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Abstract

We introduce the concept of pseudo symplectic capacities which is a mild generalization of
that of symplectic capacities. As a generalization of the Hofer-Zehnder capacity we construct
a Hofer-Zehnder type pseudo symplectic capacity and estimate it in terms of Gromov-Witten
invariants. The (pseudo) symplectic capacities of Grassmannians and some product symplectic
manifolds are computed. As applications we first derive some general nonsqueezing theorems
that generalize and unite many previous versions, then prove the Weinstein conjecture for
cotangent bundles over a large class of symplectic uniruled manifolds (including the uniruled
manifolds in algebraic geometry) and also show that the Hofer-Zehnder capacity is finite on a
small neighborhood of a rational connected closed symplectic submanifold of codimension two
in a symplectic manifold. Finally, we give two results on symplectic packings in Grassmannians
and on Seshadri constants.
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1 Introduction and main results

Gromov-Witten invariants and symplectic capacities are two kinds of important symplectic in-
variants in symplectic geometry. Both have many important applications. In particular, they
are related to the famous Weinstein conjecture and Hofer geometry (cf. [En, FrGiSchl, FrSchl,
HZ2, HV2, LaMc1, LaMc2, LiuT, Lu1, Lu2, Lu3, Lu5, Lu7, Lu9, Mc2, Mc3, McSl, Po1, Po2,
Po3, Schl, Schw, V1, V2, V3, V4, We2] etc.). For some problems, Gromov-Witten invariants
are convenient and effective, but for other problems symplectic capacities are more power-
ful. In the study of different problems different symplectic capacities were defined. Examples
of symplectic capacities are the Gromov width WG ([Gr]), the Ekeland-Hofer capacity cEH

([EH]), the Hofer-Zehnder capacity cHZ ([HZ1]) and Hofer’s displacement energy e ([H1]), the
Floer-Hofer capacity cFH ([He]) and Viterbo’s generating function capacity cV ([V3]). Only
WG, cHZ and e are defined for all symplectic manifolds. In [HZ1] an axiomatic definition of
a symplectic capacity was given. The Gromov width WG is the smallest symplectic capac-
ity. The Hofer-Zehnder capacity is used in the study of many symplectic topology questions.
The reader can refer to [HZ2, McSa1, V2] for more details. But to the author’s knowledge
the relations between Gromov-Witten invariants and symplectic capacities have not been ex-
plored explicitly in the literature. Gromov-Witten invariants are defined for closed symplectic
manifolds ([FO, LiT, R, Sie]) and some non-closed symplectic manifolds (cf. [Lu4, Lu8]) and
have been computed for many closed symplectic manifolds. However, it is difficult to compute
cHZ for a closed symplectic manifold. So far the only examples are closed surfaces, for which
cHZ is the area ([Sib]), and complex projective space (CPn, σn) with the standard symplectic
structure σn related to the Fubini-Study metric: Hofer and Viterbo proved cHZ(CPn, σn) = π

in [HV2]. Perhaps the invariance of Gromov-Witten invariants under deformations of the
symplectic form is the main reason why it is easier to compute them than Hofer-Zehnder ca-
pacities. Unlike Gromov-Witten invariants, symplectic capacities do not depend on homology
classes of the symplectic manifolds in question. We believe that this is a reason why they are
difficult to compute or estimate, and it is based on this observation that we introduced the
concept of pseudo symplectic capacities in the early version [Lu5] of this paper.

1.1 Pseudo symplectic capacities

In [HZ1] a map c from the class C(2n) of all symplectic manifolds of dimension 2n to [0,+∞]
is called a symplectic capacity if it satisfies the following properties:
(monotonicity) If there is a symplectic embedding (M1, ω1) → (M2, ω2) of codimension zero
then c(M1, ω1) ≤ c(M2, ω2);
(conformality) c(M, λω) = |λ|c(M, ω) for every λ ∈ R \ {0};
(nontriviality) c(B2n(1), ω0) = π = c(Z2n(1), ω0).
Here B2n(1) and Z2n(1) are the closed unit ball and closed cylinder in the standard space
(R2n, ω0), i.e., for any r > 0,

B2n(r) = {(x, y) ∈ R2n | |x|2 + |y|2 ≤ r2} and Z2n(r) = {(x, y) ∈ R2n | x2
1 + y2

1 ≤ r2}.

Note that the first property implies that c is a symplectic invariant.
Let H∗(M ;G) denote the singular homology of M with coefficient group G. For an in-

teger k ≥ 1 we denote by C(2n, k) the set of all tuples (M, ω;α1, · · · , αk) consisting of a
2n-dimensional connected symplectic manifold (M, ω) and nonzero homology classes αi ∈
H∗(M ;G), i = 1, · · · , k. We denote by pt the homology class of a point.
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Definition 1.1 A map c(k) from C(2n, k) to [0,+∞] is called a Gk-pseudo symplectic
capacity if it satisfies the following conditions.
P1. Pseudo monotonicity: If there is a symplectic embedding ψ : (M1, ω1) → (M2, ω2) of
codimension zero, then for any αi ∈ H∗(M1;G) \ {0}, i = 1, · · · , k,

c(k)(M1, ω1;α1, · · · , αk) ≤ c(k)(M2, ω2;ψ∗(α1), · · · , ψ∗(αk));

P2. Conformality: c(k)(M, λω;α1, · · · , αk) = |λ|c(k)(M, ω;α1, · · · , αk) for every λ ∈ R \ {0}
and all homology classes αi ∈ H∗(M ;G) \ {0}, i = 1, · · · , k;

P3. Nontriviality: c(k)(B2n(1), ω0; pt, · · · , pt) = π = c(k)(Z2n(1), ω0; pt, · · · , pt).

The pseudo monotonicity is the reason that a pseudo symplectic capacity in general fails to
be a symplectic invariant. If k > 1 then a Gk−1-pseudo symplectic capacity c(k−1) is naturally
defined by

c(k−1)(M, ω;α1, · · · , αk−1) := c(k)(M, ω; pt, α1, · · · , αk−1),

and any c(k) induces a true symplectic capacity

c(0)(M, ω) := c(k)(M, ω; pt, · · · , pt).

In this paper we shall concentrate on the case k = 2 since in this case there are interesting
examples. More precisely, we shall define a typical G2-pseudo symplectic capacity of Hofer-
Zehnder type and give many applications. In view of our results we expect that pseudo
symplectic capacities will become a powerful tool in the study of symplectic topology. Hereafter
we assume G = Q and often write H∗(M) instead of H∗(M ;Q).

1.2 Construction of a pseudo symplectic capacity

We begin with recalling the Hofer-Zehnder capacity from [HZ1]. Given a symplectic manifold
(M, ω), a smooth function H:M → R is called admissible if there exist an nonempty open
subset U and a compact subset K ⊂ M \ ∂M such that
(a) H|U = 0 and H|M\K = max H;
(b) 0 ≤ H ≤ max H;
(c) ẋ = XH(x) has no nonconstant fast periodic solutions.
Here XH is defined by ω(XH , v) = dH(v) for v ∈ TM , and “fast” means “of period less
than 1”. Let Had(M, ω) be the set of admissible Hamiltonians on (M, ω). The Hofer-Zehnder
symplectic capacity cHZ(M, ω) of (M, ω) is defined by

cHZ(M, ω) = sup {max H |H ∈ Had(M, ω)} .

Note that one can require the compact subset K = K(H) to be a proper subset of M in
the definition above. In fact, it suffices to prove that for any H ∈ Had(M, ω) and ε > 0
small enough there exists a Hε ∈ Had(M, ω) such that max Hε ≥ max H − ε and that the
corresponding compact subset K(Hε) is a proper subset in M . Let us take a smooth function
fε : R → R such that 0 ≤ f ′ε(t) ≤ 1 and fε(t) = 0 as t ≤ 0, and fε(t) = max H − ε as
t ≥ max H − ε. Then the composition fε ◦H is a desired Hε.

The invariant cHZ has many applications. Three of them are: (i) giving a new proof of a
foundational theorem in symplectic topology – Gromov’s nonsqueezing theorem; (ii) studying
the Hofer geometry on the group of Hamiltonian symplectomorphisms of a symplectic manifold;
(iii) establishing the existence of closed characteristics on or near an energy surface. As
mentioned above the difficulties in computing or estimating cHZ(M, ω) for a given symplectic
manifold (M, ω) make it hard to find further applications of this invariant. Therefore, it seems

3



to be important to give a variant of cHZ which can be easily estimated and still has the above
applications. An attempt was made in [McSl]. In this paragraph we shall define a pseudo
symplectic capacity of Hofer-Zehnder type. The introduction of such a pseudo symplectic
capacity was motivated by various papers (e.g. [LiuT, McSl]).

Definition 1.2 For a connected symplectic manifold (M, ω) of dimension at least 4 and two
nonzero homology classes α0, α∞ ∈ H∗(M ;Q) we call a smooth function H : M → R (α0, α∞)-
admissible (resp. (α0, α∞)◦-admissible) if there exist two compact submanifolds P and Q

of M with connected smooth boundaries and of codimension zero such that the following
condition groups (1)(2)(3)(4)(5)(6) (resp. (1)(2)(3)(4)(5)(6◦)) hold:

(1) P ⊂ Int(Q) and Q ⊂ Int(M);

(2) H|P = 0 and H|M\Int(Q) = max H;

(3) 0 ≤ H ≤ max H;

(4) There exist chain representatives of α0 and α∞, still denoted by α0, α∞, such that
supp(α0) ⊂ Int(P ) and supp(α∞) ⊂ M \Q;

(5) There are no critical values in (0, ε) ∪ (max H − ε, max H) for a small ε = ε(H) > 0;

(6) The Hamiltonian system ẋ = XH(x) on M has no nonconstant fast periodic solutions;

(6◦) The Hamiltonian system ẋ = XH(x) on M has no nonconstant contractible fast periodic
solutions.

We respectively denote by

Had(M, ω;α0, α∞) and H◦ad(M, ω;α0, α∞)(1)

the set of all (α0, α∞)-admissible and (α0, α∞)◦-admissible functions. Unlike Had(M, ω) and
H◦ad(M, ω), for some pairs (α0, α∞) the sets in (1) might be empty. On the other hand,
one easily shows that both sets in (1) are nonempty if α0 and α∞ are separated by some
hypersurface S ⊂ M in the following sense.

Definition 1.3 A hypersurface S ⊂ M is called separating the homology classes α0, α∞ ∈
H∗(M) if (i) S separates M in the sense that there exist two submanifolds M0 and M∞ of M

with common boundary S such that M0 ∪M∞ = M and M0 ∩M∞ = S, (ii) there exist chain
representatives of α0 and α∞ with supports contained in Int(M0) and Int(M∞) respectively,
(iii) M0 is compact and ∂M0 = S.

Without special statements a hypersurface in this paper always means a smooth compact
connected orientable submanifold of codimension one and without boundary. Note that if M

is closed and a hypersurface S ⊂ M separates the homology classes α0 and α∞, then S also
separates α∞ and α0.

We define
{

C
(2)
HZ(M, ω;α0, α∞) := sup {max H |H ∈ Had(M, ω;α0, α∞)} ,

C
(2◦)
HZ (M, ω;α0, α∞) := sup {max H |H ∈ H◦ad(M, ω;α0, α∞)} .

(2)

Hereafter we make the conventions that sup ∅ = 0 and inf ∅ = +∞. As shown in Theorem 1.5
below, C

(2)
HZ is a G2-pseudo symplectic capacity. We call it pseudo symplectic capacity of

Hofer-Zehnder type. C
(2)
HZ and C

(2◦)
HZ in (2) have similar dynamical implications as the Hofer-

Zehnder capacity cHZ . In fact, as in [HZ2, HV2] one shows that 0 < C
(2)
HZ(M, ω;α0, α∞) < +∞

(0 < C
(2◦)
HZ (M, ω;α0, α∞) < +∞) implies that every stable hypersurface S ⊂ M separating
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α0 and α∞ carries a (contractible in M) closed characteristic, i.e., there is an embedded
(contractible in M) circle in S all of whose tangent lines belong to the characteristic line
bundle

LS = {(x, ξ) ∈ TS | ω(ξ, η) = 0 for all η ∈ TxS} .

This leads to the following version of the Weinstein conjecture.

(α0, α∞)-Weinstein conjecture: Every hypersurface S of contact type in a symplectic man-
ifold (M, ω) separating α0 and α∞ carries a closed characteristic.

In terms of this language the main result Theorem 1.1 in [LiuT] asserts that the (α0, α∞)-
Weinstein conjecture holds if some GW-invariant ΨA,g,m+2(C;α0, α∞, β1, · · · , βm) does not
vanish, see 1.3 below.

As before let pt denote the generator of H0(M ;Q) represented by a point. Then we have
the true symplectic capacities

{
CHZ(M, ω) := C

(2)
HZ(M, ω; pt, pt),

C◦HZ(M, ω) := C
(2◦)
HZ (M, ω; pt, pt).

(3)

Recall that we have also the π1-sensitive Hofer-Zehnder capacity denoted C̄HZ in [Lu1] and
c◦HZ in [Schw]. By definitions it is obvious that CHZ(M, ω) ≤ cHZ(M, ω) and C◦HZ(M, ω) ≤
c◦HZ(M, ω) for any symplectic manifold (M, ω). One naturally asks when CHZ (resp. C◦HZ) is
equal to cHZ (resp. c◦HZ). The following result partially answers this question.

Lemma 1.4 Let a symplectic manifold (M, ω) satisfy one of the following conditions:
(i) (M, ω) is closed.
(ii) For each compact subset K ⊂ M \ ∂M there exists a compact submanifold W ⊂ M with
connected boundary and of codimension zero such that K ⊂ W . Then it holds that

CHZ(M, ω) = cHZ(M, ω) and C◦HZ(M, ω) = c◦HZ(M, ω).

For arbitrary homology classes α0, α∞ ∈ H∗(M) it holds that




C
(2)
HZ(M, ω;α0, α∞) ≤ C

(2◦)
HZ (M, ω;α0, α∞),

C
(2)
HZ(M, ω;α0, α∞) ≤ CHZ(M, ω),

C
(2◦)
HZ (M, ω;α0, α∞) ≤ C◦HZ(M, ω).

(4)

Both C
(2)
HZ and C

(2◦)
HZ are important because estimating or calculating them is easier than

for CHZ and C◦HZ , and because they still share those properties needed for applications. In
Remark 1.28 we will give an example which illustrates that sometimes C

(2)
HZ gives better results

than CHZ . Recall that the Gromov width WG is the smallest symplectic capacity so that

WG ≤ CHZ ≤ C◦HZ .(5)

Convention: C stands for both C
(2)
HZ and C

(2◦)
HZ if there is no danger of confusion.

The following theorem shows that C
(2)
HZ is indeed a pseudo symplectic capacity.

Theorem 1.5 (i) If M is closed then for any nonzero homology classes α0, α∞ ∈ H∗(M ;Q),

C(M, ω;α0, α∞) = C(M, ω;α∞, α0).
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(ii) C(M, ω;α0, α∞) is invariant under those symplectomorphisms ψ ∈ Symp(M, ω) which
induce the identity on H∗(M ;Q).
(iii)(Normality) For any r > 0 and nonzero α0, α∞ ∈ H∗(B2n(r);Q) or H∗(Z2n(r);Q),

C(B2n(r), ω0;α0, α∞) = C(Z2n(r), ω0;α0, α∞) = πr2.

(iv)(Conformality) For any nonzero real number λ,

C(M, λω;α0, α∞) = |λ|C(M, ω;α0, α∞).

(v)(Pseudo monotonicity) For any symplectic embedding ψ : (M1, ω1) → (M2, ω2) of
codimension zero and any nonzero α0, α∞ ∈ H∗(M1;Q) it holds that

C
(2)
HZ(M1, ω1;α0, α∞) ≤ C

(2)
HZ(M2, ω2;ψ∗(α0), ψ∗(α∞)).

Furthermore, if ψ induces an injective homomorphism π1(M1) → π1(M2) then

C
(2◦)
HZ (M1, ω1;α0, α∞) ≤ C

(2◦)
HZ (M2, ω2;ψ∗(α0), ψ∗(α∞)).

(vi) For any m ∈ N it holds that




C(M, ω;α0, α∞) ≤ C(M, ω;mα0, α∞),
C(M, ω;α0, α∞) ≤ C(M, ω;α0,mα∞),
C(M, ω;−α0, α∞) = C(M, ω;α0, α∞) = C(M, ω;α0,−α∞).

(vii) If dimα0 + dim α∞ ≤ dimM − 2 and α0 or α∞ can be represented by a connected closed
submanifold, then

C(M, ω;α0, α∞) > 0.

Remark 1.6 If M is not closed, C(M, ω; pt, α) and C(M, ω;α, pt) might be different. For
example, let M be the annulus in R2 of area 2, and α be a generator of H1(M). Then
WG(M, ω) = C

(2)
HZ(M, ω; pt, α) = 2, while C

(2)
HZ(M, ω;α, pt) = 0 since Had(M, ω;α, pt) = ∅.

