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Conditional distributions, as defined by the Markov category framework, are studied in the setting
of matrix algebras (quantum systems). Their construction as linear unital maps are obtained via a
categorical Bayesian inversion procedure. Simple criteria establishing when such linear maps are
positive are obtained. Several examples are provided, including the standard EPR scenario, where
the EPR correlations are reproduced in a purely compositional (categorical) manner. A comparison
between the Bayes map and the Petz recovery map is provided, illustrating some key differences.
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1 Introduction

There is a one-to-one correspondence between stochastic maps (conditional probabilities) on finite sets
and positive unital maps on finite-dimensional commutative C∗-algebras. This correspondence is made
precise categorically via a stochastic variant of Gelfand duality [14, 19]. Hence, any concept described
categorically at the level of stochastic maps can be instantiated on arbitrary (not necessarily commutative)
C∗-algebras. In particular, the notion of Bayesian inversion, disintegrations, and conditioning have been
formulated categorically [5, 6, 8, 9, 12, 13, 15, 23], and the first two have been explored in the setting of
finite-dimensional C∗-algebras in [23, 24] through a generalization of Markov categories [5, 13] to their
quantum variants [21]. However, conditioning in this setting remains unexplored, as far as I am aware.1

The purpose of the present work is to begin the systematic study of quantum conditionals as positive
maps between finite-dimensional C∗-algebras. Although this goal is not fully realized here, we are con-
tent with achieving it on bi-partite systems of matrix algebras equipped with states whose marginals are
faithful. Even though this sounds quite restrictive, it already includes many cases of interest, including
the fully entangled EPR state on a two qubit system [4, 10]. The case of multi-partite states, non-faithful
marginals, and more general hybrid classical-quantum systems will be addressed in future work.

1The conditioning in [15] does not use the multiplication map in its formulation of conditioning in the quantum setting.



2 Conditional distributions

In this work, we use category theory to define what we mean by quantum conditionals. Then, we
prove a purely categorical theorem indicating how one can construct quantum conditionals through the
usage of Bayes maps (whose definition is motivated by categorical probability theory). We then im-
plement this construction in the setting of matrix algebras. In general, the resulting conditional does
not define a positive map. As such, we find necessary and sufficient conditions for conditionals to be
positive. A positive conditional need not be completely positive, and EPR provides an example illus-
trating this point. We end by introducing the conditional domain, which is the largest operator system
for which a conditional is positive (in the Heisenberg picture). Typically, this operator system is not a
C∗-subalgebra. Examples are provided throughout.

2 Quantum Markov categories

This section briefly reviews the abstract theory of quantum CD and Markov categories [21], which are
generalizations of CD and Markov categories [5, 13]. String diagrams are reviewed in these mentioned
papers, but see [27] for a more thorough exposition. Time will always go up the page. The composition
will go up the page for definitions and the example FinStoch, while the composition will go down the
page for C∗-algebra maps (in the Heisenberg picture).

Definition 2.1. A classical CD category is a symmetric monoidal category (M ,⊗, I), with ⊗ the tensor
product and I the unit (associators and unitors are excluded from the notation), and where each object
X in M is equipped with morphisms !X ≡ X : X → I, called the discarder/grounding, and ∆X ≡ :
X → X⊗X , called the copy/duplicate, all satisfying the following conditions

= = = = (2.2)

X⊗Y = X Y I = X⊗Y =
X Y I

= (2.3)

expressed using string diagrams. A classical Markov category is a classical CD category for which every

morphism X
f−→ Y is unital, i.e. natural with respect to in the sense that f = . A state on X is a

morphism I
p−→ X , which is drawn as

p

X
.

Example 2.4. Let FinStoch be the category whose objects are finite sets and where a morphism X
f−→ Y

is a stochastic map/conditional probability2 from X to Y , which, by definition, assigns to each element
x ∈ X a probability measure fx on Y , whose value on y is written as fyx. The composite of a composable

pair X
f−→ Y

g−→ Z is defined by the Chapman–Kolmogorov equation (g◦ f )zx := ∑y∈Y gzy fyx. The tensor

product is the cartesian product of sets and the product X ×X ′
f× f ′−−−→ Y ×Y ′ of stochastic maps X

f−→ Y

and X ′
f ′−→ Y ′, and is given by ( f × f ′)(y,y′)(x,x′) := fyx fy′x′ . The tensor unit is the single element set,

often denoted by {•}. Functions are special kinds of stochastic maps whose probability measures are
{0,1}-valued. In particular, the maps ∆X and !X are the stochastic maps associated to the functions
∆X(x) := (x,x) and !X(x) = •. A state on X encodes a probability measure on X .

