
Some Rationality Properties of Observable Groups and

Related Questions

Thang NGUYEN QUOC and Bac DAO PHUONG

Institut des Hautes Études Scientifiques

35, route de Chartres

91440 – Bures-sur-Yvette (France)
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SOME RATIONALITY PROPERTIES OF OBSERVABLE
GROUPS AND RELATED QUESTIONS

NGUYÊÑ QUÔĆ THǍŃG AND D– ÀO PHU.O.NG BǍĆ

Abstract. We investigate in this paper some rationality questions re-

lated with observable, epimorphic, and Grosshans subgroups of linear

algebraic groups over non-algebraically closed fields.

1. Introduction

Let G be a linear algebraic group defined over an algebraically closed field
k. Then G acts naturally on its regular function ring k[G] by right translation
(rg.f)(x) = f(x.g), for all x, g ∈ G, f ∈ k[G]. For H a closed k-subgroup of G,
we put H ′ = k[G]H := {f ∈ k[G] : rh.f = f, for all h ∈ H}. Then k[G]H is
the k-subalgebra of H-invariant functions of k[G]. By convention, we identify
the algebraic groups considered with their points in a fixed algebraically closed
field. For a k-subalgebra R of k[G], we put R′ = {g ∈ G : rg.f = f, for all
f ∈ R}. Then for any closed subgroup H ⊂ G we have

H ⊆ H ′′ ⊆ G.

With a motivation from representation theory, Bialynicki-Birula, Hochschild
and Mostow (see [1], p. 134) introduced the concept of ”observable subgroup”.
A closed subgroup H of G is called an observable subgroup of G if any finite
dimensional rational representation of H can be extended to a finite dimen-
sional rational representation on the whole group G (or, equivalently, if every
finite dimensional rational H-module is a H-submodule of a finite dimensional
rational G-module). In loc. cit. some equivalent conditions for a subgroup to
be observable were given. Then Grosshans ([6], [7] and reference therein) has
added several other conditions. It turned out later that for closed subgroups
the property of being observable for a subgroup H is equivalent to the equal-
ity H = H ′′. Up to now there are known several equivalent conditions for a
subgroup to be observable, which are more or less simple to verify and they
are gathered in Theorem 1 below. On the opposite side, a closed subgroup
H ⊆ G may satisfy the equality H ′′ = G. If it is so, H is called an epimorphic
subgroup of G. In fact, under an equivalent condition, this notion was first
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introduced and studied by Bien and Borel in [2] [3] (see also [7] for recent
treatment), which in turn, is based on similar notion for Lie algebras, given
by Bergman (unpublished). There were given several equivalent conditions
for a closed subgroup to be epimorphic (see Theorem 11 below).

In the connection with the solution of the 14th Hilbert problem, the fol-
lowing well-known problem is of great interest. Assume that X is an affine
variety, G is a reductive group acting upon X morphically, H is a closed sub-
group of G and consider the G-action on the regular function ring k[X] by
left translation: (lg.f)(x) = f(g−1.x). It is natural to ask when k[X]H is a
finitely generated k-algebra.

For a closed subgroup H ⊂ G, we have k[X]H = k[X]H
′′

(see [6], [7]). On
the other hand, it is well-known (see e. g. [6], [7]) that H ′′ is the smallest
observable subgroup of G containing H. So the problem is reduced to the
case when H is an observable subgroup. To solve this problem, Grosshans
([6], [7]) introduced the codimension 2 condition for observable subgroups,
and the subgroups satisfying this condition are called subsequently Grosshans
subgroups of G (see Section 4). In this paper, we continue the study initiated
in [1]. Namely, we are interested in some questions of rationality related to
observable, epimorphic and Grosshans subgroups. The first rationality re-
sults regarding observable (resp. epimorphic) subgroups were already given
in [1], and then in [7], [10] (resp. [2], [3] and [10]), where some arithmetical
applications to ergodic actions were also given. We give some other new re-
sults related to rationality properties of observable, epimorphic and Grosshans
subgroups (which were stated initially for algebraically closed fields). Some
arithmetic and geometric applications will be considered in another paper un-
der preparation. Throughout, we consider only linear algebraic groups defined
over some field k, which are called also shortly as k-groups. For basic theory
of linear algebraic groups over non-algebraically closed field we refer to [4],
and for a k-group G, the notion of a rational k-module V for G is as in [6],
[7].

