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BIG PICARD THEOREM AND ALGEBRAIC HYPERBOLICITY FOR
VARIETIES ADMITTING A VARIATION OF HODGE STRUCTURES

YA DENG

Abstract. For a complex smooth log pair (., �), if the quasi-projective manifold* =

. − � admits a complex polarized variation of Hodge structures with local unipotent
monodromies around � or admits an integral polarized variation of Hodge structures,
whose period map is quasi-�nite, then we prove that (., �) is algebraically hyperbolic
in the sense of Demailly, and that the generalized big Picard theorem holds for* : any
holomorphic map 5 : Δ − {0} → * from the punctured unit disk to * extends to a
holomorphic map of the unit disk Δ into . . This result generalizes a recent work by
Bakker-Brunebarbe-Tsimerman, in which they proved that if the monodromy group
of the above variation of Hodge structures is arithmetic, then * is Borel hyperbolic:
any holomorphic map from a quasi-projective variety to* is algebraic.
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0. Introduction

0.1. Main results. The classical big Picard theorem says that any holomorphic map
from the punctured disk Δ∗ into P1 which omits three points can be extended to a
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holomorphic map Δ → P1, where Δ denotes the unit disk. Therefore, we introduce a
new notation of hyperbolicity which generalizes the big Picard theorem.

De�nition 0.1 (Picard hyperbolicity). A quasi-projective variety* is Picard hyperbolic
if for some (thus any) projective compacti�cation . of * , any holomorphic map 5 :
Δ∗ → * extends to a holomorphic map 5̄ : Δ→ - .

Picard hyperbolic varieties fascinate the author a lot because of the recent interest-
ing work [JK18b] by Javanpeykar-Kucharczyk on the algebraicity of analytic maps.
In [JK18b, De�nition 1.1], they introduce a new notion of hyperbolicity: a quasi-
projective variety* is Borel hyperbolic if any holomorphic map from a quasi-projective
variety to* is necessarily algebraic. In [JK18b, Corollary 3.11] they prove that a Picard
hyperbolic variety is Borel hyperbolic. We refer the readers to [JK18b, §1] for their mo-
tivation on the Borel hyperbolicity. By A. Borel [Bor72] and Kobayashi-Ochiai [KO71],
it has long been known to us that the quotients of bounded symmetric domains by tor-
sion free arithmetic groups are hyperbolically embedded into their Baily-Borel-Satake
compacti�cation, and thus they are Picard hyperbolic (see [Kob98, Theorem 6.1.3]). An
analogue of bounded symmetric domains is the rich theory of period domain, which
was �rst introduced by Gri�ths [Gri68a] and was later systematically studied by him
in the seminal work [Gri68b,Gri70a,Gri70b]. Gri�ths further conjectured that the im-
age of a ‘period map’ is algebraic and that the period map is algebraic. In [JK18b, §1.1]
Javanpeykar-Kucharczyk formulated an inspiring variant of Gri�ths’ conjecture as
follows.

Conjecture 0.2 (Gri�ths, Javanpeykar-Kucharczyk). An algebraic variety * which
admits a quasi-�nite period map* → D�Γ is Borel hyperbolic.

Unlike Hermitian symmetric spaces, except the classical cases (abelian varieties, and
K3 type), the quotient of period domain D�Γ in Conjecture 0.2 is never an algebraic
variety, and the global monodromy groups Γ is not arithmetic in general. However, it
is still expected and conjectured by Gri�ths that there is a ‘partial compacti�cation’
for D�Γ analogous to the Baily-Borel-Satake compacti�cation in the sense of [Gri70b,
Conjecture 9.2] or [GGLR17, Conjecture 1.2.2]. For a period map ? : * → D�Γ, in
[GGLR17] Green-Gri�ths-Lazza-Robles constructed Hodge theoretic completion for
the image ? (* ) when dim? (* ) = 1, 2.

In a recent remarkable work [BBT18], Bakker-Brunebarbe-Tsimerman proved (among
others) that a variety (or more generally Deligne-Mumford stacks) admitting a quasi-
�nite Ran,exp-period map is Borel hyperbolic. Since they applied the tools from o-
minimal structures, they have to assume that the monodromy group of variation of
Hodge structures they studied are arithmetic. In this paper, we extend their theorem
to the Picard hyperbolicity, and we also remove their arithmeticity condition for mon-
odromy groups. The �rst result is the following.

Theorem A. Let . be a complex projective manifold and let � be a simple normal cross-
ing divisor on . . Assume that there is a complex polarized variation of Hodge structures
over* := . −� with local unipotent monodromies around � whose period map is quasi-
�nite ( i.e. every �ber is a �nite set). Then * is both algebraically hyperbolic, and Picard
hyperbolic. In particular,* is Borel hyperbolic.

We refer the reader to § 1.1 for complex polarized variation of Hodge structures (C-
PVHS for short), and to De�nition 3.1 for the de�nition of algebraic hyperbolicity. As
a consequence of Theorem A, we obtain the following result for varieties admitting an
integral variation of Hodge structures, which in particular con�rms Conjecture 0.2.
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Theorem B. Let * be a quasi-projective manifold and let (+ ,∇, � •, &) be an integral
polarized variation of Hodge structures over* , whose period map is quasi-�nite. Then*
is both algebraically hyperbolic and Picard hyperbolic. In particular,* is Borel hyperbolic.

Let us mention that when the monodromy group of polarized variation of Hodge
structures (+ ,∇, � •, &) in Theorem B is assumed to be arithmetic, Borel hyperbol-
icity of the quasi-projective manifold * in Theorem B has been proven in [BBT18,
Corollary 7.1]. Our proofs of Theorems A and B are based on complex analytic and
Hodge theoretic methods, and it does not use the delicate o-minimal geometry in
[PS08, PS09, BKT18, BBT18]. Let us also mention that using Mochizuki’s norm esti-
mate for tame harmonic bundles in [Moc07] instead of the estimate for Hodge norms
in [CKS86], we can even remove the assumption of ‘unipotent monodromies around
�’ in Theorem A. However, it will make the paper more involved and we shall work
on it in another paper.

0.2. Main strategy.

0.2.1. Why not Hodge metric? Let . be a projective manifold and let � be a simple
normal crossing divisor on . . Assume that there is a complex polarized variation of
Hodge structures (+ ,∇, � •, &) on * = . − � . Then there is a natural holomorphic
map, so-called period map, ? : * → D�Γ where D is the period domain associated
to (+ ,∇, � •, &) (see [CMSP17] or [KKM11, §4.3] for the de�nition) and Γ is the mon-
odromy group. The period domainD admits a canonical (Γ-invariant) hermitian met-
ricℎD , and by Gri�ths-Schmid [GS69] its holomorphic sectional curvatures along hor-
izontal directions are bounded from above by a negative constant. One can thus easily
show the Kobayashi hyperbolicity of * if ? is immersive everywhere. Indeed, since
? is tangent to the horizontal subbundle of )D by the Gri�ths transversality, one can
pull back the metric ℎD to* by ? and by the curvature decreasing property, the holo-
morphic sectional curvature of the hermitian (moreover Kähler) metric ℎ* := ?∗ℎD on
* is also bounded from above by a negative constant. This Kähler metric ℎ* is quite
useful in proving that the log cotangent bundle Ω. (log�) is big and that (., �) is of
log general type in the work [Zuo00,Bru18,BC17]. However, such metric ℎ* is not suf-
�cient to prove the Picard hyperbolicity of * since ℎ* might degenerate in a bad way
near the boundary � and thus its curvature behavior near � is unclear to us. To the
best of our knowledge, it should be quite di�cult to prove that* is Picard hyperbolic
or algebraically hyperbolic without knowing the precise information of ℎ* near � .

