Real Analyticity for random dynamics of transcendental functions

Volker MAYER, Mariusz URBANSKI and Anna ZDUNIK

Institut des Hautes Études Scientifiques
35, route de Chartres
91440 – Bures-sur-Yvette (France)

Mars 2016

IHES/M/16/11
REAL ANALYTICITY FOR RANDOM DYNAMICS OF TRANSCENDENTAL FUNCTIONS

VOLKER MAYER, MARIUSZ URBAŃSKI, AND ANNA ZDUNIK

Abstract. Analyticity results of expected pressure and invariant densities in the context of random dynamics of transcendental functions are established. These are obtained by a refinement of work by Rugh [12] leading to a simple approach to analyticity. We work under very mild dynamical assumptions. Just the iterates of the Perron-Frobenius operator are assumed to converge.

We also provide a Bowen’s formula expressing the almost sure Hausdorff dimension of the radial fiberwise Julia sets in terms of the zero of an expected pressure function. Our main application states real analyticity for the variation of this dimension for suitable hyperbolic random systems of entire or meromorphic functions.

1. Introduction

Answering a conjecture of Sullivan, Ruelle [11] showed for hyperbolic rational functions that the the Hausdorff dimension of the Julia sets does depend analytically on the map and gave a local formula for perturbation of the map $z \mapsto z^2$. Since then, there were several results of this type in various contexts and also different methods of proof. The monograph [19] treats the local formula and analyticity has been obtained, for example, in [18] for complex Henon mappings of \mathbb{C}^2, in [8] for basic sets of surface diffeomorphisms. In the context of entire and meromorphic functions, the first result was obtained in [17], further development appeared in [3, 4] and [14].

Whereas the latter papers use holomorphic motions, Rugh [12] introduces the method of positive cones and complex cones which allowed him to extend analyticity results to random dynamics of repellers. The present paper refines Rugh’s approach, avoids complex cones, and allows us to get analyticity results for random dynamics of transcendental entire and meromorphic functions. The following is a particular case of our general result Theorem 9.10.

Theorem 1.1. Let $f_\eta(z) = \eta e^z$ and let $a \in \left(\frac{1}{3e}, \frac{2}{3e}\right)$ and $0 < r < r_{\max}$, $r_{\max} > 0$. Suppose that η_1, η_2, \ldots are i.i.d. random variables uniformly distributed in $D(a, r)$ and let

$$J_r(\eta_1, \eta_2, \ldots) = \{z \in J_{\eta_1, \eta_2, \ldots} : \liminf_{n \to \infty} |f_{\eta_n} \circ \ldots \circ f_{\eta_1}(z)| < \infty\}$$
be the radial Julia set of $(f_{\eta_n} \circ ... \circ f_{\eta_1})_{n \geq 1}$. Then, the Hausdorff dimension of $\mathcal{J}_{r}(\eta_1, \eta_2, \ldots)$ is almost surely constant and depends real-analytically on the parameters (a, r) provided r_{max} is sufficiently small.

The common point in all papers on this topic is the fact that the Hausdorff dimension of Julia sets can be expressed in terms of the zero of a pressure function. This fact goes back to [1] and is now called Bowen’s Formula. This formula also has been generalized in many contexts and we also provide one (Theorem 9.9). We would like to mention that the zero of the involved (expected in the random case) pressure does not really detect the dimension of the whole Julia set but the dimension of its subset consisting of all radial points. In fact, in the case of hyperbolic rational functions the radial Julia set and the Julia set itself coincide. However, for transcendental functions, especially for entire functions, there is a definite difference between these sets. McMullen [6] showed that the Julia set of sine or exponential functions is always maximal equal to two whereas for such hyperbolic functions the dimension of the radial Julia set, which is often called hyperbolic dimension, is never equal to two [15, 16].

The formulation of Theorem 1.1 has been chosen deliberately in analogy with Example 1.2 in [12] since our present work stems from Rugh’s papers [12, 13]. However, we were not able to apply directly his machinery. Instead we worked out a refinement of Rugh’s elegant approach to analyticity. In particular, we avoid any use of Hilbert’s distance in positive cones and complex cones. Instead we provide a quite simple and direct calculation (see Proposition 6.1). The outcome, besides the results concerning random transcendental dynamics, provides an elementary and general tool. In short, it says that if the thermodynamical formalism holds and if the normalized iterated transfer operator converges with a uniform speed, then real analyticity holds. Let us explain this now in more detail.

We consider arbitrary analytic families of holomorphic functions $f_{1,\lambda}, f_{2,\lambda}, \ldots$ having the following properties. There exists an open set $U \subset \hat{\mathbb{C}}$ and $\delta > 0$ such that, for all $w \in U$ and $n \geq 1$, every inverse branch g of the non-autonomous composition

$$f_{j,\lambda}^n := f_{j+n-1,\lambda} \circ \ldots \circ f_{j+1,\lambda} \circ f_{j,\lambda}$$

exists, maps $\mathbb{D}(w, \delta)$ inside U and has $|g'| \leq \gamma_n^{-1}$ where $(\gamma_n)_n$ is any sequence with $\lim_{n \to \infty} \gamma_n = \infty$. As for specific examples, the reader may have in mind rational functions, functions associated to finite or infinite iterated function systems or transcendental functions. In such a setting the thermodynamical formalism usually holds (see [10], [9] and [4]). So, suppose that

$$\mathcal{L}_{j,\lambda,t} g(w) = \sum_{f_{j,\lambda}(z) = w} |f'_{j,\lambda}(z)|^{-t} \left(\frac{1 + |z|^2}{1 + |w|^2} \right)^{-\frac{t}{2}} g(z), \quad g \in C_0^0(U),$$

defines a bounded operator such that there exists probability measures $\nu_{j,\lambda,t}$ and reals $P_j(\lambda, t)$ such that $\mathcal{L}_{j,\lambda,t}^* \nu_{j+1,\lambda,t} = e^{P_j(\lambda, t)} \nu_{j,\lambda,t}$ and that there exist functions $\hat{\rho}_{j,\lambda,t} \in C_0^0(U)$ such that $\mathcal{L}_{j,\lambda,t} \hat{\rho}_{j,\lambda,t} = \hat{\rho}_{j+1,\lambda,t}$ where $\hat{\mathcal{L}}_{j,\lambda,t} = e^{-P_j(\lambda, t)} \mathcal{L}_{j,\lambda,t}$ is the
REAL ANALYTICITY FOR RANDOM DYNAMICS

normalized operator. In here, t belongs to an interval I of positive reals and $\alpha \geq 0$. When $\alpha = 0$ then the above operators are just the usual geometric transfer operators used, for example, for rational functions or iterated function systems. For the infinite to one transcendental functions we have to use the additional coboundary factor with some well chosen $\tau > 0$.

In such a setting the iterated normalized operators are uniformly bounded, i.e. there exists $M < \infty$ such that

$$\|\hat{L}^n_{j,\lambda,t}\|_{\infty} \leq M \quad \text{for all } j \geq 1, \lambda \in \Lambda \text{ and } t \in I$$

(1.1)

where $\hat{L}^n_{j,\lambda,t} = \hat{L}_{j+n-1,\lambda,t} \circ \cdots \circ \hat{L}_{j,\lambda,t}$. Also, the densities satisfy the following positivity condition as soon as the dynamical system is mixing (see for example Lemma 5.5 in [5] for the random transcendental case): there exists $z_0 \in U$ and $a > 0$ such that

$$\hat{\rho}_{j,\lambda,t}(z_0) \geq a \quad \text{for all } j \geq 1, \lambda \in \Lambda \text{ and } t \in I.$$

(1.2)

We use a bounded deformation property. It is formulated in Definition 3.3 and gives a uniform control of the variation of local inverse branches.

Theorem 1.2. Suppose that $f_{j,\lambda}$ are of bounded deformation and that the above thermodynamical formalism holds, in particular with (1.1) and (1.2). Suppose that the iterated normalized operators have uniform speed: for every $L \geq 1$ there exists $\omega_n \to 0$ such that

$$\|\hat{L}^n_{j,\lambda,t} g - \nu_{j,\lambda,t}(g) \hat{\rho}_{j+n,\lambda,t}\|_{\infty} \leq \omega_n \|g\|_{\infty} \quad \text{for every } n, j \geq 0 \text{ and}\n
$$

(1.3)

every $g \in C^0(U)$ whose restriction to $f_{j}^{-1}(U) \subset U$ is $L\|g\|_{\infty}$-Lipschitz. Then

$$\left(\lambda, t\right) \mapsto \rho_{j,\lambda,t} = \frac{\hat{\rho}_{j,\lambda,t}(z_0)}{\hat{\rho}_{j,\lambda,t}(z_0)}$$

is a real analytic function.

Remark 1.3. Notice that both, the expanding constants γ_n and the speed control ω_n of iterated operators are not assumed to be of exponential order. However, under mild assumptions they ultimately turn out to be exponential.

Theorem 1.2 will be a consequence of Theorem 7.3, Theorem 8.1 is its random analogue. All these results concern real analyticity of invariant densities. As it is explained in Remark 8.3, Theorem 8.1 could also include real analyticity of expected pressure. We worked this out in detail in the case of random transcendental dynamics and the cumulating result including real analyticity of the hyperbolic dimension is Theorem 9.10.

2. General setting

We already outlined the setting in the introduction. Here are now all the details. Suppose given

an open set $U \subset \mathbb{C}$, $0 < \delta < \delta_0$ and $\gamma_n \to \infty$.

We denote by $D_z = D(z,\delta)$ the Euclidean disk of radius δ centered at $z \in \mathbb{C}$. Let \mathcal{F} be a family of holomorphic functions $f : W_f \to V_f$, where W_f, V_f are open subsets of \mathbb{C}, that has the following property: for every $f_1, f_2, ..., f_n \in \mathcal{F}$ and for all $w \in \overline{U}$ every inverse branch g of the composition $f_n \circ ... \circ f_2 \circ f_1$ is well defined on $D(w, 2\delta_0)$ and verifies

$$g(D_w) \subset U \quad \text{and} \quad |g'|_{D_w} \leq \gamma_n^{-1}.$$

As often, replacing the functions by some definite iterate, we can suppose that $\gamma_n > 1$ for all $n \geq 1$.

Example 2.1. The reader may have in mind the following examples:

- $f_{j,\lambda}(z) = z^2 + \lambda c_j$ where $\lambda \in D(0, 1)$ and $|c_j| < \frac{1}{8}$ or other suitable perturbations of hyperbolic rational functions.
- Functions arising from (finite or infinite alphabet) conformal iterated functions systems.
- Families of transcendental functions like the exponential family in Theorem 1.1 and all the examples treated in [4, 5].

From the above definition follows that every $f \in \mathcal{F}$ has the set U in its range V_f and that $f^{-1}(U) \subset U$. The radial Julia set of a function f is

$$\mathcal{J}_r(f) = \left\{ z \in \bigcap_{n>0} f^{-n}(U) : \liminf_{n \to \infty} |f^n(z)| < \infty \right\}.$$

We mainly are interested in non-autonomous and random dynamics. The non-autonomous radial set of a sequence $f_1, f_2, ... \in \mathcal{F}$ is

$$\mathcal{J}_r(f_1, f_2, ...) = \left\{ z \in \bigcap_{n>0} (f_n \circ ... \circ f_1)^{-1}(U) : \liminf_{n \to \infty} |f_n \circ ... \circ f_1(z)| < \infty \right\}.$$

Notice that these radial Julia sets coincide with the usual Julia set as soon as the open set U is bounded which is the case for rational function (after eventual change of coordinates) and for iterated function systems. Unbounded sets U and radial Julia sets are necessary for transcendental dynamics.

Our results concern holomorphic families of functions in \mathcal{F}. Let Λ be a parameter space. Without loss of generality, we may assume that Λ is one-dimensional and, since our results are of local nature, we can restrict to the case where $\Lambda = D(\lambda_0, r)$ is an open disk in \mathbb{C} having arbitrarily small radius $r > 0$.