2. Some rationality results for observable groups

First we recall well-known results over algebraically closed fields. For an al-
gebraic group G we denote by G◦ the identity connected component subgroup
of G.

Theorem 1. ([1], [7], Theorems 2.1 and 1.12) Let G be a linear algebraic
group defined over an algebraically closed field k and let H be a closed k-
subgroup of G. Then the following conditions are equivalent.

a) H = H ′′.
b) There exists a finite dimensional rational representation ρ : G → GL(V )

and a vector v ∈ V , all defined over k such that

H = Gv = {g ∈ G : ρ(g).v = v}.
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c) There are finitely many functions f ∈ k[G/H] which separate the points
in G/H.

d) G/H is a quasi-affine k-variety.
e) Any finite dimensional rational k-representation ρ : H → GL(V ), can be

extended to a finite dimensional rational k-representation ρ′ : G → GL(V ′),
where V ↪→ V ′, i. e., every finite dimensional rational H-module is a H-
submodule of a finite dimensional rational G-module.

f) There is a finite dimensional rational k-representation ρ : G → GL(V )
and a vector v ∈ V such that H = Gv, the isotropy group of v, and

G/H ∼= G.v = {ρ(g).v : g ∈ G}
(as algebraic varieties).

g) The quotient field of the ring of G◦ ∩H-invariants in k[G◦] is equal to
the field of G◦ ∩H-invariants in k(G◦).

h) If 1-dimensional rational H-module M is a H-submodule of a finite di-
mensional rational G-module then the H-dual module M∗ of M is also a H-
submodule of a finite dimensional rational G-module.

Now let k be any field. If a closed k-subgroup H of a linear algebraic k-
group G satisfies the condition b) (resp. e)) in Theorem 1 where v ∈ V (k)
and the corresponding representation ρ is defined over k, then we say that H
is an isotropy k-subgroup of G (resp. has extension property over k).

First we recall the following rationality results proved in [1] (Theorems 5,
8).

Theorem 2. ([1], Theorem 5) Let G be a linear algebraic k-group, H a closed
k-subgroup of G, k ⊂ K an algebraic extension of k. Then H has extension
property over k if and only if it has one over K.

Theorem 3. ([1], Theorem 8) If H is a closed k-subgroup of a linear algebraic
k-group G with extension property over k, then H is an isotropy k-subgroup of
G. Conversely, if k is algebraically closed and H is a isotropy k-subgroup then
it has extension property over k.

From Theorem 2 and Theorem 3, we derive the following.

Proposition 4. Let k be an arbitrary field and let H be a closed k-subgroup
of a k-group G. The following two conditions are equivalent.

a) H is an isotropy subgroup of G over k.
b) H is an isotropy subgroup of G over k, i.e., there exists a finite dimen-

sional k-rational representation ρ : G → GL(V ) and a vector v ∈ V (k) such
that H = Gv.

Proof. b) ⇒ a) : trivial.
a) ⇒ b). By Theorem 1, since H is an isotropy subgroup over k, H has
extension property over k. Therefore by Theorem 2, H has extension property
over k. By Theorem 3, H is an isotropy k-subgroup of G.
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Remark 1. In [10], another proof of Proposition 4 was given, which is based
on some ideas of Grosshans [6], under the condition (which is not essential)
that k = Q and H is connected.

We put

H ′
k = k[G]H(k) = {f ∈ k[G] : rh.f = f,∀h ∈ H(k)},

and
(H ′

k)′ = {g ∈ G : rg.f = f,∀f ∈ H ′
k}.