0.2.2. A Finsler metric on the compacti�cation. The recent works [LSZ19,Den19] on the
Borel and Picard hyperbolicity of moduli of polarized manifolds by Lu, Sun, Zuo and
the author motivated us to prove Theorem A. An important tool (amongs others) in
these works, is a particular Higgs bundle constructed by Viehweg-Zuo [VZ02, VZ03]
(later developed by Popa el al. [PS17, PTW18] using mixed Hodge modules), which
contains a globally positive line bundle over the compacti�cation . rather than * .
This positive line bundle originates from Kawamata’s deep work [Kaw85] on the Iitaka
conjecture: for an algebraic �ber space 5 : - → . between projective manifolds
whose geometric generic �ber admits a good minimal model, det 5∗(< -/. ) is big for
< � 0 if 5 has maximal variation. In an ingenious way, Viehweg-Zuo [VZ02, VZ03]
applied Viehweg’s �ber product and cyclic cover tricks to transfer Kawamata’s posi-
tivity det 5∗(< -/. ) to their Higgs bundles.

We �rst note that in the case that there is a C-PVHS (+ ,∇, � •, &) over . −� where
(., �) is a log pair, one also has a strictly positive line bundle on * if the period map
is generically immersive, which was constructed by Gri�ths in [Gri70a] half century
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ago! Based on the work [CKS86,Kas85] on the asymptotic estimate for Hodge metrics
at in�nity, Bakker-Brunebarbe-Tsimerman [BBT18] showed that this Gri�ths line bun-
dle extends to a big line bundle !Gri over . if the monodromies of (+ ,∇, � •, &) around
� are unipotent (see Lemma 1.4). As we will see later, the Gri�ths line bundle plays
a similar role as the Kawamata positivity described above. Indeed, based on the above
C-PVHS (+ ,∇, � •, &) we construct a Higgs bundle (�, \ ) = (⊕?+@=<�?,@, ⊕?+@=<\?,@) on
the log pair (., �) so that the Gri�ths line bundle!Gri is contained in some higher stage
�?0,@0 of �. This Higgs bundle shares some similarities with the Viehweg-Zuo Higgs
bundle in [VZ02, VZ03] (see Remark 1.6). Inspired by our previous work [Den18b] on
the proof of Viehweg-Zuo’s conjecture on Brody hyperbolicity of moduli of polarized
manifolds, in Theorem 1.8 we show that (�, \ ) still enjoys a ‘partially’ in�nitesimal
Torelli property. This enables us construct a negatively curved, and generically posi-
tively de�nite Finsler metric on* , in a similar vein as [Den18a, Den19].

Theorem C (=Theorem 1.5+Theorem 2.6). Let . be a projective manifold and let � be
a simple normal crossing divisor on. . Assume that there is a complex polarized variation
of Hodge structures over. −� with local unipotent monodromies around� , whose period
map is generically immersive. Then there are a Finsler metric ℎ (see De�nition 2.1) on
). (− log�) which is positively de�nite on a dense Zariski open set * ◦ of . − � , and a
smooth Kähler form l on . such that for any holomorphic map W : � → * from an open
set � ⊂ C to* , one has

√
−1mm log |W ′(C) |2

ℎ
≥ W∗l.(0.2.1)

Let us mention that, though we only construct (possibly degenerate) Finsler met-
ric over ). (− log�), it follows from (0.2.1) that we know exactly the behavior of its
curvature near the boundary � since l is a smooth Kähler form over . . The proof
of Theorem A is then based on Theorem C and the following criteria for big Picard
theorem established in the appendix whose proof is Nevanlinna theoretic.

TheoremD. Let. be a projective manifold and let� be a simple normal crossing divisor
on . . Let 5 : Δ∗ → . − � be a holomorphic map. Assume that there is a (possibly
degenerate) Finsler metric ℎ of ). (− log�) such that |5 ′(C) |2

ℎ
. 0, and

1
c

√
−1mm log |5 ′(C) |2

ℎ
≥ 5 ∗l(0.2.2)

for some smooth Kähler metricl on . . Then 5 extends to a holomorphic map 5 : Δ→ . .

0.3. Acknowledgments. I would like to thank Professors Junyan Cao, Ariyan Javan-
peykar and Emmanuel Ullmo for discussions. I specially thank Professor Ariyan Javan-
peykar for his interests and various comments on this paper. This work is supported
by IHÉS.

1. Construction of special Higgs bundles

1.1. Preliminary on complex variation of Hodge structures. A log pair (., �)
consists of a smooth projective manifold and a simple normal crossing divisor � , and
such log pair (., �) is called a log-compacti�cation of the quasi-projective manifold
. − � .

De�nition 1.1. A Higgs bundle on a log pair (., �) is a pair (�, \ ) consisting of a
holomorphic vector bundle � on . and an O. -linear map

\ : � → � ⊗ Ω. (log�)
so that \ ∧ \ = 0. Such \ is called Higgs �eld.
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Following Simpson [Sim88], a complex polarized variation of Hodge structures of
weight< over* = . − � is a �∞-vector bundle + = ⊕?+@=<+ ?,@ and a �at connection
∇ satisfying Gri�ths’ transversality condition.

∇ : + ?,@ → �0,1(+ ?+1,@−1) ⊕ �1(+ ?,@) ⊕ �1,0(+ ?−1,@+1)(1.1.1)

and such that a polarization exists; this is a sesquilinear form& (•, •) over+ , hermitian
symmetric or antisymmetric as < is even or odd, invariant under ∇, such that the
Hodge decomposition + = ⊕?+@=<+ ?,@ is orthogonal and such that

ℎ := (
√
−1)?−@& (•, •) > 0

on + ?,@ .
Let us decompose ∇ into operators of (1, 0) and (0, 1)

∇ = ∇′ + ∇′′

and thus ∇′′ induces a complex structure on + . We de�ne a �ltration

�?+ := + ?,@ ⊕ + ?+1,@−1 ⊕ · · · ⊕ +<,0

and by (1.1.1) �?+ is invariant under ∇′′. Hence �?+ can be equipped with the complex
structure inherited from (+ ,∇′′), and the �ltration

� • : + = � 0+ ⊃ � 1+ ⊃ · · · ⊃ �<+ ⊃ �<+1+ = {0}

is called the Hodge �ltration. Such data (+ ,∇, � •, &) is called a complex polarized vari-
ation of Hodge structures (C-PVHS for short) on* .

Note that the �at connection ∇ in (1.1.1) induces an O* -linear map

[?,@ : �?+ /�?+1+ → (�?−1+ /�?+ ) ⊗ Ω* .

Let us denote by � := ⊕? (�?+ /�?+1+ ) and [ = ⊕?[?,@ . Then (�, [) is a Higgs bundle
on* .

We say the C-PVHS (+ ,∇, � •, &) on* has unipotent monodromies around � if local
monodromies around � of the local system on* induced by the �at bundle (+ ,∇) are
all unipotent.

For two C-PVHS (+1,∇1, �
•+1, &1) and (+2,∇2, �

•+2, &2) of weight <1 and <2 over
. − � , one can de�ne their tensor product, which is still C-PVHS with weight <1 +
<2. Moreover, if they both have unipotent monodromies around � , so is their tensor
product.

Remark 1.2. It is well-known that C-PVHS are quite close to real variation of Hodge
structures (R-PVHS for short, see [CKS86] for a previse de�nition). Indeed, one can
obtain a R-PVHS by adding the C-PVHS with its conjugate. In particular, the estimate
of Hodge metric at in�nity of a R-PVHS in [CKS86] also holds true for C-PVHS.

For a C-PVHS (+ ,∇, � •, &) de�ned over * = . − � with unipotent monodromies
around � , there is a canonical way to extend it to a Higgs bundle over the log pair
(., �). By Deligne, + has a locally free extension + to . such that ∇ extends to a
logarithmic connection

∇ : + → + ⊗ Ω. (log�)
with nilpotent residues. For each ? we set

�
?
+ := ]∗�?+ ∩+
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where ] : * ↩→ . is the inclusive map. By Schmid’s nilpotent orbit theorem [Sch73],
both �?+ and the graded term �

?,@
= �

?
+ /�?+1+ are locally free, and ∇ induces an

O. -linear map
[?,@ : �?,@ → �

?−1,@+1 ⊗ Ω. (log�).
Hence the pair

(�, [) := (⊕?+@=<�
?,@
, ⊕?+@=<[?,@)(1.1.2)

is a Higgs bundle on the log pair (., �), which extends (�, [) de�ned over* .