2The reader will notice that the // notation is not used in this article, unlike in our earlier works [19, 21, 23, 24]. The
reason is because we do not need to emphasize the distinction between deterministic maps and stochastic maps in this work.
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The conditions described in (2.2) suggest that classical Markov categories cannot be extended to the
quantum setting due to the universal no-broadcasting theorem [2, 18]. However, there is a way around
these conditions by working with a larger class of morphisms, adding an even and odd grading for
morphisms, and substituting the commutativity condition for another closely-related condition [21].

Definition 2.5. A quantum CD category is a Z2-graded symmetric monoidal category M ,3 and where

each object X is equipped with an even discarder, an even copy map, and an odd involution ∗X ≡ X
:

X → X satisfying the same conditions as a classical CD category, except the last condition in (2.2), and
also satisfying the additional conditions

= =
X⊗Y

=
X Y X

=

X

(2.6)

A quantum Markov category is a quantum CD category in which every morphism is unital.4 A morphism

X
f−→ Y is said to be ∗-preserving iff f ◦∗X = ∗Y ◦ f .

Example 2.7. From now on, all C∗-algebras will be assumed unital. Although the category of finite-
dimensional C∗-algebras and positive unital maps (cf. Notation 3.11) does not form a quantum Markov
category (essentially due to the no-broadcasting theorem), this category naturally embeds into a quantum
Markov category, allowing the structure of the ambient quantum Markov category to be utilized [21]. Let
fdC*-AlgUop

Y be the category whose objects are finite-dimensional C∗-algebras (see [19, Section 2.3] for
a review of C∗-algebras within a categorical setting).5 For example, a matrix algebra will be written as
Mn(C) indicating the C∗-algebra of complex n×n matrices. A morphism from A to B in fdC*-AlgUop

Y

is either a linear (even) or conjugate-linear (odd) unital map B
F−→ A . Notice that the function goes

backwards because of the superscript op. The tensor product (over C) is the tensor product of finite-
dimensional C∗-algebras, so that the unit is C. The tensor product of linear maps is defined in the usual
way, while the tensor product of conjugate-linear maps can be defined similarly [28, Section 9.2.1].
However, note that it does not make sense to define the tensor product of a linear map with a conjugate-
linear one. The ∗ operation is the involution on a C∗-algebra, which is conjugate-linear. The copy
map ∆A from A to A ⊗A in fdC*-AlgUop

Y is the multiplication map A ⊗A
µA−−→ A determined on

elementary tensors by A1⊗A2 7→ A1A2. The discard map from A to C in fdC*-AlgUop
Y is defined to be

the unit inclusion map !A : C→A sending λ ∈C to λ1A . A linear map B
F−→A is ∗-preserving if and

only if it sends self-adjoint elements in B to self-adjoint elements in A . For convenience, we will drop
the op and work directly with the unital maps on the algebras from now on.

Although we have introduced the categories FinStoch and fdC*-AlgUY, we will be more explicit
and work mainly with matrix algebras, linear maps, and positive maps in our main results. The abstract
setting will mainly be used in the next two sections to provide the general context.

3This means that there is a functor M → BZ2 (where BZ2 is the one object category whose set of morphisms equals
Z2 = {0,1} and whose composition is defined by addition modulo 2 in Z2) and a tensor product is defined for all objects and
all morphisms of the same degree. Morphisms sent to 0/1 are called even/odd. Note that the tensor product of morphisms of
different degrees is not defined, but the collection of even morphisms is a symmetric monoidal category.

4Unitality is defined differently for odd morphisms. We exclude the details because we will not need this definition here.
5Every such finite-dimensional C∗-algebra is ∗-isomorphic to a finite direct sum of (square) matrix algebras [11, Theo-

rem 5.5].
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3 Bayes maps, conditionals, and a.e. equivalence

Here, we review two formulations of Bayes’ theorem, which we express categorically. Throughout this
section, M will denote either a classical or quantum Markov category and C will denote some (not
necessarily monoidal) subcategory of M . Furthermore, all morphisms will be even from now on.

Definition 3.1. Given states I
p−→ X and I

q−→ Y , a state-preserving morphism X
f−→ Y (i.e. q := f ◦ p) is

written as a triple ( f , p,q). A left/right Bayes map for ( f , p,q) is a morphism f L/ f R : Y → X in M such
that

q

f L
X Y

=

p

f
X Y /

q

f R
XY

=

p

f
XY

(3.2)

If all morphisms are in C , then f L/ f R are said to be left/right Bayesian inverses of ( f , p,q) (in C ).