This example also shows that the dimension assumption dimα0 +dimα∞ ≤ dimM−2 cannot
be weakened. However, if the condition in the following Proposition 1.7 is satisfied then it
follows from (6) that C(M, ω;α0, α∞) > 0.

Proposition 1.7 Let W ⊂ Int(M) be a smooth compact submanifold of codimension zero
and with connected boundary such that the homology classes α0, α∞ ∈ H∗(M ;Q) \ {0} have
representatives supported in Int(W ) and Int(M) \W , respectively. Denote by α̃0 ∈ H∗(W ;Q)
and α̃∞ ∈ H∗(M \W ;Q) the nonzero homology classes determined by them. Then

C
(2)
HZ(W,ω; α̃0, pt) ≤ C

(2)
HZ(M, ω;α0, α∞),(6)

and we specially have

cHZ(W,ω) = CHZ(W,ω) ≤ C
(2)
HZ(M, ω; pt, α)(7)

for any α ∈ H∗(M ;Q) \ {0} with representative supported in Int(M) \ W . If the inclusion
W ↪→ M induces an injective homomorphism π1(W ) → π1(M) then

C
(2◦)
HZ (W,ω; α̃0, pt) ≤ C

(2◦)
HZ (M, ω;α0, α∞)(8)

and corresponding to (7) we have

c◦HZ(W,ω) = C◦HZ(W,ω) ≤ C
(2◦)
HZ (M, ω; pt, α).(9)
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It also holds that
C

(2)
HZ(M \W,ω; α̃∞, pt) ≤ C

(2)
HZ(M, ω;α∞, α0),(10)

and that
C

(2◦)
HZ (M \W,ω; α̃∞, pt) ≤ C

(2◦)
HZ (M, ω;α∞, α0)(11)

if the inclusion M \ W ↪→ M induces an injective homomorphism π1(M \ W ) → π1(M).
Furthermore, for any α ∈ H∗(M ;Q) \ {0} with dimα ≤ dimM − 1 it holds that

WG(M, ω) ≤ C(M, ω; pt, α).(12)

For closed symplectic manifolds, Proposition 1.7 can be strengthened as follows.

Theorem 1.8 If in the situation of Proposition 1.7 the symplectic manifold (M, ω) is closed
and M \W is connected, then

C
(2)
HZ(W,ω; α̃0, pt) + C

(2)
HZ(M \W,ω; α̃∞, pt) ≤ C

(2)
HZ(M, ω;α0, α∞).(13)

In particular, if α ∈ H∗(M ;Q) \ {0} has a representative supported in M \ W and thus
determines a homology class α̃ ∈ H∗(M \W ;Q) \ {0}, then

cHZ(W,ω) + C
(2)
HZ(M \W,ω; α̃, pt) ≤ C

(2)
HZ(M, ω; pt, α).

If both inclusions W ↪→ M and M \W ↪→ M induce an injective homomorphisms π1(W ) →
π1(M) and π1(M \W ) → π1(M) then

C
(2◦)
HZ (W,ω; α̃0, pt) + C

(2◦)
HZ (M \W,ω; α̃∞, pt) ≤ C

(2◦)
HZ (M, ω;α0, α∞),(14)

and specially
c◦HZ(W,ω) + C

(2◦)
HZ (M \W,ω; α̃, pt) ≤ C

(2◦)
HZ (M, ω; pt, α)

for any α ∈ H∗(M ;Q) \ {0} with a representative supported in M \W .

An inequality similar to (13) was first proved for the usual Hofer-Zehnder capacity by Mei-Yu
Jiang [Ji]. In the following subsections we always take G = Q.

1.3 Estimating the pseudo capacity in terms of Gromov-Witten in-

variants

To state our main results we recall that for a given class A ∈ H2(M ;Z) the Gromov-Witten
invariant of genus g and with m + 2 marked points is a homomorphism

ΨA,g,m+2 : H∗(Mg,m+2;Q)×H∗(M ;Q)m+2 → Q.

We refer to the appendix and [FO, LiT, R, Sie] and [Lu8] for more details on Gromov-Witten
invariants.

The Gromov-Witten invariants for general (closed) symplectic manifolds were constructed
by different methods, cf. [FO, LiT, R, Sie], and [LiuT] for a Morse theoretic set-up. It is
believed that these methods define the same symplectic Gromov-Witten invariants, but no
proof has been written down so far. A detailed construction of the GW-invariants by the
method in [LiuT], including proofs of the composition law and reduction formula, was given in
[Lu8] for a larger class of symplectic manifolds including all closed symplectic manifolds. The
method by Liu-Tian was also used in [Mc2]. Without special statements, the Gromov-Witten
invariants in this paper are the ones constructed by the method in [LiuT]. The author strongly
believes that they agree with those constructed in [R].
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Definition 1.9 Let (M, ω) be a closed symplectic manifold and let α0, α∞ ∈ H∗(M ;Q). We
define

GWg(M, ω;α0, α∞) ∈ (0,+∞]

as the infimum of the ω-areas ω(A) of the homology classes A ∈ H2(M ;Z) for which the
Gromov-Witten invariant ΨA,g,m+2(C;α0, α∞, β1, · · · , βm) 6= 0 for some homology classes
β1, · · · , βm ∈ H∗(M ;Q) and C ∈ H∗(Mg,m+2;Q) and an integer m ≥ 1. We define

GW(M, ω;α0, α∞) := inf {GWg(M, ω;α0, α∞) | g ≥ 0} ∈ [0,+∞].

The positivity GWg(M, ω;α0, α∞) > 0 follows from the compactness of the space of J-
holomorphic stable maps (cf. [FO, LiT, R, Sie]). Here we have used the convention inf ∅ = +∞
below (2). One easily checks that both GWg and GW satisfy the pseudo monotonicity and
conformality in Definition 1.1. As Professor Dusa McDuff suggested, one can consider closed
symplectic manifolds only and replace the nontriviality condition in Definition 1.1 by

c(2)(CPn, σn; pt, pt) = c(2)(CP 1 × T 2n−2, σ1 ⊕ ω0; pt, [pt× T 2n−2]) = π;

then both GW0 and GW are pseudo symplectic capacities in view of (19) and (22) below. The
following result is the core of this paper. Its proof is given in §3 based on [LiuT] and the key
Lemma 3.3.

Theorem 1.10 For any closed symplectic manifold (M, ω) of dimension dimM ≥ 4 and
homology classes α0, α∞ ∈ H∗(M ;Q) \ {0} we have

C
(2)
HZ(M, ω;α0, α∞) ≤ GW(M, ω;α0, α∞) and(15)

C
(2◦)
HZ (M, ω;α0, α∞) ≤ GW0(M, ω;α0, α∞).(16)

Remark 1.11 By the reduction formula for Gromov-Witten invariants recalled in the ap-
pendix,

ΨA,g,m+3([π−1
m+3(K)];α0, α∞, α, β1, · · · , βm) = PD(α)(A) ·ΨA,g,m+2([K];α0, α∞, β1, · · · , βm)

for any α ∈ H2n−2(M,Z) and [K] ∈ H∗(Mg,m+2,Q). Here 2n = dim M . It easily fol-
lows that GWg(M, ω;α0, α∞) < +∞ implies that GWg(M, ω;α0, α), GWg(M, ω;α, α∞) and
GWg(M, ω;α, β) are finite for any α, β ∈ H2n−2(M,Z) with PD(α)(A) 6= 0 and PD(β)(A) 6=
0. In particular, it is easily proved that for any integer g ≥ 0

GWg(M, ω; pt, PD([ω])) = inf{GWg(M, ω; pt, α) |α ∈ H∗(M,Q)}(17)

Corollary 1.12 If GWg(M, ω;α0, α∞) < +∞ for some integer g ≥ 0 then the (α0, α∞)-
Weinstein conjecture holds in (M, ω).

Many results in this paper are based on the following special case of Theorem 1.10.

Theorem 1.13 For any closed symplectic manifold (M, ω) of dimension at least four and a
nonzero homology class α ∈ H∗(M ;Q) it holds that

C
(2)
HZ(M, ω; pt, α) ≤ GW(M, ω; pt, α) and

C
(2◦)
HZ (M, ω; pt, α) ≤ GW0(M, ω; pt, α).
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Definition 1.14 Given a nonnegative integer g, a closed symplectic manifold (M, ω) is called
g-symplectic uniruled if ΨA,g,m+2(C; pt, α, β1, · · · , βm) 6= 0 for some homology classes A ∈
H2(M ;Z), α, β1, · · · , βm ∈ H∗(M ;Q) and C ∈ H∗(Mg,m+2;Q) and an integer m ≥ 1. If C can
be chosen as a point pt we say (M, ω) is strong g-symplectic uniruled. Moreover, (M, ω)
is called symplectic uniruled (resp. strong symplectic uniruled) if it is g-symplectic
uniruled (resp. strong g-symplectic uniruled) for some integer g ≥ 0.

It was proved in ([Ko]) and ([R]) that (projective algebraic) uniruled manifolds are strong
0-symplectic uniruled 1. In Proposition 7.3 we shall prove that for a closed symplectic manifold
(M, ω) if there exist homology classes A ∈ H2(M ;Z) and αi ∈ H∗(M ;Q), i = 1, · · · , k, such
that the Gromov-Witten invariant ΨA,g,k+1(pt; pt, α1, · · · , αk) 6= 0 for some integer g ≥ 0,
then there exists a homology class B ∈ H2(M ;Z) with ω(B) ≤ ω(A) and βi ∈ H∗(M ;Q),
i = 1, 2, such that the Gromov-Witten invariant ΨB,0,3(pt; pt, β1, β2) 6= 0. Therefore, every
strong symplectic uniruled manifold is strong 0-symplectic uniruled. Actually we shall prove
in Proposition 7.5 that the product of any closed symplectic manifold and a strong symplectic
uniruled manifolds is strong symplectic uniruled. Moreover, the class of g-symplectic uniruled
manifolds is closed under deformations of symplectic forms because Gromov-Witten invari-
ants are symplectic deformation invariants. For a g-symplectic uniruled manifold (M, ω), i.e.
GWg(M, ω; pt, PD([ω])) < +∞, the author observed in [Lu3] that if a hypersurface of con-
tact type S in (M, ω) separates M into two parts M+ and M− then there exist two classes
PD([ω])+ and PD([ω])− in H2n−2(M,R) with cycle representatives supported in M+ and M−
respectively such that PD([ω])+ + PD([ω])− = PD([ω]) and that at least one of the num-
bers GWg(M, ω; pt, PD([ω])+) or GWg(M, ω; pt, PD([ω])−) is finite. Theorem 1.13 (or (15))
implies that at least one of the following two statements holds:

C
(2)
HZ(M, ω; pt, PD([ω])+) ≤ GWg(M, ω; pt, PD([ω])+) < +∞ or

C
(2)
HZ(M, ω; pt, PD([ω])−) ≤ GWg(M, ω; pt, PD([ω])−) < +∞.

(18)

On the other hand (12) shows that C
(2)
HZ(M, ω; pt, PD([ω])+) and C

(2)
HZ(M, ω; pt, PD([ω])−)

are always positive. Consequently, S carries a nontrivial closed characteristic, i.e. the (pt, pt)-
Weinstein conjecture holds in symplectic uniruled manifolds ([Lu3]). 2 The Grassmannians
and their products with any closed symplectic manifold are symplectic uniruled. For them we
have

Theorem 1.15 For the Grassmannian G(k, n) of k-planes in Cn we denote by σ(k,n) the
canonical symplectic form for which σ(k,n)(L(k,n)) = π for the generator L(k,n) of H2(G(k, n);Z).
Let the submanifolds X(k,n) ≈ G(k, n − 1) and Y (k,n) of G(k, n) be given by {V ∈ G(k, n) |
w∗0v = 0 for all v ∈ V } and {V ∈ G(k, n) | v0 ∈ V } for some fixed v0, w0 ∈ Cn \ {0}
respectively. Their homology classes [X(k,n)] and [Y (k,n)] are independent of the choices of
v0, w0 ∈ Cn \ {0} and deg[X(k,n)] = 2k(n− k − 1) and deg[Y (k,n)] = 2(k − 1)(n− k). Then

WG(G(k, n), σ(k,n)) = C
(2)
HZ(G(k, n), σ(k,n); pt, α) = π

for α = [X(k,n)] or α = [Y (k,n)] with k ≤ n− 2.

1This is the only place in which we assume that our GW-invariants agree with the ones in [R]. In a future paper

we shall use the method in [LiuT] and the techniques in [Lu8] to prove this fact.
2Unfortunately, you did not say up to here what you mean by “Weinstein conjecture”. As far as I can see, you

mean the (pt, pt)-Weinstein-conjecture, so that you must assume that S is separating. You should mention this

already here. See also footnotes below. Lu added “(pt, pt)” before Weinstein-conjecture.
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In particular, if k = 1 and n ≥ 3 then [Y (1,n)] = pt and (G(1, n), σ(1,n)) = (CPn−1, σn−1),
where σn−1 the unique U(n)-invariant Kähler form on CPn−1 whose integral over the line
CP 1 ⊂ CPn−1 is equal to π. In this case Theorem 1.15 and Lemma 1.4 yield:

cHZ(CPn−1, σn−1) = CHZ(CPn−1, σn−1) := C
(2)
HZ(CPn−1, σn−1; pt, pt) = π.(19)

Hofer and Viterbo [HV2] firstly proved that cHZ(CPn, σn) = π. Therefore, Theorem 1.15 can
be viewed as a generalization of their result. If k = 1, on one hand the volume estimate gives
WG

(
CPn−1, σn−1

) ≤ π, and on the other hand there exists an explicit symplectic embedding
B2n−2(1) ↪→ (

CPn−1, σn−1

)
, see [Ka, HV2]. So we have WG

(
CPn−1, σn−1

)
= π. For k ≥ 2,

however, the remarks below Theorem 1.35 show that the identity WG(G(k, n), σ(k,n)) = π

does not follow so easily.

Theorem 1.16 For any closed symplectic manifold (M, ω) it holds that

C(M ×G(k, n), ω ⊕ (aσ(k,n)); pt, [M ]× α) ≤ |a|π(20)

for any a ∈ R\{0} and α = [X(k,n)] or α = [Y (k,n)] with k ≤ n−2. Moreover, for the product

(W,Ω) =
(
G(k1, n1)× · · · ×G(kr, nr), (a1σ

(k1,n1))⊕ · · · ⊕ (arσ
(kr,nr))

)

we have
C(W,Ω; pt, α1 × · · · × αr) ≤ (|a1|+ · · ·+ |ar|)π(21)

for any ai ∈ R \ {0} and αi = [X(ki,ni)] or [Y (ki,ni)].

For the projective space CPn = G(1, n + 1) we have:

Theorem 1.17 Let (M, ω) be a closed symplectic manifold and σn the unique U(n + 1)-
invariant Kähler form on CPn whose integral over the line CP 1 ⊂ CPn is equal to π. Then

C(M × CPn, ω ⊕ (aσn); pt, [M × pt]) = |a|π(22)

for any a ∈ R \ {0}. Moreover, for any r > 0 and the standard ball B2n(r) of radius r and the
cylinder Z2n(r) = B2(r)× R2n−2 in (R2n, ω0) we have

C(M ×B2n(r), ω ⊕ ω0) = C(M × Z2n(r), ω ⊕ ω0) = πr2(23)

for C = CHZ , C◦HZ , cHZ and c◦HZ .

Remark 1.18 Combining the arguments in [McSl, Lu1] one can prove a weaker version of
(23) for any weakly monotone noncompact geometrically bounded symplectic manifold (M, ω)
and any r > 0, namely

C◦HZ(M ×B2n(r), ω ⊕ ω0) ≤ C◦HZ(M × Z2n(r), ω ⊕ ω0) ≤ πr2.

This generalization can be used to find periodic orbits of a charge subject to a magnetic field
(cf. [Lu2]).

From Theorem 1.13 and Lemma 1.4 we obtain

Corollary 1.19 For any closed symplectic manifold (M, ω) of dimension at least 4 we have

cHZ(M, ω) ≤ GW(M, ω; pt, pt),
c◦HZ(M, ω) ≤ GW0(M, ω; pt, pt).
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Thus cHZ(M, ω) is finite if the Gromov-Witten invariant ΨA,g,m+2(C; pt, pt, β1, · · · , βm)
does not vanish for some homology classes A ∈ H2(M ;Z), β1, . . . , βm ∈ H∗(M ;Q) and C ∈
H∗(Mg,m+2;Q) and integers g ≥ 0 and m > 0. Notice that GW0(M, ω; pt, pt) is needed here.
For example, consider (M, ω) = (CP 1 × CP 1, σ1 ⊕ σ1). The following Theorem 1.21 and its
proof show that cHZ(M, ω) = c◦HZ(M, ω) = 2π and GW0(M, ω; pt, pt) = 2π. However, one
easily proves that

GW0(M, ω; pt, PD([ω])) = GW0(M, ω; pt, [pt× CP 1]) = GW0(M, ω; pt, [CP 1 × pt]) = π.