De�nition 1.3. We say that Higgs bundle (�, [) over (., �) in (1.1.2) is canonically
induced by the C-PVHS (+ ,∇, � •, &).
1.2. Gri�ths line bundle. For the C-PVHS (+ ,∇, � •, &) de�ned over * as above,
in [Gri70a], Gri�ths constructed a line bundle !Gri on* , which he called the canonical
bundle of (+ ,∇, � •, &). In [BBT18, Lemma 6.4] Bakker-Brunebarbe-Tsimerman proved
that the Gri�ths line bundle indeed extends to a big line bundle on . .

Lemma 1.4 ( [BBT18, Lemma 6.4]). Let (., �) be a log pair. Let (+ ,∇, � •, &) be a C-
PVHS of weight< over . −� with unipotent monodromies around � , whose period map
is generically immersive. Then the Gri�ths line bundle

!Gri := (det �<,0)⊗< ⊗ (det �<−1,1)⊗(<−1) ⊗ · · · ⊗ det � 1,<−1

is a big and nef line bundle on . . Here (⊕?+@=<�
?,@
, ⊕?+@=<[?,@) is the Higgs bundle on

(., �) canonically induced by (+ ,∇, � •, &) de�ned in De�nition 1.3.

1.3. SpecialHiggs bundles induced byC-PVHS. Let (., �) be a log pair. Let (+ ,∇, � •, &)
be a C-PVHS of weight< over . − � with unipotent monodromies around � , whose
period map is generically immersive. Let (�, [) be the Higgs bundle over the log pair
(., �) canonically induced by (+ ,∇, � •, &) de�ned in De�nition 1.3. Let us denote by
A? := rank �?,@ , and A :=<A< + (< − 1)A<−1 + · · · + A1.

We de�ne a new Higgs bundle (�, \ ) on (., �) by setting (�, \ ) := (�, [̄)⊗A . Precisely,
� := � ⊗A , and

\ := [̄ ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
(A−1)−tuple

+1 ⊗ [̄ ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
(A−2)−tuple

+ · · · + 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
(A−1)−tuple

⊗[̄ .

We have the (Hodge) decomposition
� = ⊕%+&=A<�%,&

with
�%,& := ⊕?1+···+?A=% ;@1+···+@A=&�

?1,@1 ⊗ · · · ⊗ �?A ,@A(1.3.1)
Hence

\ : �%,& → �%−1,&+1 ⊗ Ω. (log�).
One can easily show that (�, \ ) is canonically induced by the C-PVHS (+ ,∇, � •, &)⊗A
in the sense of De�nition 1.3. Note that the tensor product (+ ,∇, � •, &)⊗A has weight
< · A , and also has unipotent monodromies around � .

Note that det �?,@ = ∧A?�?,@ ⊂ (�?,@)⊗A? ⊂ � ⊗A? . Hence

!Gri := (det �<,0)⊗<⊗(det �<−1,1)⊗(<−1)⊗· · ·⊗det � 1,<−1 ⊂ (�<,0)⊗<A<⊗· · ·⊗(� 1,<−1)⊗A1 ⊂ �
Moreover, by (1.3.1), one has

!Gri ⊂ �%0,&0
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with %0 = A<<
2 + A<−1(< − 1)2 + · · · + A1, and %0 +&0 = A<.

In summary, we construct a special Higgs bundle on the log pair (., �) as follows.

Theorem 1.5. Let (., �) be a log pair. Let (+ ,∇, � •, &) be a C-PVHS over . − � with
unipotent monodromies around� , whose period map is generically immersive. Then there
is a Higgs bundle (�, \ ) = (⊕?+@=ℓ�?,@, \ ) on the log pair (., �) satisfying the following
conditions.

(i) The Higgs �eld \ satis�es

\ : �?,@ → �?−1,@+1 ⊗ Ω. (log�)

(ii) (�, \ ) is canonically induced (in the sense of De�nition 1.3) by some C-PVHS over
. − � of weight ℓ with unipotent monodromies around � .

(iii) There is a big and nef line bundle ! over . such that ! ⊂ �?0,@0 for some ?0 + @0 =

ℓ . �

Remark 1.6. The interested readers can compare the Higgs bundle in Theorem 1.5 with
the Viehweg-Zuo Higgs bundle in [VZ02,VZ03] (see also [PTW18]). Loosely speaking,
a Viehweg-Zuo Higgs bundle for a log pair (., �) is a Higgs bundle (� = ⊕?+@=<�?,@, \ )
over (., � + () induced by some (geometric) Z-PVHS de�ned over a Zariski open set
of . − (� ∪(), where ( is another divisor on . so that � +( is simple normal crossing.
The extra data is that there is a sub-Higgs sheaf (� = ⊕?+@=<�?,@, [) ⊂ (�, \ ) such that
the �rst stage �=,0 is a big line bundle, and

[ : �?,@ → �?−1,@+1 ⊗ Ω. (log�).

As we explained in § 0.2.2, the positivity �=,0 comes in a sophisticated way from the
Kawamata’s big line bundle det 5∗(< -/. ) where 5 : - → . is some algebraic �ber
space between projective manifolds. For our Higgs bundle (� = ⊕?+@=<�?,@, \ ) over the
log pair (., �) in Theorem 1.5, the global positivity is the Gri�ths line bundle which
is contained in some intermediate stage �?0,@0 of (� = ⊕?+@=<�?,@, \ ).

1.4. Iterating Higgs �elds. Let (� = ⊕?+@=ℓ�?,@, \ ) be a Higgs bundle on a log pair
(., �) satisfying the three conditions in Theorem 1.5. We apply ideas by Viehweg-
Zuo [VZ02, VZ03] to iterate Higgs �elds.

Since \ : �?,@ → �?−1,@+1 ⊗ Ω. (log�), one can iterate \ by :-times to obtain

�?0,@0 → �?0−1,@0+1 ⊗ Ω. (log�) → · · · → �?0−:,@0+: ⊗ ⊗:Ω. (log�)

Since \ ∧ \ = 0, the above morphism factors through

�?0,@0 → �?0−:,@0+: ⊗ Sym:Ω. (log�)

Since ! is a subsheaf of �?0,@0 , it induces

! → �?0−:,@0+: ⊗ Sym:Ω. (log�)

which is equivalent to a morphism

g: : Sym:). (− log�) → !−1 ⊗ �?0−:,@0+:(1.4.1)

The readers might be worried that all g: might be trivial so that the above construction
will be meaningless. In the next subsection, we will show that this indeed cannot
happen.
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1.5. An in�nitesimal Torelli-type theorem. We �rst follow ideas in [VZ03, §7] to
give some “proper” metric on the special Higgs bundle (�, \ ) constructed in Theo-
rem 1.5. A more general result for Z-PVHS with quasi-unipotent monodromies are
obtained by Popa-Taji-Wu [PTW18].

Let (� = ⊕?+@=ℓ�?,@, \ ) be a Higgs bundle on a log pair (., �) satisfying the three
conditions in Theorem 1.5. Write the simple normal crossing divisor � = �1 + · · · +
�: . Let 5�8 ∈ � 0 (.,O. (�8)) be the canonical section de�ning �8 . We �x a smooth
hermitian metrics 6�8 on O. (�8). After rescaling 6�8 , we assume that |5�8 |6�8 < 1 for
8 = 1, . . . , : . Set

A� :=
:∏
8=1
(− log |5�8 |26�8 ).

Let 6 be a singular hermitian metric with analytic singularities of the big and nef line
bundle ! such that 6 is smooth on . \B+(!) where B+(!) is the augmented base locus
of !, and the curvature current

√
−1Θ6 (!) > l for some smooth Kähler form l on . .

For U ∈ N, de�ne
ℎ! := 6 · (A�)U

The following proposition is a variant of [VZ03, §7] (see also [PTW18, §3] for a more
general statement).

Proposition 1.7. When U � 0, after rescaling 5�8 , there exists a continuous, positively
de�nite hermitian form lU on ). (− log�) such that

(i) the curvature form
√
−1Θℎ! (!)�*0 > A

−2
� · lU�*0,

√
−1Θℎ! (!) ≥ l

where l is a smooth Kähler metric on . , and*0 := . \
(
� ∪ B+(!)

)
.