Definition 2.2. Let X be an arbitrary set. Then $\mathcal{F}_{X,\Lambda} \subset \mathcal{F}$ is called a holomorphic family if, for every $x \in X$, $f_{x,\lambda}$ depends holomorphically on $\lambda \in \Lambda$. This precisely means the following. Let $x \in X$. Then there exists an open subset $\Gamma_x := \bigcup_{\lambda \in \Lambda} \{\lambda\} \times W_{f_{x,\lambda}}$ of \mathbb{C}^2 such that for every point $\lambda \in \Lambda$, $W_{f_{x,\lambda}}$ is the domain of $f_{x,\lambda}$, and the map $\Gamma_x \ni (\lambda, z) \mapsto f_{x,\lambda}(z)$ is holomorphic.

The deterministic case corresponds to X being a singleton, $X = \mathbb{Z}$ (or $X = \mathbb{N}$) indicates non-autonomous dynamics and general X will be used in the last sections of the paper for random functions depending holomorphically on the parameter $\lambda \in \Lambda$.

\[\]
3. Pairings and bounded deformation

Let us now take $X = \mathbb{Z}$ and let $f_{j,\lambda} \in F_{X,\Lambda}$ be a non-autonomous holomorphic family. We set

\begin{equation}
(3.1) \quad f^n_{\lambda} := f_{n,\lambda} \circ \ldots \circ f_{2,\lambda} \circ f_{1,\lambda}
\end{equation}

and denote by $f^n_{\lambda,w}$ any inverse branch of f^n_{λ} defined on a disk D_w, where $w \in U$. This notation, sometimes without the index λ when a particular sequence is under consideration, will be used in here and in the next sections.

The following observation results directly from an application of the implicit function theorem along with the fact that the parameter space Λ is simply connected.

Fact 3.1. For every $0 < \delta \leq \delta_0$, $w \in U$, $\lambda_0 \in \Lambda$ and $z_{\lambda_0} \in f^{-n}_{\lambda_0}(w)$ there exists a unique holomorphic function $\lambda \mapsto z_{\lambda} \in f^{-n}_{\lambda}(D(w, \delta_0))$ such that $f^n_{\lambda}(z_{\lambda}) = w$. We have that $z_{\lambda} = f^{-n}_{\lambda,\ast}(w)$ for an appropriate choice of inverse branch $f^{-n}_{\lambda,\ast}$ of f^n_{λ} on D_w.

We denote by (\ast, w) such a choice of inverse branch $f^{-1}_{x,\lambda,\ast}$ defined on the disks D_w, $w \in U$. Based on Fact 3.1 and since all inverse branches are well defined on δ-disks centered in U we can now introduce the notion of pairings used in the sequel. Here and in the sequel $0 < \delta \leq \delta_0$ and this number δ will be specified later on (see Proposition 6.1).

Definition 3.2. Let $n \geq 0$. Then, if $\lambda_1, \lambda_2 \in \Lambda$ and $w_1, w_2 \in U$, $|w_1 - w_2| < \delta$, two points $z_i = z_{w_i,\lambda_i} \in f^{-n}_{\lambda_i}(w_i)$, $i = 1, 2$, are called n-pairing, or simply pairing, if they are related by a holomorphic choice of the inverse branch (\ast, w) according to Fact 3.1.

For later use we formulate the following definition for general sets X.

Definition 3.3. The family $F_{X,\Lambda}$ is of bounded deformation if there exists $A, D < \infty$ such that for every choice of inverse branch (\ast, w) we have for every $x \in X$, $\lambda, \lambda_1, \lambda_2 \in \Lambda$ and $w_1, w_2 \in D_w$

\begin{equation}
(3.2) \quad \left| \frac{\partial f^{-1}_{x,\lambda}}{\partial \lambda} \right| \leq D \quad \text{and}
\end{equation}

\begin{equation}
(3.3) \quad \left| \frac{f'_{x,\lambda_1}(z_{\lambda_1})}{f'_{x,\lambda_2}(z_{\lambda_2})} \right| = \left| \frac{f'_{x,\lambda_1}(f^{-1}_{x,\lambda_1,\ast}(w_1))}{f'_{x,\lambda_2}(f^{-1}_{x,\lambda_2,\ast}(w_2))} \right| \leq A
\end{equation}

The concept of bounded deformation has already been used in [4] but without the condition (3.3). This was so since for dynamically regular transcendental functions this second condition automatically is satisfied (see Lemma 9.4). It is also possible to relax this second condition in the setting of conformal infinite iterated function systems as it has been done [14].

Bounded deformation holds for many transcendental families and especially for $f_{\lambda}(z) = \lambda e^z$ (see [4]). Notice that (3.2) is equivalent to the fact that $\left| \frac{\partial f_{x,\lambda}}{\partial \lambda} \right| \leq D |f'_{x}|$. This condition is automatically satisfied for all rational functions and for functions
associated to finite iterated function systems subject to eventual restriction of the parameter space. Also, for all systems with compact phase space such as infinite iterated function systems one can use the theory of holomorphic motions in order to show that (3.2) holds for free. So, the bounded deformation condition is mainly instrumental in the case of transcendental, and especially entire, functions.

Remember that the expanding constant $\gamma_1 > 1$.

Lemma 3.4. If $(f_{x,\lambda})$ satisfies (3.2) then there exists a (sufficiently small) choice of $\text{diam}(\Lambda)$ (depending on δ) such that every 1-pairing $(z_{\lambda_1}, z_{\lambda_2})$ satisfies $|z_{\lambda_1} - z_{\lambda_2}| < \delta$.

Proof. Let a 1-pairing be given by $z_{\lambda_j} = f^{-1}_{x,\lambda_j,\ast}(w_j)$, $j = 1, 2$, and denote $z_{\lambda_2}' = f^{-1}_{x,\lambda_2,\ast}(w_1)$. The condition (3.2) implies that

$$|z_{\lambda_1} - z_{\lambda_2}'| = |f^{-1}_{x,\lambda_1,\ast}(w_1) - f^{-1}_{x,\lambda_2,\ast}(w_1)| \leq \text{diam}(\Lambda).$$

On the other hand, $|z_{\lambda_2}' - z_{\lambda_2}| < \gamma_1^{-1}\delta$. Therefore, $|z_{\lambda_1} - z_{\lambda_2}| < \delta\gamma_1^{-1} + \text{diam}(\Lambda)$ and it suffices to take $\text{diam}(\Lambda) < \delta(1 - \gamma_1^{-1})/D$. □

In the rest of this paper we suppose that $2r = \text{diam} \Lambda$ is chosen such that the conclusion of Lemma 3.4 holds. A further consequence of bounded deformation, this time of condition (3.3), is the following.

Lemma 3.5. For every $0 < s < r$ there exists a constant $A_s < \infty$ such that for every 1-pairing $(z_{\lambda_1}, z_{\lambda_2})$ we have

$$||\text{Arg} \left(\frac{f'_{x,\lambda_1}(z_{\lambda_1})}{f'_{x,\lambda_2}(z_{\lambda_2})} \right)|| = \left| \text{Arg} \left(\frac{f'_{x,\lambda_1}(f^{-1}_{x,\lambda_1,\ast}(w_1))}{f'_{x,\lambda_2}(f^{-1}_{x,\lambda_2,\ast}(w_2))} \right) \right| \leq A_s$$

Inhere, the argument is well defined and understood to be the principal choice, i.e. $\text{Arg}(1) = 0$.

Proof. We omit the subscript $x \in X$. By Koebe’s distortion theorem (see for ex. Theorem 2.7 in [7]) it suffices to consider pairings for which $f_{\lambda_1}(z_{\lambda_1}) = f_{\lambda_2}(z_{\lambda_2}) = w$ or, in terms of inverse branches, that $z_{\lambda_j} = f^{-1}_{x,\ast}(w_j)$, $j = 1, 2$. Consider then the function

$$\varphi(\lambda) = \frac{f'_{x,\lambda}(f^{-1}_{x,\lambda,\ast}(w))}{f'_{x,\lambda_0}(f^{-1}_{x,\lambda_0,\ast}(w))}, \quad \lambda \in \Lambda = \mathbb{D}(\lambda_0, r).$$

It has the properties $\varphi(\lambda_0) = 1$, $A_s^{-1} \leq |\varphi| \leq A$ by (3.3). The set of all holomorphic functions having these three properties is compact which implies the estimation (3.4). □

4. Mirror extension

One step towards real analyticity is complexification of the transfer operator and its potential. There are several possibilities for this but the elegant mirror extension
of Rugh is best appropriated. We use mainly the notations he used in his papers [12, 13]. The mirror of the parameter space Λ and the domain U is the set

\[(4.1) \quad \Upsilon = \left\{ (\lambda_1, \lambda_2, w_1, w_2) : \lambda_1, \lambda_2 \in \Lambda, \ w_1 \in U \text{ or } w_2 \in U \text{ and } |w_1 - w_2| < \delta \right\}.
\]

Consider also the w–mirror

\[\Upsilon_w = \left\{ (w_1, w_2) : \ w_1 \in U \text{ or } w_2 \in U \text{ and } |w_1 - w_2| < \delta \right\}.
\]

The initial sets $\Lambda \times U$ and U identify respectively with the diagonals

\[\Delta = \left\{ (\lambda, \lambda, w) : \ \lambda \in \Lambda, \ w \in U \right\} \quad \text{and} \quad \Delta_w = \left\{ (w, w) : \ w \in U \right\}.
\]

On the w–mirror we will consider the space $\mathcal{A} = C^\omega_b(\Upsilon_w)$ of functions that are holomorphic and bounded on in Υ_w. Let

\[\mathcal{A}_R = \left\{ h \in \mathcal{A} : \ h|_{\Upsilon_w} \in \mathcal{R} \right\}.
\]

Functions from \mathcal{A}_R are hence real on the diagonal and can therefore be identified with a subclass of real functions defined on U. The space \mathcal{A} will be equipped with the sup-norm $||.||_\infty$ which makes that we deal with a Banach space.

We need the following notion of Lipschitz variation on n–pairings:

\[(4.2) \quad \text{Lip}_n(h) = \sup \left\{ \frac{|h(z_1, \overline{z}_2) - h(z_1, \overline{z}_1)|}{|z_1 - z_2|}, \ (z_1, z_2) \ n\text{–pairing with } z_1 \neq z_2 \right\}.
\]

Lemma 4.1. For every $n \geq 1$ and $h \in \mathcal{A}$ we have $\text{Lip}_n(h) \leq ||h||_\infty/((1 - \gamma_n^{-1})\delta)$, i.e. for every $h \in \mathcal{A}$ and every n–pairing (z_1, z_2)

\[|h(z_1, \overline{z}_2) - h(z_1, \overline{z}_1)| \leq \frac{||h||_\infty}{(1 - \gamma_n^{-1})\delta}|z_1 - z_2|.
\]

Proof. Let $\sigma = \partial D_{z_1}$. Cauchy’s integral formula implies

\[|h(z_1, \overline{z}_2) - h(z_1, \overline{z}_1)| \leq \frac{1}{(2\pi)^2} \int_{\sigma} \int_{\sigma} \left| \frac{h(\xi_1, \overline{\xi}_2)}{(\xi_1 - z_1)(\overline{\xi}_2 - \overline{z}_2)} - \frac{h(\xi_1, \overline{\xi}_1)}{\overline{(\xi_1 - z_1)(\overline{\xi}_2 - \overline{z}_1)}} \right| |d\xi_1||d\overline{\xi}_2|.
\]

Elementary estimations give $|z_1 - z_2| \leq \frac{\delta}{\gamma_n}$, $|\xi_1 - z_1| = \delta$ and $|\xi_1 - \overline{z}_2| \geq \delta(1 - \gamma_n^{-1})$. The required estimation follows now easily. \hfill \Box

4.1. **Potentials and extended operator.** The potentials under consideration must have two properties: they must admit holomorphic mirror extensions and have good distortion properties. We do not treat the most general setting but focus in the following on the most important class of potentials and will see in particular that they have the required properties. So, suppose that $\hat{r} \geq 0$ is fixed, that I is an open interval compactly contained in $(0, \infty)$ and consider

\[(4.3) \quad \varphi_{\lambda, t}(z) = -t \log |f^t_{\lambda}(z)| - t \frac{\hat{r}}{2} \log \left(\frac{1 + |z|^2}{1 + |f^t_{\lambda}(z)|^2} \right), \quad \lambda \in \Lambda \text{ and } t \in I.
\]
The transfer operator \(L = L_{\lambda,t} \) of the function \(f_\lambda \) and the potential \(\varphi_{\lambda,t} \) is defined by

\[
Lg(w) = \sum_{f_\lambda(z) = w} e^{\varphi_{\lambda,t}(z)} g(z), \quad w \in U,
\]

where \(g \in \mathcal{C}_b^0(U) \) is a continuous bounded function on \(U \). The classical case, particularly when one deals with rational functions or iterated function systems, is when \(\hat{\tau} = 0 \). For transcendental functions \(\hat{\tau} > 0 \), i.e. the additional coboundary term \(\log(1 + |z|^2) - \log(1 + |f_\lambda(z)|^2) \), is needed since otherwise the transfer operator is simply not defined.

