−1
T (q))

var−−−→ H∗(f
−1
T (q))yexcision

xi∗

H∗(f
−1
T (q) ∩ Bε, f

−1
T (q)− f−1

T (q) ∩Bε)
var−−−→ H∗(f

−1
T (q) ∩Bε).

8.2. Whitney pre-stratifications for graphs. In this section we
give a brief discussion of the Whitney pre-stratifications which under-
lie the monodromy related to dispersion relations in physics. To a
certain extent, the construction is straightforward, only depending on
the dimension of space-time and the number of edges of the graph.
However, an issue arises at infinity that we do not resolve. The iso-
topy lemma requires that the map f be proper. In compactifying the
Feynman picture, one encounters the blowup of the projectivized first
homology of the graph. Strata lying on this blowup will depend in a
rather subtle and interesting way on the structure of the graph. (They



CUTKOSKY RULES AND OUTER SPACE 23

do not, however, depend on masses or external momenta.) Our study
focuses on vanishing cycles which appear at finite distance, and we
have not analysed possible exotic classes associated to this structure at
infinity.

Let G be a connected graph with edge set E and vertices V . Let
D be the dimension of space-time. Write H := H1(G,C

D) for the
homology of the graph tensored with CD. We have the usual exact
sequence from topology to which we have added an extra coordinate
since we will want to projectivize:

(56) 0 → H → CDE ⊕ Cµ
∂⊕1−−→ (CD)V,0 ⊕ Cµ→ 0.

This gives a rational map on the projective spaces of lines through the
origin

(57) f : P(CDE ⊕ Cµ) 99K P((CD)V,0 ⊕ Cµ).

This map is defined off P(H) ⊂ P(CDE ⊕ Cµ). Let

M = Blow
(
P(H) ⊂ P(CDE ⊕ Cµ)

)

be the blowup of P(H), so f extends to a map g : M → P :=
P((CD)V,0⊕Cµ). The exceptional divisor E ∼= P(H)×P ⊂ M , and the
composition

(58) P(H)× P = E ⊂M → P

is just projection.
For e ∈ E we write e∨ : CDE ⊕ Cµ → CD. Similarly, we write

µ∨ : CDE ⊕ Cµ → C. To each edge e we associate a mass me. For
clarity of exposition, we will assume none of the me vanish. We as-
sume CD endowed with a non-degenerate quadratic form and we write
(abusively) e∨,2 for the evident quadratic form on CDE ⊕ Cµ. Let

Q̃e : Fe := e∨,2 −m2
eµ

∨,2 as a homogeneous quadric on P(CDE ⊕ Cµ).
We pull Fe back to the blowup M and write Qe for the corresponding

divisor on M . Note that Qe ∩ E = (Q̃e ∩ P(H))× P . We write

(59) Q :=
⋃

e∈E

Qe ⊂M.

We first consider the Whitney pre-stratification on

Q0 := Q ∩M0 := Q ∩ (M − {µ∨ = 0}) = Q ∩ CDE.

Let Q0
e : e∨,2 − m2

e = 0 in CD. Note the Q0
e are smooth. We stratify

CD with open stratum CD − Q0
e and closed stratum Q0

e. We view
M0 =

∏
E CD as a product of stratified spaces, and give it the product
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stratification. Then Q0 ⊂ M0 is a union of strata, so it inherits a
stratification.

The divisor µ = 0 in M has two irreducible components, E and the
blowup L of P(CDE) along P(H). Let L0 := L−L∩E = P(CDE)−P(H).
Note that restricting to L0 kills the mass terms. To stratify Q∩L0 we
first stratify CD with strata {0} ⊂ {e∨ = 0} ⊂ {e∨,2 = 0} ⊂ CD.
We then stratify

∏
E CD with the product of these stratifications. We

remove the smallest stratum {0} ⊂ CDE . The resulting stratification is
equivariant for the C×-action, so we get a stratification on P(CDE). Re-
stricting to the open set L0 ⊂ P(CDE) yields the desired stratification.
Again, the structure at ∞ is not our primary focus. We simply remark
that strata involving the closed stratum {e∨ = 0} can be understood
from the Whitney pre-stratification of the graph obtained from G by
cutting the edge e.

Finally, the stratification of E = P(H)×P is more subtle. We won’t
have much to say about monodromy associated to E so we merely give
an example. Suppose G = e1∪e2∪e3 is the triangle graph. In this case,
H = CD(e1+e2+e3). We consider Q1∩Q2 onM−E and how its closure
Q12 meets E . The two equations e∨,2i −m2

iµ
∨,2, i = 1, 2 meet P(H) =

P(CD) in the same divisor. The difference e∨,21 − e∨,22 − (m2
1 −m2

2)µ
∨,2

lies in the ideal defining P(H). If we write e∨i = (x1
i , . . . , x

D
i ) then this

difference lies in the ideal (x1
1−x1

2, . . . , x
D
1 −xD2 , µ∨). In particular, Q12

meets E in a family of hyperplanes in P parametrized by the divisor
Q1∩P(H). We do not know if this geometry at infinity has any physical
consequences.

8.3. Pham’s Vanishing Cycles. In this section we recall briefly an
extension due to F. Pham of the theory of vanishing cycles and the
Picard-Lefschetz transformation. More details can be found in [1], [6],
and [7].

Let f : X → ∆ be a proper family of varieties over a disk ∆ ⊂ C.
We assume f is smooth except over 0 ∈ ∆, and that f−1(0) has a single
ordinary double point at x0 and is smooth away from x0. With these
hypotheses, we can find coordinates x1, . . . , xn on X near x0 and t on
∆ such that locally the family is given by

(60) x2
1 + . . .+ x2

n = t.

For 0 < ε << 1, the homology of a ball B around x0 intersected with
Xε is generated by the class of the real sphere Sε :

∑
x2
i = ε, xk ∈ R.

The monodromy on the smooth fibre H∗(f
−1(ε),Q) is given by the

Picard-Lefschetz formula

(61) c 7→ c+ (−1)n(n+1)/2〈ex(c), Sε〉i∗Sε.
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Here

ex : H∗(f
−1(ε)) → H∗

(
B ∩ f−1(ε), ∂(B ∩ f−1(ε))

)

denotes excision and i∗ : H∗(B ∩ f−1(ε)) → H∗(f
−1(ε)) is the push-

forward. The pairing 〈ex(c), Sε〉 refers to the natural pairing

Hn−1

(
B ∩ f−1(ε), ∂(B ∩ f−1(ε))

)
⊗Hn−1(B ∩ f−1(ε)) → Q.

Recall the Feynman amplitude of a graph is an integral of the form∫
RDg

dDgx
f1f2·····fn

. Here the fi are propagator quadrics which depend on

masses and external momenta. The vanishing cycles addressed by
Pham’s theory occur when some subset of the quadrics Qi : fi = 0
do not meet transversally at a point. In the remainder of this section
we develop the theory abstractly, following Pham [1].