Bayes maps are automatically state-preserving. If all morphisms are ∗-preserving, then there is no
distinction between left and right concepts (this is always the case in classical Markov categories [5,21]).

Definition 3.3. Let I s−→ X ⊗Y be a state and let p and q denote its marginals I s−→ X ⊗Y πX−→ X and
I s−→ X ⊗Y πY−→ Y , respectively. Here, πX and πY are the projections, which are defined as πX :=

(
X ⊗

Y idX×!Y−−−−→ X ⊗ I ∼= X
)

and πY :=
(
X ⊗Y !X⊗idY−−−−→ I⊗Y ∼= Y

)
. A conditional distribution of s given Y / X

(or Y / X conditional for short) is a morphism Y
s|Y−→ X / X

s|X−→ Y such that

q

s|Y
X Y

=
s

X Y
/

s

X Y
=

p

s|X
X Y

. (3.4)

Definition 3.5. Let X and Y be objects, let I
p−→ X be a state and let f ,g : X → Y be morphisms. The

morphism f is said to be left/right p-a.e. equivalent to g iff

p

f
Y X

=

p

g
Y X /

p

f
X Y

=

p

g
X Y

. (3.6)

All of these definitions are quite similar. Indeed, if f L and f R are left and right Bayes maps for
some ( f , p,q), then they are automatically left and right a.e. unique, respectively. Furthermore, the Y /X
conditionals are also left/right a.e. unique. A.e. equivalence agrees with the standard measure-theoretic
notion [5, Proposition 5.3 ,5.4] (as well as the C∗-algebraic one [23, Section 3.1], [21, Theorem 5.12]).
With these preliminaries, Bayes’ theorem can now be expressed in two different ways.

Theorem 3.7. [Bayes’ theorem via Bayesian inversion] Every triple ( f , p,q) in FinStoch (a state-

preserving (X , p)
f−→ (Y,q)) admits a (necessarily a.e. unique) Bayesian inverse (in FinStoch).

Theorem 3.8. [Bayes’ theorem via conditional distributions] Every joint state {•} s−→ X×Y in FinStoch
admits both (necessarily a.e. unique) X and Y conditionals.
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Example 3.9. These two versions of Bayes’ theorem are often expressed as the equations

p(x|y)p(y) = p(y|x)p(x) and p(x|y)p(y) = p(x,y) = p(y|x)p(x), (3.10)

respectively. Although it seems as though the former is a special case of the latter,6 notice that the

input data for each definition is different. The first version has input data a morphism X
f−→ Y and a

state {•} p−→ X (the state q on Y is obtained via composition). Meanwhile, the second version has input
datum a state {•} s−→ X ×Y . This distinction may seem pedantic, but it is crucial for generalizing to the
non-commutative setting [24].
Notation 3.11. In what follows, if A is a matrix, then A† denotes is conjugate transpose. A matrix
A ∈Mm(C) is positive iff it is self-adjoint (A† = A) and its eigenvalues are non-negative, equivalently
A = C†C for some C ∈Mm(C). If P ∈Mm(C) is an orthogonal projection (i.e. P†P = P), then P⊥ :=
1m−P denotes its complement projection. The standard matrix units of Mm(C) will be denoted by E(m)

i j

with i, j ∈ {1, . . . ,m}. They satisfy E(m)
i j E(m)

kl = δ jkE(m)
il , where δ jk is the Kronecker delta taking value

1 when j = k and 0 otherwise. A linear map F : Mn(C)→Mm(C) is positive (completely positive) iff
it (F ⊗ idMk(C)) sends positive matrices to positive matrices (for all k ∈ N). In terms of the notation at
the beginning of Section 3, M = fdC*-AlgUY and C = fdC*-AlgPU is the subcategory consisting of
(linear) positive unital maps. If F : Mn(C)→Mm(C) is linear, then F∗ denotes its adjoint with respect
to the Hilbert–Schmidt inner product on matrices, i.e. F∗ : Mm(C)→Mn(C) is the unique linear map
satisfying tr(F∗(A)B) = tr(AF(B)) for all A ∈Mm(C) and B ∈Mn(C). An example that appears often
is the Hilbert–Schmidt dual of the inclusion ιMm(C) : Mm(C)→Mm(C)⊗Mn(C) sending A to A⊗1n,
and is given by the CPU map trMn(C), which is called the partial trace. Explicitly, trMn(C) is determined
by its action on simple tensors, namely trMn(C)(A⊗B) = tr(B)A, and it satisfies a partial form of cyclicity
given by

trMn(C)