Then k[G]H(k) and k[G]H := {f ∈ k[G] : rh.f = f,∀h ∈ H} are k-subalgebras
of k[G]. In general we have the following diagram

H ′
k = k[G]H(k) ⊆ k̄[G]H(k)

⋃
|

⋃
|

k[G]H ⊆ k̄[G]H = H ′

so we have

(H ′
k)′ = (k[G]H(k))′ ⊇ (k̄[G]H(k))′⋂

|
⋂
|

(k[G]H)′ ⊇ (k̄[G]H)′ = H ′′.

If, moreover, H(k) is Zariski dense in H then we have

H ′
k = k[G]H = k[G]H ∩ k[G].

We say that H is relatively observable over k if H = (H ′
k)′, and H is k-

observable, if (k[G]H)′ = H. It is clear that if k is algebraically closed, then
these notions coincide with the observability. We have the following obvious
implication

H is k-observable ⇒ H is observable.

Proposition 5. Let k be a field, and let H be a closed k-subgroup of a k-group
G. Then

a) H ′ = k[G]H = k ⊗k k[G]H ;
b) H is observable if and only if H is k-observable;
c) Assume that H(k) is Zariski dense in H. Then H is observable ⇔ H is

k-observable ⇔ H is relatively observable over k.

Proof. a) We need the following lemma.
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Lemma 6. Let X be an affine scheme of finite type over k upon which a k-
group H acts k-morphically, such that the (good) quotient scheme X/H exists.
Then we have

k[X]H = k ⊗k k[X]H .

(Here by convention X = Spec(k̄[X]), and k[X] gives the k-structure of
k̄[X].)

Since X/H is defined over k, we have k[X/H] = k⊗k k[X/H]. Besides, the
quotient morphism π : X → X/H is also defined over k so the comorphism
π0 sends k[X/H] into k[X]. On the other hand, π0 : k[X/H] → k[X]H
is an isomorphism. So π0|k[X/H] : k[X/H] → k[X] ∩ k[X]H = k[X]H is a
monomorphism. Because of the k-linearity of π0, we have

k[X]H = π0(k[X/H])

= π0(k ⊗ k[X/H])

= k ⊗ π0(k[X/H])

⊆ k ⊗ (k[X]H)

⊆ k[X]H .

So the above equalities imply that π0(k[X/H]) = k[X]H . Since π0 is an
isomorphism, we have k[X]H = k ⊗k k[X]H . The lemma is proved.
So a) follows by taking X = G.
b) It suffices to show that if H is observable then it is also k-observable. But
this follows directly from a).
c) By part b) we need only show that

H is relatively observable over k ⇔ H is k-observable.

( ⇒ ) : Since H(k) is Zariski-dense in H, so we have (f ∈ k̄[G]H(k) ⇔ f ∈
k̄[G]H). Therefore H = (k[G]H(k))′ ⊇ (k̄[G]H(k))′ = (k̄[G]H)′ ⊇ H, i.e., H is
observable, hence also k-observable , by b).
( ⇐ ) : If H is k-observable, then we have

H = (k[G]H)′ ⊇ (k[G]H(k))′ ⊇ H,

so H is relatively observable over k. �

Proposition 7. Let H be a k-subgroup of a k-group G. The following are
equivalent:

a) There exist finitely many functions in k[G/H] which separate the points
in G/H.

b) There exist finitely many functions in k[G/H] which separate the points
in G/H.
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Proof. The assertion b) ⇒ a) is obvious. To prove a) ⇒ b), notice that since
G/H defined over k, so

k[G/H] = k ⊗ k[G/H].

Assume that the functions f1, ..., fn ∈ k[G/H] separate the points in G/H.
We have

fi =
∑

j

λijϕij ,

with λij ∈ k, ϕij ∈ k[G/H]. With xH 6= yH ∈ G/H, there exists i such that
fi(xH) 6= fi(yH). So there exists j such that ϕij(xH) 6= ϕij(yH). Hence
{ϕij} ⊆ k[G/H] separate the points in G/H. �

Proposition 8. Let G be a k-group, H a closed k-subgroup of G. Assume
that, there exists finite dimensional k-rational representation ρ : G → GL(V ),
and v ∈ V (k) such that H = Gv. Then there is a finite dimensional k-
rational representation ρ′ : G → GL(W ) and w ∈ W (k) such that H = Gw

and G/H ∼=k G.w.