Let f : M → P be a smooth, proper map of algebraic varieties.
Let S =

⋃n
i=1 Si ⊂ M will be a normal crossings divisor. Let s0 ∈⋂n

i=1 Si ⊂ S ⊂ M , and let p0 = f(s0). We will work locally near s0 on
M , so we may fix analytic coordinates t1, . . . , tk around p0 on P and
x1, . . . , xℓ around s0 on M in such a way that t1, . . . , tk, x1, . . . , xℓ form
a full set of coordinates on M near s0. We assume that locally

Si : xi = 0; i = 1, . . . , n− 1,(62)

Sn : t1 − (x1 + · · ·+ xn−1 + x2
n + · · ·+ x2

ℓ) = 0.(63)

For such a configuration of divisors, the point s0 (origin) is called a
pinch point. Notice that on the smallest stratum

⋂n
1 Si of S, viewed as

a variety fibred over P , we have a classical Picard-Lefschetz vanishing
cycle local equation, which is a family of spheres x2

n + · · · + x2
ℓ = t1

degenerating as t → 0. For t1 = ε > 0, the vanishing sphere vsphereε
is the real sphere

(64) vsphereε : ε = x2
n + · · ·+ x2

ℓ ; xi ∈ R, n ≤ i ≤ ℓ.

Classically, vsphereε is referred to as the vanishing cycle, but we follow
Pham here and distinguish 3 different topological chains, the vanishing
sphere, the vanishing cell, and the vanishing cycle.

Definition 14. With notation as above, the vanishing cell,

(65) vcellε : xi ≥ 0, 1 ≤ i ≤ n− 1; ε− (x2
n + · · ·+ x2

ℓ) ≥ 0.

The vanishing cycle vcycleε is the iterated tube

τ ∗1,ε1τ
∗
2,ε2 · · · τ ∗n−1,εn−1

(vsphereε).

Here ε >> εn−1 >> · · · >> ε1 > 0. The notation τ ∗i,εi
refers to pulling

back to the circle bundle of radius εi inside the (metrized) normal bun-
dle for S1 ∩ · · · ∩ Si ⊂ S1 ∩ · · · ∩ Si−1. This circle bundle is viewed as
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embedded in S1∩· · ·∩Si−1 and not meeting S1∩· · ·∩Si. The inequalities
εi << εi+1 insure that vcycleε is a closed chain on M −⋃n

i=1 Si.

The local structure of homology around s0 are computed by Pham
to be

Theorem 15. Let B be a small ball around s0 in M . Let p ∈ P be
near p0 and assume t1(p) = ε > 0. Write d = dimCMp.
(i) We have for reduced homology

H̃j

( n⋂

1

Si,p ∩B,Z
)

= (0), j 6= d− n := dimC

( n⋂

1

Si,p

)
.

H̃d−n

( n⋂

1

Si,p ∩ B,Z
)

= Z · vsphereε.

(ii) In relative homology

Hj(Bp, Sp ∩ B) = (0), j 6= d; Hd(Bp, Sp ∩B) = Z · vcellε.
(iii) For the homology of the complement

Hj(Bp − Sp ∩ B) = (0), j 6= d; Hd(Bp − Sp ∩ B) = Z · vcycleε.

Local Poincaré duality yields a pairing
(66)
〈·, ·〉 : Hd(Bp−Sp ∩B)⊗Hd(Bp, (Sp ∩B)∪ ∂Bp) → H2d(Bp, ∂Bp) ∼= Z.

Let γ be a simple closed path on P based at p, supported in a neigh-
borhood of p0, and looping once around the divisor t1 = 0. Using
the isotopy lemma as discussed in section 8.1, and assuming that f is
a submersion on strata except at the point s0, Pham shows that the
variation of monodromy

(67) var := γ∗ − Id : H∗(Mp − Sp) → H∗(Mp − Sp)

factors through excision and a local variation map varloc

(68) Hd(Mp − Sp)
excision−−−−→ Hd(Bp − Sp ∩ Bp, ∂Bp)

varloc−−−→
Hd(Bp − Sp)

i∗−→ Hd(Mp − Sp).

(The variation map is zero in homological degrees 6= d.)
The Picard-Lefschetz theorem in this setup is

Theorem 16. We have

(69) varloc(excision(c)) = excision(c)

+ (−1)(n+1)(n+2)/2〈excision(c), vcellε〉vcycleε
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Proof. See [1], [6]. �

Example 17. In this example we compute the Picard-Lefschetz trans-
formation arising in physics. One has a set of quadrics Qi : fi = 0, 1 ≤
i ≤ n indexed by the edges of a graph. Our normal crossings divisor in
this case is

⋃
Qi. We consider the situation locally around a pinch point

s0, and we write in Pham’s coordinates, Qi : xi = 0, 1 ≤ i ≤ n−1 and
Qn : t1−(x1+· · ·+xn−1+

∑ℓ
n x

2
i ) = 0. Notice that in these coordinates,

the bad fibre over p0 (where t1 = 0) of
⋂n

1 Qi,p0 has an isolated R-point
at the origin. We will see (proposition 21) in the case of physical singu-
larities that this is also the case for the space-time coordinates. Hence
it is plausible to assume that at least for physical singularities Pham’s
local coordinates are defined over R. We are interested in computing
the monodromy on M−⋃Qi of the chain given by taking space-time co-
ordinates in R. As it stands this makes no sense, because our quadrics
are defined using the Minkowski metric so the Qi meet the real locus.
The standard ploy to avoid this problem is to replace the defining equa-
tions fj = 0 by fj + iaj = 0 with 1 >> aj > 0. Using theorem 16,
we need to compute 〈excision(RDg), vcellε〉, where D is the dimension
of space-time and g is the number of loops of the graph.

In Pham’s local coordinates, the deformed quadrics are defined by
xj = −iaj , 1 ≤ j ≤ n−1 and ε+ian−(

∑n−1
1 xj+

∑Dg
n x2

j ) = 0. We let
xj run over the path xj = (1−ρj)iaj+ρj(ε+ian)/(n−1), 1 ≤ j ≤ n−1.
Here 0 ≤ ρj ≤ 1. For points x0 = (x0

1, . . . , x
0
n−1) on those paths, the

quadratic equation becomes
∑Dg

n x2
j = ε+ ian−

∑n−1
1 x0

j =: r(x0)eiθ(x
0).

The locus

(70) {(eiθ(x0)/2un, . . . e
iθ(x0)/2uDg) |

Dg∑

k=n

u2
k ≤ r(x0)}

is a solid sphere, and the union of those solid spheres as the xj run
over those paths is the chain vcellε for the deformed quadrics.

According to theorem 16, the multiplicity of the vanishing cycle in
the variation of the cycle RDg (or more precisely of PDg(R)) around
the given pinch point is the intersection of this real locus with vcellε.