(
(A⊗B)(1m⊗C)

)
= trMn(C)

(
(1m⊗C)(A⊗B)

)
(3.12)

for all inputs A,B,C.
Example 3.13. Let A := Mm(C) and B := Mn(C) be two matrix algebras. Let ω = tr(ρ · ) and
ξ = tr(σ · ) be states on A and B, respectively, with respective density matrices. Let B

F−→ A be a
unital linear map. If σ is positive definite (so that the state ξ is faithful), then there are unique left and
right Bayes maps for (F,ω,ξ ). They are respectively given by

FL(A) := σ
−1F∗(ρA) and FR(A) := F∗(Aρ)σ−1 (3.14)

for all A ∈ A . If F is ∗-preserving, demanding that these two functions be equal7 is equivalent to
demanding that there is a ∗-preserving Bayes map F . In this case, its explicit formula is given by
(see [24] for a proof)

F(A) =
√

σ−1F∗ (
√

ρA
√

ρ)
√

σ−1. (3.15)

Hence, if F is positive unital (PU) or completely positive unital (CPU), then so is F . The reader will
notice that (3.15) is the formula for the Petz recovery map [1, 3, 16, 25, 26]. However, we will later see
that the Petz recovery map is distinct from the Bayes map in general. The difference between the Petz
recovery map and the Bayes map is more pronounced in the case that σ is not positive definite (so that ξ

is not faithful), though the details of this will not be discussed here (but see [22, 24]).
Before using this example, we first need to explain how conditionals can be constructed using Bayes

maps more abstractly. Afterwards, we will look at several examples by combining the two results.
6This is especially due to the abusive notation of using p for all mathematical objects.
7Note that a.e. equivalence now reduces to equality since ξ is faithful.
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4 Constructing conditionals using Bayes maps

Theorem 4.1. Let I s−→ X ⊗Y be a joint state with marginals I
p−→ X and I

q−→ Y . Let Y L−→ X ⊗Y and
X R−→ X ⊗Y be left and right Bayes maps for (πY ,s,q) and (πX ,s, p), respectively. Then the composites
s|X :=

(
X R−→ X⊗Y πY−→ Y

)
and s|Y :=

(
Y L−→ X⊗Y πX−→ X

)
are X and Y conditionals of s, respectively.

Proof. By assumption

q

L

X Y Y

=

s

=

s

and

p

R

YXX

=

s

=

s

. (4.2)

The definitions of s|X and s|Y are drawn as

s|X

X

Y

:= R and s|Y

Y

X

:= L . (4.3)

From this, we immediately obtain

q

s|Y
X Y

=

q

L
=

s

=
s

X Y
=

s

=

p

R
=

p

s|X
X Y

, (4.4)

which is the desired conclusion. �

This theorem, together with the left/right a.e. uniqueness of left/right Bayes maps, is useful because
it allows us to write down explicit formulas for conditionals in the quantum setting, at least up to the
supports of the states. For the remainder of this work, we will focus on applying this to matrix algebras,
rather than arbitrary finite-dimensional C∗-algebras.

Corollary 4.5. Set A := Mm(C) and B := Mn(C). Let ζ ≡ tr(ν · ) be a state on A ⊗B (with density
matrix ν) whose marginals on A and B are given by ζ ◦ ιA =: ω ≡ tr(ρ · ) and ζ ◦ ιB =: ξ ≡ tr(σ · ),
respectively. Suppose that ρ and σ are invertible. Then there are unique conditionals B

F :=ζ |A−−−−→A and

A
G:=ζ |B−−−−→B given by

F(B) = trB
(
(1m⊗B)ν

)
ρ
−1 and G(A) = σ

−1trA
(
ν(A⊗1n)

)
. (4.6)

The Hilbert–Schmidt duals of these maps are given by

F∗(A) = trA
(
ν(ρ−1A⊗1n)

)
and G∗(B) = trB

(
(1m⊗Bσ

−1)ν
)
. (4.7)

Proof. The first claim follows from Theorem 4.1 and Example 3.13. For instance, F(B) = ι∗A
(
(1A ⊗