So GW0(M, ω; pt, pt) is necessary.

Example 1.20 (i) For a smooth complete intersection (X, ω) of degree (d1, · · · , dk) in CPn+k

with n = 2
∑

(di − 1)− 1 or 3
∑

(di − 1)− 3 it holds that c◦HZ(X, ω) = C◦HZ(X, ω) < +∞.
(ii) For a rational algebraic manifold (X, ω), if there exists a surjective morphism π : X →
CPn such that π|X\S is one to one for some subvariety S of X with codimCπ(S) ≥ 2 then
c◦HZ(X, ω) = C◦HZ(X, ω) is finite.

(i) follows from the corollaries of Propositions 3 and 4 in [Be] and (ii) comes from Theo-
rem 1.5 in [LiuT]. We conjecture that the conclusion also holds for the rationally connected
manifolds introduced in [KoMiMo].

In some cases we can get better results.

Theorem 1.21 For the standard symplectic form σni
on CPni as in Theorem 1.17 and any

ai ∈ R \ {0}, i = 1, · · · , k, we have

C(CPn1 × · · · × CPnk , a1σn1 ⊕ · · · ⊕ akσnk
) = (|a1|+ · · ·+ |ak|)π.

for C = cHZ and c◦HZ .

According to Example 12.5 of [McSa1]

WG(CP 1 × · · · × CP 1, a1σ1 ⊕ · · · ⊕ akσ1) = min{|a1|, · · · , |ak|}π

for any ai ∈ R \ {0}, i = 1, · · · , k. This, Theorem 1.21 and (5) show that CHZ , C◦HZ , cHZ and
c◦HZ are different from the Gromov width WG.

1.4 The Weinstein conjecture and periodic orbits near symplectic

submanifolds

1.4.1. Weinstein conjecture in cotangent bundles of uniruled manifolds. By “We-
instein conjecture” we in the sequel mean the (pt, pt)-Weinstein conjecture, i.e.: Every sepa-
rating hypersurface S of contact type in a symplectic manifold carries a closed characteristic.
In some literatures on the Weinstein conjecture, e.x. [HV1], such an separating assumption
was actually used. Note that Weinstein’s original conjecture, [We2], does not assume that S

is separating. 3 So far this conjecture has been proved for many symplectic manifolds, cf.
[C, FHV, FrSchl, H2, HV1, HV2, LiuT, Lu1, Lu2, Lu3, V1, V4, V5] and the recent nice survey
[Gi] for more references. In particular, for the Weinstein conjecture in cotangent bundles Hofer
and Viterbo [HV1] proved that if a connected hypersurface S of contact type in the cotangent

3You had written here: “In terms of §1.2 the usual Weinstein conjecture is the (pt, pt)-Weinstein conjecture.”

I believe this is quite misleading, and many readers could be confused. Indeed, the “usual” Weinstein conjecture

does NOT assume that S separates anything. But you need this. So you better write what I have written above.

Lu agreed your correction, but added a sentence before “Note that...”. If it is not suitable please remove it.
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bundle of a closed manifold N of dimension at least 2 is such that the bounded component
of T ∗N \ S contains the zero section of T ∗N , then it carries a closed characteristic. In [V5]
it was proved that the Weinstein conjecture holds in cotangent bundles of simply connected
closed manifolds. We shall prove:

Theorem 1.22 Let (M, ω) be a closed connected symplectic manifold of dimension at least 4
and let L ⊂ M be a Lagrangian submanifold. Given a homology class α̃0 ∈ H∗(L;Q) \ {0}
we denote by α0 ∈ H∗(M ;Q) the class induced by the inclusion L ↪→ M . Assume that
the Gromov-Witten invariant ΨA,g,m+1(C;α0, α1, · · · , αm) does not vanish for some homology
classes A ∈ H2(M ;Z), α1, . . . , αm ∈ H∗(M ;Q) and C ∈ H∗(Mg,m+1;Q) and integers m > 1
and g > 0. Then for every c > 0 it holds that

C
(2)
HZ(Uc, ωcan; α̃0, pt) < +∞

and that
C

(2◦)
HZ (Uc, ωcan; α̃0, pt) < +∞

if g = 0 and the inclusion L ↪→ M induces an injective homomorphism π1(L) → π1(M). Here
Uc = {(q, v∗) ∈ T ∗L | 〈v∗, v∗〉 ≤ c2} is with respect to a Riemannian metric 〈·, ·〉 on T ∗L.
Consequently, every hypersurface of contact type in (T ∗L, ωcan) separating α̃0 and pt carries
a closed characteristic and a contractible one in the latter case. In particular, if (M, ω) is a
g-symplectic uniruled manifold then for each c > 0 it holds that

cHZ(Uc, ωcan) = CHZ(Uc, ωcan) < +∞

and that
c◦HZ(Uc, ωcan) = C◦HZ(Uc, ωcan) < +∞(24)

if g = 0 and the inclusion L ↪→ M induces an injective homomorphism π1(L) → π1(M). If
(M, ω) itself is strong symplectic uniruled then (24) also holds for L = M .

Using a recent refinement by Macarini and Schlenk [MaSchl] of the arguments in [HZ2,
Sections 4.1 and 4.2] we immediately derive: if L is a Lagrangian submanifold in a g-symplectic
uniruled manifold and S ⊂ (T ∗L, ωcan) a smooth compact connected orientable hypersurface
without boundary then for any thickening of S,

ψ : I × S → U ⊂ (T ∗L, ωcan)

it holds that
µ{t ∈ I | P(St) 6= ∅} = µ(I)

and that
µ{t ∈ I | P◦(St) 6= ∅} = µ(I)

if g = 0 and the inclusion L ↪→ M induces an injective homomorphism π1(L) → π1(M). Here
µ denotes Lebesgue measure, I is an open neighborhood of 0 in R, and P(St) (resp. P◦(St))
denotes the set of all (resp. contractible in U) closed characteristics on St = ψ(S × {t}).

Corollary 1.23 The Weinstein conjecture holds in the following manifolds:

(i) symplectic uniruled manifolds of dimension at least 4;

(ii) the cotangent bundle (T ∗L, ωcan) of a closed Lagrangian submanifold L in a g-symplectic
uniruled manifold of dimension at least 4;

(iii) the product of a closed symplectic manifold and a strong symplectic uniruled manifold;
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(iv) the cotangent bundles of strong symplectic uniruled manifolds.

The result in (i) is actually not new. As observed in [Lu3] the Weinstein conjecture in
symplectic uniruled manifolds can be derived from Theorem 1.1 in [LiuT]. With the present
arguments it may be derived from (18) and Corollary 1.12. (ii) is a direct consequence of
Theorem 1.22. (iii) can be derived from (i) and Proposition 7.5. By (ii) and Proposition 7.5
the standard arguments give rise to (iv).

1.4.2. Periodic orbits near symplectic submanifolds. The existence of periodic orbits
of autonomous Hamiltonian systems near a closed symplectic submanifold has been studied
by several authors, see [CiGiKe, GiGu] and the references there for details. Combing Propo-
sition 1.7 with the arguments in [Lu6] and [Bi1] we get

Theorem 1.24 For any symplectic manifold (M, ω) and any rational closed symplectic sub-
manifold S of codimension 2, i.e., [ω|S ] ∈ H2(S,Q), there exists a smooth compact submanifold
W ⊂ M with connected boundary and of codimension zero which is a neighborhood of S in M

such that
c◦HZ(W,ω) = C◦HZ(W,ω) < 1.

Consequently, for any smooth compact connected orientable hypersurface S ⊂ W \∂W without
boundary and any thickening ψ:S × I → U ⊂ W it holds that

µ({t ∈ I | P◦(St) 6= ∅}) = µ(I).

Here µ, I, P◦(St) and St are as above Corollary 1.23.

The first conclusion will be proved in §5, and the second follows from the first one and
the refinement of the Hofer-Zehnder theorem by Macarini and Schlenk [MaSchl] mentioned
above. The second conclusion in Theorem 1.24 implies: For any smooth proper function
H : W → R the levels H = ε carry contractible in U periodic orbits for almost all ε > 0 for
which {H = ε} ⊂ Int(W ). Using Floer homology and symplectic homology, results similar
to Theorem 1.24 were obtained in [CiGiKe, GiGu] for any closed symplectic submanifold of
codimension more than zero in a geometrically bounded, symplectically aspherical manifold.
Recall that a symplectic manifold (M, ω) is said to be symplectically aspherical if ω|π2(M) = 0
and c1(TM)|π2(M) = 0. Clearly, the first condition ω|π2(M) = 0 implies that every symplectic
submanifold in (M, ω) is rational. So our Theorem 1.24 generalizes their results for symplectic
submanifolds of codimension two. It seems possible that our method can be generalized to
any closed symplectic submanifold of codimension more than zero.

1.5 Nonsqueezing theorems

We first give a general nonsqueezing theorem and then discuss some corollaries and relations
to the various previously found nonsqueezing theorems.

Definition 1.25 For a symplectic manifold (M, ω) we define Γ(M, ω) ∈ [0,+∞] by

Γ(M, ω) = inf
α

C
(2)
HZ(M, ω; pt, α),

where α ∈ H∗(M ;Q) runs over all nonzero homology classes of degree deg α ≤ dimM − 1.

By (12), for any connected symplectic manifold (M, ω) it holds that

WG(M, ω) ≤ Γ(M, ω).(25)

However, it is difficult to determine or estimate Γ(M, ω). In some cases one can replace it by
another number.
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Definition 1.26 For a closed connected symplectic manifold (M, ω) of dimension at least 4
we define GW(M, ω) ∈ (0,+∞] by

GW(M, ω) = inf GWg(M, ω; pt, α)

where the infimum is taken over all nonnegative integers g and all homology classes α ∈
H∗(M ;Q) \ {0} of degree deg α ≤ dimM − 1.

By (17) we have GW(M, ω) = infg GWg(M, ω; pt, PD([ω])). Note that GW(M, ω) is finite
if and only if (M, ω) is a symplectic uniruled manifold. From Theorem 1.13 and (25) we get

Theorem 1.27 For any symplectic uniruled manifold (M, ω) of dimension at least 4 it holds
that

WG(M, ω) ≤ GW(M, ω).

Actually, for a uniruled manifold (M, ω), i.e., a Kähler manifold covered by rational curves,
the arguments in [Ko, R] show that GW(M, ω) ≤ ω(A), where A = [C] is the class of a rational
curve C through a generic x0 ∈ M and such that

∫
C

ω is minimal.

Remark 1.28 Denote by (W,Ω) the product (CPn1 × · · · × CPnk , a1σn1 ⊕ · · · ⊕ akσnk
) in

Theorem 1.21. It follows from Theorem 1.13 and the proof of Theorem 1.17 that

GW(W,Ω) ≤ min{|a1|, · · · , |ak|}π.

By (25) and definition of Γ(W,Ω), for any small ε > 0 there exists a class αε ∈ H∗(W,Q) of
degree deg(αε) ≤ dimW − 1 such that

WG(W,Ω) ≤ C
(2)
HZ(W,Ω; pt, αε) < min{|a1|, · · · , |ak|}π + ε.

But Theorem 1.21 shows that

cHZ(W,Ω) = CHZ(W,Ω) = (|a1|+ · · ·+ |ak|)π.

Therefore, if k > 1 and ε > 0 is small enough then

WG(W,Ω) ≤ C
(2)
HZ(W,Ω; pt, αε) < CHZ(W,Ω).

This shows that our pseudo symplectic capacity C
(2)
HZ(W,Ω; pt, αε) can give a better upper

bound for WG(W,Ω) than the symplectic capacities cHZ(W,Ω) and CHZ(W,Ω).

Recall that Gromov’s famous nonsqueezing theorem states that if there exists a symplectic
embedding B2n(r) ↪→ Z2n(R) then r ≤ R. Gromov proved it by using J-holomorphic curves,
[Gr]. Later on proofs were given by Hofer and Zehnder based on the calculus of variation and
by Viterbo using generating functions, [V3]. As a direct consequence of Theorem 1.5 and (23)
we get

Corollary 1.29 For any closed symplectic manifold (M, ω) of dimension 2m, if there exists
a symplectic embedding

B2m+2n(r) ↪→ (M × Z2n(R), ω ⊕ ω0),

then r ≤ R.

Actually, Lalonde and McDuff proved Corollary 1.29 for any symplectic manifold (M, ω)
in [LaMc1]. Moreover, one can derive from it the foundational energy-capacity inequality in
Hofer geometry (cf. [LaMc1, La2] and [McSa1, Ex. 12.21]). From (23) one can also derive
the following version of the non-squeezing theorem which was listed below Corollary 5.8 of
[LaMc2,II] and which can be used to prove that the group of Hamiltonian diffeomorphisms of
some compact symplectic manifolds have infinite diameter with respect to Hofer’s metric.

14



Corollary 1.30 Let (M, ω) and (N, σ) be closed symplectic manifolds of dimensions 2m and
2n respectively. If there exists a symplectic embedding

M ×B2n+2p(r) ↪→ (M ×N ×B2p(R), ω ⊕ σ ⊕ ω
(p)
0 )

or a symplectic embedding

M ×B2n+2p(r) ↪→ (M × R2n ×B2p(R), ω ⊕ ω
(n)
0 ⊕ ω

(p)
0 ),

then r ≤ R. Here ω
(m)
0 denotes the standard symplectic structure on R2m.

The second statement can be reduced to the first one. From Theorem 1.16 we get

Corollary 1.31 For any closed symplectic manifold (M, ω) of dimension 2m,

WG

(
M ×G(k, n), ω ⊕ (aσ(k,n))

)
≤ |a|π.

The study of Hofer geometry requires various nonsqueezing theorems. Let us recall the
notion of quasicylinder introduced by Lalonde and McDuff in [LaMc2].

Definition 1.32 For a closed symplectic manifold (M, ω) and a set D diffeomorphic to a
closed disk in (R2, ω0 = ds ∧ dt) the manifold Q = (M ×D, Ω) endowed with the symplectic
form Ω is called a quasicylinder if

(i) Ω restricts to ω on each fibre M × {pt};
(ii) Ω is the product ω × ω0 near the boundary ∂Q = M × ∂D.

If Ω = ω × ω0 on Q the quasicylinder is called split. The area of a quasicylinder (M ×D, Ω)
is defined as the number Λ = Λ(M ×D, Ω) such that

Vol(M ×D, Ω) = Λ ·Vol(M, ω).

As proved in Lemma 2.4 of [LaMc2] the area Λ(M × D, Ω) is equal to
∫
{x}×D

Ω for any
x ∈ M .

Following [McSl] we replace Q in Definition 1.32 by the obvious S2-compactification (M ×
S2,Ω). Here Ω restricts to ω on each fibre. It is clear that Ω(A) = Λ(Q,Ω) for A = [pt×S2] ∈
H2(M×S2). But it is proved in Lemma 2.7 of [LaMc2] that Ω can be symplectically deformed
to a product symplectic form ω ⊕ σ. Therefore, it follows from the deformation invariance of
Gromov-Witten invariants that

ΨA,0,3(pt; pt, [M × pt], [M × pt]) 6= 0.

By Theorem 1.13 we get

C(M × S2,Ω; pt, [M × pt]) ≤ Ω(A) = Λ(Q,Ω).

As in the proof of Theorem 1.17 we can derive from this:

Theorem 1.33 (Area-capacity inequality) For any quasicylinder (Q,Ω) it holds that

c◦HZ(Q,Ω) = C◦HZ(Q,Ω) ≤ Λ(Q,Ω).

Area-capacity inequalities for WG, cHZ and c◦HZ have been studied in [FHV, HV2, LaMc1,
Lu1, McSl]. As in [LaMc2, McSl] we can use Theorem 1.33 and Lemma 1.4 to deduce the main
result in [McSl]: For an autonomous Hamiltonian H:M → R on a closed symplectic manifold
(M, ω) of dimension at least 4, if its flow has no nonconstant contractible fast periodic solution
then the path φH

t∈[0,1] in Ham(M, ω) is length-minimizing among all paths homotopic with fixed
endpoints.

From Theorem 1.33 and (5) we obtain the following non-squeezing theorem for quasi-
cylinders.
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Corollary 1.34 For any quasicylinder (M ×D, Ω) of dimension 2m + 2,

WG (M ×D, Ω) ≤ Λ(M ×D, Ω).

Our results also lead to the nonsqueezing theorem Proposition 3.27 in [Mc2] for Hamiltonian
fibrations P → S2.

