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A VANISHING THEOREM IN POSITIVE CHARACTERISTIC AND TILTING
EQUIVALENCES

ALEXANDER SAMOKHIN

Abstract. Let DX be the sheaf of differential operators ([12]) on a smooth variety X over an

algebraically closed field k of characteristic p. We show that if X is a smooth quadric or an incidence

variety (a partial flag variety in type An) then Hi(X,DX) = 0 for i > 0. Some applications of this

vanishing result to derived categories of coherent sheaves are given.

1. Introduction

Let X be a smooth variety over an algebraically closed field k, and DX the sheaf of differential
operators on X as defined in [12]. Denote M(DX) the category of left DX -modules. Objects of
this category are quasicoherent sheaves on X equipped with a structure of left DX -modules. The
variety X is said to be D-affine if for any DX -module M one has:

• M is generated by its global sections as a quasicoherent sheaf, that is the natural map
H0(X,M)⊗OX →M is surjective, and

• higher cohomology of M vanish, that is Hi(X,M) = 0 for i > 0.

Under these two conditions the functor of global sections Γ provides an equivalence of abelian
categories:

(1.1) Γ: DX −mod ' Γ(DX)−mod,

where the category in the right hand side is that of finitely generated modules over Γ(DX), the
ring of global differential operators on X.

The Beilinson–Bernstein theorem ([4]) says that if X is a compact homogeneous space of a
complex semisimple Lie group G (that is X = G/P, where P is a parabolic subgroup of G), then
X is D-affine. Hence, for homogeneous spaces one has an equivalence as in (1.1) (localization).

Assume now that the characteristic of the ground field k is non-zero. Consider a semisimple
simply connected algebraic group G over k, and a parabolic subgroup P ⊂ G. One can ask
whether the homogeneous space G/P over k is D-affine in the above sense. Surprisingly enough,
very little is known on this subject. In general, as opposed to the characteristic zero case, these
spaces fail to be D-affine in positive characteristic, as was shown in [20]. Namely, a counterexample
was constructed in loc.cit.: starting with the Grassmann variety Gr2,5, an explicit DGr2,5-module
is produced with a non-zero higher cohomology. We believe that what follows is an exhaustive
list of the known results on the D-affinity of homogeneous spaces in positive characteristic. The
D-affinity for projective spaces and the flag variety SL3/B was proved in ([13]). For the flag variety
of the group in type B2 a necessary condition for the D-affinity was shown to hold in [2]. For flag
varieties G/B, as was proved in [13], DG/B-modules are generated by its global sections. This
implies, in particular, that for flag varieties the D-affinity is equivalent to the vanishing of higher
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cohomology of the sheaf D. The above counterexample of [20] shows that for the flag variety of
SL5 the sheaf of differential operators DSL5/B has a non-zero higher cohomology group.

From now on we fix an algebraically closed field k of characteristic p. All the varieties will be
defined over k. The main result of this paper states the vanishing of higher cohomology of the
sheaf of differential operators for a class of homogeneous spaces, namely for quadrics of dimension
less or equal to four and incidence varieties. Recall that a quadric is a homogeneous space of an
orthogonal group, and an incidence variety is a partial flag variety of the group in type An (the
variety of partial flags of type (1, n, n + 1)). The proof of these vanishing results essentially relies
on properties of the algebra of “crystalline” differential operators ([7]). Modulo these properties
the proof is quite elementary, and does not explicitly use representation theory of Lie algebras
in positive characteristic. In fact, vanishing theorems for line bundles are our main tool. Let
us sketch the proof. Recall that for a smooth variety X the algebra of crystalline differential
operators DX is an Azumaya algebra on the cotangent bundle to the Frobenius twist X ′ of X (DX

has a large center that is isomorphic to the algebra of functions on the cotangent bundle to X ′);
moreover, DX splits when restricted to the zero section, the splitting bundle being isomorphic
to F∗OX ([7]) (where F : X → X ′ is the relative Frobenius morphism). Further, the sheaf of
differential operators DX carries an additional filtration to the usual filtration by degree of an
operator, the p-filtration. The sheaf D1 – the first term of this filtration – is isomorphic to the
central reduction of the algebra DX . This allows to compute cohomology of D1 using the Koszul
resolution of the zero section in the cotangent bundle. The Koszul complex is a filtered complex,
and its associated graded complex is quasiisomorphic to the structural sheaf of the Frobenius
neighbourhood of the zero section in the cotangent bundle (cf. loc.cit.). We prove that in the
cases under consideration the latter sheaf has vanishing higher cohomology. This immediately
implies the needed vanishing for the first term of the p-filtration. Using results of the Berthelot
theory of arithmetic differential operators one shows, by the same argument, that higher terms of
the p-filtration has no higher cohomology either. We are done, the sheaf of differential operators
being the direct limit of terms of the p-filtration.