B)ν
)
ρ−1 = trB

(
(1A ⊗B)ν

)
ρ−1. The second claim follows from the definition of the Hilbert–Schmidt

inner product and the cyclic properties of the trace. �
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Are the conditionals F and G in Corollary 4.5 positive maps? Let’s look at some examples.
Example 4.8. In the notation of Corollary 4.5, take m = n = 2 and take ν to be Bohm’s EPR density

matrix ν := 1
2

[ 0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

]
corresponding to the pure state 1√

2

(
| ↑〉⊗ |↓〉− |↓〉⊗ |↑〉

)
, where | ↑〉 and | ↓〉

are just e1 =
[

1
0

]
and e2 =

[
0
1

]
expressed in Dirac notation, [4, 10]. Then the marginal density matrices

ρ and σ both equal 1
212. Since this is invertible, the conclusions of Corollary 4.5 apply. Hence,

F
([

a b
c d

])
=trB


a b 0 0

c d 0 0
0 0 a b
0 0 c d


0 0 0 0

0 1 −1 0
0 −1 1 0
0 0 0 0


=

[
d −b
−c a

]
=

[
0 1
−1 0

][
a b
c d

]T[0 −1
1 0

]
, (4.9)

which shows that F is PU, but not CPU. The same formula is obtained for G. It is worth comparing
this expression to the one obtained by using the Petz recovery map instead of the Bayes map. The Petz
recovery map R : A ⊗B→A associated to the inclusion ιA : A →A ⊗B and the state ζ on A ⊗B
is given by

R(A⊗B) =
√

ρ−1trB
(√

ν(A⊗B)
√

ν
)√

ρ−1 = 4trB (ν(A⊗B)ν) , (4.10)

where we have used the fact that ρ = 1
212 and ν2 = ν (because ν is a rank 1 density matrix), so that√

ν = ν . Precomposing R with the inclusion gives F ′ := R◦ ιB, which acts as

F ′
([

a b
c d

])
=

1
2

trB


0 0 0 0

0 a+d −a−d 0
0 −a−d a+d 0
0 0 0 0


=

1
2

[
a+d 0

0 a+d

]
=

tr
([

a b
c d

])
2

12. (4.11)

Notice that the map F ′, obtained using the Petz recovery map, is actually CPU, unlike the conditional F
we obtained in (4.9). However, which one of these two maps recovers the standard EPR correlations?

Suppose that Alice (represented by A ) obtains new evidence in the form of a state ϕ = 〈↑ | · | ↑〉
(for example, suppose that she set up an apparatus to measure the spin and obtained the result spin up).
Then by applying the maps F and F ′ to these states via pullback,8 Alice infers that Bob (represented by
B) would obtain the state on B given by

(ϕ ◦F)

([
a b
c d

])
= d =

〈
↓
∣∣∣∣[a b

c d

]∣∣∣∣ ↓〉 and (ϕ ◦F ′)
([

a b
c d

])
=

tr
([

a b
c d

])
2

. (4.12)

The first map shows that the spin up state for Alice changes to the spin down state for Bob once the
map F is applied. On the other hand, the map F ′ always gives the totally mixed state for Bob. This
indicates that F is a more suitable inference map describing the EPR correlations, since F ′ loses all the
entanglement (more precisely, it is an entanglement breaking channel). Note that analogous conclusions
hold if the evidence Alice has is the spin in any direction: F will predict the opposite spin for Bob while
F ′ still predicts the totally mixed state. More details relating this to Bayesian updating will be presented
elsewhere [22].

The fact that F , and not F ′, reproduced the EPR correlations suggests that it has its merits and
deserves further study (an alternative derivation of the EPR correlations is done via conditional density
matrices in [17, Section V.A.3]). Example 4.8 also shows that a joint state can have positive conditionals
that are not necessarily CPU. But do the conditionals always need to be positive? The next example
shows that the answers to this question is no.

8One could equivalently obtain the Hilbert–Schmidt duals and act on the associated density matrices in the Schrödinger
picture.
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Example 4.13. Set A := M2(C) and B := M2(C). A general pure state in C2⊗C2 ∼= C4 is of the
form |Ψ〉 = c↑↑| ↑↑〉+ c↑↓| ↑↓〉+ c↓↑| ↓↑〉+ c↓↓| ↓↓〉, where c↑↑,c↑↓,c↓↑,c↓↓ ∈ C satisfy |c↑↑|2 + |c↑↓|2 +
|c↓↑|2 + |c↓↓|2 = 1 (here | ↑↓〉 = | ↑〉 ⊗ | ↓〉 and similarly for the other vectors). Given p ∈ (0,1), set
q := 1− p and let ν := |Ψ〉〈Ψ| be the density matrix in A ⊗B ∼= M4(C) associated to the pure state

with c↑↑ =
√

p
2 , c↑↓ =

√
q
2 , c↓↑ =−

√
p
2 , and c↓↓ =

√
q
2 . Then

ν =
1
2


p

√
pq −p

√
pq√

pq q −√pq q
−p −√pq p −√pq√

pq q −√pq q

 , ρ =
1
2

[
1 q− p

q− p 1

]
, and σ =

[
p 0
0 q

]
. (4.14)

