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We show how to use the Hopf algebra structure of quantum field theory to derive nonperturbative results for
the short-distance singular sector of a renormalizable quantum field theory in a simple but generic example. We
discuss renormalized Green functions Gr(«, L) in such cirgymstances which depend on a single scale L = In q*/u?

and start from an expansion in the scale Gr(o, L) =1+

. Ve(@)L*. We derive recursion relations between the

7 which make full use of the renormalization group. We then show how to determine the Green function by the
use of a Mellin transform on suitable integral kernels. We exhibit our approach in an example for which we find
a functional equation relating weak and strong coupling expansions.

1. The structure of Green functions

Our interest is the high energy sector of a renor-
malizable quantum field theory. We want to ex-
plore consequences of the underlying Hopf alge-
bra structure to obtain non-perturbative results,
using the self-similarity of Green functions.

Our approach is based on the Dyson—Schwinger
equations for one-particle irreducible renormal-
ized Green functions. As we want to obtain non-
perturbative results the choice of a renormaliza-
tion condition for us means simply the choice of
a boundary condition for the full Green function.

In this short paper we want to exhibit the basic
idea underlying such a program. We focus on the
question how to treat the non-linearity of Dyson—
Schwinger equations systematically. We assume
we work in a renormalizable quantum field theory
which provides a finite set R of amplitudes which
need renormalization.

For a given superficially divergent amplitude
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r € R we let I'" be the sum

I"=1+> ol L (1)
N

sym(T")

over all 1PI graphs I' contributing to that am-
plitude, with « a loop-counting small parameter.
Projection onto suitable form factors ¢(r) allows
the sum to start with one, so that by the appli-
cation of the Feynman rules ¢(I'") is the corre-
sponding structure function and the Lagrangian
L is given by

L= o). (2)
reR

We can then write [1]

rr :]I+B+(FT,Q({Fi})),, (3)

where @ = Q({I''},er) evaluates to an invari-
ant charge under the Feynman rules and the
Hochschild one-cocycle

BL(I".Q) = Yo" By (17 QY) 0

k>1

is a sum of one-cocycles Bi’r and @ is a mono-
mial in the I'". The uniqueness of ) implies



the Slavnov-—Taylor identities for the renormal-
ized couplings [1].

The Bi’T themselves are obtained from the
skeleton graphs y of the theory:

. 1
BY" =Y — B, (5)

— sym(y)

where the sum is over all Hopf algebra primi-
tives v contributing to the amplitude r at k loops.
These maps are defined to be closed Hochschild
one-cocycles on the sub Hopf algebra generated
by their concatentations and products [1,2].

Effectively, (3) reduces the sum (1) over all
graphs to a sum over primitive ones, making use
of the recursive structure of this fixpoint equation
which determines the sum of graphs which con-
tribute to a chosen amplitude. The sums involved
typically reflect the universal law of [3] and will
be discussed in detail in upcoming work.

We set

" =1+ cja (6)
J

and those ¢} are the linear generators of a sub-
Hopf algebra:

Theorem 1 There exists maps B_’fr, polynomi-
als Py i those linear generators and integers s,
such that

" = I+) By (IQ%), (7)
k
ABY" = B eI+ (ide By A, 8)
Q = o[ (@) (9)
reR
k
A, = > PL®c (10)
j=0

which make the system {c.} into a sub Hopf al-
gebra H(A,m,S,¢) of the Feynman graph Hopf
algebra.

The polynomials Py ; are easily determined and
we refer the reader to [1] for details.

Feynman rules are then defined in accordance
with the Hochschild cohomology:

¢ (B1(h) ({g}) = /dv({kh{q}w(h)({k})- (11)
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Here d,({k}, {q}) is a measure determined by the
primitive v which depends on internal loop mo-
menta {k} and external momenta {q} such that
the Hopf algebra primitive determines the kernel
d~ and hence the Feynman rules by

S(BL(1) = / d. ({K}, {a}), (12)

and an appropriate insertion of ¢(X)({k}) in (11)
into the integrand provided by d, in accordance
with the pre-Lie structure of graphs is under-
stood. Similarly we define renormalized Feynman
rules by iterating in a subtracted kernel

o (BLD) = [ids ({6).{ah)- d (1R} (13

where {u} indicates a suitable renormalization
point.

There exists a basis of graphs and external
structures in the Hopf algebra such that

dr(Q) = or(Q)(L), (14)

where L = In¢?/p? is a single scale which deter-
mines the running of the invariant charge. The
choice of such a basis disentangles internal subdi-
vergences into divergent contributions which de-
pend on a single scale and finite contributions
which determine the set of primitive elements in
such a base. In this base, short distance singu-
larities are captured by Green functions which
are functions of two dimensionless variables «, L,
with a remarkable duality between these two vari-
ables first observed in [5].

In perturbation theory the Feynman rules now
allow us to write

Grla, L) = ¢r(T") =1+ > aFor(cp)(L). (15)
k
We can expand in a different manner

Grla,L) =1+ (a)Lt, (16)
k

and the renormalization group dictates relations
between the «y;. We work them out in a moment.