As we have seen above, the sheaf D1 – the first term of the p-filtration – is isomorphic to
EndOX

(F∗OX). The vanishing of higher cohomology of D1 thus implies:

(1.2) Exti(F∗OX ,F∗OX) = 0,

for i > 0. Recall that a coherent sheaf E on a variety X such that Exti(E , E) = 0 for i > 0
is called an almost exceptional sheaf. If, in addition, it generates Db(X), the bounded derived
category of coherent sheaves on X, then E is called a tilting sheaf, or a tilting generator ([18]). It is
well-known that such a sheaf provides an equivalence between Db(X) and the derived category of
finitely generated modules over a non-commutative associative algebra A – the algebra of global
endomorphisms of the sheaf E (e.g, loc.cit., Lemma 1.2).

Let G be a semisimple simply connected algebraic group over k. Assume that p > h, where
h is the Coxeter number of G. The main results of [7] and [8] imply immediately that for a
homogeneous space G/P the bundle F∗OG/P generates the derived category of coherent sheaves

Db(G/P) (see Section 6). The vanishing of higher cohomology of the sheaf D1 on G/P, therefore,
can be rephrased as saying that the sheaf F∗OG/P is tilting. Putting together our knowledge of
cohomology of the sheaf D1 on homogeneous spaces, we are able to state:
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Theorem 1.1. Let X be a homogeneous space of one of the following types:
• Projective space Pn

• The flag variety G/B of the group G in type B2

• Quadric of dimension ≤ 4
• Incidence variety of type (1, n, n + 1)

and assume p > h. Then F∗OX is a tilting bundle in Db(X).

Proof. The fact that F∗OX is a generator for all homogeneous spaces is proved in Lemma 6.2 below.
The vanishing of higher cohomology of the sheaf D1 for projective spaces and the flag variety in
type B2 follows from [13] and [2], respectively. Theorem 4.1 and Theorem 5.1 of the present paper
give the necessary vanishing for quadrics and incidence varieties. �

Corollary 1.1. Let X be as in Theorem 1.1. Then one has an equivalence of derived categories:

(1.3) Db(X) ' Db(End(F∗OX)−mod).

Proof. Follows from Theorem 1.1 and Lemma 1.2 of [18]. �

It should be noted that derived categories of coherent sheaves of varieties from Theorem 1.1 have
been known explicitly for a long time. Namely, in all these cases complete exceptional collections
are known to exist ([3], [19]). However, there are a great many exceptional collections in these
derived categories: indeed, the braid group is known to act on the set of exceptional collections ([9]).
The sheaf F∗OX , however, is associated to a variety X via an intrinsic procedure. The equivalence
furnished by the sheaf F∗OX (when it holds, of course) is, in some sense, a distinguished one. In
a forthcoming paper ([26]) we show that there are examples of non-homogeneous (Fano) varieties
when F∗OX gives as well a tilting object.

It is an old result of Hartshorne saying that for projective spaces Pn the sheaf F∗OPn splits into
the direct sum of line bundles:

(1.4) F∗OPn = OPn ⊕OPn(−1)p1 ⊕ · · · ⊕ OPn(−n)pn ,

where pi’s are certain multiplicities that depend only on p (these are polynomials on p). Obviously,
this implies Theorem 1.1 for Pn (by the Beilinson theorem for projective spaces ([3])). Note also
that the converse implication is also true, i.e. the tilting property of the bundle F∗OPn implies
decomposition (1.4). For quadrics Theorem 1.1 implies a similar decomposition of F∗O into the
direct sum of line bundles and spinor bundle(s) (cf. [19]). It would be tempting to conjecture that
the sheaf F∗OG/P is tilting for homogeneous spaces G/P. At present, however, there are too few
examples in favour of this guess. Hopefully, future research will reveal further ones. Finally, let us
remark that the vanishing result for differential operators that we prove in the present paper was
known previously ([13]) only for projective spaces Pn and for the flag variety of the group SL3

(the latter variety being an incidence variety for n = 3).