Proof. (Our original proof is lengthy and the following is based on the com-
munications with F. Grosshans.)
By Theorem 1.12 of [7], there exists a vector space V ′, a representation
ρ′ : G → GL(V ′), a vector v ∈ V ′ such that H = Gv and there is an iso-
morphism

G/H ' G.v.

Denote by X = G.v a closed subvariety of V ′, V ′∗ the dual vector space of
V ′, and by {λ1, . . . , λn} a basis of V ′∗. Thus, considered as an affine space,
we have k̄[V ′] = k̄[λ1, ..., λn]. The morphisms

ϕ : G
π→ G/H

p
↪→ X ↪→ V ′, g 7→ g.v

correspond to the comorphisms

ϕ∗ : k̄[V ′] r→ k̄[X]
p∗→ k̄[G/H]

π∗

↪→ k̄[G], ϕ∗(λi)(g) = λi(g.v),

where r is the restriction. We may identify k̄[G/H] with k̄[G]H , thus consider
it as a subalgebra of k̄[G]. It is clear that ϕ∗ is G-equivariant with respect to
left translation, and (by the construction)

ϕ∗(k̄(X)) = k̄(G)H ,

and
li := ϕ∗(λi) = p∗(r(λi)) ∈ k̄(G)H ∩ k̄[G] = k̄[G]H .

By Proposition 5, we may write

li =
∑

j

cij ⊗ µij , cij ∈ k̄, µij ∈ k[G]H ,∀i, j.
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Since G is defined over k, so the G-orbit of µij span a finite dimensional
vector subspace of k̄[G], which is defined over k. By adding a finite number of
functions (see e.g. [4], Proposition, p. 54), we may therefore assume that the
functions {µij} are k-linearly independent and that the k̄-vector space W ′,
with the k-basis {µij} is defined over k and is G-stable. Let W be the dual k-
vector space of W ′. Hence this gives rise to a representation ρ : G → GL(W ),
which is defined over k. Denote by Y the affine k-variety with k̄[µij ] as k̄-
algebra of functions. By considering the algebra of regular functions k̄[W ] on
the vector space W defined over k, we have the following k-homomorphisms
of k-algebras

k[W ] → k[µij ] → k[G/H] → k[G],

which corresponds to G-equivariant k-morphisms of k-varieties with G-action

G → G/H
q→ Y

r→ W.

One checks that the k-morphism q : G/H → Y is dominant. Denote by y =
q(eH) ∈ Y. Then Y is the closure of the G-orbit G.y, which is isomorphic to
G/H (since it is so over k̄), hence it is a k-isomorphism, and the representation
ρ : G → GL(W ) is the one required. Therefore Proposition 8 is proved. �

From results proved above, we have the following theorem, which is an
analog of Theorem 1 for arbitrary fields.

Theorem 9. Let G be a linear algebraic group defined over a field k and let
H be a closed k-subgroup of G. Then the following are equivalent.

a) H = H ′′, i. e., H is observable.
a′) H = (k[G]H)′, i.e., H is k-observable.
b′) There exists a k-rational representation ρ : G −→ GL(V ) and a vector

v ∈ V (k) such that
H = Gv = {g ∈ G : g.v = v}.

c′) There are finitely many functions f ∈ k[G/H] which separate the points
in G/H.

d′) G/H is a quasiaffine variety defined over k.
e′) Any k-rational representation ρ : H −→ GL(V ), can be extended to a

k-rational representation ρ′ : G −→ GL(V ′).
f ′) There is a k-rational representation ρ : G −→ GL(V ) and a vector

v ∈ V (k) such that H = Gv and

G/H ∼=k G.v = {ρ(g)v : g ∈ G}.

g′) The quotient field of the ring of G◦ ∩H-invariants in k[G◦] is equal to
the field of G◦ ∩H-invariants in k(G◦).