1.6 Symplectic packings and Seshadri constants

1.6.1. Symplectic packings. Suppose that B2n(r) = {z ∈ R2n | |z| < r} is endowed with
the standard symplectic structure ω0 of R2n. For an integer k > 0, a symplectic k-packing
of a 2n-dimensional symplectic manifold (M, ω) via B2n(r) is a set of symplectic embeddings
{ϕi}k

i=1 of (B2n(r), ω0) into (M, ω) such that Imϕi ∩ Imϕj = ∅ for i 6= j. If Vol(M, ω) is finite
and Int(M) ⊂ ∪Imϕi, then (M, ω) is said to have a full symplectic k-packing. Symplectic
packing problems were studied for the first time by Gromov in [Gr] and later by McDuff
and Polterovich [McPo], Karshon [Ka], Traynor [Tr], Xu [Xu], Biran [Bi1, Bi2] and Kruglikov
[Kru]. As before, let σn denote the unique U(n + 1)-invariant Kähler form on CPn whose
integral over CP 1 is equal to π. For every positive integer p, a full symplectic pn-packing of
(CPn, σn) was explicitly constructed by McDuff and Polterovich [McPo] and Traynor [Tr]. A
direct geometric construction of a full symplectic n+1-packing of (CPn, σn) was given by Yael
Karshon, [Ka]. By generalizing the arguments in [Ka] we shall obtain

Theorem 1.35 Let the Grassmannian (G(k, n), σ(k,n)) be as in Theorem 1.15. Then for every
integer 1 < k < n there exists a symplectic [n/k]-packing of (G(k, n), σ(k,n)) by B2k(n−k)(1).
Here [n/k] denotes the largest integer less than or equal to n/k.

This result shows that the Fefferman invariant of (G(k, n), σ(k,n)) is at least [n/k]. Recall
that the Fefferman invariant F (M, ω) of a 2n-dimensional symplectic manifold (M, ω) is defined
as the largest integer k for which there exists a symplectic packing by k open unit balls.
Moreover, at the end of §6 we shall prove

Vol(G(k, n), σ(k,n)) =
(k − 1)! · · · 2! · 1! · (n− k − 1)! · · · 2! · 1!

(n− 1)! · · · 2! · 1!
· πk(n−k).(26)

Note that Vol(B2k(n−k)(1), ω0) = πk(n−k)/(k(n − k))!. One easily sees that the symplectic
packings in Theorem 1.35 is not full in general. On the other hand a full packing of each of
the Grassmannians Gr+(2,R5) and Gr+(2,R6) by two equal symplectic balls was constructed
in [KaTo].
1.6.2. Seshadri constants. Our previous results can also be used to estimate Seshadri
constants, which are interesting invariants in algebraic geometry. Recall that for a compact
complex manifold (M, J) of complex dimension n and an ample line bundle L → M , the
Seshadri constant of L at a point x ∈ M is defined as the nonnegative real number

ε(L, x) := inf
C3x

∫
C

c1(L)
multxC

,(27)

where the infimum is taken over all irreducible holomorphic curves C passing through the point
x, and multxC is the multiplicity of C at x ([De]). The global Seshadri constant is defined by

ε(L) := inf
x∈M

ε(L, x).

Seshadri’s criterion for ampleness says that L is ample if and only if ε(L) > 0. The cohomology
class c1(L) can be represented by a J-compatible Kähler form ωL (the curvature form for a
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suitable metric connection on L). Denote by Ln =
∫

M
ωn

L = n!Vol(M, ωL). Then ε(L, x) has
the elementary upper bound

ε(L, x) ≤ n
√

Ln.(28)

Biran and Cieliebak [BiCi, Prop. 6.2.1] gave a better upper bound, i.e.

ε(L) ≤ WG(M, ωL).

However, it is difficult to estimate WG(M, ωL). Together with Theorem 1.27 we get:

Theorem 1.36 For a closed connected complex manifold of complex dimension at least 2 it
holds that

ε(L) ≤ GW(M, ωL).

Remark 1.37 By Definition 1.26, if GW(M, ωL) is finite then (M, ωL) is symplectic uniruled.
So Theorem 1.36 has only actual sense for uniruled (M, J). In this case our upper bound
GW(M, ωL) is better than n

√
Ln in (28). As an example, let us consider the hyperplane [H] in

CPn. It is ample, and the Fubini-Study form ωFS with
∫
CP 1 ωFS = 1 is a Kähler representative

of c1([H]). Let p1 and p2 denote the projections of the product CPn × CPn to the first and
second factors. For an integer m > 1 the line bundle p∗1[H]+p∗2(m[H]) → CPn×CPn is ample
and c1(p∗1[H] + p∗2(m[H])) has a Kähler form representative ωFS ⊕mωFS. From the proof of
Theorem 1.16 it easily follows that

GW(CPn × CPn, ωFS ⊕mωFS) ≤ 1.

(In fact, equality holds.) But a direct computation gives

2n

√
(p∗1[H] + p∗2(m[H]))2n =

(∫

CP n×CP n

(ωFS ⊕mωFS)2n
) 1

2n 2n
√

m · 2n

√
(2n)!
n!n!

> 1.

From the above arguments and the subsequent proofs the reader can see that some of our
results are probably not optimal. In fact, it is very possible that using our methods one can
obtain better results in some cases ([Lu7] and [Lu9]). We content ourselves with illustrating
the new ideas and methods.

The paper is organized as follows. In Section 2 we give the proofs of Lemma 1.4, Theorems
1.5, 1.8 and Proposition 1.7. The proof of Theorem 1.10 is given in Section 3. In Section 4
we prove Theorems 1.15, 1.16, 1.17 and 1.21. In Section 5 we prove Theorems 1.22, 1.24.
Theorem 1.35 is proved in Section 6. In the Appendix we discuss some related results on the
Gromov-Witten invariants of product manifolds.
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2 Proofs of Lemma 1.4, Theorems 1.5, 1.8 and Proposi-

tion 1.7

We first give two lemmas. They are key to our proofs in this and the next section. According
to Lemma 4.4 on page 107 and Exercise 9 on page 108 of [Hi] we have:

Lemma 2.1 If N is a connected smooth manifold and W ⊂ Int(N) a compact smooth sub-
manifold with connected boundary and of codimension zero then ∂W separates N in the sense
that Int(N) \ ∂W has exactly two connected components and the topological boundary of each
component is ∂W . In this case ∂W has a neighborhood in N which is a product ∂W × (−2, 2)
with ∂W corresponding to ∂W×{0}. If W is only contained in N then ∂W has a neighborhood
in W which is a product ∂W × (−2, 0].

From Lemma 12.27 in [McSa1] we easily derive

Lemma 2.2 Given a Riemannian metric g on M there exists ρ = ρ(g, M) > 0 such that for
every smooth function H on M with

sup
x∈M

‖∇g∇gH(x)‖g < ρ

the Hamiltonian equation ẋ = XH(x) has no nonconstant fast periodic solutions. In particular
the conclusion holds if ‖H‖C2 < ρ. Here ∇g is the Levi-Civita connection of g and norms are
taken with respect to g.

From Darboux’s theorem we obtain

Lemma 2.3 Let (M, ω) be a 2n-dimensional symplectic manifold, and B2n(r) = {z ∈ R2n :
|z| ≤ r} with r > 0. Then for any z0 ∈ Int(M) and any small ε > 0 there exist r > 0,
a symplectic embedding ϕ : (B2n(2r), ω0) → (M, ω) with ϕ(0) = z0 and a smooth function
Hϕ

r,ε : M → R such that:

(i) Hϕ
r,ε = 0 outside Int(ϕ(B2n(2r)), and Hϕ

r,ε = ε on ϕ(B2n(r)).

(ii) Hϕ
r,ε is constant h(s) along ϕ({|z| = s}) for any s ∈ [0, 2r], where h : [0, 2r] → [0, ε] is a

nonnegative smooth function which is strictly decreasing on [r, 2r]. Consequently,
Hϕ

r,ε(ϕ(z)) > Hϕ
r,ε(ϕ(z′)) if r ≤ |z| < |z′| ≤ 2r, and Hϕ

r,ε has no critical values in (0, ε).

(iii) ẋ = XHϕ
r,ε

(x) has no nonconstant fast periodic solutions.

Proof of Lemma 1.4. Case (i). We only need to prove that

CHZ(M, ω; pt, pt) ≥ cHZ(M, ω).

To this end it suffices to construct for any H ∈ Had(M, ω) an F ∈ Had(M, ω; pt, pt) such that
max F ≥ max H. By the definition there exist a nonempty open subset U and a compact
subset K ⊂ M \ ∂M such that: (a) H|U = 0 and H|M\K = max H, (b) 0 ≤ H ≤ max H, (c)
ẋ = XH(x) has no nonconstant fast periodic solutions. These imply that U ⊂ Int(K). By the
illustrations below the definition of cHZ in §1.2 we may assume that M \K 6= ∅. Then both U

and M \K are nonempty open sets because M is a closed manifold. For a given small ε > 0
we may take symplectic embeddings ϕ and ψ from (B2n(2r), ω0) to (M, ω) such that

ϕ(B2n(2r)) ⊂ U and ψ(B2n(2r)) ⊂ M \K.

Let Hϕ
r,ε and Hψ

r,ε be the corresponding functions as in Lemma 2.3. Since Hϕ
r,ε (resp. Hψ

r,ε) is
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equal to zero outside ϕ(B2n(2r)) (resp. ψ(B2n(2r))) we can define a smooth function
H̃:M → R by

H̃(x) =





max H + Hψ
r,ε(x) if x ∈ M \K,

H(x) if x ∈ K \ U,

−Hϕ
r,ε(x) if x ∈ U.

Define F = H̃ + ε. Then max F = max H + 2ε ≥ max H, minF = 0 and ẋ = XF (x) has no
nonconstant fast periodic orbits in M .

Since M is a closed manifold, M \ Int(ψ(B2n(r))) is a compact submanifold with boundary
ψ(∂B2n(r)). It follows that F ∈ Had(M, ω; pt, pt) with P (F ) = ϕ(B2n(r)) and Q(F ) =
M \ Int(ψ(B2n(r))). The desired result follows.

Going through the above proof we see that if H ∈ H◦ad(M, ω), i.e. ẋ = XH(x) has no
nonconstant contractible fast periodic solutions, then F ∈ H◦ad(M, ω; pt, pt). This implies that
C◦HZ(M, ω) = c◦HZ(M, ω).
Case (ii). The arguments are similar. We only point out different points. Let H ∈ Had(M, ω).
For a compact subset K(H) ⊂ M \∂M we find by assumption a compact submanifold W with
connected boundary and of codimension zero such that K(H) ⊂ W . Since K(H) is compact
and disjoint from ∂M we can assume that K(H) is also disjoint from ∂W . By Lemma 2.1 we
can choose embeddings

Φ: [−5, 0]× ∂W → M

such that Φ({0} × ∂W ) = ∂W and that

Φ([−5, 0]× ∂W ) ⊂ W and K(H) ∩ Φ([−5, 0]× ∂W ) = ∅.

For each t ∈ [−5, 0] the set
Wt := W \ Φ((t, 0]× ∂W )

is a compact submanifold of M which is diffeomorphic to W . By shrinking ε > 0 in Case (i)
if necessary, one easily constructs a smooth function Hε : M → R such that

(a) Hε = 0 in Int(W−4) and Hε = ε outside W−1;

(b) 0 ≤ Hε ≤ ε and each c ∈ (0, ε) is a regular value of Hε;

(c) Hε is constant f(s) along Φ({s} × ∂W ) for any s ∈ [−5, 0], where f : [−5, 0] → [0, ε] is a
nonnegative smooth function which is strictly increasing in [−4,−1].

(d) ẋ = XHε
(x) has no nonconstant fast periodic solutions.

Let Hϕ
r,ε be as in Case (i). We can define a smooth function H̃ : M → R by

H̃(x) =





max H + Hε(x) if x ∈ M \K,

H(x) if x ∈ K \ U,

−Hϕ
r,ε(x) if x ∈ U,

and set F = H̃ +ε. Then maxF ≥ max H, min F = 0 and ẋ = XF (x) has no nonconstant fast
periodic solutions. As in Case (i) one checks that F ∈ Had(M, ω; pt, pt) with P (F ) = ϕ(B2n(r))
and Q(F ) = M\Int(W−1). So we have max H ≤ max F ≤ CHZ(M, ω) for any H ∈ Had(M, ω),
and thus cHZ(M, ω) ≤ CHZ(M, ω). As above we get that CHZ(M, ω) = cHZ(M, ω) and
C◦HZ(M, ω) = c◦HZ(M, ω). 2

Proof of Theorem 1.5. (i) We take H ∈ Had(M, ω;α0, α∞). Let P = P (H) and Q = Q(H)
be the corresponding submanifolds in Definition 1.2, and α0, α∞ the chain representatives.
Define G = −H + max H. Then 0 ≤ G ≤ max G = max H, G|P = max G, G|M\Int(Q) = 0 and
XG = −XH . Therefore, G ∈ Had(M, ω;α∞, α0), and (i) follows.
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(ii) is a special case of (v), and (iv) and (vi) are clear.
For (iii), note that B2n(1) and Z2n(1) are contractible. One can slightly modify the proofs

of Lemma 3 and Theorem 2 in Chapter 3 of [HZ2] to show that C
(2)
HZ(B2n(1), ω0;α0, α∞) ≥ π

and C
(2◦)
HZ (Z2n(1), ω0;α0, α∞) ≤ π. Then (iii) follows from (v) and definitions:

π ≤ C
(2)
HZ(B2n(1), ω0;α0, α∞)

≤ C
(2◦)
HZ (B2n(1), ω0;α0, α∞)

≤ C
(2◦)
HZ (Z2n(1), ω0;α0, α∞)

≤ π.

For (v) we only prove the first claim. The second claim then follows together with the
argument in [Lu1]. For H ∈ Had(M1, ω1;α0, α∞) let the submanifolds P1 and Q1 of (M1, ω1)
be as in Definition 1.2. Set P2 = ψ(P1) and Q2 = ψ(Q1), and define ψ∗(H) ∈ C∞(M2,R) by

ψ∗(H)(x) =
{

H ◦ ψ−1(x) if x ∈ ψ(M1)
max H if x /∈ ψ(M1).

It is clear that ψ∗(H) ∈ Had(M2, ω2;ψ∗(α0), ψ∗(α∞)), and so (v) follows.
To prove (vii) we only need to show that Had(M, ω;α0, α∞) is nonempty under the as-

sumptions there. Without loss of generality let α0 be represented by a compact connected
submanifold S ⊂ IntM without boundary. Since dimα0 +dimα∞ ≤ dimM−1 it follows from
intersection theory that there is a cycle representative α̃∞ of α∞ such that S ∩ α̃∞ = ∅.

Choose a Riemannian metric g on M . For ε > 0 let Nε be the closed ε-ball bundle in
the normal bundle along S, and let exp:Nε → M be the exponential map. For ε > 0 small
enough, P = Sε = exp(Nε) and Q = S2ε = exp(N2ε) are smooth compact submanifolds of M

of codimension zero, and S2ε is still disjoint from α̃∞. Since dimS = dimα0 ≤ dimM − 2,
both P and Q have connected boundary.

Take a smooth function f :R → R such that f(t) = 0 for t ≤ ε2, f(t) = 1 for t ≥ 4ε2 and
f ′(t) > 0 for ε2 < t < 4ε2. We define a smooth function F :M → R by F (x) = 0 for x ∈ P ,
F (x) = 1 for x ∈ M \ Q and F (x) = f(‖vx‖2g) for x = (sx, vx) ∈ S2ε. In view of Lemma 2.2
above, for δ > 0 sufficiently small the function Fδ = δF belongs to Had(M, ω;α0, α∞). 2

Proof of Proposition 1.7. Note that every function H in Had(W,ω; α̃0, pt) can be viewed
as one in Had(M, ω;α0, α∞) in a natural way, and so (6) follows.

If the inclusion W ↪→ M induces an injective homomorphism π1(W ) → π1(M) then each
function H in H◦ad(W,ω; α̃0, pt) can be viewed as one in H◦ad(M, ω;α0, α∞). Therefore we get
(8).

To prove (10) let us take a function H ∈ Had(M \ W,ω; α̃∞, pt). Suppose that P (H) ⊂
Q(H) ⊂ Int(M \W ) are submanifolds associated with H. Then H = max H on (M \W ) \Q.
Therefore we can extend H to M by setting H = max H on W . We denote this extension by
H̄. Since we have assumed that α0 has a cycle representative whose support is contained in
Int(W ) ⊂ M \Q, H̄ belongs to Had(M, ω;α∞, α0).

If H ∈ H◦ad(M \W,ω; α̃∞, pt) and the inclusion M \W ↪→ M induces an injective homo-
morphism π1(M \W ) → π1(M) then the above H̄ belongs to H◦ad(M, ω;α∞, α0). This implies
(11).

For (12) we only need to prove thatWG(M, ω) ≤ C
(2)
HZ(M, ω; pt, α) since C

(2)
HZ(M, ω; pt, α) ≤

C
(2◦)
HZ (M, ω; pt, α). For any given symplectic embedding ψ: (B2n(r), ω0) → (Int(M), ω) and suf-

ficiently small ε > 0 we can choose a representative of α with support in M \ ψ(B2n(r − ε))
because dim α ≤ dimM − 1. By (5) and (7) we have

π(r − ε)2 = WG(ψ(B2n(r − ε)), ω) ≤ CHZ(ψ(B2n(r − ε)), ω) ≤ C
(2)
HZ(M, ω; pt, α).
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With ε → 0 we arrive at the desired conclusion. 2

Proof of Theorem 1.8. To prove (13) let W and α0, α∞ satisfy the assumptions in Theo-
rem 1.8. For H ∈ Had(W,ω; α̃0, pt) and G ∈ Had(M \W,ω; α̃∞, pt) let P1 ⊂ Int(Q1) ⊂ Q1 ⊂
Int(W ) and P2 ⊂ Int(Q2) ⊂ Q2 ⊂ M \W be corresponding submanifolds as in Definition 1.2.
Then H|P1 = 0, H|W\Int(Q1) = max H and G|P2 = 0, G|(M\W )\Int(Q2) = max G. Define
K:M → R by

K(x) =
{

H(x), if x ∈ W,

max H + max G−G(x), if x ∈ M \W.