(ii) The singular hermitian metric ℎ := ℎ−1
!
⊗ ℎhod on !−1 ⊗ � is locally bounded on . ,

and smooth outside � ∪ B+(!), where ℎhod is the Hodge metric for the Higgs bundle
(�, \ ) |* . Moreover, ℎ vanishes on � ∪ B+(!).

(iii) The singular hermitian metric A 2
�
ℎ on !−1 ⊗ � is also locally bounded on . and van-

ishes on � . �

Let us explain the idea of the proof for Proposition 1.7. Proposition 1.7.(i) follows
from an easy computation. Recall that local monodromies around� of the local system
induced byC-PVHS (�, \ ) |* are assumed to be unipotent. By the deep work by Cattani-
Kaplan-Schmid [CKS86] (see also [VZ03, Claim 7.8]) on the estimate of Hodge metrics,
we know that the Hodge norms for local sections of � have at most logarithmic growth
near � , which can be controlled by A−U

�
if U � 0.

Now let us prove the following result which is a variant of [Den18b, Theorem C].
It in particular answers the question in last subsection, and this result is crucial in
constructing negatively curved Finsler metric over ). (− log�) in Theorem C.

Theorem 1.8 (In�nitesimal Torelli-type property). The morphism g1 : ). (− log�) →
!−1 ⊗ �?0−1,@0+1 de�ned in (1.4.1) is always generically injective.

The proof is almost the same at that of [Den18b, Theorem C]. We provide it here
for completeness sake.

Proof of Theorem 1.8. By Theorem 1.5.(iii), the inclusion ! ⊂ �?0,@0 induces a global
section B ∈ � 0(., !−1 ⊗ �?0,@0), which is generically non-vanishing over* = . −� . Set

*1 := {~ ∈ . − (� ∪ B+(!)) | B (~) ≠ 0}(1.5.1)
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which is a non-empty Zariski open set of * . Since the Hodge metric ℎhod is a direct
sum of metrics ℎ? on �?,@ , the metric ℎ for !−1 ⊗ � is a direct sum of metrics ℎ−1

!
· ℎ?

on !−1 ⊗ �?,@ , which is smooth over*0 := . − (� ∪ B+(!)). Let us denote �′ to be the
(1, 0)-part of its Chern connection over *1, and Θ to be its curvature form. Then by
the Gri�ths curvature formula of Hodge bundles (see [CMSP17, p. 363]), over *0 we
have

Θ = −Θ!,ℎ! ⊗ 1 + 1 ⊗ Θℎ?0
(�?0,@0)

= −Θ!,ℎ! ⊗ 1 − 1 ⊗ (\ ∗?0,@0 ∧ \?0,@0) − 1 ⊗ (\?0+1,@0−1 ∧ \ ∗?0+1,@0−1)
= −Θ!,ℎ! ⊗ 1 − \̃ ∗?0,@0 ∧ \̃?0,@0 − \̃?0+1,@0−1 ∧ \̃ ∗?0+1,@0−1(1.5.2)

where we set
\?,@ = \ |�?,@ : �?,@ → �?−1,@+1 ⊗ Ω. (log�)

and
\̃?,@ = 1 ⊗ \?,@ : !−1 ⊗ �?,@ → !−1 ⊗ �?−1,@+1 ⊗ Ω. (log�)

and de�ne \̃ ∗?,@ to be the adjoint of \̃?,@ with respect to the metric ℎ−1
!
· ℎ. Hence over

*1 one has

−
√
−1mm log |B |2

ℎ
=

{√
−1Θ(B), B

}
ℎ

|B |2
ℎ

+
√
−1{�′B, B}ℎ ∧ {B, �′B}ℎ

|B |4
ℎ

−
√
−1{�′B, �′B}ℎ
|B |2
ℎ

6

{√
−1Θ(B), B

}
ℎ

|B |2
ℎ

(1.5.3)

thanks to Cauchy-Schwarz inequality
√
−1|B |2

ℎ
· {�′B, �′B}ℎ >

√
−1{�′B, B}ℎ ∧ {B, �′B}ℎ .

Putting (1.5.2) to (1.5.3), over*1 one has

√
−1Θ!,ℎ! −

√
−1mm log |B |2

ℎ
6 −

{√
−1\̃ ∗?0,@0 ∧ \̃?0,@0 (B), B

}
ℎ

|B |2
ℎ

−
{√
−1\̃?0+1,@0−1 ∧ \̃ ∗?0+1,@0−1(B), B

}
ℎ

|B |2
ℎ

=

√
−1

{
\̃?0,@0 (B), \̃?0,@0 (B)

}
ℎ

|B |2
ℎ

+
{
\̃ ∗?0+1,@0−1(B), \̃ ∗?0+1,@0−1(B)

}
ℎ

|B |2
ℎ

≤
√
−1

{
\̃?0,@0 (B), \̃?0,@0 (B)

}
ℎ

|B |2
ℎ

(1.5.4)

where \̃?0,@0 (B) ∈ � 0 (., !−1 ⊗ �?0−1,@0+1 ⊗ Ω. (log�)
)
. By Proposition 1.7.(ii), one has

|B |2
ℎ
(~) = 0 for any ~ ∈ � ∪ B+(!). Therefore, there exists ~0 ∈ *0 so that |B |2

ℎ
(~0) >

|B |2
ℎ
(~) for any ~ ∈ *0. Hence |B |2

ℎ
(~0) > 0, and by (1.5.1), ~0 ∈ *1. Since |B |2

ℎ
is

smooth over *0,
√
−1mm log |B |2

ℎ
is semi-negative at ~0 by the maximal principle. By

Proposition 1.7.(i),
√
−1Θ!,ℎ! is strictly positive at ~0. By (1.5.4) and |B |2

ℎ
(~0) > 0, we

conclude that
√
−1

{
\̃?0,@0 (B), \̃?0,@0 (B)

}
ℎ

is strictly positive at ~0. In particular, for any
non-zero b ∈ ).,~0 , \̃?0,@0 (B) (b) ≠ 0. For

g1 : ). (− log�) → !−1 ⊗ �?0−1,@0+1
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in (1.4.1), over* it is de�ned by g1(b) := \̃?0,@0 (B) (b), which is thus injective at ~0 ∈ *1.
Hence g1 is generically injective. The theorem is thus proved. �

2. Construction of negatively curved Finsler metric

We �rst introduce the de�nition of Finsler metric.

De�nition 2.1 (Finsler metric). Let � be a holomorphic vector bundle on a complex
manifold - . A Finsler metric on � is a real non-negative continuous function ℎ : � →
[0, +∞[ such that

ℎ(0E) = |0 |ℎ(E)
for any 0 ∈ C and E ∈ �. The metric ℎ is positively de�nite at a subset* ⊂ - if ℎ(E) > 0
for any nonzero E ∈ �G and any G ∈ * .

We shall mention that our de�nition is a bit di�erent from that in [Kob98, Chap-
ter 2, §3], which requires convexity, and the Finsler metric therein can be upper-semi
continuous.

Let (� = ⊕?+@=ℓ�?,@, \ ) be a Higgs bundle on a log pair (., �) satisfying the three
conditions in Theorem 1.5. We adopt the same notations as those in Theorem 1.5
and § 1.5 throughout this section. Let us denote by = the largest non-negative number
for : so that g: in (1.4.1) is not trivial. By Theorem 1.8, = > 0. Following [Den18a, §3.4]
we construct Finsler metrics �1, . . . , �= on ). (− log�) as follows. By (1.4.1), for each
: = 1, . . . , =, there exists

g: : Sym:). (− log�) → !−1 ⊗ �?0−:,@0+: .

Then it follows from Proposition 1.7.(ii) that the (Finsler) metric ℎ on !−1 ⊗ �?0−:,@0+:

induces a Finsler metric �: on). (− log�) de�ned as follows: for any 4 ∈ ). (− log�)~ ,

�: (4) := ℎ
(
g: (4⊗:)

) 1
:(2.0.1)

Let � ⊂ C be any open set of C. For any holomorphic map W : � → * := . − � , one
has

3W : )� → W∗)* ↩→ W∗). (− log�).(2.0.2)

We denote by mC := m
mC

the canonical vector �elds in � ⊂ C, m̄C := m
mC̄

its conjugate. The
Finsler metric �: induces a continuous Hermitian pseudo-metric on � , de�ned by

W∗� 2
:
=
√
−1�: (C)3C ∧ 3C̄ .(2.0.3)

Hence �: (C) = |g:
(
3W (mC )⊗:

)
|

2
:

ℎ
, where g: is de�ned in (1.4.1).