If, moreover, H(k) is Zariski dense in H, then the above conditions are
equivalent to the relative observability of H over k.
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Proof. First, by Proposition 4, with conditions labelled as in Theorem 1 we
have b) ⇔ b′), by Proposition 5 we have a) ⇔ a′), and by Proposition 7 we
have c) ⇔ c′). The fact that d) ⇔ d′) is trivial, and we have e) ⇔ e′) by
Theorem 2, and the same proof as in [7], Theorem 1.12, shows that we have
f) ⇔ f ′).

To prove the equivalence of g′) with the other conditions, we may use the
other equivalent conditions. We need the following

Lemma 10. With above assumption, H is k-observable in G if and only if
H ∩G◦ is k-observable in G◦.

For, first observe that since H and G0 are defined over k, so is H ∩ G0.
We have a) ⇔ a′), so H is observable in G if and only if H is k-observable
in G, and H ∩ G◦ is observable in G◦ if and only if H ∩ G◦ is k-observable
in G◦. By [7], Corollary 1.3, H is observable in G if and only if H ∩ G◦ is
observable in G◦. It follows that, H is k-observable in G if and only H ∩G◦

is k-observable in G◦. The lemma is proved.
Now by [1], Theorem 3, H ∩ G◦ is k-observable in G◦ if and only if g′)

holds. �

3. Rationality properties for epimorphic subgroups

Recall after Grosshans ([7]) that epimorphic subgroups H ⊆ G are those
closed subgroups of G satisfying the condition H ′′ = G. We have the following
characterizations of epimorphic subgroups over an algebraically closed fields.

Theorem 11. ([2], Théorème 1, [7], Lemma 23.7) Let H be a closed subgroup
of G, all defined over an algebraically closed field k. Then the following are
equivalent.

a) H is epimorphic, i. e., H ′′ = G.
b) k[G/H] = k.
c) k[G/H] is finite dimensional over k.
d) If V is any rational G-module then the spaces of fixed points of G and

H in V coincide.
e) If V is a rational G-module such that V = X ⊕ Y , where X, Y are

H-invariant, then X, Y are also G-invariant.
f) Morphisms of algebraic groups from G to another L are defined by their

values on H.

Remark 2. The initial definition of epimorphic subgroups was given in [2], by
only requiring that the condition f) above hold.

Let notation be as in Section 2, and let k be an arbitrary field. Then for
a k-subgroup H of a k-group G we say that H is relatively epimorphic over
k if (H ′

k)′ = G, and that H is k−epimorphic if (k[G]H)′ = G. Recall that we
have the following inclusions



SOME RATIONALITY PROPERTIES 9

(H ′
k)′ = (k[G]H(k))′ ⊇ (k̄[G]H(k))′⋂

|
⋂
|

(k[G]H)′ ⊇ (k̄[G]H)′ = H ′′,

therefore, the following implications holds
H is epimorphic ⇒ H is k-epimorphic,

H is k-epimorphic ⇐ H is relatively epimorphic over k.
In fact we have

Proposition 12. With above notation, if H is either (a) relatively epimorphic
over k or (b) k-epimorphic, then it is also epimorphic.

Proof. We need only check that H ′′ ⊇ G. Assume that (a) holds. Let g ∈ G
be an arbitrary element, and let f ∈ H ′. Then rh(f) = f for all h ∈ H. By
Proposition 5, we have

H ′ = k[G]H = k ⊗k k[G]H .

Therefore we may write f =
∑

i cifi, ci ∈ k̄, fi ∈ k[G]H . Since fi ∈ k[G]H ⊂
k[G]H(k) = H ′

k and by assumption, g ∈ G = (H ′
k)′, so rg(fi) = fi, for all i.

Therefore rg(f) = f , i.e., g ∈ H ′′, thus G = H ′′.
Now assume (b) holds. Then by Proposition 5 again, we have

k̄[G]H = k[G]H ⊗ k̄,

so

(k̄[G]H)′ = (k[G]H ⊗ k̄)′

= (k[G]H)′ = G

so H is also epimorphic. �

We have the following analog of Theorem 11 over an arbitrary field.