This is a smooth function and belongs to Had(M, ω;α0, α∞) with P (K) = P1 and Q(K) =
M \ Int(P2). But max K = max H + max G. This leads to (13). 2

The following corollary of Theorem 1.8 will be useful later on.

Corollary 2.4 Under the assumptions of Theorem 1.8, let (N, σ) be another closed connected
symplectic manifold and β ∈ H∗(N ;Q) \ {0}. Then

C
(2)
HZ(N ×W,σ ⊕ ω;β × α̃0, pt) + C

(2)
HZ(N × (M \W ), σ ⊕ ω;β × α̃∞, pt)

≤ C
(2)
HZ(N ×M, σ ⊕ ω;β × α0, β × α∞),

and

C
(2◦)
HZ (N ×W,σ ⊕ ω;β × α̃0, pt) + C

(2◦)
HZ (N × (M \W ), σ ⊕ ω;β × α̃∞, pt)

≤ C
(2◦)
HZ (N ×M, σ ⊕ ω;β × α0, β × α∞)

if both inclusions W ↪→ M and M\W ↪→ M also induce an injective homomorphisms π1(W ) →
π1(M) and π1(M \W ) → π1(M).

3 The proof of Theorem 1.10

We wish to reduce the proof of this theorem to the arguments in [LiuT]. Liu-Tian’s approach
is to introduce the Morse theoretical version of Gromov-Witten invariants. In their work the
paper [FHS] plays an important role. To show how the arguments in [LiuT] apply to our case
we need to recall some related material from [FHS].

Consider the vector space S = {S ∈ R2n×2n | ST = S} of symmetric (2n × 2n)-matrices.
It has an important subset S2n

reg consisting of all matrices S ∈ S such that for any four real
numbers a, b, α, β the system of equations

{
(SJ0 − J0S − aI2n − bJ0)ζ = 0
(SJ0 − J0S − aI2n − bJ0)Sζ − αζ − βJ0ζ = 0

(29)

has no nonzero solution ζ ∈ R2n×2n, where In denotes the identity matrix in Rn×n and

J0 =
(

0 −In

In 0

)
. It has been proved in Theorem 6.1 of [FHS] that for n ≥ 2 the set S2n

reg is

open and dense in S and τΦT SΦ ∈ S2n
reg for any S ∈ S2n

reg, any Φ ∈ GL(n,C) ∩O(2n) and any
real number τ 6= 0. In view of Definition 7.1 in [FHS] and the arguments in [McSl] we make
the

Definition 3.1 A nondegenerate critical point p of a smooth function H on a symplectic
manifold (M, ω) is called strong admissible if it satisfies the following two conditions:

(i) the spectrum of the linear transformation DXH(p) : TpM → TpM is contained in C \
{λi | 2π ≤ ±λ < +∞};
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(ii) there exists Jp ∈ J (TpM, ωp) such that for some (and hence every) unitary frame
Φ:R2n → TpM (i.e. ΦJ0 = JpΦ and Φ∗ωp = ω0) we have

S = J0Φ−1DXH(p)Φ ∈ S2n
reg.

Definition 3.2 An (α0, α∞)-admissible (resp. (α0, α∞)◦-admissible) function H in Defini-
tion 1.2 is said to be (α0, α∞)-strong admissible (resp. (α0, α∞)◦-strong admissible) if
instead of condition (5) it satisfies the stronger condition

(5′) H has only finitely many critical points in Int(Q)\P , and each of them is strong admissible
in the sense of Definition 3.1.

Let us respectively denote by

Hsad(M, ω;α0, α∞) and H◦sad(M, ω;α0, α∞)(30)

the set of (α0, α∞)-strong admissible and (α0, α∞)◦-strong admissible functions. They are
subsets of Had(M, ω;α0, α∞) and H◦ad(M, ω;α0, α∞) respectively. The following lemma is key
to our proof.

Lemma 3.3 If dimM ≥ 4, then Hsad(M, ω;α0, α∞) (resp. H◦sad(M, ω;α0, α∞)) is C0-dense
in Had(M, ω;α0, α∞) (resp. H◦ad(M, ω;α0, α∞)).

Proof. Let F ∈ Had(M, ω;α0, α∞) (resp. H◦ad(M, ω;α0, α∞)). We shall prove that for any
small ε > 0 there exists a G ∈ Hsad(M, ω;α0, α∞) (resp. H◦sad(M, ω;α0, α∞)) such that

max F ≥ max G ≥ max F − ε.(31)

Our proof is inspired by the proof of Proposition 3.1 in [Schl].
Let CF (resp. cF ) be the largest (resp. smallest) critical value of F in (0,max F ). If there

are no such critical values, there is nothing to show. If cF = CF , then it is the only critical
value of F in (0,max F ), and this case can easily be proved by the following method. So we
now assume cF ≤ CF . Then by Definition 1.2(5) we have

0 < cF < CF < max F.

Let C(F ) be the set of critical values of F . It is compact and has zero Lebesgue measure, so
that for small ε > 0 we can choose regular values of F ,

b′0 < a′1 < b′1 < · · · < a′k−1 < b′k−1 < a′k,

such that:
(i) 0 < b′0 < cF and CF < a′k < max F .
(ii) [a′i, b

′
i] ⊂ [cF , CF ] \ C(F ), i = 1, · · · , k − 1.

(iii)
∑k−1

i=1 (b′i − a′i) + b′0 + max F − a′k > max F − ε.
Furthermore we may also take regular values of F ,

b0 < a1 < b1 < · · · < ak−1 < bk−1 < ak,

such that

b0 < b′0, ak > a′k, a′i < ai < bi < b′i, i = 1, · · · , k − 1,
k−1∑

i=1

(bi − ai) + b0 + max F − ak > max F − 2ε.
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Consider the piecewise-linear function f :R→ R,

f(t) =





t for t ≤ b0,

b0 for b0 ≤ t ≤ a1,

t− a1 + b0 for a1 ≤ t ≤ b1,

b1 − a1 + b0 for b1 ≤ t ≤ a2,

t− a2 + (b1 − a1) + b0 for a2 ≤ t ≤ b2,

· · · for · · · ,
t− ak−1 +

∑k−2
i=1 (bi − ai) + b0 for ak−1 ≤ t ≤ bk−1,∑k−1

i=1 (bi − ai) + b0 for bk−1 ≤ t ≤ ak,

t− ak +
∑k−1

i=1 (bi − ai) + b0 for t ≥ ak.

Then min{f(t) | t ∈ [0,max F ]} = 0 and

max{f(t) | t ∈ [0,max F ]} = max F − ak +
k−1∑

i=1

(bi − ai) + b0 > max F − 2ε.

Note that b0 < a1 < b1 < · · · < ak−1 < bk−1 < ak are all non smooth points of f in (0,max F ).
By suitably smoothing f near these points we can get a smooth function h:R→ R satisfying:

(h)1 0 ≤ h′(t) ≤ 1 for t ∈ R;

(h)2 0 < h′(t) ≤ 1 for t ∈ [0, b′0) ∪ (a′k,max F ] ∪ (∪k−1
i=1 (a′i, b

′
i));

(h)3 h(t) = f(t) for t ∈ ∪k−1
i=0 [b′i, a

′
i+1];

(h)4 h(t) = f(t) near t = 0 and t = max F .

Set H = h ◦ F . Then (h)1 and (h)4 imply that H ∈ Had(M, ω;α0, α∞) and

max H = h(max F ) = max F − ak +
k−1∑

i=1

(bi − ai) + b0 > max F − 2ε.(32)

Furthermore one easily checks that

(H)1 The critical values of H in (0,max H) are exactly b0,
∑j

i=1(bi−ai)+b0, j = 1, · · · , k−1;

(H)2 The corresponding critical sets are respectively {b′0 ≤ F ≤ a′1} and {b′j ≤ F ≤ a′j+1},
j = 1, · · · , k − 1;

(H)3 H = b0 on {b′0 ≤ F ≤ a′1};
(H)4 H =

∑j
i=1(bi − ai) + b0 on {b′j ≤ F ≤ a′j+1}, j = 1, · · · , k − 1.

For each 0 ≤ s < 1
2 min{a′i+1 − b′i, b

′
i − a′i, b

′
0,max F − a′k | 0 ≤ i ≤ k − 1} we set

Ns := ∪k−1
i=0 {b′i − s ≤ F ≤ a′i+1 + s}.

Since the set of regular values of F is open, both N0 and Ns with sufficiently small s > 0 are
compact smooth submanifolds with boundary. For any open neighborhood O of N0 we have
also Ns ⊂ O if s > 0 is small enough. By (H)3 and (H)4, ∇g∇gH = 0 on N0 and thus we can
choose

0 < δ <
1
4

min{a′i+1 − b′i, b
′
i − a′i, b

′
0,max F − a′k | 0 ≤ i ≤ k − 1}

so small that
sup

x∈N2δ

‖∇g∇gH(x)‖g <
ρ

2
.

Here ρ is given by Lemma 2.2. Let us take a smooth function L:M → R such that
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(L)1 supp(L) ⊂ Nδ;

(L)2 ‖L‖C2 < ρ/2 (and thus supx∈N2δ
‖∇g∇g(H + L)(x)‖g < ρ);

(L)3 h(b′i−2δ) < H(x)+L(x) < h(a′i+1 +2δ) for x ∈ {b′i−δ ≤ F ≤ a′i+1 +δ}, i = 0, · · · , k−1;

(L)4 H +L has only finitely many critical points in Nδ and each of them is strong admissible.

The condition (L)4 can be assured by Lemma 7.2 (i) in [FHS]. To see that (L)3 can be satisfied,
note that (h)1 implies that h(b′i − δ) ≤ H(x) ≤ h(a′i+1 + δ) as b′i − δ ≤ F (x) ≤ a′i+1 + δ. By
the choice of δ it holds that b′0 − 2δ > 0, a′k + 2δ < max F and

a′i + δ, a′i + 2δ, b′i − 2δ, b′i − δ ∈ (a′i, b
′
i), i = 1, · · · , k − 1.

It follows from (h)2 that for i = 0, · · · , k − 1,

h(b′i − 2δ) < h(b′i − δ) < h(b′i) ≤ h(a′i+1) < h(a′i+1 + δ) < h(a′i+1 + 2δ).(33)

Using these and (L)2 we can easily choose L satisfying (L)3. Set G = H + L. Then P (G) =
P (H), Q(G) = Q(H) and

max G = max H and minG = min H = 0.(34)

Now we are in position to prove G ∈ Hsad(M, ω;α0, α∞) (resp. H◦sad(M, ω;α0, α∞)).
Firstly, the above construction shows that all critical values of G in (0,max G) sit in

∪k−1
i=0

(
h(b′i − 2δ), h(a′i+1 + 2δ)

)

and the corresponding critical points sit in Nδ. It follows that G has only finitely many critical
points in Int(Q) \ P and each of them is strong admissible.

Next we prove that XG has no nonconstant fast periodic orbits. Assume that γ is such an
orbit. It cannot completely sit in M \Nδ because G = H in M \Nδ. Moreover, Lemma 2.2
and (L)2 imply that γ cannot completely sit in N2δ. So there must exist two points γ(t1) and
γ(t2) such that γ(t1) ∈ ∂Nδ and γ(t2) ∈ ∂N2δ. Note that all possible values G takes on ∂Nδ

(resp. ∂N2δ) are

h(b′i − δ), h(a′i+1 + δ), i = 0, · · · , k − 1.

(resp. h(b′i − 2δ), h(a′i+1 + 2δ), i = 0, · · · , k − 1.)

By (33) any two of them are different. But G(γ(t1)) = G(γ(t2)). This contradiction shows
that XG has no nonconstant fast periodic orbit. Clearly, this argument also implies that XG

has no nonconstant contractible fast periodic orbit if F ∈ H◦ad(M, ω;α0, α∞).
Finally, (32) and (34) together gives

max G ≥ max F − 2ε.

The desired conclusion is proved. 2

As direct consequences of Lemma 3.3 and (2) we have
{

C
(2)
HZ(M, ω;α0, α∞) = sup {max H |H ∈ Hsad(M, ω;α0, α∞)} ,

C
(2◦)
HZ (M, ω;α0, α∞) = sup {max H |H ∈ H◦sad(M, ω;α0, α∞)} .

(35)

Proof of Theorem 1.10. We only prove (15). The proof of (16) is similar. Without loss of
generality we assume that C

(2)
HZ(M, ω;α0, α∞) > 0 and GW(M, ω;α0, α∞) < +∞. We need

to prove that if
ΨA,g,m+2(C;α0, α∞, β1, . . . , βm) 6= 0(36)
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for homology classes A ∈ H2(M ;Z), C ∈ H∗(Mg,m+2;Q) and β1, . . . , βm ∈ H∗(M ;Q) and
integers m ≥ 1 and g ≥ 0, then

C
(2)
HZ(M, ω;α0, α∞) ≤ ω(A).(37)

Arguing by contradiction, we may assume by (35) that there exists H ∈ Hsad(M, ω;α0, α∞)
such that max H > ω(A). Then we take η > 0 such that

max H − 2η > ω(A).(38)

By the properties of H there exist two smooth compact submanifolds P, Q ⊂ M with connected
boundary and of codimension zero such that the conditions (1),(2),(3),(4),(6) in Definition 1.2
and (5′) in Definition 3.2 are satisfied. Changing H slightly near {H = 0} and near {H =
max H} in the class Hsad(M, ω;α0, α∞) and using Lemma 2.1 we can choose embeddings

Φ: [−2, 0]× ∂Q → Q \ Int(P ) and Ψ: [0, 2]× ∂P → Q \ Int(P )

such that:

(i) Φ({0} × ∂Q) = ∂Q and Ψ({0} × ∂P ) = ∂P ;

(ii) Φ([−2, 0]× ∂Q) ∩Ψ([0, 2]× ∂P ) = ∅;
(iii) H has no critical points in Φ([−2, 0) × ∂Q) ∪ Ψ((0, 2] × ∂P ) and is constant ms on

Φ({s} × ∂Q) and nt on Ψ({t} × ∂P ) for each s ∈ [−2, 0] and t ∈ [0, 2];

(iv) H(x) < ms for any x ∈ M \ Q̂s and s ∈ [−2, 0], and nt < H(x) for any x ∈ M \ P̂t and
t ∈ [0, 2], where

Q̂s = (M \Q) ∪ Φ([s, 0]× ∂Q) and P̂t = P ∪Ψ([0, t]× ∂P ).

Notice that the above assumptions imply

ms < ms′ < max H and 0 < nt < nt′

for −2 < s < s′ < 0 and 0 < t < t′ < 2. Moreover Q̂s (resp.
P̂t) is a smooth compact submanifold of M with boundary Φ({s}×∂Q) (resp. Ψ({t}×∂P )).

Clearly, Q̂s ∩ P̂t = ∅. For τ ∈ [0, 2] we abbreviate

Bτ = P̂τ ∪ Q̂−τ .

By the properties of H and (38) we find δ ∈ (0, 1) such that

m−2δ > max H − η, n2δ < η and sup
x∈B2δ

‖∇g∇gH(x)‖g <
ρ

2
,(39)

where ρ is as in Lemma 2.2. As before we may choose a smooth function L:M → R such that

(a) supp(L) ⊂ Int(Bδ);

(b) ‖L‖C2 < min{ρ/2, η} (and thus supx∈B2δ
‖∇g∇g(H + L)(x)‖g < ρ);

(c) H + L has only finitely many critical points in Int(Bδ), and each of them is also strong
admissible;

(d) m−2δ < H(x) + L(x) for x ∈ Int(Q̂−δ).

(e) H(x) + L(x) < n2δ for x ∈ Int(P̂δ).
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As above, condition (c) is assured by Lemma 7.2 (i) in [FHS]. Set F = H + L. If x ∈ Bδ

then either F (x) > m−2δ or F (x) < n2δ. On the other hand the above (a) and (iv) imply
that n2δ < F (x) < m−2δ if x ∈ M \ B2δ. This means that a solution of ẋ = XF (x) cannot
go to Bδ from M \ B2δ because F is constant along any solution of ẋ = XF (x). So any
nonconstant solution of ẋ = XF (x) lies either in B2δ or in M \Bδ. It follows from (a) and (b)
that ẋ = XF (x) has no nonconstant fast periodic solutions. Using (39) and (a)-(e) again we
get that F is a smooth Morse function on M satisfying

(F )1 each critical point of F is strong admissible;

(F )2 λ · F has no non-trivial periodic solution of period 1 for any λ ∈ (0, 1];

(F )3 F (x) > max H − η for x ∈ Q̂−δ, and F (x) < η for any x ∈ P̂δ;

(F )4 max F ≤ max H + η and minF ≥ −η.