Note that xj is real only at the point ρj = aj/(aj + an/(n − 1)) ∈
(0, 1). At the point with these coordinates, the quadratic equation reads∑Dg

n x2
j = R+ ian for some R ∈ R. since an 6= 0, the only real point on

the corresponding solid sphere (70) lies at the origin. Thus, vcellε∩RDg

is precisely one point. The intersection looks locally like the intersection
RN ∩ eiθRN ⊂ CN , so it is transverse, and

〈excision(PDg(R)), vcycle〉 = ±1.
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We do not try to compute the sign.

8.4. Cutkosky Rules. Cutkosky rules [8, 9], [3], give a formula for
the variation of an amplitude integral around a threshold point in the
space of external momenta. The formula as classically expressed ([3],
formula (2.9.10)) is

(71) var(I) = (−2πi)r
∫
δ+(q2

1 −m2
1) · · · δ+(q2

r −m2
r)d

Dgx

(q2
r+1 −m2

r+1) · · · (q2
N −m2

N )
.

Here I is the amplitude associated to a graph G with N edges and g
loops. The q2

i −m2
i are propagators, and δ+(q2

i −m2
i ) means to take the

residue of the original form ω := dDgx
∏N

1
(q2i−m

2

i )
along the divisor q2

i−m2
i = 0

and then to integrate over the part of the real locus of that divisor
where the energy is positive. External momenta are placed at a point
near the threshold divisor associated to a pinch point of the intersection⋂r
i=1{q2

i −m2
i = 0}, and “var” (also called “discontinuity”) refers to the

variation of I as external momenta wind around the threshold divisor.
The calculus of Pham’s vanishing cycles leads to a rigorous proof of

the Cutkosky formula in cases when it holds. The crucial point to be
understood is the role of the real structure. Note the real structure
plays a central role in the physical narrative; δ+(q2

i −m2
i ) puts the edge

“on shell”. The issue is under what conditions (71) is the integral of
the residue of ω over Pham’s vanishing sphere on

⋂r
i=1{q2

i −m2
i = 0}.

In this section, we prove this in the basic case r = N at a physical
pinch point.

For convenience we write ℓi = q2
i − m2

i . We consider the universal
quadric ℓ := a1ℓ1 + · · · + aNℓN where the ai are variables. Let Q ⊂
CN × CDg be the zeroes of the universal quadric.

Definition 18. A point p = (c1, . . . , cN , p
′) ∈ Q(R) is said to be a

physical singularity if p is a singular point on Q and all the ci > 0.
By extension, a point p′ ∈ RDg is called a physical singularity if there
exists a physical singularity of the form p = (c1, . . . , cN , p

′).

Lemma 19. Let p = (c1, . . . , cN , p
′) be a physical singularity of the

universal quadric Q. Then p′ ∈ ⋂N
i=1{ℓi = 0} and p′ is singular on the

intersection.

Proof. By assumption, p is singular on Q, so ℓi(p
′) = ∂

∂ai
ℓ(p) = 0 and p′

lies in the intersection of the quadrics. Also, vanishing of the partials
of ℓ with respect to coordinates on RDg yield the relation

(72)

N∑

i=1

cigradp′(ℓi) = 0
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which implies that p′ is singular on the intersection of the quadrics. �

The following is the analogue in this setup of Pham’s pinchpoint
condition [1].

Definition 20. A physical singularity p will be called non-degenerate
if two conditions hold
(i) The relation (72) among the gradients of the ℓi at p′ is the only
non-trivial linear relation.
(ii) The Hessian matrix at the singular point for the intersection of the
quadrics is non-degenerate.

Condition (i) in the above definition means we can choose local co-
ordinates x1, . . . , xN−1 at the singular point in such a way that the
intersection of the quadrics is cut out locally near the singular point
by

(73) x1 = · · · = xN−1 = g = 0

for some function g. Condition (ii) says that the matrix of second order
partials of g|{x1 = · · · = xN−1 = 0} at the point p′ is non-degenerate.

In order to understand the R-structure we borrow a standard picture
of a Morse function f , [10].
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The hessian of f at the points a, d is definite, while the hessian at b, c
has one positive and one negative eigenvalue. Note f−1f(a) = a and
the fibre f−1(x) for x slightly above f(a) is a sphere (circle in this case)
which contracts to a point as x → f(a). The picture is similar at d.
On the other hand f−1f(b) and f−1f(c) are figure-eights and there are
no vanishing cycles. In our case, if we know that the hessian of the
function g in (73) at the singular point is (either positive or negative)
definite, then Pham’s vanishing cycle will be the real sphere given to
us by Morse theory.

Proposition 21. Let (c1, . . . , cN , p
′) ∈ Q be a non-degenerate physical

singularity (definition 18). Assume the squares of the masses m2
i > 0

for 1 ≤ i ≤ N . Then the hessian associated to p′ ∈ ⋂N
1 {ℓi = 0} is

negative definite. In particular, the vanishing cycle is real.

Proof. Order the edges e1, . . . , eN such that q1, . . . , qg give coordinates
on the space of loops. We view qi for i > g as a linear combination
of q1, . . . , qg. (Note each qi = (q1

i , . . . , q
D
i ) is a D-tuple of coordinate

functions.) It will be convenient to shift to the more familiar physics
viewpoint and think of p = (c1, . . . , cN , q1(p

′), . . . , qg(p
′)) ∈ RN × RDg.

We then have ℓi = (qi − si)
2 − m2

i for some si ∈ RD. Because p

is singular on Q, the sum
∑N

1 ciℓi is pure quadratic when expanded
about p′, with vanishing constant and linear terms. Notice that for all
i ≤ N , the quadratic part of ℓi is q2

i which is a Minkowski square. The

quadratic form associated with the hessian is then simply
∑N

1 ciq
2
i . Of

course, these are Minkowski squares so it is not possible to say anything
about the sign of the form on RDg. However, what we want is the sign
of the form restricted to the intersection of the tangent spaces at p′ of
the ℓi. Among these are the tangent spaces at p′ to ℓi = q2

i −m2
i for

1 ≤ i ≤ g. The tangent space at p′ for such an ℓi is q−1
i (qi(p

′)⊥) ⊂ RDg.
Here qi(p

′)⊥ ⊂ RD. Note qi(p
′)2 = m2

i > 0 for 1 ≤ i ≤ g. Since the
Minkowski metric has sign (1,−1, . . . ,−1) on RD, we conclude that the
sign of the metric on the intersection of these spaces in RDg is negative
definite. In particular,

∑N
1 ciq

2
i is certainly negative semi-definite on

the intersection of these tangent spaces. The only way it could fail to
be negative definite would be if there was a non-zero tangent vector
t such that qi(t) = 0, 1 ≤ i ≤ N . But this is not possible since the
qi, 1 ≤ i ≤ g give coordinates. �

8.5. Cutkosky cuts. We collect together in this section some basic
remarks about Cutkosky cuts. G will denote a connected graph with
edge set E and vertex set V . Each vertex v carries an external momen-
tum pv ∈ CD where D is the dimension of space-time, and each edge e
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has associated a mass me ∈ C. Physically, of course, one is interested
in real masses and real external momenta, but we will need to work
with complex values as well. We view RD as carrying a Minkowski
metric with sign (1,−1, . . . ,−1). This quadratic form is extended in
an obvious way to CD, and we write p2

v for the metric square of an
external momentum pv ∈ CD.