First, we note that in the case of a linear DSE
[2], we get

ILp(Q)(L) =0, (17)
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and hence a scaling solution

G(a, L) = e @k (18)
solves the linear DSE so that
k
71«

V(a) = ;). (19)
To proceed in general we consider the map
P = Py ®-- @ Py A" (20)
S ——
n times

where P}, is the projector into the linear span
of generators of the Hopf algebra. From [1,2] we
have:

Theorem 2 The linearized coproduct is obtained

as
BT = Piul” © Pinl” + BinQ © ad, ",

where

PlinQ = Z 57’]DlinFr- (21)

This allows us to understand the iterative struc-
ture of the next-to. .. leading log expansion (16).
We define for n > 1

1
oy = o m o @ ®op AP (22)
: —
n times

and o7 is the residue defined by
o1 = 8L¢R (S * Yaug) (L)|L:0. (23)

Actually, o,, evaluates to the coefficient of the
L™ term in the evaluation of a Hopf algebra ele-
ment by the renormalized Feynman rules, by the
scattering type formula [4].

We have

h € Hlin = Ul(h) = 0, (24)

so we can use Theorem 2 and, by the above defi-

nition (16) of v} (),

Yi@) = on(7 (@)). (25)
Projection onto the linear generators delivers

the desired formula for the expansion in L:

@) = 1 bienia(

+ Z Sj’}/{ (@)adavi—1() | - (26)

With the the above choice of basis we can now
introduce the Mellin transform

aw:/wmmm%ﬂ (27)

(with obvious generalizations to the multivariate
case as studied below for example) and the DSE
turns into an equation which determines ] as we
will see in a moment, while the further terms in
the L expansion are determined from (26) above.

The Green function also has the usual expan-
sion in o which is triangular wrt g

Vi) = ny;’c"jaj. (28)

Jjzk

We can hence proceed to work out the recursion
relations which express the functions v;, through
the functions ~{ for £ > 1, and turn the Dyson—
Schwinger equations into an implicit equation
which allows to determine the sole unknown func-
tions 7] () from the knowledge of the above
Mellin transforms. A full discussion is given in
future work. We now exhibit the approach in an
example.

2. A simple example

For concreteness, we consider massless Yukawa
theory and consider all self-iterations of the one-
loop massless fermion propagator, with subtrac-
tions in the momentum scheme at ¢ = p2. Our
Green function is an inverse propagator with mo-
mentum ¢ and a function of two variables a and
L =1Ing?/u®. We ignore radiative corrections at
the bosonic line and also at vertices, so the set
R has a single element and the superscript r is
suppressed henceforth. We rederive the results of
[5] for this case.

We write the perturbative series for the Dyson—
Schwinger equation as

<Xm):H—aBi(Xiﬁ), (29)

where [ ¢(BS(I)) provides the one-loop self-
energy integral to be iterated. Note that upon
setting X (a) = T — X (a), this is the equation for
the self-energy X (a) = —Pin X (a) studied in [5].



With
Q=1/X* = Pu(Q) = —2X(a), (30)
we find the linearized coproduct

PPX(a) = (Piin — 2a0,)X (). (31)

lin

PinX(a) ®
This is Proposition 1 of [5] and we also get

Theorem 3 The next-to next-to... leading log
expansion in L is given through the anomalous
dimension vy1(a) as

1

(@) = 271(a)(1 — 2ada)ve-1(a). (32)

This is Proposition 2 of [5].

We can now work out with ease the recursions
which express v, k > 1 through the Taylor coef-
ficients of 1, for example

Yo = % (v — 271a9.m) (33)
= % [*’73102 — 4y 171003 4 - ] , (34)
wo= gl = 2)m(1-20,)m)  (3)
= é (3a’y?, + ), (36)
and so on.

Such recursions are obtained for any non-linear
DSE by iterating Theorem 2. Also, we observe
that we actually only need the cocommutative
part in the determination of the coproduct as is
evident from the very cocommutative definition
(22) of oi, k > 1. The non-cocommutative part
is always of lower degree in L in the obvious fil-
tration by L

It remains to understand how to compute
~1(a). Instead of an explicit analysis of non-linear
ODEs as in [5] we proceed here by the Mellin
transform, as promised. Here, it reads

_ . d4

:7+Zm9 (37)

>0

In our simple example we have

-1
F(p) = m
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Let us introduce a short hand notation:
'y-U:Z'yk(a)Uk. (39)
k=1

Then, the Dyson—Schwinger equation becomes

v-L=all+~v- 3_p)71[€7Lp = 1F(p)|p=0, (40)

where we evaluate the rhs at p = 0 after tak-
ing derivatives. The functional dependence of the
non-linear DSE on XQ = X! reflects itself on
the rhs.

The only unknown quantities in this equation
are the Taylor coefficients 1 ; which are implic-
itly defined through the Taylor coefficients of the
Mellin transform (38) above.