By Theorem 1.8, there is a Zariski open set * ◦ of * such that * ◦ ∩ B+(!) = ∅, and
g1 is injective at any point of * ◦. We now �x any holomorphic map W : � → * with
W (�)∩* ◦ ≠ ∅. By Proposition 1.7.(ii), the metric ℎ for !−1⊗� is smooth and positively
de�nite over * − B+(!). Hence �1(C) . 0. Let �◦ be an (non-empty) open set of �
whose complement � \�◦ is a discrete set so that
• The image W (�◦) ⊂ * ◦.
• For every : = 1, . . . , =, either �: (C) ≡ 0 on �◦ or �: (C) > 0 for any C ∈ �◦.
• W ′(C) ≠ 0 for any C ∈ �◦, namely W |�◦ : �◦ → * 0 is immersive everywhere.

By the de�nition of �: (C), if �: (C) ≡ 0 for some : > 1, then g: (m⊗:C ) ≡ 0 where g: is
de�ned in (1.4.1). Note that one has g:+1(m⊗(:+1)C ) = \̃

(
g: (m⊗:C )

)
(mC ), where

\̃ = 1!−1 ⊗ \ : !−1 ⊗ � → !−1 ⊗ � ⊗ Ω. (log�)
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We thus conclude that �:+1(C) ≡ 0. Hence it exists 1 ≤ < ≤ = so that the set {: |
�: (C) > 0 over �◦} = {1, . . . ,<}, and �ℓ (C) ≡ 0 for all ℓ = < + 1, . . . , =. From now on,
all the computations are made over �◦ if not speci�ed.

Using the same computations in the proof of [Den18a, Proposition 3.12], we have
following curvature formula.

Theorem 2.2. For : = 1, . . . ,<, over �◦ one has

m2 log�1

mCmC̄
≥ Θ!,ℎ! (mC , m̄C ) −

�2
2

�1
if : = 1,(2.0.4)

m2 log�:
mCmC̄

≥ 1
:

(
Θ!,ℎ! (mC , m̄C ) +

�:
:

�:−1
:−1

−
�:+1
:+1
�:
:

)
if : > 1.(2.0.5)

Here we make the convention that �<+1 ≡ 0 and 0
0 = 0. We also write mC (resp. m̄C ) for

3W (mC ) (resp. 3W (m̄C )) abusively, where 3W is de�ned in (2.0.2). �

Let us mention that in [Den18a, eq. (3.3.58)] we drop the term Θ!,ℎ! (mC , m̄C ) in (2.0.5),
though it can be easily seen from the proof of [Den18a, Lemma 3.9].

We will follows ideas in [Den18a, §3.4] (inspired by [TY15, BPW17, Sch17]) to in-
troduce a new Finsler metric � on ). (− log�) by taking convex sum in the following
form

� :=

√√
=∑
:=1

:U:�
2
:
.(2.0.6)

where U1, . . . , U= ∈ R+ are some constants which will be �xed later.
For the above W : � → * with W (�) ∩* ◦ ≠ ∅, we write

W∗� 2 =
√
−1� (C)3C ∧ 3C̄ .

Then

� (C) =
=∑
:=1

:U:�: (C),(2.0.7)

where �: is de�ned in (2.0.3). Recall that for : = 1, . . . ,<, �: (C) > 0 for any C ∈ �◦.
We �rst recall a computational lemma by Schumacher.

Lemma 2.3 ( [Sch17, Lemma 17]). Let U 9 > 0 and � 9 be positive real numbers for
9 = 1, . . . , =. Then

=∑
9=2

(
U 9
�
9+1
9

�
9−1
9−1

− U 9−1
�
9

9

�
9−2
9−1

)
>

1
2

(
−
U3

1

U2
2
�2

1 +
U=−1
=−1

U=−2
=

�2
= +

=−1∑
9=2

(
U
9−1
9−1

U
9−2
9

−
U
9+2
9

U
9+1
9+1

)
�2
9

)
(2.0.8)

�

Now we are ready to compute the curvature of the Finsler metric � based on Theo-
rem 2.2.

Theorem 2.4. Fix a smooth Kähler metric l on . . There exist universal constants 0 <

U1 < . . . < U= and X > 0, such that for any W : � → * = . − � with � an open set of C
and W (�) ∩* ◦ ≠ ∅, one has

√
−1mm log |W ′(C) |2� ≥ XW

∗l(2.0.9)
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Proof. By Theorem 1.8 and the assumption that W (�) ∩ * ◦ ≠ ∅, �1(C) . 0. We �rst
recall a result in [Den18a, Lemma 3.11], and we write its proof here for it is crucial in
what follows.

Claim 2.5. There is a universal constant 20 > 0 ( i.e. it does not depend on W ) so that
Θ!,ℎ! (mC , m̄C ) ≥ 20�1(C) for all C ∈ � .

Proof of Claim 2.5. Indeed, by Proposition 1.7.(i), it su�ces to prove that

|mC |2W∗ (A−2
�
·lU )

|g1(3W (mC )) |2ℎ
> 20(2.0.10)

for some 20 > 0, where lU is a positively de�nite Hermitian metric on ). (− log�).
Note that

|mC |2W∗ (A−2
�
·lU )

|g1(3W (mC )) |2ℎ
=

|mC |2W∗ (A−2
�
·lU )

|mC |2W∗g∗1ℎ
=
|mC |2W∗ (lU )
|mC |2W∗g∗1 (A 2

�
·ℎ)
,

where g∗1 (A 2
�
· ℎ) is a Finsler metric (indeed continuous pseudo hermitian metric) on

). (− log�) by Proposition 1.7.(iii). Since . is compact, there exists a constant 20 > 0
such that

lU > 20g
∗
1 (A 2

� · ℎ).
Hence (2.0.10) holds for any W : � → * with W (�) ∩* ◦ ≠ ∅. The claim is proved. �

By [Sch12, Lemma 8],

√
−1mm̄ log(

=∑
9=1

9U 9� 9 ) >
∑=
9=1 9U 9� 9

√
−1mm̄ log� 9∑=

8=1 9U 9�8
(2.0.11)

Putting (2.0.4) and (2.0.5) to (2.0.11), and making the convention that 0
0 = 0, we obtain

m2 log� (C)
mCmC̄

≥ 1
�

(
− U1�

2
2 +

=∑
:=2

U:
(�:+1:

�:−1
:−1

−
�:+1
:+1

�:−1
:

) )
+

∑=
:=1 U:�:

�
Θ!,ℎ! (mC , m̄C )

=
1
�

( =∑
9=2

(
U 9
�
9+1
9

�
9−1
9−1

− U 9−1
�
9

9

�
9−2
9−1

))
+

∑=
:=1 U:�:

�
Θ!,ℎ! (mC , m̄C )

(2.0.8)
≥ 1

�

(
− 1

2
U3

1

U2
2
�2

1 +
1
2

=−1∑
9=2

(U 9−1
9−1

U
9−2
9

−
U
9+2
9

U
9+1
9+1

)
�2
9 +

1
2
U=−1
=−1

U=−2
=

�2
=

)
+

∑=
:=1 U:�:

�
Θ!,ℎ! (mC , m̄C )

�;08< 2.5
≥ 1

�

(
U1

2
(20 −

U2
1

U2
2
)�2

1 +
1
2

=−1∑
9=2

(U 9−1
9−1

U
9−2
9

−
U
9+2
9

U
9+1
9+1

)
�2
9 +

1
2
U=−1
=−1

U=−2
=

�2
=

)
+ 1
�
( 1
2
U1�1 +

=∑
:=2

U:�:)Θ!,ℎ! (mC , m̄C )

One can take U1 = 1, and choose the further U 9 > U 9−1 inductively so that

20 −
U2

1

U2
2
> 0,

U
9−1
9−1

U
9−2
9

−
U
9+2
9

U
9+1
9+1

> 0 ∀ 9 = 2, . . . , = − 1.(2.0.12)
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Hence

m2 log� (C)
mCmC̄

≥ 1
�
( 1
2
U1�1 +

=∑
:=2

U:�:)Θ!,ℎ! (mC , m̄C )
(2.0.7)
≥ 1

=
Θ!,ℎ! (mC , m̄C )

over �◦. By Proposition 1.7.(i), this implies that
√
−1mm log |W ′|2� =

√
−1mm log� (C) ≥ 1

=
W∗
√
−1Θ!,ℎ! ≥ XW∗l(2.0.13)

over �◦ for some positive constant X , which does not depend on W . Since |W ′(C) |2
�

is
continuous and locally bounded from above over � , by the extension theorem of sub-
harmonic function, (2.0.13) holds over the whole � . Since 20 > 0 is a constant which
does not depend on W , so are U1, . . . , U= by (2.0.12). The theorem is thus proved. �

In summary of results in this subsection, we obtain the following theorem.