Thus, ρ−1 = 1
2pq

[
1 p−q

p−q 1

]
and σ−1 =

[
p−1 0
0 q−1

]
. Using Corollary 4.5, one obtains the explicit formulas

F
([

a b
c d

])
=

1
2

[
a+d + pc+qb√

pq d−a+ pc−qb√
pq

d−a+ qb−pc√
pq a+d− pc+qb√

pq

]
, G∗

([
a b
c d

])
=

1
2

[
a+d + pb+qc√

pq d−a+ qc−pb√
pq

d−a+ pb−qc√
pq a+d− pb+qc√

pq

]
, (4.15)

G
([

a b
c d

])
=

1
2

 a−b− c+d
√

q
p(a−b+ c−d)√

p
q (a+b− c−d) a+b+ c+d

 , and (4.16)

F∗
([

a b
c d

])
=

1
2

 a−b− c+d
√

p
q (a−b+ c−d)√

q
p(a+b− c−d) a+b+ c+d

 . (4.17)

If p = q = 1
2 , then all of these maps are positive. Indeed, given a positive matrix of the form C :=

[ a
b ] [ a b ] =

[
aa ab
ba bb

]
, F and G send this matrix to9

F(C) =
1
2

[
a+b
b−a

][
a+b b−a

]
and G(C) =

1
2

[
a−b
a+b

][
a−b a+b

]
when p = q =

1
2
. (4.18)

However, when p 6= 1
2 , then neither F nor G are positive. In fact, neither F nor G are ∗-preserving, which

is a necessary condition for positivity. We will come back to this in the next section.

5 Positive conditionals

The expressions for conditionals in Corollary 4.5 have two disadvantages. First, they are only partially
defined on the supports.10 Second, they need not be positive maps. A necessary condition for positivity
is ∗-preservation, so we will first analyze when conditionals are ∗-preserving.

9All positive matrices are non-negative sums of matrices of this type. Hence, proving F(C) and G(C) are positive is sufficient
to proving that F and G are positive, respectively. Proving F and G are positive is also equivalent to proving F∗ and G∗ are
positive.

10We have not discussed this aspect here because we assumed the marginals are invertible. See [24] for more details regarding
supports and their role in Bayesian inversion. The analogous situation for conditionals is part of ongoing work.
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Lemma 5.1. Let A := Mm(C),B := Mn(C) be the algebras and ζ = tr(ν · ),ω = tr(ρ · ), and ξ =

tr(σ · ) the states as defined in Corollary 4.5. Then ∗-preserving conditionals B
F :=ζ |A−−−−→A and A

G:=ζ |B−−−−→
B respectively exist if and only if[

ρ, trB
(
ν(1m⊗B)

)]
= 0 ∀ B ∈B, i.e.

[
ρ, trB

(
ν(1m⊗E(n)

kl )
)]

= 0 ∀ k, l ∈ {1, . . . ,n}, (5.2)

and[
σ , trA

(
ν(A⊗1n)

)]
= 0 ∀ A ∈A , i.e.

[
σ , trA

(
ν(E(m)

i j ⊗1n)
)]

= 0 ∀ i, j ∈ {1, . . . ,m}, (5.3)

respectively.

Proof. By Corollary 4.5, the formulas for F and G are uniquely determined. These linear maps are ∗-
preserving if and only if F(B†) = F(B)† and G(A†) = G(A)† for all inputs, or equivalently F(B†)† = F(B)
and G(A†)† = G(A) for all inputs. We begin with F and assume F is ∗-preserving. Then,

trB
(
(1m⊗B)ν

)
ρ
−1 = F(B) = F(B†)† =

(
trB
((
1m⊗B†)

ν

)
ρ
−1
)†

= ρ
−1trB

(
ν(1m⊗B)

)
. (5.4)

Multiplying both sides by ρ and using the properties of the partial trace, this is equivalent to

trB
(
ν(1m⊗B)

)
ρ = ρtrB

(
ν(1m⊗B)

)
. (5.5)

Since every B can be expressed as a linear combination B = ∑k,l BklE
(n)
kl , this is equivalent to the second

condition in (5.2). By a similar calculation, if (5.2) holds, then F is ∗-preserving. An analogous argument
shows that G is ∗-preserving if and only if (5.3) holds. �

Example 5.6. One can also use Lemma 5.1 to prove that the maps F and G in Example 4.13 are not
∗-preserving if p 6= 1

2 .