These potentials, often called geometric, admit mirror extensions as we explain it now. In the following, \(\mathcal{I} \) is a complex neighborhood of \(I \subset \mathbb{R} \). For \(w \in U \), define \(Z_w = \Lambda \times \overline{\Lambda} \times D_w \times \overline{D_w} \) and notice that \(\Upsilon = \bigcup_{w \in U} Z_w \). From Fact 3.1 applied with \(n = 1 \) follows that, to every choice of \(\lambda_0 \in \Lambda \) and \(z_0 \in f_{\lambda_0}^{-1}(w) \), corresponds a choice of inverse branches \(f_{\lambda_1}^{-1}, \lambda \in \Lambda \), defined on \(D_w \). Consider then on \(Z_w \) the map

\[
(\lambda_1, \varphi_2, w_1, w_2) \mapsto (\lambda_1, \varphi_2, f_{\lambda_1}^{-1}(w_1), f_{\lambda_2}^{-1}(w_2))
\]

and denote \(Z_{w,s}^{-1} \) its image. Notice that Lemma 3.4 and (2.1) imply

\[
Z_{w,s}^{-1} \subset Z_{w',s} \cap (\Lambda \times \overline{\Lambda} \times U \times \overline{U}) \quad \text{for some } w' \in U.
\]

Given the definition of the transfer operator in (4.4), it suffices to extend the potentials to

\[
\Upsilon^{-1} \times \mathcal{I} := \bigcup_{w,s} Z_{w,s}^{-1} \times \mathcal{I} \subset \Upsilon \times \mathcal{I}.
\]

The extension of \(\varphi_{\lambda,t} \) to one of the sets \(Z_{w,s}^{-1} \times \mathcal{I} \) is straightforward. Indeed, for \((\lambda_1, \varphi_2, z_1, z_2, t) \in Z_{w,s}^{-1} \times \mathcal{I} \), consider

\[
\Phi_{\lambda_1, \varphi_2, t}(z_1, z_2) = -\frac{t}{2} \log \left(f_{\lambda_1}^{-1}(z_1) f_{\lambda_2}^{-1}(z_2) \right) - \frac{\hat{\tau}}{2} \log \left(\frac{1 + z_1 z_2}{1 + f_{\lambda_1}(z_1) f_{\lambda_2}(z_2)} \right).
\]

Notice that the expression in the first logarithm never equals zero. Also, the expression in the second logarithm is well defined and never equal to zero since \((z_1, z_2) \) as well as \((w_1, w_2) = (f_{\lambda_1}(z_1), f_{\lambda_2}(z_2)) \) are pairings and thus their respective distance is at most \(\delta_0 \leq \frac{1}{4} \). Since, moreover, the set \(\Lambda \) is simply connected, both logarithms in (4.6) are well defined and we can and will take the principle branch since for \((\lambda_1, \varphi_2, z_1, z_2) = (\lambda, \varphi, z, \overline{z}) \in \Delta \cap Z_{w,s}^{-1} \) both expressions in the arguments of the logarithms are real positives. We thus have properly defined a map \(\Phi \) on every set \(Z_{w,s}^{-1} \).

The map \(\Phi \) is in fact a global well defined on the union \(\bigcup_{w,s} Z_{w,s}^{-1} \times \mathcal{I} \). In order to see this, consider two sets \(Z_{w,s}^{-1} \) and \(Z_{w',s'}^{-1} \) having nonempty intersection. Then \(\Delta \cap Z_{w,s}^{-1} \cap Z_{w',s'}^{-1} \) is a non-empty non-analytic subset of \(Z_{w,s}^{-1} \cap Z_{w',s'}^{-1} \), and \(\Phi \) restricted to \((\Delta \cap Z_{w,s}^{-1} \cap Z_{w',s'}^{-1}) \times \mathcal{I} \) is real and coincides with the given potential \(\varphi \). The map \(\Phi \) is thus the desired extension of \(\varphi \) to \(\Upsilon^{-1} \times \mathcal{I} \).
Given this extended potential and using the inclusion in (4.5), we can now consider the extended operator $L_{\lambda_1, \lambda_2, t}$ acting on functions $g \in \mathcal{A}$ by
\begin{equation}
L_{\lambda_1, \lambda_2, t} g(w_1, \overline{w}_2) = \sum_{z_1, z_2} \exp \left(\Phi_{\lambda_1, \lambda_2, t}(z_1, \overline{z}_2) \right) g(z_1, \overline{z}_2)
\end{equation}
where the summation is taken over all pairings (z_1, z_2) (see Definition 3.2) such that $f_{\lambda_i}(z_i) = w_i$, $i = 1, 2$.

In the next proposition we will see that the image function $L_{\lambda_1, \lambda_2, t} g \in \mathcal{A}$ provided the initial real operator $\mathcal{L}_{\lambda, t}$ is bounded. This allows to iterate the operator and we will do this again in a non-autonomous way. Replacing f_1 by $f_2, j \geq 1$, or even by $f_{x, \lambda}$, $x \in \mathcal{X}$, in the definition (4.3) of the potential gives rise to the operator
\begin{equation}
\mathcal{L}_j = \mathcal{L}_{j, \lambda, t} \quad \text{or} \quad \mathcal{L}_x = \mathcal{L}_{x, \lambda, t}
\end{equation}
respectively. One considers then the non-autonomous n-th composition
\[\mathcal{L}_j^n = \mathcal{L}_{j+n-1} \circ \cdots \circ \mathcal{L}_j \]
and writes frequently \mathcal{L}_j^n for \mathcal{L}_j^n.

For simplicity we assume now and in the following that $\Lambda = \mathbb{D}(\lambda_0, s)$ where $s > 0$ is given by Lemma 3.5.

Proposition 4.2. Suppose that the real operator $\mathcal{L}_{\lambda, t}$ is uniformly bounded for $\lambda \in \Lambda$ and $t \in \mathcal{I}$. Then there exist $a > 0$ such that, with $\mathcal{I} = I \times]-a, a[$, the extended operator $L_{\lambda_1, \lambda_2, t}$ is a, uniformly for $(\lambda_1, \lambda_2, t) \in \Lambda \times \overline{\mathcal{X}} \times \mathcal{I}$, bounded operator of \mathcal{A}. Moreover, if $\lambda_1 = \lambda_2 =: \lambda$ and if $t \in \mathcal{I}$ is real, then $L = L_{\lambda, \lambda, t}$ preserves \mathcal{A}_R and there exists $K < \infty$ such that, for every function $h \in \mathcal{A}$,
\begin{equation}
| L^n h(w_1, \overline{w}_2) - L^n h(w_1, \overline{w}_1) | \leq \mathcal{L}_{\lambda, t}^n \mathbb{I}(w_1) \left(K + \frac{\gamma_n^{-1}}{\delta(1 - \gamma_n^{-1})} \right) \| h \|_{\mathcal{A}} |w_1 - w_2|
\end{equation}
where $(w_1, \overline{w}_2) \in \mathcal{Y}_w$ and $n \geq 1$.

Proof. In order to establish boundedness of the operator $L_{\lambda_1, \lambda_2, t}$ on \mathcal{A} we have to estimate $|L_{\lambda_1, \lambda_2, t} \mathbb{I}|$ where $t \in \mathcal{I}$ is complex. So let $(\lambda_1, \lambda_2, w_1, \overline{w}_2) \in \mathcal{Y}$ and let (z_1, \overline{z}_2) be a 1-pairing. Then
\[\left| \exp(\Phi_{\lambda_1, \lambda_2, t}(z_1, \overline{z}_2)) \right| = \left| f'_{\lambda_1}(z_1) f'_{\lambda_2}(z_2) \right|^{-\frac{\|\Phi\|}{2}} \exp \left\{ \frac{3t}{2} \arg \left(f'_{\lambda_1}(z_1) f'_{\lambda_2}(z_2) \right) \right\} \times \left| \frac{1 + z_1 \overline{z}_2}{1 + w_1 \overline{w}_2} \right|^{-\frac{t}{2}} \right|.
\]
Lemma 3.5 shows that $| \arg \left(f'_{\lambda_1}(z_1) f'_{\lambda_2}(z_2) \right) | \leq A$. Since $|3t| \leq a$ it follows that
\[\exp \left\{ \frac{3t}{2} \arg \left(f'_{\lambda_1}(z_1) f'_{\lambda_2}(z_2) \right) \right\} \leq \exp \left\{ \frac{a}{2} A \right\}.
\]
Clearly, \(\arg \left(\frac{1+z_1z_2}{1+w_1w_2} \right) \) is uniformly in \(z_i, w_i, \ i = 1, 2 \), bounded say again by \(A \). Setting \(B = \exp \left\{ aA \frac{1+r_1}{t} \right\} \) it follows that

\[
\left| \exp(\Phi_{\lambda_1, \lambda_2, t}(z_1, \overline{z}_2)) \right| \leq B |f'_{\lambda_1}(z_1)f'_{\lambda_2}(z_2)|^{\frac{\|\lambda\|}{2}} \left| \frac{1+z_1\overline{z}_2}{1+w_1\overline{w}_2} \right|^{\frac{r_1}{2}}.
\]

An elementary calculation shows that there exists a constant \(C < \infty \) independent of \(z_i, w_i, \ i = 1, 2 \), and \(t_0 \in I \), such that

\[
\left| \frac{1+z_1\overline{z}_2}{1+w_1\overline{w}_2} \right|^{\frac{r_1}{2}} \leq C \sqrt{\frac{1+|z_1|^2}{1+|w_1|^2} \frac{1+|z_2|^2}{1+|w_2|^2}}.
\]

Therefore,

\[
\left| \exp(\Phi_{\lambda_1, \lambda_2, t}(z_1, \overline{z}_2)) \right| \leq BC |f'_{\lambda_1}(z_1)|^{-\frac{\|\lambda\|}{2}} \left(\frac{1+|z_1|^2}{1+|w_1|^2} \right)^{-\frac{r_1}{4}} \times
\]

\[
\times |f'_{\lambda_2}(z_2)|^{-\frac{\|\lambda\|}{2}} \left(\frac{1+|z_2|^2}{1+|w_2|^2} \right)^{-\frac{r_1}{4}},
\]

and thus the Cauchy-Schwarz inequality implies that

\[
|L_{\lambda_1, \lambda_2, t} \mathbb{I}(w_1, \overline{w}_2)| \leq BC \sqrt{L_{\lambda_1, \lambda_2, t} \mathbb{I}(w_1)} \sqrt{L_{\lambda_2, \lambda_2, t} \mathbb{I}(w_2)}.
\]

By our assumptions there exists \(M < \infty \) such that \(\|L_{\lambda, t_0} \mathbb{I}\|_{\infty} \leq M \) for every \(\lambda \in \Lambda \) and \(t_0 \in I \). This shows that

\[
(4.10) \quad \|L_{\lambda_1, \lambda_2, t} \mathbb{I}\|_{\infty} \leq BCM.
\]