Theorem 13. Let k be any field and let H be a closed k-subgroup of a k-group
G. Then the following are equivalent.

a′) H is k-epimorphic, i.e., (k[G]H)′ = G.
b′) k[G/H] = k.
c′) k[G/H] is finite dimensional over k.
d′) For any rational G-module V defined over k, the spaces of fixed points

of G and H in V coincide.
e′) For any rational G-module V defined over k, if V = X ⊕ Y , where X,

Y are H-invariant, then X, Y are also G-invariant.
f ′) Morphisms defined over k of algebraic k-groups from G to another one

are defined by their values on H.



10 NGUYÊÑ QUÔĆ THǍŃG AND D– ÀO PHU.O.NG BǍĆ

Proof. In what follows we refer to Theorem 11 for the properties a)− f). By
Proposition 12 and the implications before it, we have a) ⇔ a′). Since G/H
is defined over k, we have b) ⇔ b′) and c) ⇔ c′).

The proof of Théorème 1, the direction i) ⇒ ii) of [2] (i.e., f) ⇒ b) above)
gives also the proof of the direction f ′) ⇒ b′). The direction b′) ⇒ c′) is
trivial. We have c′) ⇔ c) ⇔ d) ⇒ d′) and the same proof of Théorème 1 of
[2] shows that d′) ⇒ e′) ⇒ f ′), thus we have the equivalence of statements
b′), c′), d′), e′), f ′). Since the statements a), b), c), d), e), f) are equivalent and
a) ⇔ a′), the theorem follows. �

Remark 3. It was mentioned in [10], p. 195, that Bien and Borel (unpublished)
have also proved that if G is connected, then d) ⇔ d′).

4. Some rationality properties for Grosshans subgroups

One of the main results related with the finite generation problem (hence
also with the Hilbert’s 14-th problem) mentioned in the Introduction is the
following result of Grosshans (Theorem 15). First we recall the following very
useful result which reduces to the case of connected groups.

Theorem 14. ([7], Theorem 4.1) Let k be an algebraically closed field. For
any closed subgroup H of G, if one of the following k-algebras k[G]H , k[G]H

◦
,

k[G◦]H∩G◦
, k[G◦]H

◦
is a finitely generated k-algebra, then the same holds for

the other.

Theorem 15. ([7], Theorem 4.3) For an observable subgroup H of a linear
algebraic group G, all defined over an algebraically closed field k, the following
are equivalent.

a) There is a finite dimensional rational representation ϕ : G → GL(V ),
an element v ∈ V , such that H = Gv and each irreducible component of
G.v −G.v has codimension ≥ 2 in G.v.

b) The k-algebra k[G]H is a finitely generated k-algebra.
If b) holds, let X be an affine variety with k[X] = k[G]H , and with G-action

via left translations of G on G/H. There is a point x ∈ X such that G.x is
open in X and G.x ' G/H via gH 7→ g.x and each irreducible component of
X \G.x has codimension ≥ 2 in X.

The observable subgroups which satisfy one of the equivalent conditions
in Theorem 15 are called Grosshans subgroups (see [7]). There are some nice
geometrical characterizations and examples of Grosshans subgroups presented
in [7] and the reference therein.

For a field k, a k-group G and an observable k-subgroup H ⊂ G, we say
that H satisfies the codimension 2 condition over k if H satisfies condition
a) above where V, ϕ are all defined over k and v ∈ V (k).

We call H a Grosshans subgroup relatively over k (resp. k-Grosshans sub-
group) of G if k[G]H(k) (resp. k[G]H) is a finitely generated k-algebra.
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We have a result similar to Theorem 15 for k-Grosshans subgroups.