As a consequence of (F )1 we get that Jad(M, ω, XF ) is nonempty. From Lemma 7.2(iii) in
[FHS] we also know that Jad(M, ω,XF ) is open in J (M, ω) with respect to the C0-topology.
Therefore we may choose a regular J ∈ Jad(M, ω,XF ) and then repeat the arguments in
[LiuT] to define the Morse theoretical Gromov-Witten invariants

ΨA,Jλ,λF,g,m+2(C;α0, α∞, β1, . . . , βm)

and to prove

ΨA,Jλ,λF,g,m+2(C;α0, α∞, β1, . . . , βm) ≡ ΨA,g,m+2(C;α0, α∞, β1, . . . , βm)(40)

for each λ ∈ [0, 1]. As in Lemma 7.2 of [LiuT] we can prove the corresponding moduli space
FM(c0, c∞;J1, F, A) to be empty for any critical points c0 ∈ P̂δ and c∞ ∈ Q̂−δ of F . In fact,
otherwise we may choose an element f in it. Then one easily gets the estimate

0 ≤ E(f) = F (c0)− F (c∞) + ω(A).(41)

(Note: from the proof of Lemma 7.2 in [LiuT] one may easily see that the energy identity
above their Lemma 3.2 should read E(f) = ω(A) + H(c−) − H(c+).) From the above (F )3
and (41) it follows that

max H − 2η < F (c∞)− F (c0) ≤ ω(A).

This contradicts (38). So FM(c0, c∞;J1, F, A) is empty and thus

ΨA,J1,F,g,m+2(C;α0, α∞, β1, . . . , βm) = 0.

By (40) we get ΨA,g,m+2(C;α0, α∞, β1, . . . , βm) = 0. This contradicts (36). (37) is proved. 2

4 Proofs of Theorems 1.15, 1.16, 1.17 and 1.21

Proof of Theorem 1.15. We start with the matrix definition of the Grassmannian manifold
G(k, n) = G(k, n;C). Let n = k + m, M(k, n;C) = {A ∈ Ck×n | rankA = k } and GL(k;C) =
{Q ∈ Ck×k |detQ 6= 0}. Then GL(k;C) acts freely on M(k, n;C) from the left by matrix
multiplication. The quotient M(k, n;C)/GL(k;C) is exactly G(k, n). For A ∈ M(k, n;C) we
denote by [A] ∈ G(k, n) the GL(k;C)-orbit of A in M(k, n;C), and by

Pr:M(k, n;C) → G(k, n), A 7→ [A]
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the quotient projection. Any representative matrix B of [A] is called a homogeneous coor-
dinate of the point [A]. For increasing integers 1 ≤ α1 < · · · < αk ≤ n let {αk+1, · · · , αn}
be the complement of {α1, · · · , αk} in the set {1, 2, . . . , n}. Let us write A ∈ M(k, n;C) as
A = (A1, · · · , An) and

Aα1···αk
= (Aα1 , · · · , Aαk

) ∈ Ck×k and Aαk+1···αn
= (Aαk+1 , · · · , Aαn

) ∈ Ck×m,

where A1, · · · , An are k × 1 matrices. Define a subset of M(k, n;C) by

V (α1, · · · , αk) = {A ∈ M(k, n;C) |detAα1···αk
6= 0 }

and set U(α1, · · · , αk) = Pr(V (α1, · · · , αk)) and

Θ(α1, · · · , αk) : U(α1, · · · , αk) → Ck×m ≡ Ckm, [A] → Z = (Aα1···αk
)−1Aαk+1···αn

.

It is easily checked that this is a homeomorphism. Z is called the local coordinate of
[A] ∈ G(k, n) in the canonical coordinate neighborhood U(α1, · · · , αk). Note that for any
Z ∈ Ck×m there must exist an n × n permutation matrix P (α1, · · · , αk) such that for the
matrix A = (I(k), Z)P (α1, · · · , αk) we have

Aα1···αk
= I(k) and Aαk+1···αn

= Z.(42)

Hereafter I(k) denotes the unit k×k matrix. It follows from this fact that for another set of in-
creasing integers 1 ≤ β1 < · · · < βk ≤ n the transition function Θ(β1, · · · , βk)◦Θ(α1, · · · , αk)−1

from Θ(α1, · · · , αk)(U(α1, · · · , αk)) to Θ(β1, · · · , βk)(U(β1, · · · , βk)) is given by

Z → W = (Wβ1···βk
)−1Wβk+1···βn ,

where (Wβ1···βk
,Wβk+1···βn

)(I, Z)P (α1, · · · , αk)P ′(β1, · · · , βk). It is not hard to check that this
transformation is biholomorphic. Thus

{(
U(α1, · · · , αk), Θ(α1, · · · , αk)

) ∣∣∣ 1 ≤ α1 < · · · < αk ≤ n
}

(43)

gives an atlas of the natural complex structure on G(k, n), which is called the canonical atlas.
It is not hard to prove that the canonical Kähler form σ(k,n) on G(k, n) in such coordinate
charts is given by

√−1
2

tr[(I(k) + ZZ
′
)−1dZ ∧ (I(m) + Z

′
Z)−1dZ

′
] =

√−1
2

∂∂̄ log det(I(k) + ZZ
′
),

where dZ = (dzij)1≤i≤k,1≤j≤m and ∂, ∂̄ are the differentials with respect to the holomorphic
and antiholomorphic coordinates respectively (cf. [L]).

On the other hand it is easy to see that

τk,n =
√−1

2 ∂∂̄ log det(AA
′
)

=
√−1

2 tr[−(AA
′
)−1dA ∧A

′
(AA

′
)−1AdA

′
+ (AA

′
)−1dA ∧ dA

′
]

is an invariant Kähler form on M(k, n;C) under the left action of GL(k;C). Thus it descends
to a symplectic form τ̂k,n on G(k, n;C). If A = (I(k), Z) it is easily checked that

√−1
2

tr[−(AA
′
)−1dA ∧A

′
(AA

′
)−1AdA

′
+ (AA

′
)−1dA ∧ dA

′
]

=
√−1

2
tr[−(I(k) + ZZ

′
)−1dZ ∧ Z

′
(I(k) + ZZ

′
)−1ZdZ

′
+ (I(k) + ZZ

′
)−1dZ ∧ dZ

′
]

=
√−1

2
tr[(I(k) + ZZ

′
)−1dZ ∧ (I(m) + Z

′
Z)−1dZ

′
].
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It follows that τ̂k,n = σ(k,n). Since Pr∗τ̂k,n = τk,n we arrive at

Pr∗σ(k,n) = τk,n.(44)

As usual if we identify z = (z11, · · · , z1m, z21, · · · , z2m, · · · , zk1, · · · , zkm) ∈ Ckm with the matrix
Z = (zij)1≤i≤k,1≤j≤m the standard symplectic form in Ckm becomes

ω(km) =
√−1

2
tr[dZ ∧ dZ

′
].

Denote by
M0(k, n;C) = {A ∈ M(k, n;C) |AA

′
= I(k) }.

Then
τk,n|M0(k,n;C) = ω(km)|M0(k,n;C).(45)

In fact, since AA
′
= I(k) we have that dAA

′
+ AdA

′
= 0 and thus

√−1
2

tr[−(AA
′
)−1dA ∧A

′
(AA

′
)−1AdA

′
+ (AA

′
)−1dA ∧ dA

′
]

=
√−1

2
tr[dA ∧ dA′] +

√−1
2

tr[dAA
′ ∧ dAA

′
].

We want to prove the second term is zero. A direct computation yields

tr[dAA
′ ∧ dAA

′
]

=
k∑

i=1

k∑

j=1

(
n∑

s=1

ājsdais) ∧ (
n∑

s=1

āisdajs)

=
k∑

j=1

k∑

i=1

(
n∑

s=1

āisdajs) ∧ (
n∑

s=1

ājsdais) (interchanging i, j)

= −
k∑

i=1

k∑

j=1

(
n∑

s=1

ājsdais) ∧ (
n∑

s=1

āisdajs).

Hence tr[dAA
′ ∧ dAA

′
] = 0. (45) is proved.

Lemma 4.1 For the classical domain of the first type (cf. [L])

RI(k, m) = {Z ∈ Ck×m | I(k) − ZZ
′
> 0},

the map

Φ: (RI(k, m), ω(km)) → (Ck×n, ω(kn)), Z 7→ (√
I(k) − ZZ

′
, Z

)

is a symplectic embedding with image in M0(k, n;C), and therefore we get a symplectic em-
bedding Φ̂ = Pr ◦ Φ of (RI(k, m), ω(km)) into (G(k, n;C), σ(k,n)).

Proof. Differentiating

Φ(Z)Φ(Z)
′
=

√
I(k) − ZZ

′
√

I(k) − ZZ
′
+ ZZ

′
= I(k)

twice from both sides we get

d

√
I(k) − ZZ

′∧
d

√
I(k) − ZZ

′
= 0.
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This leads to
dΦ(Z) ∧ dΦ(Z)

′
= dZ ∧ dZ

′
, i.e.,Φ∗ω(kn) = ω(km).

Using (44) and (45) we get that the composition Φ̂ = Pr ◦ Φ yields the desired symplectic
embedding from (RI(k, m), ω(km)) to (G(k, n;C), σ(k,n)). 2

Lemma 4.2 The open unit ball B2km(1) is contained in RI(k, m).

Proof. It is well known that for any Z ∈ Ck×m with k ≤ m (resp. k > m) there exist unitary
matrices U of order k and V of order m such that

UZV = (diag(λ1, · · · , λk), O) ( resp. UZV = (diag(µ1, · · · , µm), O)′)

for some λ1 ≥ · · · ≥ λk ≥ 0 (resp. µ1 ≥ · · · ≥ µm ≥ 0), where diag(λ1, · · · , λk) (resp.
diag(µ1, · · · , µm)) denote the diagonal matrix of order k (resp. m), and O is the zero matrix
of order k× (m− k) (resp. (k−m)×m). Therefore, Z ∈ RI(k, m), i.e., I(k)−ZZ

′
> 0, if and

only if λj < 1, j = 1, · · · , k, (resp. µi < 1, i = 1, · · · ,m). Let Z ∈ B2km(1). Then

‖Z‖2 =
k∑

i=1

m∑

j=1

|zij |2 = tr(ZZ
′
) =

m∑

j=1

λ2
j (resp.

n∑

k=1

µ2
k) < 1,

and thus λj < 1 (resp. µi < 1), i.e., Z ∈ RI(k, m). 2

Now Lemma 4.1 and Lemma 4.2 yield directly

WG(G(k, n), σ(k,n)) ≥ WG(RI(k, m), ω(km)) ≥ π(46)

for m = n− k. Moreover, for the submanifolds X(k,n) and Y (k,n) of G(k, n) the computation
in [SieT, Wi] shows ΨL(k,n),0,3(pt; [X(k,n)], [Y (k,n)], pt) = 1. Thus (12) and Theorem 1.13 lead
to

WG(G(k, n), σ(k,n)) ≤ C
(2)
HZ(G(k, n), σ(k,n); pt, α) ≤ σ(k,n)(L(k,n)) = π(47)

for α = [X(k,n)] or α = [Y (k,n)] with k ≤ n − 2. Hence the conclusions follow from (46) and
(47). Theorem 1.15 is proved. 2

Proof of Theorem 1.16. Since ΨL(k,n),0,3(pt; [X(k,n)], [Y (k,n)], pt) = 1 it follows from
Proposition 7.4 that

ΨA,0,3(pt; [M ]× [X(k,n)], [M ]× [Y (k,n)], pt) 6= 0

for A = 0× L(k,n), where 0 denotes the zero class in H2(M ;Z). Theorem 1.13 implies

C
(2◦)
HZ (M ×G(k, n), ω ⊕ (aσ(k,n)); pt, [M ]× α) ≤ |a|π

for α = [X(k,n)] or α = [Y (k,n)] with k ≤ n− 2. This implies (20).
For (21) we only prove the case r = 2 for the sake of simplicity. The general case is similar.

Let us take A = ×r
i=1L

(ki,ni) ∈ H2(W,Z). Then Ω(A) = (|a1|+ |a2|)π. Note that

ΨL(ki,ni),0,3(pt; pt, [X(ki,ni)], [Y (ki,ni)]) = ΨL(ki,ni),0,3(pt; pt, [Y (ki,ni)], [X(ki,ni)]) = 1

because the dimensions of [X(ki,ni)] and [Y (ki,ni)] are even for i = 1, 2. Proposition 7.7 gives

ΨA,0,3(pt; pt, [X(k1,n1)]× [Y (k2,n2)], [Y (k1,n1)]× [X(k2,n2)])

= ΨL(k1,n1),0,3(pt; pt, [X(k1,n1)], [Y (k1,n1)], pt) ·ΨL(k2,n2),0,3(pt; pt, [Y (k2,n2)], [X(k2,n2)]) = 1,

ΨA,0,3(pt; pt, [X(k1,n1)]× [X(k2,n2)], [Y (k1,n1)]× [Y (k2,n2)])

= ΨL(k1,n1),0,3(pt; pt, [X(k1,n1)], [Y (k1,n1)]) ·ΨL(k2,n2),0,3(pt; pt, [X(k2,n2)], [Y (k2,n2)]) = 1.
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As before it follows that

C
(2◦)
HZ (W,Ω; pt, [X(k1,n1)]× [Y (k2,n2)]) ≤ Ω(A) = (|a1|+ |a2|)π,

C
(2◦)
HZ (W,Ω; pt, [X(k1,n1)]× [X(k2,n2)]) ≤ Ω(A) = (|a1|+ |a2|)π.

(21) is proved. 4 2

Proof of Theorem 1.17. Without loss of generality we may assume a > 0. Firstly, as in
the proof of Theorem 1.16 one shows that

ΨA,0,3(pt; [M × CPn], [M × pt], pt) 6= 0

for A = [pt× CP 1], and thus arrive at

C
(2◦)
HZ (M × CPn, ω ⊕ aσn; pt, [M × pt]) ≤ aπ.(48)

Next we prove

C
(2)
HZ(M ×B2n(r), ω ⊕ ω0; pt, [M × pt]) = C

(2)
HZ(M ×B2n(r), ω ⊕ ω0; pt, pt).(49)

By Definition 1.2 it is clear that ≤ holds in (49). To see ≥ we take H ∈ Had(M ×B2n(r), ω⊕
ω0; pt, pt). Let P = P (H) and Q = Q(H) be the corresponding submanifolds in Definition 1.2.
Since P ⊂ Q ⊂ Int(M ×B2n(r)) = M × Int(B2n(r)) and Q is compact there exists η ∈ (0, r)
such that Q ⊂ M × B2n(η). (Note that here we use ∂M = ∅.) Therefore, H may be viewed
as an element of Had(M ×B2n(r), ω ⊕ ω0; pt, [M × pt]) naturally. This implies ≥ in (49).

Thirdly, as in [HZ1, HZ2] one proves

C
(2)
HZ(M ×B2n(r), ω ⊕ ω0; pt, pt) ≥ πr2(50)

for any r > 0. By (48), Theorem 1.5 (v), (49) and (50) we can obtain

aπ ≥ C
(2◦)
HZ (M × CPn, ω ⊕ aσn; pt, [M × pt])

≥ C
(2)
HZ(M × CPn, ω ⊕ aσn; pt, [M × pt])

≥ C
(2)
HZ(M ×B2n(δ

√
a), ω ⊕ ω0; pt, [M × pt])

= C
(2)
HZ(M ×B2n(δ

√
a), ω ⊕ ω0; pt, pt)

≥ πδ2a

for any δ ∈ (0, 1). Here we use the symplectic embedding (B2n(δ
√

a), ω0) ↪→ (CPn, aσn) in
the proof of Corollary 1.5 in [HV2] for any 0 < δ < 1. Taking δ → 1, we find that for δ = 1 the
above inequalities are equalities. Together with Lemma 1.4 we obtain (22) and half of (23).

To prove the other half of (23), i.e., C(M × Z2n(r), ω ⊕ ω0) = πr2, note that each H ∈
Had(M × Z2n(r), ω ⊕ ω0; pt, pt) can naturally be viewed as a function in Had(M × B2(r) ×
R2n−2/mZ2n−2, ω ⊕ ω0 ⊕ ωst; pt, pt) for sufficiently large m > 0. Here ωst is the standard
symplectic structure on the tours R2n−2/mZ2n−2. It follows from (22) that maxH ≤ πr2 and
so

C
(2◦)
HZ (M × Z2n(r), ω ⊕ ω0; pt, pt) ≤ πr2

for any r > 0. The desired conclusions easily follow. 2

In order to prove Theorem 1.21 we need the following lemma told to us by Professor Dusa
McDuff and Dr. Felix Schlenk.