Suppose now that \(\lambda_1 = \lambda_2 =: \lambda \) and that \(t \in I \) is real. In this case the operator \(L = L_{\lambda, \lambda, t} \) clearly preserves \(\mathcal{A}_R \). It remains to establish the distortion property. We have

\[
|L^n h(w_1, \overline{w}_2) - L^n h(w_1, \overline{w}_1)| \leq I + II
\]

where

\[
I = \left\| \sum \exp S_n \Phi_{\lambda, \lambda, t}(z_1, \overline{z}_1) (h(z_1, \overline{z}_2) - h(z_1, \overline{z}_1)) \right\|_{\mathbb{I}(w_1)} \leq L_{\lambda, t} \mathbb{I}(w_1) Lip_n(h) \gamma_n^{-1} |w_1 - w_2|.
\]

Lemma 4.1 gives an appropriate estimation for \(Lip_n(h) \) and thus

\[
I \leq L_{\lambda, t} \mathbb{I}(w_1) \frac{\|h\|_{\infty}}{\delta(1-\gamma_n^{-1})} \gamma_n^{-1} |w_1 - w_2|.
\]

The second term is equal to

\[
II = \left| \sum (\exp S_n \Phi_{\lambda, \lambda, t}(z_1, \overline{z}_2) - \exp S_n \Phi_{\lambda, \lambda, t}(z_1, \overline{z}_1)) h(z_1, \overline{z}_1) \right|.
\]
The following distortion estimate directly results from the complex version of Koebe’s distortion theorem in the case $\hat{\tau} = 0$ and from Lemma 4.7 in [4] if $\hat{\tau} > 0$:
\[
\left| \exp S_n \Phi_{\lambda,\tau} \left(f_{\lambda,\tau}^n (w_1), f_{\lambda,\tau}^{-n} (w_2) \right) \right| - 1 \leq K |w_1 - w_2|, \quad w_1, w_2 \in \mathbb{D}(w, \delta).
\]
Consequently,
\[
II \leq L_{\lambda,\tau} \frac{M}{\|h\|_{\infty}} K |w_1 - w_2|
\]
and, combining this estimate with the one of I yields the desired Lipschitz property.

\[\square\]

5. Complexification of the invariant density

We have to consider appropriate rescaled versions of the operators defined in the previous section. This section deals with the case where $\lambda_1 = \lambda_2 =: \lambda$ and $t \in I$ is real. Moreover, here and in the next section both parameters λ, t are fixed and so we will not indicate them explicitly (we already dropped them in (4.8)):
\[
(5.1) \quad \hat{\mathcal{L}}_j = e^{-P_j(t)} \mathcal{L}_j.
\]
The number $P_j(t)$ is usually the topological pressure. Assume that for these rescaled operators there exist strictly positive functions $\hat{\rho}_m \in C^0_b(U)$ such that, for some $M < \infty$ and for every $j \in \mathbb{Z}$ and $n \geq 1$,
\[
(5.2) \quad \|\hat{\mathcal{L}}_j^n\|_{\infty} \leq M \quad \text{and} \quad \hat{\mathcal{L}}_j^n \|h\|_{\infty} \rightarrow \hat{\rho}_j,
\]
where the limit is with respect to the sup-norm as $n \rightarrow \infty$. Then clearly
\[
\hat{\mathcal{L}}_j \hat{\rho}_j = \hat{\rho}_{j+1}, \quad j \in \mathbb{Z},
\]
and, for this reason, these functions are called invariant densities.

The aim now is to extend the invariant densities and (5.2) to the w–mirror Υ_w. In order to do so, we denote by $\hat{\mathcal{L}}_j^n$ the extended operator of \mathcal{L}_j^n (L_j has been defined in (4.7)).

Proposition 5.1. Suppose (5.2) does hold. Then, for every $j \in \mathbb{Z}$, the sequence $\hat{\mathcal{L}}_{n+j}^n \|h\|_{\infty}$ converges uniformly on compact sets to some function of \mathcal{A}. These limit functions are extensions of $\hat{\rho}_j$ and they will be denoted by the same symbol. Moreover,
\[
|\hat{\rho}(w_1, \overline{w}_2) - \hat{\rho}(w_1, \overline{w}_1)| \leq (M + 1)(K + 1)|w_1 - w_2|, \quad (w_1, w_2) \in \Upsilon_w,
\]
and these functions have the invariance property
\[
(5.3) \quad \hat{\mathcal{L}}_j \hat{\rho}_j = \hat{\rho}_{j+1} \quad \text{on} \quad \Upsilon_w.
\]

Proof. Let $(w_1, \overline{w}_2) \in \Upsilon_w$. Then $w_2 \in D_{w_1}$. Since $\hat{\mathcal{L}}_j^n \|h\|_{\infty} (w_1, \overline{w}_1) = \mathcal{L}_j^n \|h\|_{\infty} (w_1)$, the distortion property (4.9) implies that, for n sufficiently large,
\[
(5.4) \quad \left| \hat{\mathcal{L}}_j^n \|h\|_{\infty} (w_1, \overline{w}_2) - \hat{\mathcal{L}}_j^n \|h\|_{\infty} (w_1, \overline{w}_1) \right| \leq \hat{\mathcal{L}}_j^n \|h\|_{\infty} (K + 1)|w_1 - w_2|.
\]
VOLKER MAYER, MARIUSZ URBAŃSKI, AND ANNA ZDUNIK

The uniform convergence of $\mathcal{L}^n_{n+j} \to \hat{\rho}_j$ now implies that there exists $n_0 = n_0(j)$, independent of $(w_1, w_2) \in \Upsilon_w$, such that
\[
|\hat{L}^n_{n+j}(w_1, w_2)| \leq (\hat{\rho}_n(w_1) + 1)(K + 1)|w_1 - w_2| \leq (M + 1)(K + 1)|w_1 - w_2| < \infty
\]
for all $n \geq n_0$. Therefore, $|\hat{L}^n_{n+j}(w_1, w_2)|$ is uniformly bounded by $(M + 1)(K + 1)$.

Montel’s theorem applies and yields normality of the family $(\hat{L}^n_{n+j})_n$. Since the limit of every convergent subsequence coincides with $\hat{\rho}_j$ on the non-analytic set Δ_w, the whole sequence $(\hat{L}^n_{n+j})_n$ converges to one and the same limit and this limit belongs to A.

The invariance property (5.3) holds since it holds on the non-analytic set Δ_w. Finally, the limit functions have the required Lipschitz property because of (5.4).

In the sequel we will need a different normalization. Let $l : C^0_b(U) \to \mathbb{R}$ be a bounded functional. In addition, we will require later on that l is uniformly positive on the density functions meaning that there exists $a > 0$ such that
\[
(5.5) \quad l(\hat{\rho}_j) \geq a \quad \text{for every } j \in \mathbb{Z}.
\]

Example 5.2. Fix any point $\xi \in U$ and consider the functional l defined by $l(g) = g(\xi)$. Such a functional is uniformly positive on the functions $\hat{\rho}_j$ in the sense of (5.5) as soon as the system is mixing. This holds in particular for the transcendental random systems considered in [5]. Lemma 5.5 of that paper shows that there exists $n_0 \geq 1$ and $a > 0$ such that
\[
(5.6) \quad \hat{L}^n_j(\xi) \geq a \quad \text{for every } n \geq n_0.
\]

Consider then
\[
(5.7) \quad \rho_j = \frac{\hat{\rho}_j}{l(\hat{\rho}_j)}, \quad j \in \mathbb{Z}.
\]

Clearly,
\[
\lim_{n \to \infty} \frac{\mathcal{L}^n_{n+j}}{l(\mathcal{L}^n_{n+j})} = \lim_{n \to \infty} \frac{\hat{L}^n_{n+j}}{l(\hat{L}^n_{n+j})} = \rho_j
\]
and, because of (5.3),
\[
(5.8) \quad \frac{L^n_j(\rho_j)}{l(L^n_j(\rho_j))} = \rho_{j+n} \quad \text{for every } j \in \mathbb{Z} \text{ and } n \geq 1.
\]

It is henceforth natural to consider maps $\Psi_{n,j}$ defined by
\[
(5.9) \quad \Psi_{n,j}(g) = \frac{L^n_j(g)}{l(L^n_j(g))} = \frac{\hat{L}^n_j(g)}{l(\hat{L}^n_j(g))} \quad \text{for every } j \in \mathbb{Z} \text{ and } n \geq 1.
\]
Lemma 5.3. For every $j \in \mathbb{Z}$ and $n \geq 1$, the map $\Psi_{n,j}$ is well defined on the following neighborhood of ρ_j in A:

$$U_j := \left\{ g \in A : \|g - \rho_j\|_\infty < \frac{a}{2\|l\|_\infty M^2} \right\}.$$

Proof. For $g \in U_j$ we have to check that

$$l(\hat{L}_j^n(g)) = l(\hat{L}_j^n(\rho_j)) + l(\hat{L}_j^n(g - \rho_j)) \neq 0.$$

Since $l(\hat{L}_j^n(\rho_j)) = l(\hat{L}_j^n(\hat{\rho}_j)) l(\hat{\rho}_j) = l(\hat{\rho}_{n+j})$ by (5.5) and since $l(\hat{\rho}_j) \leq \|l\|_\infty M$ by (5.2) we have

(5.10) $$l(\hat{L}_j^n(\rho)) \geq \frac{a}{\|l\|_\infty M^2}.$$

On the other hand, if $g \in U_j$ then $\|l(\hat{L}_j^n(g - \rho_j))\|_\infty \leq \|l\|_\infty M \|g - \rho_j\|_\infty < \frac{a}{2\|l\|_\infty M^2}$. Altogether we get $l(\hat{L}_j^n(g)) > \frac{a}{\|l\|_\infty M^2} - \frac{a}{2\|l\|_\infty M^2} = \frac{a}{2\|l\|_\infty M^2} > 0$. □

6. Contraction

We shall exploit in detail the convergence of the normalized iterated operators under the assumption that there is a uniform speed of the convergence in (5.2). Let us make this precise now (see also the condition (1.3) in Theorem 1.2). We keep in this section the setting and notation of Section 5 and assume again that (5.2) holds.

Uniform speed. There exist bounded linear functionals $\nu_j \in A'_R$ and $b > 0$ such that $\nu_j(\hat{\rho}_j) \geq b$ for all $j \in \mathbb{Z}$, and there exists a sequence $\omega_n \to 0$ such that

(6.1) $$\|\hat{L}_j^n h - \nu_j(h)\hat{\rho}_{j+n}\|_\infty \leq \omega_n \|h\|_\infty \text{ for every } h \in A_R, \ n \geq 1.$$

It follows from this definition that

(6.2) $$\nu_j(\hat{\rho}_j) = 1 \quad j \in \mathbb{Z}.$$

We have chosen the notation ν_j since typical examples of these functionals are conformal measures.

Let us now focus on L^n_1, $n \geq 1$ and remember that we use the simplified notation

$$L^n = L^n_1, \ L^n = L^n_1, \ \nu = \nu_1, \ \hat{\rho} = \hat{\rho}_1, \ \Psi_n = \Psi_{n,1}.$$

Concerning the functional l, it first has to be extended to complex functions in the usual way and then to functions of $h \in A$ by $l(h) := l(h|_{\zeta_w})$. Remember also the map Ψ_n given by $\Psi_n(g) = \frac{L^n(g)}{l(L^n(g))}$ is, for every $n \geq 1$, well defined on the neighborhood U_1 of ρ (see Lemma 5.3).
Proposition 6.1. Suppose that (5.2), (5.5) and the uniform speed condition hold. Then, for every \(\delta \in [0, \delta_0] \) sufficiently small there exists \(n \geq 1 \) such that the differential of \(\Psi_n \) at \(\rho \) satisfies

\[
\| D_\rho \Psi_n \| \leq \frac{\sqrt{2}}{2} < 1.
\]

Remark 6.2. The proof will show that the integer \(n \) does not depend on the operators \(L_j \), hence not on the functions \(f_j \in \mathcal{F} \) (recall that \(\mathcal{F} \) is the family defined at the beginning of Section 2), but only on the involved constants such as \(a, M, \omega_n \). In other words, \(n \) is uniform for all families of operators as long as they satisfy the conditions (5.2), (5.5) and the uniform speed with the same constants. This is in particular the case for all \(\Psi_{n,j}, j \in \mathbb{Z} \).