Theorem 16. Let k be any perfect field with infinitely many elements, G a
connected k-group. Assume that H is a observable k-subgroup of G. Consider
the following conditions.

a′) H satisfies codimension 2 condition over k.
b′) One of the k-algebras k[G]H , k[G]H

◦
, k[G◦]H∩G◦

, k[G◦]H
◦

is a finitely
generated k-algebra.

c′) H is a Grosshans subgroup relatively over k of G (i.e k[G]H(k) is finitely
generated k-algebra).

Then, together with conditions in Theorem 15, we have the following im-
plications

a) ⇔ a′) ⇔ b) ⇔ b′) ⇒ c′).
If, moreover, H(k) is Zariski dense in H, then all these conditions are

equivalent.

Proof. a) ⇔ a′). We have trivially a′) ⇒ a). Combined with the proof of
Proposition 8, the proof of Theorem 4.3 of [7] (regarding dimension compu-
tation) shows that in fact we have a) ⇒ a′), thus a) ⇔ a′).

b) ⇔ b′). Recall that we have a) ⇔ b) (Theorem 15 above). By Lemma 6
we have

k̄[G]H ' k̄ ⊗k k[G]H .

Therefore, it is clear that k̄[G]H is finitely generated k̄-algebra if and only if
so is k[G]H . By the same way, k̄[G]H

◦ ' k[G]H
◦ ⊗k k̄ is finitely generated

as k̄-algebra if and only if k[G]H
◦

is finitely generated k-algebra. This is also
true if H◦ is replace by H ∩G◦ etc... Thus b) ⇔ b′).

b′) ⇒ c′). If H is connected, then H(k) is Zariski dense in H (cf e.g. [4], 18.3,
or [5]), and we have

(∗) k[G]H = k[G]H(k),

and the assertion is trivial. Otherwise, asume that H 6= H◦. Then we can
make use of Theorem 14 above. In fact, H◦(k) is a normal subgroup of finite
index in H(k), and we see that

k[G]H(k) = (k[G]H
◦(k))H(k)/H◦(k)

is finitely generated k-algebra, since from the equivalence a) ⇔ a′) ⇔ b) ⇔ b′)
and from Theorem 14 it follows that k[G]H

◦(k) is finitely generated k-algebra,
and H(k)/H◦(k) is a finite group.

Assume further that H(k) is Zariski dense in H, then (∗) holds, so the
theorem is proved. �
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Remark 4. It is of interest to find examples where the condition c′) holds
but the other conditions do not. It will, perhaps, ultimately lead to counter-
examples to (generalized) 14-th Hilbert’s Problem in the case of char.k > 0.
(Various extensions of classical results in (geometric) invariant theory to the
case of characteristic p > 0 were discussed at length in [9], Appendices.) It
will be more interesting to have examples with G, H connected groups.

A relation with the subalgebra of invariants of a Grosshans subgroup of
a reductive group acting rationally upon a finitely generated commutative
algebra is given in

Theorem 17. ([7], Theorem 9.3.) Let k be an algebraically closed field. For
any closed subgroup H of a reductive group G, all defined over k, the following
are equivalent.

a) k[G]H is a finitely generated k-algebra.
b) For any finitely generated, commutative k-algebra A on which G acts

rationally, the algebra of invariants AH is a finitely generated k-algebra.

We consider the following relative version of this theorem.

Theorem 18. Let k be a perfect field with infinitely many elements, H a
closed k-subgroup of a connected reductive k-group G. Consider the following
conditions.

a′) k[G]H is a finitely generated k-algebra.
b′) For any finitely generated, commutative k-algebra Ak on which G acts

k-rationally, the algebra of invariants AH
k is a finitely generated k-algebra.

c′) For any finitely generated, commutative k-algebra Ak on which G acts
k-rationally, the algebra of invariants A

H(k)
k is a finitely generated k-algebra.

Then with notations as in Theorem 17 we have

a) ⇔ a′) ⇔ b) ⇔ b′) ⇒ c′).

If, moreover, H(k) is Zariski dense in H, then all conditions above are equiv-
alent.

Proof. The proof follows the same lines as in the proof of Theorem 16 by
using Theorem 17. �
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