The total momentum p := {pv | v ∈ V } is subject to the conserva-
tion law

∑
v∈V pv = 0. Associated to each edge we associate an affine

quadric as follows. The homology of the graph with coefficients in CD

is calculated by the homology sequence

(74) 0 → H1(G,C
D) → (CD)E

∂−→ (CD)V,0 → 0

where ∂ is the usual boundary map on topological chains, and (CD)V,0 :=

ker((CD)V
sum−−→ CD). We view the total momentum p ∈ (CD)V,0,

and we consider the fibre ∂−1(p) ⊂ (CD)E as an affine torsor under
H1(G,C

D) ∼= CDg where g is the loop number of G. To each edge e
we associate first the evident projection e∨ : (CD)E → CD, and then,
by composing with the Minkowski form and restricting, a quadratic
function e∨,2 on ∂−1(p). The propagator quadric

(75) ℓe := e∨,2 −m2
e.

Let Qe : ℓe = 0. If me 6= 0, Qe is a non-singular affine quadric in
∂−1(p) ∼= ADg. We will be interested in subsets E ′ ⊂ E of edges
such that

⋂
e∈E′ Qe is singular. The following elementary observation

is basic:

Proposition 22. Suppose
⋂
e∈E′ Qe is singular and the masses me, e ∈

E ′ are non-zero. Then the graph G′ ⊂ G obtained by cutting the edges
e ∈ E ′ is not connected. (Note “cutting” an edge e means removing e
but not the vertices of e. The cut graph is permitted to have isolated
vertices.)

Proof. Cutting an edge of G removes a 1-simplex from G so it increases
the Euler characteristic χ(G) = h0(G) − h1(G) by 1. Writing G − e
for the cut graph, we see there are two (mutually exclusive) possibil-
ities. either h1(G − e) = h1(G) − 1 or h0(G − e) = h0(G) + 1. It is
straightforward to check that h1(G− e) = h1(G)− 1 if and only if the
composition

(76) H1(G,C
D) ⊂ (CD)E

e∨−→ CD

is surjective. (Note the kernel of this arrow is H1(G− e,CD).) When
we iterate the argument, we see that G −⋃e∈E′ e is connected if and

only if
∏

e∈E′ e
∨ : H1(G,C

D) → (CD)E
′

is surjective. But when this
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happens, the e∨ give a (partial) set of coordinates on ∂−1(p), and it is
clear that the intersection over e ∈ E ′ of the quadrics Qe cannot be
singular. �

Note, however, that the converse is not true. A series of cuts which
disconnects a graph does not necessarily correspond to a singular in-
tersection of quadrics. Given E ′ ⊂ E(G) such that cutting edges in E ′

disconnects the graph, one obtains a family of intersections of quadrics
parametrized by external momenta. Typically, there will be a discrim-
inant, or threshold, divisor in the space of external momenta such that
the intersections become singular for momenta on the divisor. The clas-
sical Picard-Lefschetz theory (as reworked by F. Pham, [1]) calculates
the monodromy when external momenta wind around that discrimi-
nant path in a generic way. In the case of a one parameter family
parametrized by a disk with a singular intersection at t = 0, generic
means that the singular intersection of propagator quadrics has an iso-
lated ordinary double point and no other singularity.

This isolated double point condition has an important consequence
for the graph G.

Proposition 23. Let E ′′ ⊂ E(G) and assume G −⋃e∈E′′ e is discon-
nected. If the loop number h1(G−

⋃
e∈E′′ e) > 0, then

⋂
e∈E′′ Qe cannot

have an isolated singularity.

Proof. Let G′ = G − ⋃e∈E′′ e ⊂ G and define G′′ =
⋃
e∈E′′ e. We

view G′′ as a quotient G ։ G′′ obtained by contracting the edges in
G′. The propagator quadrics associated to edges in E ′′ are constant
on the fibres of H1(G,C

D) → H1(G
′′,CD). These fibres are identified

with H1(G
′,CD), so if the loop number of G′ is greater than zero, the

intersection of these quadrics cannot have an isolated singularity. �

8.6. Cutkosky’s Theorem. We can now formulate Cutkosky’s theo-
rem. We assume given a graph G and a subgraph G′ ⊂ G. We write
G′′ := G//G′ for the graph obtained by contracting the connected com-
ponents of G′ to (separate) points. We assume G′′ has no self-loops.
We identify the edge set of G′′ as a subset of the edges of G, E ′′ ⊂ E.

For the proof of Cutkosky’s theorem below, we suggest that the
reader first consider the case when H1(G

′) = (0), so no loops are con-
tracted. In this case, the integration chain C, (79), is a sphere and the
argument is much simpler. We have given the argument in the general
case assuming the integral (80) is conveniently renormalized.
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Theorem 24 (Cutkosky). Assume the quotient graph G′′ has a non-
degenerate physical singularity (definition 18) at an external momen-
tum point p′′ ∈ (

⊕
V ′′ R

D)0, i.e. the intersection
⋂
e∈E′′ Qe of the prop-

agator quadrics associated to edges in E ′′ has such a singularity at a
point lying over p′′. Let p ∈ (

⊕
V RD)0 be an external momentum point

for G lying over p′′. Then the variation of the amplitude I(G) around
p is given by Cutkosky’s formula

(77) var(I(G)) = (−2πi)#E′′
∫ ∏

e∈E′′ δ
+(ℓe)∏

e∈E′ ℓe
.

Proof. As we have seen in proposition 21, near p′′ we can find a real van-
ishing sphere vsphereε′′ which is the real locus underlying

∏
e∈E′′ δ

+(ℓe).
Consider the diagram

(78)

0 0 0y
y

y

0 −−−→ H ′ −−−→ H −−−→ H ′′ −−−→ 0y
y

y

0 −−−→ (RD)E
′ −−−→ (RD)E

πE−−−→ (RD)E
′′ −−−→ 0y

y∂
y∂′′

0 −−−→ (RD)V
′,0,0 −−−→ (RD)V,0

πV−−−→ (RD)V
′′,0 −−−→ 0y

y
y

0 0 0

Here H ′, H,H ′′ are the first homology groups of G′, G,G′′ with RD-
coefficients. The superscript (V ′, 0, 0) on the lower left means the coeffi-
cients of the vertices sum to 0 over each connected component ofG′. We
are given ε ∈ (RD)V,0, and ε′′ = πV (ε) is near a threshold point for the
quotient graph G′′ corresponding to a physical singularity (definition
18), so the vanishing sphere (64) vsphereε′′ ⊂ ∂′′−1(ε′′) ∩⋂e∈E′′ Qe(R)
is defined. We take as integration chain (although plausible, some jus-
tification is needed here. See below.)