Proof. Let \(h \in \mathcal{A} \). From (5.8) we get \(\Psi_n(\rho) = \rho_n \) and

\[
\Psi_n(\rho + h) = \frac{L^n(\rho) + L^n(h)}{l(L^n(\rho)) + l(L^n(h))} = \frac{\rho_n + L^n(h)/l(L^n(\rho))}{1 + l(L^n(h))/l(L^n(\rho))}.
\]

Hence,

\[
D_\rho \Psi_n(h) = \frac{L^n(h)}{l(L^n(\rho))} - \frac{\rho_n}{l(L^n(\rho))}.
\]

Consider first the case where \(h \in \mathcal{A}_0 \). It suffices to consider functions \(h \) for which \(\|h\|_\infty \leq 1 \). If we evaluate the above expression at points \((w, \varpi) \in \Delta_w \) of the diagonal then we can use (6.1) and it follows that there are functions \(\xi_n \) such that \(\|\xi_n\| \leq \omega_n \) and such that

\[
L^n(h)(w, \varpi) = \nu(h)\hat{\rho}_n(w) + \xi_n(w).
\]

Consequently,

\[
\frac{L^n(h)}{l(L^n(\rho))} = \frac{\hat{L}^n(h)}{l(L^n(\rho))} = \frac{\nu(h)\hat{\rho}_n + \xi_n}{l(L^n(\rho))} \quad \text{on} \quad \Delta_w
\]

and thus

\[
D_\rho \Psi_n(h)|_{\Delta_w} = \frac{\nu(h)\hat{\rho}_n + \xi_n}{l(L^n(\rho))} - \rho_n\frac{\nu(h)l(\hat{\rho}_n) + l(\xi_n)}{l(L^n(\rho))} = \frac{\xi_n - \rho_n l(\xi_n)}{l(L^n(\rho))}.
\]

This expression can be estimated as follows. From (5.10) we have \(l(\hat{L}^n(\rho)) \geq \frac{a}{M} \). For the same reasons, i.e. from (5.2) and (5.5), we also have that \(\|\rho_n\|_\infty = \frac{\|\hat{\rho}_n\|_\infty}{l(\rho_n)} \leq \frac{M}{a} \). Altogether it follows that

\[
\| D_\rho \Psi_n(h)|_{\Delta_w} \| \leq \frac{\|\xi_n\| \|1 + \|\rho_n\|_\infty\|l\|_\infty\|}{a/M\|l\|_\infty} \leq \omega_n \frac{M\|l\|_\infty}{a} \left(1 + \frac{M}{a\|l\|_\infty}\right) \leq \frac{1}{4}.
\]

for all \(n \geq n_0 \) and some sufficiently large \(n_0 \).

For general points \((w_1, \varpi_2) \in \Upsilon\) we can proceed as follows. First of all we have

\[
D_\rho \Psi_n(h)(w_1, \varpi_2) = \frac{1}{l(L^n(\rho))} \left(\hat{L}^n(h)(w_1, \varpi_2) - \rho_n(w_1, \varpi_2)l(\hat{L}^n(\rho)) \right).
\]
We already have an appropriated estimation for the first factor. From the Lipschitz property of \(\hat{\rho} \) (Proposition 5.1) follows that
\[
|\rho(w_1, \overline{w}_2) - \rho(w_1, \overline{w}_1)| \leq \frac{(M+1)(K+1)}{l(\hat{\rho})}|w_1 - w_2| \leq Q|w_1 - w_2|, \quad (w_1, \overline{w}_2) \in \Upsilon_w
\]
where \(Q = \frac{(M+1)(K+1)}{a} \). If we combine this with the Lipschitz behavior of \(L^n h \) given in (4.9) and use \(|w_1 - w_2| < \delta \), we finally get
\[
\left| D_\rho \Psi_n(h)(w_1, \overline{w}_2) - D_\rho \Psi_n(h)(w_1, \overline{w}_1) \right| \leq \frac{M}{\alpha} \|l\|_\infty \left(M \left(K + \frac{8}{\delta \gamma_n} \right) + Q \|l\|_\infty M \right) \delta.
\]
Now, we may suppose that \(\delta > 0 \) has been chosen sufficiently small such that
\[
\frac{M}{\alpha} \|l\|_\infty (M (K + 1) + Q \|l\|_\infty M) \delta \leq \frac{1}{4}
\]
Indeed, \(M \) does not depend on \(\delta \) and the distortion constant \(K \) becomes even better if we diminish \(\delta \). Now, \(\delta \) being chosen, we can choose \(n \) is sufficiently large such that
\[
\frac{8}{\delta \gamma_n} \leq 1.
\]
Then
\[
\left| D_\rho \Psi_n(h)(w_1, \overline{w}_2) - D_\rho \Psi_n(h)(w_1, \overline{w}_1) \right| \leq \frac{1}{4}.
\]
Combing this with (6.3) implies that for real \(h \) such that \(\|h\|_\infty \leq 1 \) we have, for this choice of \(n \),
\[
\| D_\rho \Psi_n(h) \|_\infty \leq \frac{1}{2}.
\]
If \(h \in \mathcal{A} \) is arbitrary with \(\|h\|_\infty = 1 \), then \(h \) can be expressed in a unique way as \(h = h_1 + ih_2 \) where both \(h_1, h_2 \) are in \(\mathcal{A}_\mathbb{R} \). Since \(1 = \|h\|_\infty \geq \max\{\|h_1\|_\infty, \|h_2\|_\infty\} \), it suffices to use the case of real functions of norm at most one in order to conclude this proof. \(\square \)

7. Analyticity: the non-autonomous case

We now come to the final part where we investigate analytic dependence on the parameter \(\lambda \). In this section we still continue with the non-autonomous case and thus with the notations introduced in the previous sections 3 to 6. The first observation concerns the extended operators introduced in (4.7).

Proposition 7.1. For every \(j \in \mathbb{Z} \), the map
\[
(t, \lambda_1, \lambda_2) \mapsto L_{j, \lambda_1, \lambda_2, t}
\]
is holomorphic on \(\mathcal{I} \times \Lambda \times \overline{\Lambda} \).

Proof. This proposition follows from the fact that \(L_{j, \lambda_1, \lambda_2, t} \) is locally represented as the sum of an absolutely uniformly convergent series of holomorphic functions. \(\square \)

Keeping \(X = \mathbb{Z} \), we define now a new Banach space \(\mathcal{A}_X \) of all bounded sections \(g = (g_j)_{j \in \mathbb{Z}} \) where \(g_j \in \mathcal{A} \) for every \(j \in \mathbb{Z} \) and such that
\[
|g| = \sup_{x \in X} \|g_x\|_\infty.
\]
The space \mathcal{A}_X equipped with this norm $|\cdot|$ is a Banach space. The map $\Psi_{j,\lambda_1,\mathcal{A}_t}$ introduced in (5.9) gives rise to a global map $g \mapsto \Psi_{\lambda_1,\mathcal{A}_t}(g)$ defined by

$$
(\Psi_{\lambda_1,\mathcal{A}_t}(g))_{j+1} = \frac{L_{j,\lambda_1,\mathcal{A}_t}(g_j)}{l(L_{j,\lambda_1,\mathcal{A}_t}(g_j))}, \quad j \in \mathbb{Z}.
$$

(7.1)

Remember also that for $t \in I$ real and for $\lambda = \lambda_1 = \lambda_2$ the function

$$
\rho_{\lambda,\mathcal{A}_t} = (\rho_{j,\lambda,\mathcal{A}_t})_{j \in \mathbb{Z}}
$$

is a fixed point of $\Psi_{\lambda,\mathcal{A}_t}$ (see (5.8)).

Lemma 7.2. Let $\lambda_0 \in \Lambda$ and let $t_0 \in I$ be real. Then there exist U_{λ_0,t_0}, an open neighborhood of $\rho_{\lambda_0,\mathcal{A}_t}$ in \mathcal{A}_X and an open neighborhood W_{λ_0,t_0} of the point $(\lambda_0,\mathcal{A}_0,t_0)$ in $\Lambda \times \mathcal{A} \times I$ such that $\Psi_{\lambda_1,\mathcal{A}_t}$ is well defined on U_{λ_0,t_0} for every $(\lambda_1,\lambda_2,t) \in W_{\lambda_0,t_0}$. Moreover, the map

$$
U_{\lambda_0,t_0} \times W_{\lambda_0,t_0} \ni (h,\lambda_1,\mathcal{A}_2,t) \mapsto \Psi_{\lambda_1,\mathcal{A}_t}(h) \in \mathcal{A}_X
$$

is holomorphic.

Proof. First of all note that for every $j \in \mathbb{Z}$ the function

$$
\mathcal{A}_X \times \Lambda \times \mathcal{A} \times I \ni (h,\lambda_1,\mathcal{A}_2,t) \mapsto L_{j,\lambda_1,\mathcal{A}_t}(h_j) \in \mathcal{A}
$$

is holomorphic since it is linear with respect to the first variable, holomorphic with respect to all three other variables, and one applies Hartogs’ Theorem. Hence, also the function

$$
\mathcal{A}_X \times \Lambda \times \mathcal{A} \times I \ni (h,\lambda_1,\mathcal{A}_2,t) \mapsto l(L_{j,\lambda_1,\mathcal{A}_t}(h_j)) \in \mathbb{C}
$$

is also holomorphic. Now, in order to conclude the proof, we shall find U_{λ_0,t_0}, an open neighborhood of $\rho_{\lambda_0,\mathcal{A}_t}$ in \mathcal{A}_X and an open neighborhood W_{λ_0,t_0} of the point $(\lambda_0,\mathcal{A}_0,t_0)$ in $\Lambda \times \mathcal{A} \times I$ such that $|l(L_{j,\lambda_1,\mathcal{A}_t}(h_j))|$ is uniformly bounded below for every $h \in U_{\lambda_0,t_0}$ and for every $(\lambda_1,\mathcal{A}_2,t) \in W_{\lambda_0,t_0}$. This will tell us that all coordinates of the function $\Psi_{(\lambda_1,\lambda_2)}(\cdot)$ are continuous and uniformly bounded, and ultimately the function $\Psi_{(\lambda_1,\lambda_2)}(\cdot)$ is holomorphic.

In order to find these neighborhoods we deduce from (4.10) that $\|L_{j,\lambda_1,\mathcal{A}_t}\|_\infty$ is uniformly bounded above with respect to $j \in \mathbb{Z}$ and $(\lambda_1,\mathcal{A}_2,t) \in \Lambda \times \mathcal{A} \times I$. Cauchy’s Integral Formula thus implies that the map $(\lambda_1,\mathcal{A}_2,t) \mapsto L_{j,\lambda_1,\mathcal{A}_t}$ is uniformly Lipschitz. Consequently, for every $\varepsilon > 0$ there exists a neighborhood W_{λ_0,t_0} of $(\lambda_0,\mathcal{A}_0,t_0)$ such that for every $h \in \mathcal{A}_X$, we have that

$$
|L_{j,\lambda_1,\mathcal{A}_t}(h) - L_{j,\lambda_0,\mathcal{A}_t}(h)| = \sup_{j \in \mathbb{Z}} \|L_{j,\lambda_1,\mathcal{A}_t}(h) - L_{j,\lambda_0,\mathcal{A}_t}(h)\|_\infty \leq \varepsilon |h|.
$$

(7.2)

Now, the existence of U_{λ_0,t_0} easily follows now from the above Lipschitz property (7.2) along with the estimate (5.10) of the proof of Lemma 5.3. \(\square\)
We are now in position to extend the invariant density ρ_{λ_0, t_0} analytically to a neighborhood of $(\lambda_0, \bar{x}_0, t_0)$ by making use of the Implicit Function Theorem. Indeed, ρ_{λ_0, t_0} is a fixed point of $\Psi_{\lambda_0, \bar{x}_0, t_0}$, Proposition 6.1 along with the Remark 6.2 implies that
\[
|D_{\rho_{\lambda_0, t_0}} \Psi_{\lambda_0, \bar{x}_0, t_0}| = \sup_{j \in \mathbb{Z}} |D_{\rho_{j,\lambda_0, t_0}} \Psi_{j,\lambda_0, \bar{x}_0, t_0}| \leq \frac{\sqrt{2}}{2} < 1
\]
and the map $(h, \lambda_1, \bar{x}_2, t) \mapsto \Psi_{\lambda_1, \bar{x}_2, t}(h)$ is analytic (Lemma 7.2). In conclusion we get the following.