Theorem 2.6. Let (� = ⊕?+@=ℓ�?,@, \ ) be a Higgs bundle on a log pair (., �) satisfying
the three conditions in Theorem 1.5. Then there are a Finsler metric ℎ on ). (− log�)
which is positively de�nite on a dense Zariski open set * ◦ of * := . − � , and a smooth
Kähler form l on . such that for any holomorphic map W : � → * from any open subset
� of C with W (�) ∩* ◦ ≠ ∅, one has

√
−1mm log |W ′|2

ℎ
≥ W∗l.(2.0.14)

�

3. Big Picard theorem and Algebraic hyperbolicity

3.1. De�nition of algebraic hyperbolicity. Algebraic hyperbolicity for a compact
complex manifold - was introduced by Demailly in [Dem97a, De�nition 2.2], and he
proved in [Dem97a, Theorem 2.1] that - is algebraically hyperbolic if it is Kobayashi
hyperbolicity. The notion of algebraic hyperbolicity was generalized to log pairs by
Chen [Che04].

De�nition 3.1 (Algebraic hyperbolicity). Let (-, �) be a log pair. For any reduced
irreducible curve� ⊂ - such that� ⊄ - , we denote by 8- (�, �) the number of distinct
points in the set a−1(�), where a : �̃ → � is the normalization of� . The log pair (-, �)
is algebraically hyperbolic if there is a smooth Kähler metric l on - such that

26(�̃) − 2 + 8 (�, �) ≥ degl� :=
∫
�

l

for all curves � ⊂ - as above.

Note that 26(�̃)−2+8 (�, �) depends only on the complement-−� . Hence the above
notion of hyperbolicity also makes sense for quasi-projective manifolds: we say that a
quasi-projective manifold* is algebraically hyperbolic if it has a log compacti�cation
(-, �) which is algebraically hyperbolic.

However, unlike Demailly’s theorem, it is unclear to us that Kobayashi hyperbolicity
or Picard hyperbolicity of - − � will imply the algebraic hyperbolicity of (-, �). In
[PR07] Pacienza-Rousseau proved that if- −� is hyperbolically embedded into- , the
log pair (-, �) (and thus - − �) is algebraically hyperbolic.
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3.2. Proofs of main results. In this subsection, we will combine Theorem D with
Theorem C to prove main results in this paper.

Proof of Theorem A. By Theorem C, there exist �nite log pairs {(-8, �8)}8=0,...,# so that
(1) There are morphisms `8 : -8 → . with `−1

8 (�) = �8 , so that each `8 : -8 →
`8 (-8) is a birational morphism, and -0 = . with `0 = 1.

(2) There are smooth Finsler metricsℎ8 for)-8 (− log�8) which is positively de�nite
over a Zariski open set* ◦8 of*8 := -8 − �8 .

(3) `8 |* ◦
8

: * ◦8 → `8 (* ◦8 ) is an isomorphism.
(4) There are smooth Kähler metrics l8 on -8 such that for any curve W : � → *8

with � an open set of C and W (�) ∩* ◦8 ≠ 0, one has
√
−1mm log |W ′|2

ℎ8
≥ W∗l8 .(3.2.1)

(5) For any 8 ∈ {0, . . . , # }, either `8 (*8)−`8 (* ◦8 ) is zero dimensional, or there exists
� ⊂ {0, . . . , # } so that

`8 (*8) − `8 (* ◦8 ) ⊂ ∪ 9∈� ` 9 (- 9 )
Let us explain how to construct these log pairs. By the assumption, there is a C-PVHS
(+ ,∇, � •, &) on . − � with the period map quasi-�nite, which is thus generically im-
mersive. We then apply Theorem C to construct a Finsler metric on). (− log�) which
is positively de�nite over some Zariski open set* ◦ of* = .−� with the desired curva-
ture property (2.0.14). Set-0 = . , `0 = 1 and* ◦0 = * ◦. Let /1, . . . , /< be all irreducible
varieties of . −* ◦ which are not components of � . Then /1 ∪ . . . ∪ /< ⊃ * \* ◦. For
each 8 , we take a desingularization `8 : -8 → /8 so that�8 := `−1

8 (�) is a simple normal
crossing divisor in -8 . For the C-PVHS `∗8 (+ ,∇, � •, &) on*8 = -8 −�8 by pulling-back
(+ ,∇, � •, &) via `8 , its period map is generically immersive, and it also has unipotent
monodromies around �8 . We then apply Theorem C to construct the desired Finsler
metrics in Item 4 for )-8 (− log�8). We iterate this construction, and since each step
the dimension of -8 is strictly decreased, this algorithm stops after �nite steps.
(i) We will �rst prove that* is Picard hyperbolic. Fix any holomorphic map 5 : Δ∗ →
* . If 5 (Δ∗) ∩* ◦0 ≠ ∅, then by Theorem D and Item 4, we conclude that 5 extends to
a holomorphic map 5 : Δ→ -0 = . .

Assume now 5 (Δ∗) ∩ `0(* ◦0 ) = ∅. By Item 5, there exists �0 ⊂ {0, . . . , # } so that

5 (Δ∗) ⊂ `0(*0) − `0(* ◦0 ) ⊂ ∪ 9∈�0` 9 (- 9 )
Since ` 9 (- 9 ) are all irreducible, there exists : ∈ �0 so that 5 (Δ∗) ⊂ `: (-:). Note that
*: := `−1

:
(* ). Hence 5 (Δ∗) ⊂ `: (*:). If 5 (Δ∗) ∩ `: (* ◦: ) ≠ ∅, by Item 3 5 (Δ∗) is

not contained in the exceptional set of `: . Hence 5 can be lift to 5: : Δ∗ → *: so
that `: ◦ 5: = 5 and 5: (Δ∗) ∩ * ◦: ≠ ∅. By Theorem D and Item 4 again we conclude
that 5: extends to a holomorphic map 5 : : Δ → -: . Hence `: ◦ 5 : extends 5 . If
5 (Δ∗) ∩ `: (* ◦: ) = ∅, we apply Item 5 to iterate the above arguments and after �nite
steps there exists -8 so that 5 (Δ∗) ⊂ `8 (*8) and 5 (Δ∗) ∩ `8 (* ◦8 ) ≠ ∅. By Item 3, 5 can
be lifted to 58 : Δ∗ → *8 so that `8 ◦ 58 = 5 and 58 (Δ∗) ∩* ◦8 ≠ ∅. By Theorem D and
Item 4 again, 58 extends to the origin, and so is 5 . We prove the Picard hyperbolicity
of* = . − � .
(ii) Let us prove the algebraic hyperbolicity of * . Fix any reduced and irreducible
curve � ⊂ . with � ⊄ � . By the above arguments, there exists 8 ∈ {0, . . . , # } so that
� ⊂ `8 (-8) and � ∩ `8 (* ◦8 ) ≠ ∅. Let �8 ⊂ -8 be the strict transform of � under `8 . By
Item 3 ℎ8 |�8 is not identically equal to zero.
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Denote by a8 : �̃8 → �8 ⊂ -8 the normalization of �8 , and set %8 := (`8 ◦ a8)−1(�) =
a−1
8 (�8). One has