The paper is organized as follows. In Section 2 we recall some facts from linear algebra and
state vanishing theorems for line bundles that we will need. In Section 3 we recall the definition
and main properties of differential operators. We then pass to crystalline differential operators
and show a link between cohomology vanishing for differential operators on homogeneous spaces
and that for line bundles on cotangent bundles to these spaces. The proofs of vanishing theorems
for quadrics and incidence varieties occupy Sections 4 and 5, respectively. In the last section we
discuss applications of these vanishing results to derived categories of coherent sheaves.
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2. Preliminaries

Throughout we fix an algebraically closed field k of characteristic p.

2.1. Frobenius morphism. The absolute Frobenius morphism on a scheme is the identity on
point spaces and raising to the p-th power locally on functions. The absolute Frobenius morphism
is not a morphism of k-schemes. Let π : X → Spec(k) be a scheme. Let X ′ be the scheme obtained
from X by base change with the absolute Frobenius morphism on Spec(k), i.e., the underlying
topological space of X ′ is that of X with the same structure sheaf OX of rings, only the underlying
k-algebra structure on OX′ is twisted as λ � f = λ1/pf , for λ ∈ k and f ∈ OX′ . Using this
description of X ′, the relative Frobenius morphism F : X → X ′ is defined in the same way as the
absolute Frobenius morphism and it is a morphism of k-schemes.

2.2. Koszul resolutions. Let V be a finite dimensional vector space over k with a basis
{e1, . . . , en}. Recall that the r-th exterior power ∧rV of V is defined to be the r-th tensor power
V ⊗r of V divided by the submodule generated by the elements:

u1 ⊗ · · · ⊗ ur − (−1)sgnσuσ1 ⊗ · · · ⊗ uσ(r)

for all the permutations σ ∈ Σr and u1, . . . , ur ∈ V . Similarly, the r-th symmetric power SrV of
V is defined to be the r-th tensor power V ⊗r of V divided by the submodule generated by the
elements

u1 ⊗ · · · ⊗ ur − uσ1 ⊗ · · · ⊗ uσ(r)

for all the permutations σ ∈ Σr and u1, . . . , ur ∈ V .

Let

(2.1) 0 → V ′ → V → V ′′ → 0

be a short exact sequence of vector spaces. For any n > 0 there is a functorial exact sequence (the
Koszul resolution, ([16], II.12.12))

(2.2) · · · → Sn−iV ⊗ ∧iV ′ → · · · → Sn−1V ⊗ V ′ → SnV → SnV ′′ → 0.

Another fact about symmetric and exterior powers is the following ([15], Exercise 5.16). For a
short exact sequence as (2.1) one has for each n the filtrations

(2.3) SnV = Fn ⊃ Fn−1 ⊃ . . . and
n∧

V = F ′
n ⊃ F ′

n−1 ⊃ . . .

such that
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(2.4) Fi/Fi−1 ' Sn−iV ′ ⊗ SiV ′′

and

(2.5) F ′
i/F ′

i−1 '
n−i∧

V ′ ⊗
i∧

V ′′

When either V ′ or V ′′ is a one-dimensional vector space, these filtrations on exterior powers of
V degenerate into short exact sequences. If V ′′ is one-dimensional then one obtains:

(2.6) 0 → ∧rV ′ → ∧rV → ∧r−1V ′ ⊗ V ′′ → 0.

Similarly, if V ′ is one-dimensional, the filtration above degenerates to give a short exact sequence:

(2.7) 0 → ∧r−1V ′′ ⊗ V ′ → ∧rV → ∧rV ′′ → 0.

Remark 2.1. There is a general characteristic-free definition of the so-called Schur complexes ([1]),
of which the Koszul resolution (2.2) is a particular example. One should be careful when dealing
with these complexes in positive characteristic as divided and symmetric powers of a module differ
in this case. In particular, Lemma 2.1. from [17], which the cited paper relies on, holds for divided
powers, and not for symmetric powers as it was stated in loc.cit.