Theorem 7.3. For every $(\lambda_0, t_0) \in \Lambda \times I$ there exists an open neighborhood W_{λ_0, t_0} in $\Lambda \times \bar{X} \times I$ of $(\lambda_0, \bar{x}_0, t_0)$, and U_{λ_0, t_0}, an open neighborhood of $\rho_{\lambda_0, \bar{x}_0, t_0}$ in A_X, along with an analytic map $(\lambda_1, \bar{x}_2, t) \mapsto \rho_{\lambda_1, \bar{x}_2, t} \in U_{\lambda_0, t_0}$ such that
\[
\Psi_{\lambda_1, \bar{x}_2, t}(\rho_{\lambda_1, \bar{x}_2, t}) = \rho_{\lambda_1, \bar{x}_2, t} \quad \text{for every } (\lambda_1, \bar{x}_2, t) \in W_{\lambda_0, t_0}.
\]

Theorem 1.2 follows now easily.

Proof of Theorem 1.2. An assumption of Theorem 1.2 is that there exists $a > 0$ and $z_0 \in U$ such that $\rho_{j,\lambda_0}(z_0) \geq a$ for all (j, λ, t). This enables us to consider the functional $l : C^1_b(U) \to \mathbb{R}$ defined by $l(g) := g(z_0)$. It clearly satisfies (5.5) and thus Theorem 7.3 implies Theorem 1.2. \[\square\]

Remark 7.4. Note that the uniqueness part of the Implicit Function Theorem guarantees the functions $\rho_{\lambda, \bar{x}_t}$, $t \in I$ being real, to coincide with the ones resulting from Proposition 5.1.

8. **Analyticity: the random case**

The final part of this paper is devoted to random dynamics. So we now consider the following setting. Let X be now an arbitrary set and \mathcal{B} a σ–algebra on X. We consider a probability space (X, \mathcal{B}, m). As usual, the randomness will be modeled by an invertible map $\theta : X \to X$ preserving the measure m.

Let $\mathcal{F}_{X, \Lambda}$ be a holomorphic family of functions as defined in Definition 2.2. In addition, we now require that these functions are measurable meaning that the map $(x, z) \mapsto f_{x, \lambda}(z)$ is measurable for every $\lambda \in \Lambda$. We are interested in the dynamics of the random compositions
\[
f^n_{x, \lambda} = f_{\theta^{n-1}(x), \lambda} \circ \ldots \circ f_{x, \lambda}, \quad n \geq 1,
\]
where $\lambda \in \Lambda$ and $x \in X$.

The space of analytic functions A_X has also the same meaning as before except that the functions depend measurably on $x \in X$. Thus, $g \in A_X$ if $\lambda \mapsto g_x(\lambda)$ is holomorphic on Λ for every $x \in X$, if $x \mapsto g_x(\lambda)$ is measurable for every $\lambda \in \Lambda$ and if
\[
|g| := \text{ess sup}_{x \in X} \|g_x\|_\infty < \infty.
\]
The transfer operators $L_{x,\lambda,t}$ must also have measurable dependence on $x \in X$. Notice that one can show with the help of the Measurable Selection Theorem (see [2]) that this is indeed the case. In the case of transcendental functions this has been worked out in Lemma 3.6 of [5]. In this case, the invariant densities $\rho_{x,\lambda,t}$ as well as their extensions $\rho_{x,\lambda,t}$ also depend measurably on $x \in X$ since they are obtained as a limit of measurable maps (see (5.2) and Proposition 5.1). Clearly, exactly as for the above composition of the functions $f_{x,\lambda}$, the iterated operators are of the form $L_{x,\lambda,t} = L_{\theta_{n-1}(x),\lambda,t} \circ \ldots \circ L_{x,\lambda,t}$. In the same way, the definitions given in the part on non-autonomous dynamics have straightforward counterparts. For example, the invariance of the density is the relation $\hat{L}_{x,\lambda,t} \hat{\rho}_{x,\lambda,t} = \hat{\rho}_{\theta_{n}(x),\lambda,t}$ and the uniform speed assumption (6.1) takes on the following form:

\[(8.1) \quad \|\hat{L}_{x,\lambda,t} h - \nu_x(h)\|_{\infty} \leq \omega_n \|h\|_{\infty} \quad \text{for every} \quad h \in \mathcal{A}_{\mathbb{R}}, \quad n \geq 1.\]

Also, the definition of the global map $g \mapsto \tilde{\Psi}_{\lambda_1,\lambda_2,t}(g)$, $g \in \mathcal{A}_X$, is

\[(\tilde{\Psi}_{\lambda_1,\lambda_2,t}(g))(\theta(x)) = L_{x,\lambda_1,\lambda_2,t}(g_x) \big/ \|L_{x,\lambda_1,\lambda_2,t}(g_x)\|, \quad x \in X.\]

Proceeding now exactly as in the previous section and applying the Implicit Function Theorem in the Banach space $(\mathcal{A}_X, \|\|)$ we see that Theorem 7.3 holds also in the present random setting. Notice that this result is written in a global way so that, with the same notations, it is valid in the non-autonomous and in the random case.

The results can now be summarized as follows. Assume again that the expanding property (2.1) is satisfied, that this family is of bounded deformation (Definition 3.3) and the bounded distortion of the arguments of (3.4) holds. Finally, we assume that the, most natural in this context, thermodynamical formalism property (5.2) holds.

Theorem 8.1. Suppose the following:

1. There exists a bounded functional $l : C^0_b(U) \to \mathbb{R}$ that is uniformly positive on the invariant densities (see (5.5)).
2. The uniform speed condition (8.1) holds.

Then, the map $(\lambda_1, \lambda_2, t) \mapsto \rho_{\lambda_1, \lambda_2, t} \in \mathcal{A}_X$ is analytic. In particular for a.e. $x \in X$ the map $(\lambda_1, \lambda_2, t) \mapsto \rho_{x, \lambda_1, \lambda_2, t} \in \mathcal{A}_X$ is analytic.

Remark 8.2. Note that the uniqueness part of the Implicit Function Theorem guarantees the functions $\rho_{\lambda, t}$, $t \in I$ being real, to coincide with the ones resulting from Proposition 5.1.

Remark 8.3. In fact, in this theorem we also could include real analyticity of the expected pressure as defined in the transcendental case in (9.4) and established in Lemma 9.5.

9. Transcendental random systems

In this last part we apply the preceding results to the case of transcendental random systems. Such systems have been considered in [5] and the full thermodynamical
formalism including spectral gap property has been shown there. We here complete the picture in establishing analyticity in this general context. As a consequence we get a proof of the particular example of the Introduction (Theorem 1.1).

Assume now that the functions of $\mathcal{F}_{X,\Lambda}$ are transcendental functions and that this family consists of \textit{transcendental random systems} as defined in [5]. We use notation from that paper like $J_{x,\lambda}$ for the Julia set of $(f_{x,\lambda}^n)_{n \geq 1}$. Straightforward adaption of (2.2) leads to the definition of the radial Julia set $J_r(f_{x,\lambda}) \subset J_{x,\lambda}$.

Here are some other notions from [5] that are necessary for the present work. First of all, the following minor technical conditions are used in [5] with the same enumeration:

\textbf{Condition 2.} There exists $T > 0$ such that
\[\left(J_x \cap \mathbb{D}_T \right) \cap f_x^{-1} \left(J_{\theta(x)} \cap \mathbb{D}_T \right) \neq \emptyset , \quad x \in X. \]

\textbf{Condition 4.} For every $R > 0$ and $N \geq 1$ there exists $C_{R,N}$ such that
\[|(f_x^N)'(z)| \leq C_{R,N} \quad \text{for all} \quad z \in \mathbb{D}_R \cap f_x^{-N}(\mathbb{D}_R) \quad \text{and} \quad x \in X. \]

Then, there must be some common bound for the growth of the (spherical) characteristic functions $\hat{T}_x(r) = \hat{T}(f_x,r)$ of f_x, $x \in X$. We use here a strengthened version of the Condition 1 in [5] and would like to mention that this is only used in order to show that the expected pressure function has a zero (see Proposition 9.7):

\textbf{Condition 1'.} There exists $\rho > 0$ and $\iota > 0$ such that
\[\alpha \rho \leq \hat{T}_x(r) \leq \iota^{-1} \rho \quad \text{for all} \quad r \geq 1 \quad \text{and} \quad x \in X. \]

\textbf{Definition 9.1.} The transcendental random family $(f_{x,\lambda}) \subset \mathcal{F}_{X,\Lambda}$ is called:

1. Topologically hyperbolic if there exists $0 < \delta_0 \leq \frac{1}{4}$ such that for every $x \in X$, $n \geq 1$ and $w \in J_{\theta^n(x)}$ all holomorphic inverse branches of $f_{x,\lambda}^n$ are well defined on $\mathbb{D}(w, 2\delta_0)$.
2. Expanding if there exists $c > 0$ and $\gamma > 1$ such that
\[|(f_{x,\lambda}^n)'(z)| \geq c \gamma^n \quad \text{for every} \quad z \in J_x \setminus f_{x,\lambda}^{-n}(\infty) \quad \text{and} \quad x \in X. \]
3. Hyperbolic if it is both topologically hyperbolic and expanding.

\textbf{Definition 9.2.} The transcendental random family $(f_{x,\lambda}) \subset \mathcal{F}_{X,\Lambda}$ satisfies the \textbf{balanced growth condition} if there are $\alpha_2 > \max\{0, -\alpha_1\}$ and $\kappa \geq 1$ such that for every $(x, \lambda) \in X \times \Lambda$ and every $z \in f_{x,\lambda}^{-1}(U)$,
\[\kappa^{-1} \leq \frac{|f'_{x,\lambda}(z)|}{(1 + |z|^2)^{\frac{\alpha_2}{2}} (1 + |f_{x,\lambda}(z)|^2)^{\frac{\alpha_2}{2}}} \leq \kappa. \]

In the following we always assume that the above conditions are satisfied.
Definition 9.3. A transcendental holomorphic random family \((f_x,\lambda) \subset F_{X,\Lambda}\) will be called admissible if

1. the base map \(\theta : X \to X\) is ergodic with respect to the measure \(m\),
2. the system \((f_x,\lambda)\) is hyperbolic,
3. the balanced growth condition is satisfied,
4. the Conditions 1', 2 and 4 hold.

In this context, the right potential to work with is \(\varphi_{\lambda,t}\) as defined in (4.3) but with \(\hat{\tau} = \alpha_1 + \tau\) where \(\tau < \alpha_2\) is arbitrarily close to \(\alpha_2\) such that \(t > \rho/\hat{\tau} > \rho/\alpha\), \(\alpha = \alpha_1 + \alpha_2\). With such a choice, the following has been shown in [5]:

- The full thermodynamical formalism holds. In particular, there exist \(\nu_{x,t}\), the Gibbs states, in fact generalized eigenmeasures of dual transfer operators, and unique equilibrium states

\[\mu_{x,t} = \hat{\rho}_{x,t}\nu_{x,t}, \quad \nu_{x,t}(\hat{\rho}_{x,t}) = 1.\]

Moreover, for every \(t > \rho/\alpha\), there are constants \(A_t, C_t < \infty\) and \(\varepsilon_t > 0\) such that

\[\hat{\rho}_{x,t}(z) \leq C_t(1 + |z|)^{-\varepsilon_t} \quad \text{and} \quad \|\hat{\rho}_{x,t}\|_\infty \leq A_t \quad \text{for all} \ z \in U \text{ and} \ x \in X .\]

- The normalized iterated transfer operator converge exponentially fast (Theorem 5.1 (2)).

For admissible transcendental random families one has the bounded deformation property. Indeed, the following uniform control is a complete analogue of Lemma 9.7 in [4] and can be shown with exactly the same normal family argument than in the proof given in [4].