Taking a derivative of (40) wrt L and setting L
to zero allows us to read them off:

no= al+5-0-,)7 pF(p)lp=o0 (41)

= ar+o Z[’y-@,p]k X

E>1

Zpkfk—1‘| lp=0 (42)
=1

SO 71,1 = r universally.
In our example Q = X 2 we furthermore find

M2 = 1o, (43)
Y3 = rfi+rfi, (44)
and so on.

In this manner one confirms the results of [5]
which serve here as a mere example for a much
more general approach. Note that working with
the toy Mellin transform r = f; = 1 reproduces
the generating functions which counts the graphs
contributing at each loop order confirming the
count of Wick contractions in [6], in terms of
Catalan numbers

1,1,2,5,14,42, - .

For the anomalous dimension itself we indeed also
confirm the series A000699 of [7],

A000699 = 1,1,4,27,248,2830, - - -, (45)

from Eq.(42) above, in accordance with [6].
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Before we finish this paper by discussing a dou-
ble Mellin transform we mention one particular
nice feature of this example which we very much
hope to work out in general in the future.

3. A functional equation

It is our hope that eventually a non-
perturbative renormalized Green function can be
related to suitably defined (-functions. The exis-
tence of a combinatorial Euler product underlying
the decomposition of graphs into primitive graphs
is a first hint [8].

Here we report on another such hint based on
the possibility to reformulate the result of [5] such
that a functional equation is obtained. Inspection
of the solution in [5] (which is also suggested by
the functional equation of the complementary er-
ror function) shows

B a/(2m)
exp(p?)erfe(p)

< ( (exp(p?)erfe(p))*
()

where a is now the loop counting parameter and
p is another variable such that with z = 2%,

S(a, p)

jz 2(2—22(/1 f)) (47)

Note that on the lhs of (46) we have a weak cou-
pling expansion for a, on the rhs we have a strong
coupling expansion, hence an expansion in 1/a.
With T = a/(27), u = (exp(p?)erfc(p))~4,
and Z(T,u) = %(a,p) we get a functional equa-
tion reminiscent of a functional equation for a
(-function in two variables for the function field
case [9,10] for the non-perturbative renormalized
Green function
u) . (48)

5 5 ].
it ir2G-Dz
“ Tu
The propagator coupling duality of this Green
function can now be expressed with u = exp(s +
£), T = exp(—t), and ((s,t) = exp(52)Z(T, u)
as

C(S,t) = —C(t,S), (49)

b=

Z(T,u) =

which we report here for motivation to think fur-
ther about the connection between quantum field
theory and (-functions.

4. The appearance of transcendentals

How do we continue in the case where we have
several insertion places? Nothing changes in the
above derivation apart from the fact that we now
have to work with our double Mellin transform
due to the fact that now both propagators ob-
tain logarithmic corrections. As the primitive
self-energy B¢ (I) now obtains corrections at the
internal fermionic and bosonic line, we are led
to consider a coupled system including also the
bosonic propagator.

If we are hence to consider the system (based
now on two elements in R, fermion and boson
self-energies)

x@ = 1ot (gv)

- aB (X(a)Qla)| (50)
v = 18 (g

= I—-aB} (Y(a)Q(a)), (51)
with @~ *(a) = X?(a)Y (a) and
BinQ(a) = _QBinX(a) - Pliny(a)7 (52)

describing all possible iterations of massless
fermion and scalar one-loop graphs, the cor-
responding functions 75 (a), v} (a) are deter-
mined in terms of the anomalous dimensions
7 (a),7{ (a). The latter are obtained from the
system of Dyson—Schwinger equations

'Yf( = a(1+'7X '87P1)_1(1+’7Y '8*P2)_1 X
X(p1 + p2)Fu(p1, p2)pi=0, (53)
7= al+yY 0, T+ 0-,,) T X

x(p1 + p2) Fy(p1, p2)lpi=o0- (54)
We thus have to consider two Mellin transforms
in two variables each. They read for the fermion
self-energy B¢ (I)
k-q

1
Fe ) =5 d4]{3
(pl p2) q2 / J(k + )2]1+P1 [k?]l-‘rpz
—14+p e re1 —2C(2k+1) fr(p1,p2)

T @2—p—p2) (L—p1—p2)(pr +p2)’




and for the boson self-energy B (I)
_ L[ k- (k+q)
Fy(p1,p2) = qu / [(k + q)2]1+p1 [k2]1+p2

_ 1—2(p1 + p2) + p1p2 «
(2 —pP1— P2)
w21 —2C(2k+1) fr(p1,p2)

L —p1—p2)2(p1 +p2)’

e

X (56)
(

where traces have been taken to obtain the rele-

vant structure functions and where fi(p1, p2) are

the two-variable symmetric polynomials given by

2k
2k! okl
fk(p17p2) = Z mﬂiﬂ% =g (57)

j=1

We observe that the appearance of transcenden-
tals is utterly generated from the presence of a
second insertion place.

Eqgs.(53-56) completely determine the anom-
alous dimensions in question and together with
(26,52) the two Green functions. To what extent
this leads to further functional equations is under
current investigation.
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