3a8 : )�̃8 (− log %8) → a∗8)-8 (− log�8)

which induces a (non-trivial) pseudo hermitian metric ℎ̃8 := a∗8 ℎ8 over)�̃8 (− log %8). By
(3.2.1), the curvature current

√
−1

2c
Θ
ℎ̃−1
8
( �̃8 (log %8)) ≥ a∗8 l8

Hence

26(�̃8) − 2 + 8 (�, �) =
∫
�̃8

√
−1

2c
Θ
ℎ̃−1
8
( �̃8 (log %8)) ≥

∫
�̃8

a∗8 l8

Fix a Kähler metric l. on . . Then there is a constant Y8 > 0 so that l8 ≥ Y8`∗8 l. . We
thus have

26(�̃8) − 2 + 8 (�, �) ≥ Y8
∫
�̃8

(`8 ◦ a8)∗l. = Y8 degl. �,

for `8 ◦ a8 : �̃8 → � is the normalization of � . Set Y := inf8=0,...,# Y8 . Then we conclude
that for any reduced and irreducible curve � ⊂ . with � ⊄ � , one has

26(�̃) − 2 + 8 (�, �) ≥ Y degl. �

where �̃ → � is its normalization. This shows the algebraic hyperbolicity of* .
The proof of the theorem is accomplished. �

To prove Theorem B, we need the following fact on Picard and algebraic hyperbol-
icity.

Lemma 3.2. Let * be a quasi-projective manifold and let ? : *̃ → * be a �nite étale
cover. Then if *̃ is Picard hyperbolic or algebraically hyperbolic, so is* .

Proof. Let us take log-compacti�cations (-, �) and (., �) for *̃ and* respectively, so
that ? extends to a morphism ? : - → . with ?−1(�) = � .
(i) Assume now *̃ is Picard hyperbolic. For any holomorphic map 5 : Δ∗ → * , we
claim that there is a �nite covering

c : Δ∗ → Δ∗

I ↦→ I=

so that there is a holomorphic map 5̃ : Δ∗ → *̃ with

Δ∗ *̃

Δ∗ *

5̃

c ?

5

Indeed, �x any based point I0 ∈ Δ∗ with G0 := 5 (I0). Pick any ~0 ∈ ?−1(G0). Then
either 5∗

(
c1(Δ∗, I0)

)
is a �nite group or 5∗

(
c1(Δ∗, I0)

)
∩ ?∗

(
c1(*̃ , ~0)

)
) {0} since

?∗
(
c1(*̃ , ~0)

)
is a subgroup of c1(* , G0) with �nite index. Let W ∈ c1(Δ∗, I0) ' Z

be a generator. Then 5∗(W=) ⊂ ?∗
(
c1(*̃ , ~0)

)
for some = ∈ Z>0. Therefore, (5 ◦

c)∗
(
c1(Δ∗, I0)

)
⊂ ?∗

(
c1(*̃ , ~0)

)
, which implies that the lift 5̃ of 5 ◦ c for the covering

map ? exists.
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Since *̃ is Picard hyperbolic, 5̃ extends to a holomorphic map 5̃ : Δ → - . The
composition ? ◦ 5̃ extends 5 ◦ c . Since c extends to a map c : Δ→ Δ, we thus has

lim
I→0

5 (I) = ? ◦ 5̃ (0).

By the Riemann extension theorem, 5 extends to the origin holomorphically.
(ii) Assume that (-, �) is algebraically hyperbolic. Fix smooth Kähler metrics l- and
l. on - and . so that ?∗l. ≤ l- . Then there is a constant Y > 0 such that for any
reduced and irreducible curve � ⊂ - with � ⊄ � , one has

26(�̃) − 2 + 8 (�, �) ≥ Y degl- �

where �̃ → � is its normalization.
Take any reduced and irreducible curve � ⊂ . with � ⊄ �. Then there is a reduced

and irreducible curve �′ of - so that ? (�′) = � . Let a : �̃ → � and a′ : �̃′ → �′

be their normalization respectively, which induces a (possibly rami�ed) covering map
c : �̃′→ �̃ so that

�̃′ �′

�̃ �

a ′

c ? |� ′

a

Set % := a−1(�) and & := (a′)−1(�). Then c◦ : �̃′ − & → �̃ − % is an unrami�ed
covering map. By Riemann–Hurwitz formula one has

26(�̃) − 2 + 8 (�, �) = 1
degc

(
26(�̃′) − 2 + 8 (�′, �)

)
≥ Y

degc
degl- �

′ ≥ Y

degc
deg?∗l. �

′ = Y degl. �

Hence (., �) is also algebraically hyperbolic, and so is* .
The lemma is proved. �

Note that in [JK18a, Proposition 5.2.(1)], Javanpeykar-Kamenova proved that if- →
. is an �nite morphism of projective varieties over an algebraically closed �eld of
characteristic zero, then . is algebraically hyperbolic provided that - is algebraically
hyperbolic.

We now show how to reduce Theorem B to Theorem A by applying Lemma 3.2.

Proof of Theorem B. Let (., �) be a log-compacti�cation of* . Since there is a Z-PVHS
(+ ,∇, � •, &) on* , by a theorem of A. Borel, its local monodromies around � is quasi-
unipotent. By [Bru18, §3.2], there is a �nite étale cover ? : *̃ → * and a log-
compacti�cation (-, �) of *̃ so that ?∗(+ ,∇, � •, &) has unipotent monodromies around
�. Since the period map of (+ ,∇, � •, &) is assumed to be quasi-�nite, so is that of
?∗(+ ,∇, � •, &). By Theorem A, we know that *̃ is both Picard hyperbolic and alge-
braically hyperbolic, and it follows immediately from Lemma 3.2 that the same holds
for* . �

We end this section with the following remark.

Remark 3.3. Let (�, \ ) be the Higgs bundle on a log pair (., �) as that in Theorem 2.6.
One can also use the idea by Viehweg-Zuo [VZ02] in constructing their Viehweg-Zuo
sheaf (based on the negativity of kernels of Higgs �elds by Zuo [Zuo00]) to prove
a weaker result than Theorem 2.6: for any holomorphic map W : � → * from any
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open subset� of C with W (�) ∩* ◦ ≠ ∅, there exists a Finsler metric ℎ� of). (− log�)
(depending on�) and a Kähler metricl� for. (also depending on�) so that |W ′(C) |2

ℎ
. 0

and
√
−1mm log |W ′|2

ℎ�
≥ W∗l� .

It follows from our proof of Theorem A that one can also combine Theorem D with this
weaker result to prove Theorem A. We prefer to stating and proving the more general
result Theorem C since we expect that it should have further applications.

Appendix A. Criteria for big Picard theorem

Since [Den19] will not be published, in this appendix we provide the proof of The-
orem D using Nevanlinna theory for completeness sake. We �rst begin with some
preliminary in Nevannlina theory.

A.1. Preliminary in Nevannlina theory. Let D∗ := {C ∈ C | |C | > 1}, and D :=
D∗ ∪ ∞. Then via the map I ↦→ 1

I
, D∗ is isomorphic to the punctured unit disk Δ∗

and D is isomorphic to the unit disk Δ. Therefore, for any holomorphic map 5 from
the punctured disk Δ∗ into a projective variety . , 5 extends to the origin if and only if
5 ( 1

I
) : D∗ → . extends to the in�nity.

Let (-,l) be a compact Kähler manifold, and W : D∗ → - be a holomorphic map.
Fix any A0 > 1. Write DA := {I ∈ C | A0 < |I | < A }. The order function is de�ned by

)W,l (A ) :=
∫ A

A0

3g

g

∫
Dg

W∗l.

As is well-known, the asymptotic behavior of)W,l (A ) as A →∞ characterizes whether
W can be extended over the∞ (see e.g. [Dem97b, 2.11. Cas «local »] or [NW14, Remark
4.7.4.(ii)]).

LemmaA.1. )W,l (A ) = $ (log A ) if and only if W is extended holomorphically over∞. �
We �rst recall two useful formulas (the second one is the Jensen formula in [Nog81,

eq. (1.1)]).