4As asked before, I do not understand how you get (21) “by the same arguments” as (20). Please give the proof

of (21) for the case r = 2. Please check the proof (21).
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Lemma 4.3 For any two closed symplectic manifolds (M, ω) and (N, σ) it holds that

c(M ×N, ω ⊕ σ) ≥ c(M, ω) + c(N, σ)

for c = cHZ , c◦HZ and CHZ , C◦HZ .

According to Lemma 1.4 it suffices to prove Lemma 4.3 for cHZ and c◦HZ . Let F and G

be admissible functions on M and N , respectively. Since the Hamiltonian system for F + G

splits, we see that F + G is an admissible function on M ×N . From this the lemma follows
at once.

Proof of Theorem 1.21. We denote by (W,ω) the product manifold in Theorem 1.21.
Without loss of generality we may assume ai > 0, i = 1, · · · , k. Let Ai = [CP 1] be the
generators of H2(CPni ;Z), i = 1, · · · , k. They are indecomposable classes. Since [Y (1,ni)] = pt

it follows from the proof of Theorem 1.16 that

ΨAi,0,3(pt; pt, pt, [X(1,ni)]) = 1

for i = 1, · · · , k. Set A = A1 × · · · × Ak. Note that each (CPni , aiσni
) is monotone. By

Proposition 7.7 in the appendix we have

ΨA,0,3(pt; pt, pt, β) = 1

for some class β ∈ H∗(W,Q). Thus by Corollary 1.19 we get that

c(W,ω) ≤ ω(A) = (a1 + · · ·+ ak)π(51)

for c = cHZ , c◦HZ . On the other hand Lemma 4.3 yields

c(W,ω) ≥
k∑

i=1

c(CPni , aiσni) = (a1 + · · ·+ ak)π

for c = cHZ , c◦HZ . 2

5 Proof of Theorems 1.22, 1.24

Proof of Theorem 1.22. Under the assumptions of Theorem 1.22 it follows from Re-
mark 1.11 that the Gromov-Witten invariant

ΨA,g,m+2(π∗C;α0, PD([ω]), α1, · · · , αm) 6= 0,

and thus Theorem 1.10 leads to

C
(2)
HZ(M, ω;α0, PD([ω])) < +∞.

For a sufficiently small ε > 0 the well-known Lagrangian neighborhood theorem due to Wein-
stein [We1] yields a symplectomorphism φ from (Uε, ωcan) to a neighborhood of L in (M, ω)
such that φ|L = id. Since L is a Lagrange submanifold one can, as in [Lu3, V6], use the
Poincaré-Lefschetz duality theorem to prove that there exists a cycle representative of PD([ω])
whose support is contained in M \ φ(Uε) because ω is exact near L. By (6) we get that

C
(2)
HZ(Uε, ωcan; α̃0, pt) = C

(2)
HZ(φ(Uε), ω; α̃0, pt)(52)

≤ C
(2)
HZ(M, ω;α0, PD([ω])) < +∞.
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Here we still denote by α̃0 the images in H∗(Uε,Q) and H∗(φ(Uε),Q) of α̃0 under the maps
induced by the inclusions L ↪→ Uε and L ↪→ φ(Uε). Note that for any λ 6= 0 the map

Φλ : T ∗L → T ∗L, (q, v∗) 7→ (q, λv∗),

satisfies: Φ∗λωcan = λωcan. Theorem 1.5 (iv), (52) and this fact imply that

C
(2)
HZ(Uc, ωcan; α̃0, pt) < +∞

for any c > 0. In the case g = 0, since the inclusion L ↪→ M induces an injective homomorphism
π1(L) → π1(M) and thus φ(Uε) ↪→ M also induces an injective homomorphism π1(φ(Uε)) →
π1(M) it follows from (8) that

C
(2◦)
HZ (Uε, ωcan; α̃0, pt) = C

(2◦)
HZ (φ(Uε), ω; α̃0, pt)

≤ C
(2◦)
HZ (M, ω;α0, PD([ω])) < +∞,

and thus that C
(2◦)
HZ (Uc, ωcan; α̃0, pt) < +∞ for any c > 0.

In particular, if L is a Lagrange submanifold of a g-symplectic uniruled manifold (M, ω)
then we can take α0 = pt and derive from (7)

cHZ(Uc, ωcan) = CHZ(Uc, ωcan) < +∞

for any c > 0, and from (9)

c◦HZ(Uc, ωcan) = C◦HZ(Uc, ωcan) < +∞

for all c > 0 if g = 0 and the inclusion L ↪→ M induces an injective homomorphism π1(L) →
π1(M). Here we use Lemma 1.4 and the fact that Uc is a compact smooth manifold with
connected boundary and of codimension zero because dimL ≥ 2.

To see the final claim note that with (M, ω) also (M,−ω) is strong g-symplectic uniruled.
It follows from Proposition 7.5 that the product (M × M, (−ω) ⊕ ω) is strong 0-symplectic
uniruled. By the Lagrangian neighborhood theorem there exists a neighborhood N (4) ⊂
M×M of the diagonal 4, a fiberwise convex neighborhood N (M0) ⊂ T ∗M of the zero section
M0, and a symplectomorphism ψ : (N (4), (−ω)⊕ω) → (T ∗M, ωcan) such that ψ(x, x) = (x, 0)
for x ∈ M . Note also that the inclusion 4 ↪→ M × M induces an injective homomorphism
π1(4) → π1(M ×M). The desired conclusion follows immediately. 2

Proof of Theorem 1.24. The case dim M = 2 is obvious. So we assume that dimM ≥ 4.
For the reader’s convenience we recall the construction in [Bi1]. Set σ = ω|S . We first assume
that [σ] ∈ H2(S,Z). Therefore there exists a Hermitian line bundle p : L → S with c1(L) = [σ]
and a compatible connection ∇ on L with curvature R∇ = 2πiσ. Let EL = {v ∈ L | ‖v‖ < 1}
be the open unit disc bundle of L, and α∇ the associated transgression 1-form on L \ 0 with
dα∇ = −p∗σ, and r the radial coordinate along the fibres induced by ‖ ·‖. For every 0 < ρ < 1
both EL(ρ) := {v ∈ EL | ‖v‖ < ρ} and EL(ρ) := {v ∈ EL | ‖v‖ ≤ ρ} are subbundles of EL. It
was shown in [Bi1] that

(i) ωcan := p∗σ + d(r2α∇) is a symplectic form on EL;

(ii) (EL, ωcan)) can be compactified into a CP 1-bundle over (S, σ), pX : XL = P (L⊕C) → S

with two distinguished sections: the zero section Z0 = P (0⊕C) and the section at infinity
Z∞ = P (L⊕ 0);

(iii) there exists a diffeomorphism f : EL → XL \ Z∞ and a family of symplectic forms
{ηρ}0<ρ<1 on XL such that
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1. f∗ηρ = ωcan on EL(ρ) for every 0 < ρ < 1;
2. f sends the fibres of EL → S to the fibres of XL \ Z∞ → S;
3. If S is identified with the zero-section of EL then f(S) = Z0 and pX ◦ f |S : S → S

is the identity map;
4. The area of the fibres Fs satisfies ρ2 <

∫
Fs

ηρ < 1 for every 0 < ρ < 1.

In Lemma 2.3 of [Lu6] we proved that if F ∈ H2(XL;Z) denotes the homology class of a fibre
of XL → S then the Gromov-Witten invariant of (XL, ηρ) is

Ψ(XL,ηρ)
F,0,3 (pt; [Z0], [Z∞], pt) = 1.

That is, (XL, ηρ) is a strong 0-symplectic uniruled manifold in the sense of Definition 1.14.
By Theorem 1.10 and the above fourth conclusion in (iii) we have

C
(2◦)
HZ (XL, ηρ; pt, [Z∞]) ≤ GW0(XL, ηρ; pt, [Z∞]) ≤ ηρ(F ) < 1.

For every 0 < ρ < 1, note that f(EL(ρ)) ⊂ XL \ Z∞ and that the inclusion f(EL(ρ)) ⊂ XL

induces an injective homomorphism π1(f(EL(ρ))) ↪→ π1(XL) because S = Z0 is a deformation
retract of f(EL(ρ)) and pX ◦ IS = idS for the inclusion IS : S → XL. It follows from (9) that

c◦HZ(f(EL(ρ)), ηρ) ≤ C
(2◦)
HZ (XL, ηρ; pt, [Z∞]) < 1.

Using the above first conclusion in (iii) it holds that

c◦HZ(EL(ρ), ωcan)) < 1

for every 0 < ρ < 1. By the symplectic neighborhood theorem, for ρ > 0 sufficiently small
(EL(ρ), ωcan)) is symplectomorphic to a smooth compact submanifold W ⊂ M with connected
boundary and of codimension zero that is a neighborhood of S in M . Therefore we get

c◦HZ(W,ω) = C◦HZ(W,ω) < 1.

If [σ] ∈ H2(S,Q) we can find an integer m > 1 such that [mσ] = m[σ] ∈ H2(S,Z). Then
mc◦HZ(W,ω) = c◦HZ(W,mω) < 1, and thus c◦HZ(W,ω) < 1/m < 1. Theorem 1.24 is proved. 2

6 Proof of Theorem 1.35

The idea is the same as in [Ka]. We can assume that n/k ≥ 2. Following the notations in
the proof of Theorem 1.15, notice that the canonical atlas on G(k, n) given by (43) has

(
n
k

)

charts, and that for each chart (Θ(α1, · · · , αk), U(α1, · · · , αk)) Lemma 4.1 yields a symplectic
embedding Φ̂α1···αk

of (RI(k, m), ω(km)) into (G(k, n), σ(k,n)) given by

Z 7→ [(
√

I(k) − ZZ
′
, Z)P (α1, · · · , αk)],

where P (α1, · · · , αk) is the n × n permutation matrix such that (42) holds for the matrix
B = (I(k), Z)P (α1, · · · , αk). Moreover, for the matrix A = (

√
I(k) − ZZ

′
, Z)P (α1, · · · , αk) we

have

Aα1···αk
=

√
I(k) − ZZ

′
and Aαk+1···αn

= Z.

Note that

‖A‖2 = ‖Aα1···αk
‖2 + ‖Aαk+1···αn‖2

= tr(Aα1···αk
A
′
α1···αk

) + tr(Aαk+1···αn
A
′
αk+1···αn

)

= tr(I(k) − ZZ
′
) + tr(ZZ

′
) = k,
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and therefore
‖Aα1···αk

‖2 = k − ‖Aαk+1···αn‖2 = k − ‖Z‖2.
By Lemma 4.2 these show that Φ̂α1···αk

(B2km(r)) is contained in

Λ(α1, · · · , αk; r)
= {[B] ∈ G(k, n) | for all A ∈ [B] ∩M0(k, n;C), ‖Aα1···αk

‖2 > k − r2}(53)

for any 0 < r ≤ 1. Note that k > 1 and n/k ≥ 2. There must be two disjoint subsets of
{1, · · · , n}, say {α1, · · · , αk} and {β1, · · · , βk}, such that α1 < · · · < αk and β1 < · · · < βk. For
any two such subsets we claim that

Φ̂α1···αk
(B2km(1)) ∩ Φ̂β1···βk

(B2km(1)) = ∅.

In fact, Λ(α1, · · · , αk; 1) and Λ(β1, · · · , βk; 1) are disjoint. Otherwise, let [B] belong to their
intersection and take a representative A of [B] in M0(k, n;C). Then

k ≥ ‖Aα1···αk
‖2 + ‖Aβ1···βk

‖2 > 2k − 2

by (53). This contradicts the assumption that k ≥ 2. Now the conclusion follows from the fact
that there exist exactly [n/k] mutually disjoint subsets of {1, · · · , n} consisting of k numbers.
2

Proof of (26). Notice that G(k, n) can be embedded into the complex projective space CPN

with N = n!
(n−k)!k! − 1 by the Plücker map p ([GH]), and that for any l-dimensional subvariety

X of CPN one has
Vol(X) = deg(X) ·Vol(L)

with respect to the Fubini-Study metric, where L is an l-dimensional linear subspace of CPN

(cf. [Fu, p. 384]). But it was shown in Example 14.7.11 of [Fu] that

deg(p(G(k, n))) =
1! · 2! · · · (k − 1)! · (k(n− k))!

(n− k)! · (n− k + 1)! · · · (n− 1)!
.

It is well-known that the volume of a k(n− k)-dimensional linear subspace L of CPN is

Vol(CP k(n−k)) =
πk(n−k)

(k(n− k))!
.

These give (26). 2

7 Appendix: The Gromov-Witten invariants of product

manifolds

In this appendix we collect some results on Gromov-Witten invariants needed in this paper.
They either are easily proved or follow from the references given.

Let (V, ω) be a closed symplectic manifold of dimension 2n. Recall that for a given class
A ∈ H2(V ;Z) the Gromov-Witten invariant of genus g and with k marked points is a homo-
morphism

ΨV
A,g,k : H∗(Mg,k;Q)×H∗(V ;Q)k → Q,

where 2g +k ≥ 3 and Mg,k is the space of isomorphism classes of genus g stable curves with k

marked points, which is a connected Kähler orbifold of complex dimension 3g−3+k. In [Lu8]
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we used the cohomology H∗
c (V ;Q) with compact support and the different notation GW(ω,µ,J)

A,g,k

to denote the GW-invariants since we also considered noncompact symplectic manifolds for
which the dependence on further data needs to be indicated. For closed symplectic manifolds
we easily translate the composition law and reduction formulas in [Lu8] into the homology
version, which is the same as the ones in [RT2]. Let integers gi ≥ 0 and ki > 0 satisfy
2gi + ki ≥ 3, i = 1, 2. Set g = g1 + g2 and k = k1 + k2 and fix a decomposition S = S1 ∪ S2 of
{1, · · · , k} with |Si| = ki. Then there is a canonical embedding

θS : Mg1,k1+1 ×Mg2,k2+1 →Mg,k,(54)

which assigns to marked curves (Σi;xi
1, · · · , xi

ki+1), i = 1, 2, their union Σ1 ∪ Σ2 with x1
k1+1

and x2
k2+1 identified and the remaining points renumbered by {1, · · · , k} according to S. Let

µg,k : Mg−1,k+2 →Mg,k

be the map corresponding to gluing together the last two marked points. It is continuous.
Suppose that {βb}L

b=1 is a homogeneous basis of H∗(V ;Z) modulo torsion, (ηab) its intersection
matrix and (ηab) = (ηab)−1.

Composition law. Let [Ki] ∈ H∗(Mgi,ki+1;Q), i = 1, 2, [K0] ∈ H∗(Mg−1,k+2;Q) and
A ∈ H2(V ;Z). Then for any α1, · · · , αk in H∗(V ;Q) we have

ΨV
A,g,k(θS∗([K1 ×K2]);α1, · · · , αk) = (−1)cod(K2)

∑k1
i=1 cod(αi)

∑

A=A1+A2

∑

a,b

ΨV
A1,g1,k1+1([K1]; {αi}i≤k1 , βa)ηabΨV

A2,g2,k2+1([K2];βb, {αj}j>k1),

ΨV
A,g,k((µg,k)∗([K0]);α1, · · · , αk) =

∑

a,b

ΨV
A,g−1,k+2([K0];α1, · · · , αk, βa, βb)ηab.

Remark that (−1)cod(K2)
∑k1

i=1 cod(αi) = (−1)dim(K2)
∑k1

i=1 dim(αi) because the dimensions of
Mgi,ki+1 and V are even. Denote the map forgetting the last marked point by

πk : Mg,k →Mg,k−1.

Reduction formula. Suppose that (g, k) 6= (0, 3), (1, 1). Then

(i) for any α1, · · · , αk−1 in H∗(V ;Q) and [K] ∈ H∗(Mg,k;Q) we have

ΨV
A,g,k([K];α1, · · · , αk−1, [V ]) = ΨV

A,g,k−1((πk)∗([K]);α1, · · · , αk−1)(55)

(ii) if αk ∈ H2n−2(V ;Q) we have

ΨV
A,g,k([π−1

k (K)];α1, · · · , αk)PD(αk)(A)ΨV
A,g,k−1([K];α1, · · · , αk−1).(56)

Lemma 7.1 Let (V, ω) be a closed symplectic manifold, {βb}L
b=1 a homogeneous basis of

H∗(V ;Z) modulo torsion as in the composition law above. Suppose that there exist homol-
ogy classes A ∈ H2(V ;Z), α1, · · · , αm ∈ H∗(V ;Q) and g > 0 such that

ΨV
A,g,m(pt;α1, · · · , αm) 6= 0.(57)

Then for each nonnegative integer g′ < g it holds that

ΨV
A,g′,m+2s(pt;α1, · · · , αm, βa1 , βb1 , · · · , βas

, βbs
) 6= 0

for s = g − g′ and some βai
, βbi

in {βb}L
b=1, i = 1, · · · , s.
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Proof. By the composition law for Gromov-Witten invariants we have

ΨV
A,g,m(pt;α1, · · · , αm) = ΨV

A,g,m((µg,m)∗(pt);α1, · · · , αm)

=
∑

a,b

ΨV
A,g−1,m+2(pt;α1, · · · , αm, βa, βb)ηab.