(79) C = π−1
E (vsphereε′′ ∩ ∂−1(ε)).

Note C is fibred over vsphereε′′ with fibres H ′. We integrate over C
using Fubini. The integrand can be decomposed

(80)
( dDg′x′∏

E′ fe

)
∧ π∗E

(dDg′′x′′∏
E′′ fe

)
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In this process, the propagators corresponding to edges in E ′′ are left
with masses in R (as they must be in order to contain a real sphere),
while propagators from edges in E ′ have iε added to the masses. As
a consequence, the poles in the integrand associated to propagators
in E ′ meet the chain of integration only (possibly) at infinity. These
singularities may need to be renormalized.

Finally, to justify our choice of integration chain, we have to show
that the Picard-Lefschetz-Pham formula for the variation lifts to the
cone with fibres which are H ′-torsors minus the propagator quadrics
associated to edges of G′. Let p′′ ∈ (RD)V

′′,0 ⊂ (CD)V
′′,0 be a point

on a threshold divisor corresponding to a non-degeneralte physical sin-
gularity. Let b′′ ∈ ⋂e∈E′′ Qe(R) be the corresponding singular point,

so ∂′′(b′′) = p′′. Now fix neighborhoods b′′ ∈ B′′ ⊂ (CD)E
′′

and
p′′ ∈ P ′′ ⊂ (CD)V

′′,0 as in section 8.1. I.e. we assume that the iso-
topy lemma applies in the complement of B′′ so monodromy around a
small circle around p′′ in P ′′ can be calculated inside B′′.

We fix a linear splitting σ : (CD)V
′′,0 → (CD)V,0 for the projection

πV in (78). We assume σ is defined over R. Let P = σ(P ′′) ⊂ (CD)V,0.
We want to compute the variation for a loop in P winding around
p := σ(p′′). Since the local singularity comes from the edges E ′′ which
pinch in U ′′ := B′′ ∩ δ′′−1(P ′′), we will work in

(81) U := π−1
E (U ′′) ∩ ∂−1(P ) ⊂ (CD)E.

We have the diagram (Qe are propagator quadrics)

(82)

U ∩⋂e∈E′ Qe −−−→ U
πU,E−−−→ U ′′

y∂
y∂′′

P
∼=−−−→ P ′′

Here again we need to apply our renormalization hypothesis to com-
pactify the fibres of πU,E in such a way that the isotopy lemma applies.
In particular, we need that the projection map πU,E is submersive on
the strata of U ∩⋂e∈E′ Qe. Granting this, we apply the isotopy lemma.
Since U ′′ is contractible, we deduce a stratified isomorphism of spaces
over U ′′

(83) U ∼= F × U ′′; F := π−1
U,E(b′′).

We will need a certain compatibility with the R-structure. Since the
masses of propagators in E ′ are not real, we see that for β ′′ ∈ U ′′(R),
π−1
U,E(β ′′)(R) does not meet any of the Qe, e ∈ E ′. Said another way,
U(R) = (U − ⋂e∈E′ Qe)(R). We want our stratified isomorphism to
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preserve the real subset. This is possible since we can enlarge the
stratification including U(R).

Since b′′ is an R-point, F is defined over R, and F (R) is a torsor for
H1(G

′,RD).
The variation is calculated by replacing U ′′ with W ′′ := U ′′ − U ′′ ∩⋂
e∈E′′ Qe and deforming F (R) × (W ′′(R) ∩ ∂′′−1(ε′′)) as eiθε′′ loops

around p′′. (Here ε′′ ∈ P ′′(R) and eiθε′′ is intended to suggest a circle
around p′′.) The variation, of course, does not preserve the R-structure.
We know by Pham, that winding around returns W ′′(R) ∩ ∂′′−1(ε′′) to
a chain homologous to W ′′(R) ∩ ∂′′−1(ε′′) + K · vcycle where vcycle is
an iterated tube over vsphere and K is constant. Upstairs in U we
identify U ∼= F × U ′′ using (83) and map chains c on U ′′ to F (R)× c
on F × U ′′ ∼= U . The problem is that is is hard to say what the
corresponding chains on U are. However, compatibility with the R-
structure implies that if c is supported on U ′′(R) then the chain on
U can be taken to be π−1

U,E(c)(R). In particular, if c = vsphere ⊂
δ′′−1(ε′′)(R), then the corresponding chain on U is exactly the chain C
in (79). Since monodromy and taking iterated tubes clearly commute
with taking the product with F (R) (because for this we are working
on F × U ′′; this is the beauty of the isotopy lemma) we conclude that
integration over C calculates the variation.

�

9. Variation and Hodge Weights

One would like to better understand the distinction between the
variation associated to a minimal (or Cutkosky) cut, i.e. a cut which
is minimal separating the graph into 2 pieces, and an anomalous cut
which involves cutting more than the minimal set of edges. A simple
remark which could be useful for such a study is that the Hodge weight
of the vanishing cycles decrease as more edges are cut.

We consider a collection of quadrics Qe,p := {ℓe,p = 0} ⊂ PDg for e ∈
E(G), the edge set of our graph G. Here p denotes external momenta.
Write

(84) Xp :=
⋃

e∈E

Qe,p.

Let ωp = dxDg
∏

e ℓe,p
. It may happen that ωp has a pole on the hyperplane

H∞ at infinity , in which case we replace Xp by Xp ∪ H∞. In this
way, the amplitude becomes a period for the mixed Hodge structure
HDg(PDg − Xp,Q). We write Up := PDg − Xp and we vary p in the
complement of the threshold divisors in the space of external momenta.
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The localization sequence for Betti cohomology yields a long-exact
sequence

(85) HDg(PDg) → HDg(Up) → HDg−1(Xp)(−Dg) → HDg+1(PDg)

We abreviate this

(86) HDg(Up)
0(Dg) ∼= HDg−1(Xp)

0

Now we cut edges e1, . . . , er. We assume the external momentum is
near a threshold divisor for this cut, so we may identify a vanishing
sphere vsphere(p) ∈ HDg−r(Qe1,p ∩ · · · ∩Qer,p). For p sufficiently close
to the threshold divisor, the vanishing cycle will be supported in the
smooth locus of Qe1,p ∩ · · · ∩Qer ,p. Writing Z → Qe1,p ∩ · · · ∩Qer ,p for
some resolution of singularities, we may assume the vanishing sphere
comes from a class in HDg−r(Z). It follows that

(87) vsphere(p) ∈ Wr−DgHDg−r(Qe1,p ∩ · · · ∩Qer,p)

where Wr−Dg denotes the subspace of Hodge weight r −Dg. Note the
weight filtration is increasing, and r − Dg is the smallest non-trivial
weight.