Lemma A.2. Write log+ G := max(logG, 0).

log+(
#∑
8=1

G8) ≤
#∑
8=1

log+ G8 + log#, log+
#∏
8=1

G8 ≤
#∑
8=1

log+ G8 for G8 ≥ 0.(A.1.1)

1
c

∫ A

A0

3g

g

∫
Dg

√
−1mmE =

1
2c

∫ 2c

0
E (A48\ )3\ − 1

2c

∫ 2c

0
E (A04

8\ )3\(A.1.2)

− log A
2c

∫ 2c

0

√
−1(m̄ − m)E (A04

8\ )3\

=
1

2c

∫ 2c

0
E (A48\ )3\ +$ (log A )

for all functions E so that
√
−1mmE exists as measures (e.g. E is the di�erence of two

subharmonic functions). �

The following lemma is well-known to experts (see e.g. [Dem97b, Lemme 1.6]).

Lemma A.3. Let - be a projective manifold equipped with a hermitian metric l and let
D : - → P1 be a rational function. Then for any holomorphic map W : D∗ → - , one has

)D◦W,l�( (A ) ≤ �)W,l (A ) +$ (1)(A.1.3)
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where l�( is the Fubini-Study metric for P1. �

The following logarithmic derivative lemma is crucial in the proof of Theorem D.

Lemma A.4 ( [NW14, Lemma 4.2.9.(i)], [Dem97b, 3.4. Cas local]). Let D : D∗ → P1 be
any meromorphic function. Then for any : ≥ 1, we have

1
2c

∫ 2c

0
log+ |D

(1) (A48\ )
D (A48\ )

|3\ ≤ � (log+)D,l�( (A ) + log A ) ‖,(A.1.4)

for some constant � > 0 which does not depend on A . Here the symbol ‖ means that the
inequality holds outside a Borel subset of (A0, +∞) of �nite Lebesgue measure. �

We need the lemma by E. Borel.

Lemma A.5 ( [NW14, Lemma 1.2.1]). Let q (A ) ≥ 0(A ≥ A0 ≥ 0) be a monotone increas-
ing function. For every X > 0,

3

3A
q (A ) ≤ q (A )1+X ‖.(A.1.5)

�

A.2. Proof of Theorem D. The ideas we used here mainly follow from that by Siu-
Yeung [SY96] and Ru-Wong [RW95] on the vanishing of pullback of jet di�erential on
entire curves.

Proof of Theorem D. We take a �nite a�ne covering {*U }U∈� of- and rational functions
(GU1, . . . , GU=) on - which are holomorphic on*U so that

3GU1 ∧ · · · ∧ 3GU= ≠ 0 on*U
� ∩*U = (GU,B (U)+1 · · · GU= = 0)

Hence

(4U1, . . . , 4U=) := ( m

mGU1
, . . . ,

m

mGUB (U)
, GU,B (U)+1

m

mGU,B (U)+1
, . . . , GU=

m

mGU=
)(A.2.1)

is a basis for )- (− log�) |*U . Write

(5U1(C), . . . , 5U= (C)) := (GU1 ◦ 5 , . . . , GU= ◦ 5 )

so that 5U 9 : D∗ → P1 is a meromorphic function over D∗ for any U and 9 . With respect
to the trivialization of)- (− log�) induced by the basis (A.2.1), 5 ′(C) can be written as

5 ′(C) = 5 ′U1(C)4U1 + · · · + 5 ′UB (U) (C)4UB (U) + (log 5U,B (U)+1)′(C)4U,B (U)+1 + · · · + (log 5U=)′(C)4U=

over*U . Let {dU }U∈� be a partition of unity subordinated to {*U }U∈� .
Since ℎ is Finsler metric for )- (− log�) which is continuous and locally bounded

from above by De�nition 2.1, and � is a �nite set, there is a constant � > 0 so that

dU ◦ 5 · |5 ′(C) |2ℎ ≤ �
( B (U)∑
9=1

dU ◦ 5 · |5 ′U 9 (C) |2 +
=∑

8=B (U)+1
| (log 5U8)′(C) |2

)
∀C ∈ D∗(A.2.2)
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for any U . Hence

)5 ,l (A ) :=
∫ A

A0

3g

g

∫
Dg

5 ∗l
(0.2.2)
≤

∫ A

A0

3g

g

∫
Dg

1
c

√
−1mm log |5 ′|2

ℎ

(A.1.2)
≤ 1

2c

∫ 2c

0
log |5 ′(A48\ ) |ℎ3\ +$ (log A )

≤ 1
2c

∫ 2c

0
log+

∑
U

|dU ◦ 5 · 5 ′(A48\ ) |ℎ3\ +$ (log A )

(A.1.1)
≤

∑
U

1
2c

∫ 2c

0
log+ |dU ◦ 5 · 5 ′(A48\ ) |ℎ3\ +$ (log A )

(A.2.2)+(A.1.1)
≤

∑
U

=∑
8=B (U)+1

1
2c

∫ 2c

0
log+ | (log 5U8)′(A48\ ) |3\

+
∑
U

B (U)∑
9=1

1
2c

∫ 2c

0
log+ |dU ◦ 5 · 5 ′U 9 (A48\ ) |3\ +$ (log A )

(A.1.4)
≤ �1

∑
U

=∑
8=B (U)+1

(
log+)5U8 ,l�( (A ) + log A

)
+

∑
U

B (U)∑
9=1

1
2c

∫ 2c

0
log+ |dU ◦ 5 · 5 ′U 9 (A48\ ) |3\ +$ (log A ) ‖

(A.1.3)
≤ �2(log+)5 ,l (A ) + log A ) +

∑
U

B (U)∑
9=1

1
2c

∫ 2c

0
log+ |dU ◦ 5 · 5 ′U 9 (A48\ ) |3\ ‖.

(A.2.3)

Here �1 and �2 are two positive constants which do not depend on A .

Claim A.6. For any U ∈ � and any 9 ∈ {1, . . . , B (U)}, one has

1
2c

∫ 2c

0
log+ |dU ◦ 5 · 5 ′U 9 (A48\ ) |3\ ≤ �3(log+)5 ,l (A ) + log A ) +$ (1) ‖(A.2.4)

for a positive constant �3 which does not depend on A .
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Proof of Claim A.6. The proof of the claim is borrowed from [NW14, eq.(4.7.2)]. Pick
� > 0 so that d2

U

√
−13GU 9 ∧ 3ḠU 9 ≤ �l . Write 5 ∗l :=

√
−1�(C)3C ∧ 3C̄ . Then

1
2c

∫ 2c

0
log+ |dU ◦ 5 · 5 ′U 9 (A48\ ) |3\ =

1
4c

∫ 2c

0
log+( |d2

U ◦ 5 | · |5 ′U 9 (A48\ ) |2)3\

≤ 1
4c

∫ 2c

0
log+ �(A48\ )3\ +$ (1) ≤ 1

4c

∫ 2c

0
log(1 + �(A48\ ))3\ +$ (1)

≤ 1
2

log(1 + 1
2c

∫ 2c

0
�(A48\ )3\ ) +$ (1) = 1

2
log(1 + 1

2cA
3

3A

∫
DA

A�3A3\ ) +$ (1)

=
1
2

log(1 + 1
2cA

3

3A

∫
DA

5 ∗l) +$ (1)

(A.1.5)
≤ 1

2
log(1 + 1

2cA
(
∫
DA

5 ∗l)1+X ) +$ (1) ‖

=
1
2

log(1 + A
X

2c
( 3
3A
)5 ,l (A ))1+X ) +$ (1) ‖

(A.1.5)
≤ 1

2
log(1 + A

X

2c
()5 ,l (A )) (1+X)

2) +$ (1) ‖

≤ 4 log+)5 ,l (A ) + X log A +$ (1) ‖ .

Here we pick 0 < X < 1 and the last inequality follows. The claim is proved. �

Putting (A.2.4) to (A.2.3), one obtains

)5 ,l (A ) ≤ � (log+)5 ,l (A ) + log A ) +$ (1) ‖

for some positive constant � . Hence )5 ,l (A ) = $ (log A ). We apply Lemma A.1 to
conclude that 5 extends to the∞. �
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