Lemma 5.1 provides a necessary condition for positive conditionals to exist. Are they sufficient?
Namely, if a conditional is ∗-preserving, is it necessarily positive? The reason we ask this question is
because this is (perhaps surprisingly) true for Bayes maps on matrix algebras (when one of the density
matrices has full support). In fact, the ∗-preserving condition is strong enough to imply complete positiv-
ity for Bayes maps [24]. Based on Example 4.8, we so far know that ∗-preservation is not strong enough
to imply complete positivity (or even Schwarz-positivity) for conditionals, so it is natural to ask about
positivity alone. In the following theorem, we settle this question.

Theorem 5.7. In the notation of Lemma 5.1, positive conditionals B
F :=ζ |A−−−−→A and A

G:=ζ |B−−−−→B exist
if and only if Equations (5.2) and (5.3) hold, respectively (i.e. if and only if ∗-preserving conditionals
exist).

Proof. It suffices to prove the claim for F . If F is positive, then it is automatically ∗-preserving, which
is where Lemma 5.1 applies. Conversely, suppose that F is ∗-preserving. Then by Corollary 4.5, Equa-
tion (5.2), the properties of the partial trace, and the functional calculus11

F(B†B) = trB
(
(1m⊗B†B)ν

)
ρ
−1 =

√
ρ−1trB

(
(1m⊗B)

√
ν
√

ν(1m⊗B†)
)√

ρ−1. (5.8)

Since the right-hand-side of this expression is manifestly positive, F is positive. �

11Since ρ commutes with trB
(
(1m⊗B)ν

)
for every B, any function of ρ commutes with trB

(
(1m⊗B)ν

)
as well (see “The

Functional Calculus” series in [20]).
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Even if the ∗-preserving conditions do not hold for all elements in the domain algebras, we can
always find maximal subspaces on which F and G are positive.

Definition 5.9. In the notation of Lemma 5.1, set

Aρc :=
{

A ∈A : [ρ,A] = 0
}

and Bσ c :=
{

B ∈B : [σ ,B] = 0
}

(5.10)

to be the commutants of {ρ} and {σ} inside A and B, respectively. Set

Bν :=
{

B ∈B : trB
(
ν(1m⊗B)

)
∈Aρc

}
and Aν :=

{
A ∈A : trA

(
(A⊗1n)ν

)
∈Bσ c

}
(5.11)

to be the conditional domains of ν inside B and A , respectively. A (concrete) operator system inside
Mk(C) is a (complex) vector subspace O ⊆Mk(C) such that 1k ∈ O and A ∈ O implies A† ∈ O .

Lemma 5.12. In the notation of Definition 5.9, Bν and Aν are operator systems.

Proof. It suffices to prove this for Bν . First, Bν is a subspace by linearity. Second, trB(ν) = ρ and
ρ ∈Aρc imply 1n ∈Bν . Third, if B ∈Bν , then

trB
(
ν(1m⊗B†)

)
=
(
trB
(
(1m⊗B)ν

))†
=
(
trB
(
ν(1m⊗B)

))†
. (5.13)

Since Aρc is a ∗-algebra trB
(
ν(1m⊗B)

)
∈ Aρc implies

(
trB
(
ν(1m⊗B)

))† ∈ Aρc . Hence, B† ∈Bν

by (5.13). Thus Bν is an operator system. �

In this way, although one might not be able to condition on the full algebra to obtain a positive map,
one might be able to condition on an operator system inside that algebra.

Example 5.14. In terms of Example 4.13 and assuming p 6= 1
2 , one can show

Aρc =

{[
a b
b a

]
: a,b ∈ C

}
⊂A and Bσ c =

{[
a 0
0 d

]
: a,d ∈ C

}
⊂B (5.15)

are the commutants. The conditional domains are given by

Bν =

{[
a 0
0 d

]
: a,d ∈ C

}
⊂B and Aν =

{[
a b
b a

]
: a,b ∈ C

}
⊂A . (5.16)

Example 5.14 suggests that Bν and Aν are not only operator systems, but they might even be C∗-
subalgebras. Is this always the case?