The iterated tube vcycle(p) ∈ HDg(Up)(−r). To understand in
Hodge-theoretic terms the passage from vsphere(p) to vcycle(p) we pro-
ceed as follows. We fix p. The sphere is contained in the smooth locus
of Qe1,p ∩ · · · ∩Qer,p. Blowing up on PDg away from vsphere(p) we can
suppose that the Xi := Qei,p are smooth divisors on a smooth variety
P , and that the Xi meet transversally. Suppose for example r = 2, and
write Y = X1 ∩X2. Since X1 − Y →֒ P −X2 is a smooth divisor, we
can consider the tube maps dual to residue in cohomology

(88) Hi−2(Y )
tube−−→ Hi+1(X1 − Y )(1)

tube−−→ Hi+2((P −X2)−X1)(2) = Hi+2(P − (X2 ∪X1))(2).

It follows that

(89) vcycle(p) ∈ Wr−Dg

(
HDg(Up)(r)

)
∼= W−r−DgHDg(Up).

We conclude

Proposition 25. The variation associated with cutting r edges maps

(90) HDg(Up)
var−−→ W−r−DgHDg(Up).

Note that as we cut more edges, r increases and W−r−Dg decreases.
(The weight filtration is increasing, so W−s ⊂W−r for s > r.)
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10. Monodromy vs Dispersion

Now let (Γ, T ) be given, and with it a corresponding sequence of
forests F , cut graphs ΓF , reduced graphs ΓF , and sets of graphs Γi ≡
Γi(F ) ∈ GF . We let F2 be the 2-forest in this sequence of forests.

The corresponding reduced graph ΓF2
is a bk multiple edge, k = eΓF2

with |ΓF2
| = k − 1. ǫ2 is a cut through k edges. ΓF2

∩ T is a single
edge, the first edge of T in the ordering of edges of T .

If and only if those Γi contain loops the functions ΦR(Γi) are multi-
valued and have monodromy in the variation of their external momenta.

Remark 26. Monodromies from varying only the channel variable s
associated to (Γ, T ), s ∈ QΓF2

⊆ QΓ (see (21)) are determined from
threshold divisors sj−2(ǫj).

Remark 27. All edges in e of the reduced graph ΓF2
such that e∩T =

∅ can be assigned a marking x(1) ∈ Z. This can be used to store
the sheet on which we evaluate multivalued functions arising from loop
integrals. Iterating this for all subgraphs Γi which contain loops, we
get a hierarchy of markings x(i) for all edges not in T . By Thm.(15)
we have x(i) ∈ Z. If all cuts ǫk are two-particle cuts (eΓFi

− eΓFi−1
=

2 = eΓF2
), every such edge has a different marking x(i), i = 1, . . . , |Γ|.

Else, the marking is degenerate. A comparison to the familiar marking
by generators of the fundamental group of a graph (as in Outer Space)
will be given in future work. The marking used here stores the homology
and thus multi-valuedness assigned to functions ΦR(ΓF ), ΦR(Γi). This
information is implicitly stored in (MΓ

i )rs.

Let us now indicate how the matrix looks in the case of a 4 × 4
matrix. We also indicate how Cutkosky’s thorem and dispersion act
between the matrix entries. The spanning tree T has three edges, and
spanning forests are given by indicating the edges to be removed.

Here is MΓ
i =




1 0 0 0
↑ π ↑ π
ΥT2

Γ2
⇋

Var
disp ΥT2−e1

Γ2
0 0

↑ π ↑ π ↑ π
ΥT3

Γ3
⇋

Var
disp ΥT3−e1

Γ3
⇋

Var
disp ΥT3−e1−e2

Γ3
0

↑ π ↑ π ↑ π ↑ π
ΥT4=T

Γ4=Γ ⇋
Var
disp ΥT4−e1

Γ4
⇋

Var
disp ΥT4−e1−e2

Γ4
⇋

Var
disp ΥT4−e1−e2−e3

Γ4




.

By construction, along the diagonal Cutkosky’s thorem gives the vari-
ation associated to leading singularities. This plus dispersion provided
by a Hilbert transform wrt the channel variable defined by a suitable
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multiple edge bj ,ΓFi
/bj = ΓFi−1

, with j = eΓFi
− eΓFi−1

determines the

first subdiagonal. Having thus determined the first subdiagonal, we
can iterate to determine the whole matrix.

So in a row, we go to the right by computing the variation with
the help of Cutkosky’s theorem. We go to the left by the Hilbert
transform. The entry from above is needed to fix the normalization in
this dispersion integral.

Vertical arrows correspond to a projection which gives the integrals
over uncut edges as a fibration.

At the end, starting from variations for leading thresholds, this sys-
tematic decomposition of graphs allows to reconstruct a graph from its
variations through Hilbert transforms and the determination of anoma-
lous thresholds.

We emphasize that a given graph Γ gives many such matrices, one
for each possibility to shrink its internal edges until all vertices unify
in a single vertex. To understand the physical thresholds of a graph
requires to analyse all these matrices.

11. Dispersion

Cutkosky’s theorem allows us to find the variation associated to
physical thresholds. This variation can be associated to a pair (Γ, T )
with associated channel variable s.

If there is a lowest finite real threshold sk > −∞, then for s < sk,
we have real analyticity in this channel, with all other kinematical
variables fixed:

(91) ΦR(Γ)(s) = Φ⋆
R(Γ)(s⋆), s < sk.

We conclude that for s > sk near the real axis

(92) ℜ(ΦR(Γ)(s)) = ℜ(ΦR(Γ)(s⋆))

and

(93) ℑ(ΦR(Γ)(s))) = −ℑ(ΦR(Γ)(s⋆)).

It follows that the dispersion integral, when it exists, is an integral of
the variation from sk to +∞ along the real axis.

Depending on the superficial degree of divergence of a graph the
form to be integrated for renormalized Feynman amplitudes has the
structure

(94)
Φk

Γ ln ΦΓ

Φ0

Γ

ψjΓ
ΩΓ, k ≥ 0,
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or

(95)
Φk

Γ

ψjΓ
ΩΓ, k < 0.

We focus on the case
ln

ΦΓ

Φ
0

Γ

ψ2

Γ

ΩΓ, the other cases being similar.

The crucial input is the ratio ΦΓ/Φ
0
Γ of second Symanzik polynomials

as functions on QΓ and the chosen renormalization point Q0 ∈ QΓ

which we take Euclidean or at least such that Φ0
Γ < 0 is negative

definite.
Positivity of ψ leaves the logarithm ln ΦΓ as the source of imaginary

parts. We hence focus on the domain where its argument is smaller
than zero.

Using the Heavyside Θ-function (Θ(x) = 1, x > 0,Θ(x) = 0, x < 0),
we get an imaginary part from a contribution

∫

PΓ

Θ(ΦΓ)

ψ2
γ

ΩΓ.