Lemma 9.4. For every \(\varepsilon > 0\) there exists \(0 < r_\varepsilon < r\) such that

\[\left| \frac{f_{\lambda}^{-1}(f_{\lambda_0}^{-1}(w))}{f_{\lambda_0}^{-1}(w)} - 1 \right| < \varepsilon\]

for every \((w,*)\) and \(\lambda \in \mathcal{D}(\lambda_0, r_\varepsilon)\).

If we combine this with Koebe’s distortion theorem (see for ex. Theorem 2.7 in [7] then it follows that the condition (3.3) of the bounded deformation property always holds. The first property of the bounded deformation property (3.2) holds for many families (see again [4]) and clearly for the exponential family in Theorem 1.1.

9.1. Expected pressure. Fix \(t > \rho/\alpha\). From Theorem 3.1 in [5] we know that \(\sup_{\lambda \in \Lambda} |P_{x,\lambda}(t)| \leq \infty\) for every \(\lambda \in \Lambda\). We can therefore introduce the expected pressure

\[\mathcal{E} P_\lambda(t) = \int_X P_{x,\lambda}(t)dm(x) .\]

Analyticity of expected pressure results from the following.
Lemma 9.5. For the expected pressure we have the following expression
\[\mathcal{E}P_\lambda(t) = \int_X \log l(\mathcal{L}_{x,\lambda,t} \rho_{x,\lambda,t}) \, dm(x) \]
and the function \((\lambda, t) \mapsto \mathcal{E}P_\lambda(t)\) is real analytic.

Proof. On the one hand we know that \(\mathcal{L}_{x,\lambda,t} \hat{\rho}_{x,\lambda,t} = e^{P_{x,\lambda}(t)} \rho_{\theta(x),\lambda,t}\) and on the other hand \(\mathcal{L}_{x,\lambda,t} \rho_{x,\lambda,t} = l(\mathcal{L}_{x,\lambda,t} \rho_{x,\lambda,t}) \rho_{\theta(x),\lambda,t}\). Since \(\rho_{x,\lambda,t} = \frac{\hat{\rho}_{x,\lambda,t}}{l(\hat{\rho}_{x,\lambda,t})}\) it follows that
\[\log(l(\mathcal{L}_{x,\lambda,t} \rho_{x,\lambda,t})) = P_{x,\lambda}(t) + \log(l(\rho_{\theta(x),\lambda,t})) - \log(l(\hat{\rho}_{x,\lambda,t})) \cdot \]

It suffices to integrate this expression with respect to \(m\) and to use that the measure \(m\) is \(\theta\)-invariant. The statement on analyticity results from this expression and the fact (see Theorem 8.1) that the function \((\lambda_1, \lambda_2, t) \mapsto l(\mathcal{L}_{x,\lambda_1, \lambda_2, t} \rho_{x,\lambda_1, \lambda_2, t}) \in \mathbb{C}\) is holomorphic.

9.2. Bowen’s Formula. This formula concerns a fixed random system or, in other words, a fixed parameter \(\lambda \in \Lambda\). We can therefore neglect this parameter throughout this subsection and consider a fixed random system \(\mathcal{F}_X\). As our preparation for the proof of Bowen’s Formula we are to deal with expected pressure in greater detail.

Lemma 9.6. Let \(t > \rho/\alpha\). Then for \(m\)-a.e. \(x \in X\) and every \(w \in J_x\),
\[\mathcal{E}P(t) = \lim_{n \to -\infty} \frac{1}{n} \log \mathcal{L}_{\theta^{-n}(x), t}^n \mathbb{1}(w). \]

Proof. Taking \(g_x := \mathbb{1}\), item (2) of Theorem 5.1 in [5] yields for every \(n \geq 1\) that
\[\left| \mathcal{L}_{\theta^{-n}(x), t}^n \mathbb{1}(w) - \hat{\rho}_{x,t}(w) \right| \leq B \theta^n \]
for some \(B \in (0, +\infty)\) and some \(\theta \in (0, 1)\). Since \(\rho_{x,t}(w) > 0\) this yields
\[\left| \log \left(\frac{1}{\hat{\rho}_{x,t}(w)} \mathcal{L}_{\theta^{-n}(x), t}^n \mathbb{1}(w) \right) \right| \leq \frac{B'}{\hat{\rho}_{x,t}(w)} \theta^n \]
for every \(n \geq 1\) with some constant \(B' > 0\). Therefore, using the standard Birkhoff’s sum notation \(S_n P_y = P_y + P_{\theta(y)} + \ldots + P_{\theta^{n-1}(y)}\), we obtain
\[\left| \frac{1}{n} \log \mathcal{L}_{\theta^{-n}(x), t}^n \mathbb{1}(w) - \frac{1}{n} S_n P_{\theta^{-n}(x)}(t) \right| \leq \frac{B'}{\hat{\rho}_{x,t}(w)} \theta^n + \frac{\log(\hat{\rho}_{x,t}(w))}{n} \to 0 \]
as \(n \to \infty\). The lemma now follows by applying Birkhoff’s Ergodic Theorem to the function \(x \mapsto P_x(t)\).

This characterization of expected pressure along with hyperbolicity of the system \((f_x)_{x \in X}\) and of Condition 1’ allow us to establish the desired description of the behavior of the expected pressure.

Proposition 9.7. The function \(t \mapsto \mathcal{E}P(t)\) is analytic (hence continuous), strictly decreasing and satisfies
\[\lim_{t \downarrow \rho/\alpha} \mathcal{E}P(t) = +\infty \quad \text{and} \quad \lim_{t \to +\infty} \mathcal{E}P(t) = -\infty. \]
Proof. Analyticity has been established in Lemma 9.5, the strict monotonicity and the limit at $+\infty$ are straightforward and standard. It remains to analyze the behavior of $\mathcal{E}\mathcal{P}$ near ρ/α. In order to do so, we will use Condition 1' along with Nevanlinna Theory as explained in [5]. In the following we use the notations from that paper especially those from the proof of Lemma 3.17. It is show there that there exists $k > 0$ and $R_0 > 0$ sufficiently large such that for every $R > R_0$ and every $w \in U \cap \mathbb{D}_R$

$$\mathcal{L}_x \mathbb{I}_{\mathbb{D}_R}(w) \geq k R^{-(\alpha_2-\tau)t} \int_{r_R}^{R} \frac{\hat{T}_x(r)}{r^{\alpha_2+1}} dr$$

where $r_R = \omega^{-1}(8 \log R)$ and where ω comes from Condition 1 still in [5]. This condition being replaced here by Condition 1', we have $\omega(r) = \nu r^\rho$ and $\hat{T}_x(r) \geq \nu r^\rho$. Therefore, still with $\hat{r} = \alpha_1 + \tau$ and with $\hat{k} = k\tau$, we get uniformly in $w \in U \cap \mathbb{D}_R$ and $x \in X$ the lower bound

$$\mathcal{L}_x \mathbb{I}_{\mathbb{D}_R}(w) \geq \hat{k} R^{-(\alpha_2-\tau)t} \int_{r_R}^{R} \frac{dr}{r^{\hat{r}-\rho+1}} dr = \hat{k} R^{-(\alpha_2-\tau)t} \left(\log R - \log r_R + O(\hat{r} - \rho) \right).$$

The number $\tau \in (0, \alpha_2)$ is chosen in dependence of t arbitrarily close to α_2 such that $t > \rho/(\alpha_1 + \tau) > \rho/\alpha$ (see Remark 1.2 in [5]). It is therefore clear that for every $H > 0$ one can choose $R = R_H > R_0$ and then $t_H > \rho/\alpha$ such that for every $t \in (\rho/\alpha, t_H)$

$$\mathcal{L}_x \mathbb{I}_{\mathbb{D}_R}(w) \geq H \quad \text{for every} \quad w \in U \cap \mathbb{D}_R, \; x \in X.$$

Now, if $\mathcal{L}_x^{n-1} \mathbb{I}_{\mathbb{D}_R} \geq H^{n-1}$ on $U \cap \mathbb{D}_R$ for some $n \geq 1$ then

$$\mathcal{L}_x^n \mathbb{I}_{\mathbb{D}_R} \geq \mathcal{L}_x \left(\mathbb{I}_{\mathbb{D}_R} \mathcal{L}_x^{n-1}(\mathbb{I}_{\mathbb{D}_R}) \right) \geq H^{n-1} \mathcal{L}_x \mathbb{I}_{\mathbb{D}_R} \geq H^n \quad \text{on} \quad U \cap \mathbb{D}_R.$$

The formula $\lim_{\rho/\alpha} \mathcal{E}\mathcal{P}(t) = +\infty$ follows now by induction and Lemma 9.6. \hfill \Box

Lemma 9.8. For every $t > \rho/\alpha$, the function $(x, z) \mapsto \log |f'_x(z)|$ is μ_t–integrable meaning that the integral

$$\chi_t := \int_X \int_{\mathcal{J}_x} \log |f'_x(z)| \, d\mu_{x,t}(z) \, dm(x)$$

is well-defined and finite. Moreover, $\chi_t > 0$.

Proof. Let $t > \rho/\alpha$. The expanding property implies $\chi_t > 0$. It remains to show that $\chi_t < \infty$. It follows from the estimate given in (9.3) that

$$\int_X \int_{\mathcal{J}_x} \log |z| \, d\mu_{x,t} \, dm(x) = \int_X \int_{\mathcal{J}_x} \log |z| \, \rho_{x,t} \, d\nu_{x,t} \, dm(x) < \infty, \quad x \in X,$$

and from invariance that

$$\int_X \int_{\mathcal{J}_x} \log |f_x(z)| \, d\mu_{x,t} \, dm(x) = \int_X \int_{\mathcal{J}_{\mu_t(x)}} \log |z| \, d\mu_{\theta(x),t} \, dm(x) < \infty, \quad x \in X.$$
Thus, both functions \((x, z) \mapsto \log |z|\) and \((x, z) \mapsto \log |f_x(z)|\) are \(\mu_t\)-integrable. From the balanced growth condition follows now \(\mu_t\)-integrability of the function \((x, z) \mapsto \log |f'_x(z)|\).

Proposition 9.7 yields the existence of a unique zero \(h > \rho/\alpha\) of the expected pressure function. It turns out that this number coincides almost everywhere with the Hausdorff dimension of the radial Julia set.

Theorem 9.9 (A version of Bowen’s Formula). If \((f_x)_{x \in X}\) is a admissible random system, then

\[
\text{HD}(J_r(f_x)) = h \quad \text{for \emph{m-a.e.} } x \in X.
\]

Proof. Since \(\mu_h\) is an ergodic measure, there is \(M \in (0, +\infty)\) such that

\[
\mu_h(J_r(x, M)) = 1 \quad \text{for all } x \in X_1,
\]

where \(X_1 \subset X\) is some measurable set with \(m(X_1) = 1\), and

\[
J_r(x, M) := \{z \in J_r(x) : \lim_{n \to \infty} |(f_x^n(z))| < M\}.
\]

First we shall prove that

\[
\text{HD}(J_r(x, M)) \geq h
\]

or \emph{m-a.e.} \(x \in X_1\). Fix \(x \in X_1\) and \(z \in J_r(x, M)\). Set \(y := (x, z)\) and denote by \(f_y^{-n}\) the inverse branch of \(f_y^n\) defined on \(\mathbb{D}(f_y^n(z), \delta)\) mapping \(f_y^n(z)\) back to \(z\). For every \(r \in (0, \delta)\) let \(k := k(y, r)\) be the largest integer \(n \geq 0\) such that

\[
\mathbb{D}(z, r) \subset f_y^{-n}(\mathbb{D}(f_y^n(z), \delta)).
\]

Since our system is expanding this inclusion holds for all \(0 \leq n \leq k\) and

\[
\lim_{r \to 0} k(y, r) = +\infty.
\]

Fix \(n = n_k \geq 0\) to be the largest integer in \(\{0, 1, 2, \ldots, k\}\) such that \(f_y^n(z) \in \mathbb{D}(0, M)\) and \(s = s_k\) to be the least integer \(\geq k + 1\) such that \(f_y^s(z) \in \mathbb{D}(0, M)\). It follows from Birkhoff’s Ergodic Theorem that

\[
\lim_{k \to \infty} \frac{s_k}{n_k} = 1
\]

for \emph{m-a.e.} \(x \in X_1\), say \(x \in X_2 \subset X_1\) with \(m(X_2) = 1\) and \(\mu_{x,h}\)-a.e. \(z \in J_r(x, M)\), say \(z \in J_r^1(x, M)\), with \(\mu_{x,h}(J_r^1(x, M)) = 1\). Since the random measure \(\nu_h\) is \(h\)-conformal, we get from (9.6) and the definition of \(n\) that

\[
\nu_{x,h}(\mathbb{D}(z, r)) \leq \nu_{x,h}(f_y^{-n}(\mathbb{D}(f_y^n(z), \delta))) \leq K_{z,M}^h |(f_y^n(z))|^{-h} e^{-S_n P_x(h)},
\]

where the constant \(K_{z,M}\) compensates the replacement of the \(\tau\)-derivative \(|(f_y^n)'(z)|\) by the Euclidean derivative \(|(f_y^n)'(z)|\). On the other hand \(\mathbb{D}(z, r) \not\subset f_y^{-n}(\mathbb{D}(f_y^n(z), \delta))\).