Example 5.17. The answer to this question is no, though the simplest counterexample I could currently
find involves a 9× 9 rank 2 density matrix with A = M3(C) and B = M3(C). Its expression is not
particularly enlightening, so I have chosen to not record it here.12

Corollary 5.18. In the notation of Lemma 5.1 and Definition 5.9, there exist conditionals B
F−→A and

A
G−→B such that the restrictions Bν ↪→B

F−→ A and Aν ↪→ A
G−→B are positive unital maps from

operator systems to C∗-algebras. In terms of the Hilbert–Schmidt duals (the Schrödinger picture), the
restrictions Aρc ↪→ A

F∗−→ B and Bσ c ↪→ B
G∗−→ A are positive trace-preserving maps between C∗-

algebras.

12Also, I could not find a 4×4 density matrix ν for which the conditional domains are not C∗-subalgebras, and I suspect that
this may always be the case. I hope to resolve this in future work.
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Positivity of the Hilbert–Schmidt duals guarantees that density matrices living in the respective com-
mutants always get sent to density matrices under the conditionals.
Example 5.19. In terms of Example 4.13 (see also Example 5.14), suppose that Bob (represented by
B) obtains new evidence in the form of a state ϕ = 〈↑ | · | ↑〉. This is represented by the density matrix
| ↑〉〈↑ |, which is in Bσ c . The conditional G∗ sends this density matrix to 1

2

[ 1 −1
−1 1

]
. In other words,

with evidence |↑〉〈↑ |, Bob will infer that the state Alice receives is given by 1√
2
(|↑〉− |↓〉). However, if

Bob obtains new evidence that is represented by a density matrix not in Bρc , such as 1
2

[ 1 −1
−1 1

]
, then the

image of this under G∗ is given by 1
212 + 1

4
√

pq

[
−1 p−q

q−p 1

]
. Although this is a matrix with nonnegative

eigenvalues (they are 0 and 1), it is not a density matrix because it is not self-adjoint, unless p = q = 1
2 .

6 Discussion and future directions

The work presented here includes preliminary investigations on the structure of conditioning in the set-
ting of hybrid classical-quantum systems (finite-dimensional C∗-algebras) from the Markov category
perspective. We have focused only on matrix algebras and joint states for which the marginal density
matrices are invertible. Our definitions are distinct from those of [15], which defines conditioning in
terms of predicates and uses operations analogous to those used to define the Petz recovery map (simi-
lar constructions are done using the Q1/2 calculus in [7, 17]). The root of the distinction between these
two approaches comes from the fact that we use the multiplication map to formulate Bayes maps, even
though it is not a positive map. By using quantum Markov categories [21], we have been able to construct
conditioning in a way completely analogous to what is done in the classical theory, while still using the
multiplication map, and then finding conditions for which the resulting maps are positive.

Some work in progress includes the extension of the results presented here to the case where the
marginal density matrices are not invertible. Although this seems like an innocent generalization, this
is where most of the intricate details occur when analyzing the case of disintegrations and Bayesian in-
version in [23, 24]. It is also what accentuates the difference between Bayesian inverses and the Petz
recovery map. Another crucial generalization is to the case of general finite-dimensional C∗-algebras,
i.e. direct sums of matrix algebras, to include hybrid classical-quantum systems. Upon obtaining suitable
necessary and sufficient conditions for positive conditionals to exist, one should show that these condi-
tions are automatically satisfied for commutative algebras in such a way so that the conditional version
of Bayes’ theorem (Theorem 3.8) is reproduced (Theorem 3.7 was already reproduced in [24]).

I see many interesting future directions based on the ideas presented here. For example, what does
the set of joint states admitting positive conditionals look like? What is the structure of conditionals
for multi-partite (as opposed to bi-partite) states on quantum systems? For example, one can take three
(classical) random variables and construct multiple conditionals for other purposes, such as defining con-
ditional independence or constructing Markov chains. There are also theorems describing the consistency
of successive conditioning in classical probability theory (for a viewpoint similar to the one presented
here, see [13, Section 11], particularly Lemma 11.11, and the references therein). One wonders if such
results still hold in the quantum setting from this perspective, at least on the conditional domains defined
here. Another direction for future investigations is to obtain approximate versions of these results using
distance measures between states, such as the fidelity or statistical distance.
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