By (57), the left side is not equal to zero. So there exists a pair (a, b) such that

ΨV
A,g−1,m+2(pt;α1, · · · , αm, βa, βb) 6= 0.

If g − 1 > g′ we can repeat this argument to reduce g − 1. After s = g − g′ steps the lemma
follows. 2

Lemma 7.2 Let (V, ω) and {βb}L
b=1 be as in Lemma 7.1. Suppose that there exist homology

classes A ∈ H2(V ;Z), ξ1, · · · , ξk ∈ H∗(V ;Q) and [K] ∈ H∗(Mg,k;Q) such that

ΨV
A,g,k([K]; ξ1, · · · , ξk) 6= 0(58)

for some integer g ≥ 0. Then for each integer m > k we have

ΨV
A,g,m([K1]; ξ1, · · · , ξk,

m−k︷ ︸︸ ︷
PD([ω]), · · · , PD([ω])) 6= 0.

Here K1 = (πm)−1 ◦ · · · ◦ (πk+1)−1(K).

Proof. Using the definition of the GW-invariants, it follows from (58) that 2g+k ≥ 3 and that
the space Mg,k(V, J,A) of k-pointed stable J-maps of genus g and of class A in V is nonempty
for generic J ∈ J (V, ω). In particular, this implies ω(A) 6= 0. Applying the reduction formula
(56) to (58) we have

ΨV
A,g,k+1([π

−1
k+1(K)]; ξ1, · · · , ξk, PD([ω])) = ω(A) ·ΨV

A,g,k([K]; ξ1, · · · , ξk) 6= 0.

Continuing this process m− k − 1 times again we get the desired conclusion. 2

Proposition 7.3 For a closed symplectic manifold (V, ω), if there exist homology classes A ∈
H2(V ;Z) and αi ∈ H∗(V ;Q), i = 1, · · · , k, such that the Gromov-Witten invariant

ΨA,g,k+1(pt; pt, α1, · · · , αk) 6= 0(59)

for some integer g ≥ 0, then there exist homology classes B ∈ H2(V ;Z) and β1, β2 ∈ H∗(V ;Q)
such that

ΨB,0,3(pt; pt, β1, β2) 6= 0.(60)

Consequently, every strong symplectic uniruled manifold is strong 0-symplectic uniruled.

(60) implies that B is spherical. In fact, in this case there exists a 3-pointed stable J-curve
of genus zero and in class B. By the gluing arguments we can get a J-holomorphic sphere
f : CP 1 → M which represents the class B. That is, B is J-effective. So B is necessarily
spherical, cf. Page 67 in [McSa2].
Proof of Proposition 7.3. By Lemma 7.1, we can assume g = 0 in (59), i.e.

ΨA,0,k+1(pt; pt, α1, · · · , αk) 6= 0.(61)
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This implies that k + 1 ≥ 3 or k ≥ 2. If k = 2 then the conclusion holds. If k = 3 we can use
the reduction formula (55) to get

ΨA,0,5(pt; pt, α1, · · · , α3, [V ]) = ΨA,0,4(pt; pt, α1, · · · , α3) 6= 0.

Therefore we can actually assume that k ≥ 4 in (61). Since M0,m is connected for every
integer m ≥ 3, H0(M0,m,Q) is generated by pt. For the canonical embedding θS as in (54)
we have θS∗(pt× pt) = pt. Hence it follows from the composition law that

ΨA,0,k+1(pt; pt, α1, · · · , αk)
=

∑
A=A1+A2

∑
a,b ΨA1,0,4(pt; pt, α1, α2, βa)ηabΨA2,0,k−1(pt;βb, α3, · · · , αk)

because cod(K2) = cod(pt) is even. This implies that

ΨA1,0,4(pt; pt, α1, α2, βa) 6= 0(62)

for some A1 ∈ H2(V ;Z) and 1 ≤ a ≤ L. By the associativity of the quantum multiplication,

ΨA1,0,4(pt; pt, α1, α2, βa) = ±
∑

A1=A11+A12

∑

l

ΨA11,0,3(pt; pt, α1, el)ΨA12,0,3(pt; fl, α2, βa)

where {el}l is a basis for the homology H∗(M ;Q) and {fl}l is the dual basis with respect to
the intersection pairing, see (6) in [Mc2]. It follows from this identity and (62) that

ΨA11,0,3(pt; pt, α1, el) 6= 0

for some l. Taking B = A11 we get (60). 2

Proposition 7.4 Let (M, ω) and (N, σ) be two closed symplectic manifolds. Then for every
integer k ≥ 3 and homology classes A2 ∈ H2(N ;Z) and βi ∈ H∗(N ;Q), i = 1, · · · , k it holds
that

ΨM×N
0⊕A2,0,k(pt; [M ]⊗ β1, · · · , [M ]⊗ βk−1, pt⊗ βk) = ΨN

A2,0,k(pt;β1, · · · , βk),

where 0 ∈ H2(M ;Z) denotes the zero class.

Proof. Take JM ∈ J (M, ω), JN ∈ J (N, σ) and set J = JM × JN . Note that the product
symplectic manifold (M×N, ω⊕σ) is a special symplectic fibre bundle over (M, ω) with fibres
(N, σ). Moreover, the almost complex structure J = JM × JN on M ×N is fibred in the sense
of Definition 2.2 in [Mc2]. So for a fibre class 0⊕A2 we can, as in the proof of Proposition 4.4
of [Mc2], construct a virtual moduli cycle M

ν

0,3(M ×N, J, 0⊕A2) of M0,3(M ×N, J, 0⊕A2)
such that the M -components of each element in M

ν

0,3(M ×N, J, 0⊕A2) are JM -holomorphic,
and thus constant. This shows that the virtual moduli cycle M

ν

0,3(M ×N, J, 0⊕ A2) may be
chosen as M ×M

ν

0,3(N, JN , A2). The desired conclusion follows. These techniques were also
used in the proof of Lemma 2.3 in [Lu6]. We refer to there and §4.3 in [Mc2] for more details.
2

As a direct consequence of Proposition 7.3 and Proposition 7.4 we get

Proposition 7.5 The product of a closed symplectic manifold and a strong symplectic uniruled
manifold is strong 0-symplectic uniruled. In particular the product of finitely many strong
symplectic uniruled manifolds is also strong 0-symplectic uniruled.

Actually we can generalize Proposition 7.4 to a symplectic fibre bundle over a closed sym-
plectic manifold with a closed symplectic manifold as fibre. Therefore a symplectic fibre
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bundle over a closed symplectic manifold with a strong symplectic uniruled fibre is also strong
symplectic uniruled.

In the proof of Theorem 1.21 we need a product formula for Gromov-Witten invariants.
Such a formula was given for algebraic geometry GW-invariants of two projective algebraic
manifolds in [B]. However it is not clear whether the GW-invariants used in this paper agree
with those of [B] for projective algebraic manifolds. For the sake of simplicity we shall give a
product formula for a special case, which is sufficient for the proof of Theorem 1.21. Recall
that a symplectic manifold (M, ω) is said to be monotone if there exists a number λ > 0
such that ω(A) = λc1(A) for A ∈ π2(M). The minimal Chern number N ≥ 0 of a
symplectic manifold (M, ω) is defined by 〈c1, π2(M)〉 = NZ. For J ∈ J (M, ω), a homology
class A ∈ H2(M,Z) is called J-effective if it can be represented by a J-holomorphic sphere
u : CP 1 → M . Such a homology class must be spherical. Moreover, a class A ∈ H2(M,Z) is
called indecomposable if it cannot be decomposed as a sum A = A1 + · · · + Ak of classes
which are spherical and satisfy ω(Ai) > 0 for i = 1, · · · , k.

Proposition 7.6 Let the closed symplectic manifold (M, ω) either be monotone or have min-
imal Chern number N ≥ 2. Then for each indecomposable class A ∈ H2(M,Z) and classes
αi ∈ H∗(M,Z), i = 1, 2, 3 the Gromov-Witten invariant ΨM

A,0,3(pt;α1, α2, α3) adopted in this
paper agrees with the invariant ΨM

A,3(α1, α2, α3) in §7.4 of [McSa2].

Proof. Let J ∈ J (M, ω). Consider the space M0,3(M, A, J) of equivalence classes of all
3-pointed stable J-maps of genus zero and of class A in M . For [f ] ∈ M0,3(M, A, J), since A

is indecomposable it follows from the definition of stable maps that f = (Σ; z1, z2, z3; f) must
be one of the following four cases:

(a) The domain Σ = CP 1, zi, i = 1, 2, 3 are three distinct marked points on Σ, and f : Σ → M

is a J-holomorphic map of class A.

(b) The domain Σ has exactly two components Σ1 = CP 1 and Σ2 = CP 1 which have a unique
intersection point. f |Σ1 is nonconstant and Σ1 only contains one marked point. f |Σ2 is
constant and Σ2 contains two marked points.

(c) The domain Σ has exactly two components Σ1 = CP 1 and Σ2 = CP 1 which have a
unique intersection point. f |Σ1 is nonconstant and Σ1 contains no marked point. f |Σ2 is
constant and Σ2 contains three marked points.

(d) The domain Σ has exactly three components Σ1 = CP 1, Σ2 = CP 1 and Σ3 = CP 1.
Σ1 and Σ2 (resp. Σ2 and Σ3) have only one intersection point, and Σ1 and Σ3 have no
intersection point. f |Σ1 is nonconstant and Σ1 contains no marked point. f |Σ2 is constant
and Σ2 contains one marked point. f |Σ3 is constant and Σ3 contains two marked points.

Let M0,3(M, A, J)i, i = 1, 2, 3, 4 be the subsets of the four kinds of stable maps. It is easily
proved that for generic J ∈ J (M, ω) they are smooth manifolds of dimensions

dimM0,3(M, A, J)1 = dim M + 2c1(A),

dimM0,3(M, A, J)2 = dim M + 2c1(A)− 4,

dimM0,3(M, A, J)3 = dim M + 2c1(A)− 6,

dimM0,3(M, A, J)4 = dim M + 2c1(A)− 6.

So M0,3(M, A, J) = ∪4
i=1M0,3(M, A, J)i is a stratified smooth compact manifold. Note that

each stable map in M0,3(M, A, J) has no free components. The construction of the virtual
moduli cycle in [Lu8] with Liu-Tian’s method in [LiuT] is thus trivial or not needed: The
virtual moduli cycle of M0,3(M, A, J) may be taken as

M0,3(M, A, J) → BM
0,3,A, [f ] 7→ [f ],
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where BM
0,3,A is the space of equivalence classes of all 3-pointed stable Lk,p-maps of genus zero

and of class A in M . Therefore for homology classes αi ∈ H2(M,Z), i = 1, 2, 3, satisfying the
dimension condition

deg(α1) + deg(α2) + deg(α3) = 2n + 2c1(A)

the Gromov-Witten invariant

ΨM
A,0,3(pt;α1, α2, α3) = (EVJ,A

0,3 ) · (α1 × α2 × α3)
= (EVJ,A

0,3 )|M0,3(M,A,J)1
· (α1 × α2 × α3)

(63)

because the intersections can only occur in the top strata. Here

EVJ,A
0,3 : M0,3(M, A, J) → M3, [f ] 7→ (f(z1), f(z2), f(z3)),(64)

and αi : Ui → M are generic pseudocycle representatives of the classes αi, i = 1, 2, 3, cf.
[McSa2] for details. Note that each element [f ] in M0,3(M, A, J)1 has a unique representative
of the form (CP 1; 0, 1,∞; f). So M0,3(M, A, J)1 may be identified with the space M(M, A, J)
of all J-holomorphic curves which represent the class A. Fix marked points z = (0, 1,∞) ∈
(CP 1)3 and define the evaluation map

EA,J,z : M(M, A, J) → M3, f 7→ (f(0), f(1), f(∞)).(65)

From the above arguments one easily checks that it is a pseudocycle in the sense of [McSa2].
Then (63) gives rise to

ΨM
A,0,3(pt;α1, α2, α3) = EA,J,z · (α1 × α2 × α3) = ΨM

A,3(α1, α2, α3)(66)

because we can require that α1 × α2 × α3 is also transverse to EA,J,z. 2

Proposition 7.7 Consider closed symplectic manifolds (Mk, ωk) as in Proposition 7.6 and
indecomposable classes Ak ∈ H2(Mk,Z), k = 1, · · · ,m. Then for α

(k)
i ∈ H∗(Mk,Z), i = 1, 2, 3

and k = 1, · · · ,m it holds that the Gromov-Witten invariant

ΨM
A,0,3(pt;×m

k=1α
(k)
1 ,×m

k=1α
(k)
2 ,×m

k=1α
(k)
3 ) =

m∏

k=1

ΨMk

Ak,0,3(pt;α(k)
1 , α

(k)
2 , α

(k)
3 ),(67)

where A = ×m
k=1Ak.

Proof. Set (M, ω) = (×m
k=1Mk,×m

k=1ωk). Take Jk ∈ J (Mk, ωk), k = 1, · · · ,m and set
J = ×m

k=1Jk. Then J ∈ J (M, ω). It is not hard to prove that for generic Jk ∈ J (Mk, ωk)
the space M0,3(M, A, J) is still a stratified smooth compact manifold. We still denote by
M0,3(M, A, J)1 its top stratum, which consists of elements [f ] ∈M0,3(M, A, J) whose domain
has only one component CP 1. It is a smooth noncompact manifold of dimension dimM +
2c1(A) =

∑m
k=1 dimMk + 2c1(Ak), and each element [f ] ∈ M0,3(M, A, J)1 has a unique

representative of the form

f = (CP 1; 0, 1,∞; f = (f1, · · · , fm)),

where fk : CP 1 → Mk are J-holomorphic maps in the homology classes Ak, k = 1, · · · ,m.
Note that the other strata of M0,3(M, A, J) have at least codimension two. For homology
classes α

(k)
i ∈ H∗(Mk,Z), i = 1, 2, 3 and k = 1, · · · ,m, satisfying the dimension condition

deg(α(k)
1 ) + deg(α(k)

2 ) + deg(α(k)
3 ) = dimMk + 2c1(Ak),

we may choose the pseudo-cycle representatives α
(k)
i : U

(k)
i → M , i = 1, 2, 3 and k = 1, · · · ,m

such that:
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(i) (×m
k=1α

(k)
1 )× (×m

k=1α
(k)
2 )× (×m

k=1α
(k)
3 ) is transverse to the evaluations EVJ,A

0,3 in (64) and
EA,J,z in (65),

(ii) each α
(k)
1 × α

(k)
2 × α

(k)
3 is transverse to the evaluations EAk,Jk,z and

EVJk,Ak

0,3 : M0,3(Mk, Ak, Jk) → M3
k , [fk] 7→ (fk(0), fk(1), fk(∞))

for k = 1, · · · ,m.

Then as above we get that the Gromov-Witten invariant

ΨM
A,0,3(pt;×m

k=1α
(k)
1 ,×m

k=1α
(k)
2 ,×m

k=1α
(k)
3 )(68)

= (EVJ,A
0,3 ) ·

(
(×m

k=1α
(k)
1 )× (×m

k=1α
(k)
2 )× (×m

k=1α
(k)
3 )

)

= (EVJ,A
0,3 )|M0,3(M,A,J)1

·
(
(×m

k=1α
(k)
1 )× (×m

k=1α
(k)
2 )× (×m

k=1α
(k)
3 )

)

= EA,J,z ·
(
(×m

k=1α
(k)
1 )× (×m

k=1α
(k)
2 )× (×m

k=1α
(k)
3 )

)

because of (66). Note that M(M, A, J) =
∏m

k=1M(Mk, Ak, Jk). It easily follows from the
above (i) and (ii) that

EA,J,z ·
(
(×m

k=1α
(k)
1 )× (×m

k=1α
(k)
2 )× (×m

k=1α
(k)
3 )

)

=
m∏

k=1

EAk,Jk,z · (α(k)
1 × α

(k)
2 × α

(k)
3 )

=
m∏

k=1

ΨMk

Ak,3(α
(k)
1 , α

(k)
2 , α

(k)
3 )

=
m∏

k=1

ΨMk

Ak,0,3(pt;α(k)
1 , α

(k)
2 , α

(k)
3 ).

The final step comes from Proposition 7.6. This and (68) lead to (67). 2
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Birkhäuser, 1994.

[Ji] Mei-Yue Jiang, An inequality for symplectic capacity, Bull. London. Math. Soc., 149
(1999), 237–240.

[Ka] Y. Karshon, Appendix to [McPo], Invent. Math., 115 (1994), 431-434.

41



[KaTo] Y. Karshon and S. Tolman, Centered complexity one Hamiltonian torus actions, Trans.
Amer. Math. Soc., 353 (2001), no. 12, 4831–4861 (electronic).

[Ko] J. Kollar, Low degree polynomial equations: arithmetic, geometry and topology, Pro-
ceedings of the 2nd European Congress of Mathematicians, Progress in Mathematics 168,
255-288, Birkhäuser, 1998.
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