Remark 28. This argument can be generalized in a straightforward
manner to cover the case of a finite forest sum over graphs, or other
degrees of superficial divergence than logarithmic. The crucial fact that
the the imaginary part of a graph amplitude is supported on the zero
locus of the second Symanzik polynomial remains valid.

We use ψΓ = ψΓ/e + tγR
Γ
γ , for γ some multiple edge bk

2. Here and in

the following PΓ indicates a positive real integration chain given as the
interior of the simplex σΓ (see (27)).

A partial integration leaves us to consider V ar(Γ) = U∅
Γ +Uγ

Γ/γ , with

U∅
Γ :=

∫

PeΓ−2

∫ ∞

0

Θ′(ΦΓ)

ψγRΓ
e

dtγ ∧ ΩΓ/γ ∧ Ωγ .

The boundary term is

Uγ
Γ/γ =

∫

PeΓ−2

Θ(ΦΓ/γ)

ψΓ/γRΓ
γ

ΩΓ/γ ∧ Ωγ .

Remark 29. These boundary terms iterate along the partial integra-
tion of the first Symanzik polynomial ψ. Linear reducibility for this
polynomial [11, 12] comes in crucially. Note that minors of graphs
Γ are precisely what populates the boundary cells in the cubical chain
complex.

2If γ is a 1-edge b1, tγ = Ae, R
Γ

e
= ψ(Γ− e)
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We have ΦΓ = −Z(tγ − t1)(tγ − t2), with t1/2 = Y ±
√
D and D =

Y 2 +XZ as before.
We find

(96) U∅
Γ =

∫

PeΓ−2

∫ ∞

0

2∑

i=1

Φ′
Γδ(tγ − ti)

|Φ′
Γ(tγ = ti)|ψΓRΓ

γ

dtγ ∧ ΩΓ/γ ∧ Ωγ

and therefore

U∅
Γ =

∫

PeΓ−2

∫ ∞

0

Θ(t1)

=:ω(t1)︷ ︸︸ ︷
Φ′

Γ(tγ = t1)

|Φ′
Γ(tγ = t1)|(ψΓ/e + t1RΓ

e )R
Γ
e

dtγ ∧ ΩΓ/γ ∧ Ωγ

+

∫

PeΓ−2

∫ ∞

0

Θ(t2)

=:ω(t2)︷ ︸︸ ︷
Φ′

Γ(tγ = t2)

|Φ′
Γ(tγ = t2)|(ψΓ/e + t2RΓ

e )R
Γ
e

dtγ ∧ ΩΓ/γ ∧ Ωγ .

Now ΦΓ(tγ = t1) = +
√
D and ΦΓ(tγ = t2) = −

√
D.

In the region were both ti > 0 we hence find

U∅
Γ = 2

∫

PeΓ−2

√
D

(ψΓ/e + Y RΓ
e )

2 −D(RΓ
e )

2
ΩΓ/γ ∧ Ωγ .

If only t1 > 0 we find

U∅
Γ =

∫

PeΓ−2

√
D

|Φ′
Γ(Ae = t1)|(ψΓ/e + t1RΓ

e )R
Γ
e

ΩΓ/γ ∧ Ωγ.

Next, define the two domains ωDs , ω
N
s ⊆ PΓ/e by

ωDs = {p ∈ PΓ/e|D(p, s) > 0},
ωNs = {p ∈ PΓ/e|4XZ(p, s) > 0}.

Here, D and 4XZ are regarded as functions of the edge variables Ae
and the channel s, for all other kinematical variables and masses fixed
and given. Note that for 4XZ > 0, D > 0 we have Y <

√
D and for

4XZ < 0, D > 0 we have Y >
√
D.

Then, U∅
Γ = U∅

1 (s) + U∅
2 (s) with

(97) U∅
1 (s) :=

∫

ωD
s ∩ω

N
s

ω(t1),

and

(98) U∅
2 (s) :=

∫

ωD
s −(ωD

s ∩ω
N
s )

(ω(t1) + ω(t2)).
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The dispersion integral is then obtained by bringing in all boundary
terms iteratively

ℜ(ΦR(Γ)) =

∫ sk−1

sk

U∅
2 (s)

(x− s)
ds+

∫ ∞

s0

U∅
1 (s)

(x− s)
ds

+

∫ sk−2

sk−1

Uγ
2 (s)

(x− s)
ds+

∫ ∞

sk−1

Uγ
1 (s)

(x− s)
ds

+ · · ·
+

∫ ∞

s1

Uγ,···
1 (s)

(x− s)
ds.

12. Examples

12.1. One-loop bubble. For the bubble, a double edge γ = b2(a, b)
on two edges e1, e2 between two vertices a, b with momenta pa = −pb
and channel s = p2

a with ǫ2 the cut separating a and b the only cut,
there are two single lower triangle two-by-two matrix Mγ

i , i ∈ 1, 2,
depending on which of the two edges we take as the spanning tree t.

For example

Mγ
1 =

a ∪ b

1

1

2

a
b

1

2

a
b

and the three entries populate a cubical complex which is simply an
interval [0, 1], with the endpoint at zero associated to (Mγ

1 )11, the end-
point at 1 to (Mγ

1 )22 and the interval ]0, 1[ to (Mγ
1 )21.

The second Symanzik polynomial is

(99) Φγ(s,m
2
1, m

2
2) = s2A1A2 − (m2

1A1 +m2
2A2)(A1 + A2).
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We also have ψγ = A1 + A2, Pγ = P1, Ωγ = A1dA2 − A2dA1 and the
renormalized integral is

(100) ΦR(γ)(s, s0, m
2
1, m

2
2) =

∫

Pγ

ln
Φ(s,m2

1
,m2

2
)

Φ(s0,m2

1
,m2

2
)

(A1 + A2)2
Ωγ .

We choose s0 such that Φ(s0, m
2
1, m

2
2) < 0 for all A1, A2 > 0. This

means s0 < (m1 +m2)
2. In particular, we distinguish the two matrices

Mγ
i my choosing either m2

1 or m2
2 for the renormalization point s0:

(101) Φ1
R = ΦR(s,m2

1, m
2
1, m

2
2), Φ2

R = ΦR(s,m2
2, m

2
1, m

2
2).

The integral in Eq.(100) can be easily integrated. Instead of doing it
projectively, we can set say A1 = 1 and integrate A2 over the positive
reals.

Note that the second Symanzik polynomial is then quadratic in A2,
and its discriminant λ determines the vanishing cell to be the real strip
defined by the discriminant,

−
√
λ→ +

√
λ.

We find
(102)

ΦR(s, s0, m
2
1, m

2
2) =

1

4π2

√
λ

2s
ln
x+

√
λ

x−
√
λ
− m2

1 −m2
2

2s
ln
m2

1

m2
2

− (s→ s0),

where λ = λ(s,m2
1, m

2
2) and λ(a, b, c) ≡ a2 + b2 + c2 − 2(ab + bc + ca)

is the K̊allen function, and x = m2
1 +m2

2 − s.