But since, by \(\frac{1}{4}\)-Koebe’s Distortion Theorem,

\[
f_y^{-n}(\mathbb{D}(f_y^n(z), \delta)) \supset \mathbb{D}(z, \frac{1}{4}|(f_y^n)'(z)|^{-1} \delta),
\]

we get

\[
\frac{1}{4} |(f_y^n)'(z)|^{-1} \delta)
\]

REAL ANALYTICITY FOR RANDOM DYNAMICS 23

\[
\frac{1}{4} |(f_y^n)'(z)|^{-1} \delta)
\]
we thus get that \(r \geq \frac{1}{4} |(f_x^n)'(z)|^{-1} \delta \). Equivalently,
\[
| (f_x^n)'(z) |^{-1} \leq 4\delta^{-1} r.
\]
By inserting this into (9.8) and using also the Chain Rule, we obtain
\[
\nu_{x,h}(\mathbb{D}(z,r)) \leq (4K_{x,M}\delta^{-1})^h e^{-S_n P_x(h)} |(f_{\theta^n(x)}^{s-n})' (f_x^n(z))|^h.
\]
Equivalently:
\[
(9.9) \quad \frac{\log \nu_{x,h}(\mathbb{D}(z,r))}{\log r} \geq h + \frac{h \log(4K_{x,M}\delta^{-1})}{\log r} - S_n P_x(h) + h \frac{\log |(f_{\theta^n(x)}^{s-n})' (f_x^n(z))|}{\log r}.
\]
Now, Koebe’s Distortion Theorem yields
\[
f_y^{-n}(\mathbb{D}(f_x^n(z),\delta)) \subset \mathbb{D}(z,K\delta |(f_x^n)'(z)|^{-1}).
\]
Along with (9.6) this yields \(r \leq K\delta |(f_x^n)'(z)|^{-1} \). Equivalently:
\[
(9.10) \quad - \log r \geq - \log(K\delta) + \log |(f_x^n)'(z)|.
\]
By Lemma 9.8 the function \((x,z) \mapsto \log |f_x^n(z)|\) is \(\mu_h \)-integrable with \(\chi_h > 0 \). Therefore, there exists a measurable set \(X_3 \subset X_2 \) with \(m(X_3) = 1 \) and for every \(x \in X_3 \) there exists a measurable set \(J_0^2(x,M) \subset f_x^n(x,M) \) such that \(\mu_{x,h}(J_0^2(x,M)) = 1 \) and
\[
(9.11) \quad \lim_{j \to \infty} \frac{1}{j} \log |(f_x^{j})'(z)| = \chi_h \in (0, +\infty)
\]
for every \(x \in X_3 \) and every \(z \in J_0^2(x,M) \), the equality holding because of Birkhoff’s Ergodic Theorem. This formula, along with (9.7) also yields
\[
(9.12) \quad \lim_{n \to \infty} \frac{1}{n} \log |(f_x^{j})'(z)| = \chi_h
\]
for every \(x \in X_3 \) and every \(z \in J_0^2(x,M) \). Since \(\int_X P_x(h) \, dm(x) = 0 \), Birkhoff’s Ergodic Theorem gives:
\[
(9.13) \quad \lim_{j \to \infty} \frac{1}{j} S_j P_x(h) = 0,
\]
for all \(x \in X_4 \subset X_3 \), where \(X_4 \) is some measurable set with \(m(X_4) = 1 \). By combining this formula taken together with the three formulas (9.12), (9.11), and (9.10), and formula (9.8), we get
\[
\lim_{r \to 0} \frac{\log \nu_{x,h}(\mathbb{D}(z,r))}{\log r} \geq h
\]
for every \(x \in X_4 \) and every \(z \in J_0^2(x,M) \). Since \(\mu_{x,h}(J_0^2(x,M)) = 1 \), we thus obtain
\[
(9.14) \quad \text{HD}(J_0(x)) \geq \text{HD}(\mu_{x,h}) \geq h
\]
for every \(x \in X_4 \) (with \(m(X_4) = 1 \)).

We now shall establish the opposite inequality. We know from [5] that for any \(n \geq 1 \) large enough, say \(n \geq q \geq 1 \),
\[
Q_n := \inf \{ \nu_{x,h}(\mathbb{D}(w,\delta)) : x \in X, w \in J_x \cap \mathbb{D}(0,n) \} > 0.
\]
By the very definition of $J_r(x)$ we have that

$$J_r(x) = \bigcup_{n=q}^{\infty} J_r(x, n).$$

Fix $n \geq q$. Keep both $x \in X_4$ and $z \in J_r(x, n)$ fixed (still $y := (x, z)$), and consider an arbitrary integer $l \geq 0$ such that

$$f_{x}^l(z) \in \mathbb{D}(0, n).$$

Let $r_l > 0$ be the least radius such that

$$f_y^l(\mathbb{D}(f_{x}^l(z), \delta)) \subset \mathbb{D}(z, r_l).$$

But, by Koebe’s Distortion Theorem, $f_y^{-l}(\mathbb{D}(f_{x}^l(z), \delta)) \subset \mathbb{D}(z, K\delta|f_{x}^l(z)|^{-1})$; hence

$$r_l \leq K\delta|f_{x}^l(z)|^{-1}.$$

Formula (9.17) along with Koebe’s Distortion Theorem and (9.18), yield

$$\nu_{x,h}(\mathbb{D}(z, r_l)) \geq \nu_{x,h}(f_y^l(\mathbb{D}(f_{x}^l(z), \delta)))$$

$$\geq K_{z,M}^{-h} |(f_{x}^l)'(z)|^{-h} e^{-S_n P_z(h)} (\mathbb{D}(f_{x}^l(z), \delta))$$

$$\geq K_{z,M}^{-h} Q_n e^{-S_n P_z(h)} |(f_{x}^l)'(z)|^{-h}$$

$$\geq (K\delta K_{z,M})^{-h} Q_n e^{-S_n P_z(h)} r_l^h,$$

where the constant $K_{z,M}$ again compensates the replacement of the τ-derivative $|(f_{x}^l)'(z)|_\tau$ by the Euclidean derivative $|(f_{x}^l)'(z)|$. Therefore,

$$\frac{\log \nu_{x,h}(\mathbb{D}(z, r_l))}{\log r_l} \leq h - \frac{h \log(4K\delta K_{z,M})}{\log r_l} - \frac{S_{l+1} P_z(h)}{\log r_l} - h \frac{\log |(f_{x}^l)'(z)|}{\log r_l}.$$

Formula (9.18) equivalently means that

$$- \log r_l \geq \log |(f_{x}^l)'(z)| - \log(K\delta) \geq \tilde{\chi}l - \log(K\delta)$$

with some $\tilde{\chi} > 0$ resulting from uniform expanding property of the system $(f_x)_{x \in X}$. Since the set of all integers $l \geq 1$ for which (9.16) holds is finite (as $z \in J_r(x, n)$), taking the limit of the right-hand side of (9.20) over all such ls, and applying (9.21), (9.13), and also recalling that, by Birkhoff’s Ergodic Theorem,

$$\lim_{j \to \infty} \frac{1}{j} \log |f_{y}^j(z)| = 0,$$

we obtain

$$\lim_{l \to \infty} \frac{\log \nu_{x,h}(\mathbb{D}(z, r_l))}{\log r_l} \leq \lim_{l \to \infty} \frac{\log \nu_{x,h}(\mathbb{D}(z, r_l))}{\log r_l} \leq h$$

Consequently, $\text{HD}(J_r(x, n)) \leq h$ for all $x \in X_4$. Together with (9.15) and σ-stability of Hausdorff dimension, we thus get that $\text{HD}(J_r(x)) \leq h$ for all $x \in X_4$. Along with (9.14) this finishes the proof. \qed
9.3. Conclusion. All in all we now get the following analyticity result for the dimension of the radial limit set.

Theorem 9.10. Suppose that the transcendental holomorphic random family \((f_x, \lambda) \subset \mathcal{F}_{X, \Lambda}\) is admissible and let \(h\lambda\) be the fiberwise Hausdorff dimension of the radial limit set of \((f_x, \lambda)_{x \in X}, \lambda \in \Lambda\). Then, \(\lambda \mapsto h\lambda\) is analytic.

Proof. Bowen’s Formula shows that \(h\lambda\) is the unique zero of the expected pressure function. The later is analytic and \(\frac{\partial}{\partial t} EP_\lambda (t) < 0\) (Proposition 9.7). Therefore the Implicit Function Theorem applies and yields analyticity of \(\lambda \mapsto h\lambda\). \(\square\)

It remains to discuss the initial example given in the Introduction.

Proof of Theorem 1.1. Let \(U = \{z \in \mathbb{C} : \Re z > 1\}\). It is well known that \(f_\eta = \eta e^z\) is a hyperbolic exponential map if \(\eta\) is real and \(\frac{1}{6\epsilon} < \eta < \frac{5}{6\epsilon}\). Moreover, \(f_\eta^{-1}(U) \subset U\). Therefore, there exists \(b > 0\) such that \(f_\eta^{-1}(U) \subset U\) for every \(\eta \in \Omega_b\) where

\[
\Omega_b = \left\{ \eta \in \mathbb{C} : \frac{1}{6\epsilon} < \Re(\eta) < \frac{5}{6\epsilon} \text{ and } |\Im(\eta)| < b \right\}.
\]

It follows that \(f_{\eta_1} \circ \ldots \circ f_{\eta_n}, n \geq 1\), defines an expanding non-autonomous sequence that satisfies (2.1) for any choice of \(\eta_1, \eta_2, \ldots \in \Omega_b\). It is straightforward that we thus have for these parameters a admissible transcendental random family excepted that we have to explain the random model.

In order to do so, let \(X = \mathbb{D}(0,1)^2\), \(\mathcal{B}\) the Borel \(\sigma\)-algebra, \(m\) the infinite product measure of the normalized Lebesgue measure of the unit disk and \(\theta\) the left-shift map on \(X\).

Consider now parameters \((a, r)\) such that \(\mathbb{D}(a, r) \subset \Omega_{b/2}\). Let \(x \in X\) and \(x_0\) the 0–coordinate of \(x\). We associate to these parameters the function \(\eta e^z = (a + rx_0)e^z\). In such a way we get for every \(x \in X\) a family \((a, r) \mapsto f_\eta\). However, this family only depends real analytically on \((a, r) \in \mathbb{R}^2\). In order to turn this into a holomorphic family it suffices to replace these parameters by complex ones with small imaginary part such that \(a + rx_0 \in \Omega_b\) for every \(x_0 \in \mathbb{D}(0,1)\). Theorem 9.10 applies to this family. \(\square\)

References

Université de Lille I, UFR de Mathématiques, UMR 8524 du CNRS, 59655 Villeneuve d’Ascq Cedex, France

E-mail address: volker.mayer@math.univ-lille1.fr

Web: math.univ-lille1.fr/~mayer

Department of Mathematics, University of North Texas, Denton, TX 76203-1430, USA

E-mail address: urbanski@unt.edu

Web: www.math.unt.edu/~urbanski

Anna Zdunik, Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

E-mail address: A.Zdunik@mimuw.edu.pl