ΦR(s, s0, m
2
1, m

2
2) ≡ Υ

(a,b)
γ (see (46) and note that vertices a, b form

a 2-forest for the spanning tree T given by one of the two edges of the
graph γ) has a variation

Υ(a,b)
γ ≡ V ar(γ) ≡ ∆2(s) =

2i

√
λ

4πs
Θ(s− (m1 +m2)

2)(103)

=

∫
d4kδ+(k2 −m2

1)δ
+((k + q)2 −m2

2).

It hence allows for a dispersion

(104) ΦR(γ)(s, s0, m
2
1, m

2
2) =

s− s0

π

∫ ∞

(m1+m2)2

∆2(x)

(x− s)(x− s0)
dx.

Remark 30. Whilst the real part in (102) exists for s = 0, (103)
immediately shows that there is a singularity at s = 0, which is a
secondary singularity, whose presence indicates a (mass-independent)

pinching at infinity. Note that s =
√
λ(s, 0, 0).
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We find our first two matrices M1
γ ,M

2
γ :

(105) M1
γ =

(
1 0

Φ1
R ∆2(s)

)
, M2

γ =

(
1 0

Φ2
R ∆2(s)

)
.

Here we use Υ
(a,b)
I = 1.

12.2. The triangle. We consider the triangle graph ∆. In fact, we
augment it with one of its three possible spanning trees, say on edges
e2, e3, so ET = {e2, e3}. The corresponding cell in the cubical chain
complex is

(106)

a

b

c

a

b

c

a

b

c

a

b

c

a b ∪ c

a
b ∪ c

a ∪ b ∪ c

b
b

a ∪ c a ∪ c

1

2

3

1

2

3

1

2

3

1

2

3

1

2

1

1

2

1

3

1

3

For the Cutkosky cut we choose two of the three edges, say ǫ2 =
{e1, e2}. This defines the channel s = p2

a and the matrix M∆
1 .

The other cut in that matrix is the full cut separating all three
vertices.
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We give M∆
1 in the following figure:

M∆
1 =

1

1

2

1

2

1

2

3

1

2

3

1

2

3

a ∪ b ∪ c

a
b ∪ c

a

b

c

a

b

c

a

b

c

a b ∪ c

We now calculate:

Φ∆ =

=ΦΓ/e3︷ ︸︸ ︷
p2
aA1A2 − (m2

1A1 +m2
2A1)(A1 + A2)

+A3((p
2
b −m2

3 −m2
1)A1 + (p2

c −m2
1 −m2

3)A2)−A2
3m

2
3,

so

Φ∆ = Φ∆/e3 + A3Φ
m2

3

∆−e3
− A2

3m
2
3

=1︷ ︸︸ ︷
ψ∆−e1,

as announced (A3 = tγ):

X = Φ∆/e3 , Y =

=:l1︷ ︸︸ ︷
(p2
b −m2

3 −m2
1)A1 +

=:l2︷ ︸︸ ︷
(p2
c −m2

1 −m2
3)A2, Z = m2

3.

We have Y0 = m2l1 +m1l2, and need Y0 > 0 for a Landau singularity.
Solving Φ(∆/e3) = 0 for a Landau singularity determines the familiar

physical threshold in the s = p2
a channel, leading for the reduced graph

to

(107) pQ : s0 = (m2 +m3)
2, pA : A1m1 = A2m2.

We let D = Y 2+4XZ be the discriminant. For a Landau singularity
we need

D = 0.

We have

(108) Φ∆ = −m2
3

(
A3 −

Y +
√
D

2m2
3

)(
A3 −

Y −
√
D

2m2
3

)
,
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where Y,D are functions of A1, A2 and m2
1, m

2
2, m

2
3, s, p

2
b , p

2
c .

We can write

0 = D = Y 2 + 4Z(sA1A2 −N),

with N = (A1m
2
1 + A2m

2
2)(A1 + A2) s-independent.

This gives

(109) s(A1, A2) =
4ZN − (A1l1 + A2l2)

2

4ZA1A2
=:

A1

A2
ρ1 + ρ0 +

A2

A1
ρ2.

Define two Kallen functions λ1 = λ(p2
b , m

2
1, m

2
3) and λ2 = λ(p2

c , m
2
2, m

2
3).

Both are real and non-zero off their threshold or pseudo-threshold.
Then, for

r := λ1/λ2 > 0,

we find the threshold s1 at

(110) s1 =
4m2

3(
√
λ1m

2
1 +

√
λ2m

2
2)(
√
λ1 +

√
λ2)− (

√
λ1l2 +

√
λ2l1)

2

4m2
3

√
λ1

√
λ2

.

This can also be written as

(111) s1 = (m1+m2)
2+

4m2
3(
√
λ2m1 −

√
λ1m2)

2 − (
√
λ1l2 +

√
λ2l1)

2

4m2
3

√
λ1

√
λ2

.

On the other hand for r < 0 and therefore the coefficients of ρ1, ρ2

above of different sign we find a minimum

(112) s1 = −∞,

along either A1 = 0 or A2 = 0.
The domains ωDs , ω

N
s can be easily determined from the above and

determine the full complexity of the triangle function.

Remark 31. Let us now discuss the triangle in more detail. It allows
three spanning trees on two edges each, so we get six matrices M∆

i ,
i = 1, . . . , 6 altogether, by having two possibilities to order the two
edges for each spanning tree.

The six matrices M∆
i come in groups of two for each spanning tree.

For each of the three spanning trees we get a cell as in (106).
The boundary operator for such a cell in the cubical cell complex of

[2] is the obvious one stemming from co-dimension one hypersurfaces
at 0 or 1 with suitable signs. So the square populated by the triangle
∆ in (106) has four boundary components, the edges populated by the
four graphs as indicated. Those four edges are the obvious boundary of
the square.

If we now consider all graphs in (106) as evaluated by the Feynman
rules, we can consider for a given cell a boundary operator which re-
places evaluation at the xe = 0-hypersurface by shrinking edge e, and
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evaluation at the xe = 1-hypersurface by setting edge e on the mass-
shell.

Then, to check that this is a boundary operator for the amplitudes
defined by the graphs in (106) we need to check that the amplitudes for
the four graphs at the four corners are uniquely defined from the ampli-
tudes of the graphs at the adjacent edges: for example, the imaginary
part of the amplitude of the graph on the left vertical edge is related
to the amplitude of the graph at the upper left corner: This imaginary
part must be also obtained from shinking edge e3 in the graph on the
upper horizontal edge by setting A3 to zero in the integrand and inte-
grating over the hypersurface A3 = 0 of σ∆. This is indeed the case,
and similar checks work for all other corners.

A proof that we have a cubical chain complex on the level of ampli-
tudes and a detailed study will be given in future work.
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