2.3. Vanishing theorems for line bundles. We recall here some vanishing theorems for line
bundles that we will need. Let us first introduce some notations. Let G be a connected, simply
connected, semisimple algebraic group, B a Borel subgroup of G, and T a maximal torus. Let
R(T,G) be the root system of G with respect to T, R+ the subset of poisitive roots, S ⊂ R+

the simple roots, and h the Coxeter number of G. By 〈·, ·〉 we denote the natural pairing X(T)×
Y (T) → Z, where X(T) is the group of characters (also identified with the weight lattice) and
Y (T) the group of one parameter subgroups of T (also identified with the coroot lattice). For
a subset I ⊂ S let P = PI denote the associated parabolic subgroup. Recall that the group of
characters X(P) of P can be identified with {λ ∈ X(T)|〈λ, α∨〉 = 0, for all α ∈ I}. In particular,
X(B) = X(T). A weight λ ∈ X(B) is called dominant if 〈λ, α∨〉 ≥ 0 for all s ∈ S. A dominant
weight λ ∈ X(P) is called P-regular if 〈λ, α∨〉 > 0 for all s /∈ I, where P = PI is a parabolic
subgroup.

Recall that the prime p is a good prime for G if p is coprime to all the coefficients of the highest
root of G written in terms of the simple roots. For simple G, p is a good prime if p ≥ 2 for type
A and p ≥ 3 for type B.

Here is a vanishing theorem by Kumar et al. ([21], Theorem 5) that we will rely on in proving
our statements:

Theorem 2.1. Let X be a homogeneous space G/P, T∗(X) the total space of the cotangent bundle
of X, and π : T∗(X) → X the projection. Assume that char k is a good prime for G. Let λ ∈ X(P)
be a P-regular weight. Then

(2.8) Hi(T∗(X), π∗L(λ)) = Hi(X,Lλ ⊗ π∗OT∗(X)) = 0,

for i > 0.
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Here Lλ denotes a line bundle that corresponds to the weight λ. In particular, if X = G/B then
one has:

(2.9) Hi(T∗(X),OT∗(X)) = 0,

for i > 0.

Remark 2.2. If P ⊃ B is a proper parabolic sugroup then the vanishing of higher cohomology of
the sheaf OT∗(G/P) on T∗(G/P) is not known in general. Recall that this is known in characteristic

zero ([10]). A cruical tool to prove such a vanishing is the Grauert–Riemenschneider theorem which
is not valid in positive characteristic. There are some cases, however, when the sheaf OT∗(G/P)

can be shown to have no higher cohomology. First, this holds in type An as nilpotent orbits are
normal in type An in positive characteristic ([24], Propositions 4.6 and 4.9). Secondly, if a parabolic
subgroup P corresponds to a simple short root then higher cohomology of OT∗(G/P) vanish as well

([21], Theorem 6). It is believed, however, that the vanishing of higher cohomology of OT∗(G/P)

must hold for any parabolic subgroup P ([11], Comments to Chapter 5). More generally, the
vanishing as in (2.8) should hold for any dominant line bundle Lλ.

3. Differential operators

3.1. Generalities. This subsection is taken from [22]. Let R be a commutative algebra over k.

Definition 3.1. The ring of k-linear differential operators Dk(R) on R is an R ⊗k R-subalgebra
of Endk(R) defined by

Dk(R) = {φ ∈ Endk(R) : In · φ = 0, n � 0},

where I denotes the kernel of the product map R⊗k R → R.

The R⊗k R-submodules

Dn
k (R) = {φ ∈ Endk(R) : In+1 · φ = 0},

defines a filtration of Dk(R). Elements in Dn
k (R) are called differential operators of degree ≤ n.

When I is a finitely generated ideal there is a second filtration of Dk(R) given by the R ⊗k R-
submodules

D
(n)
k (R) = {φ ∈ Endk(R) : I(n+1) · φ = 0},

where I(n) denotes the ideal in R⊗k R generated by elements of the form an, a ∈ I. This filtration
is particularly nice when the characteristic p of k is positive. In this case I(pn) is generated by

elements of the form apn ⊗ 1 − 1 ⊗ apn
, and hence D

(pn−1)
k (R) = EndRpn (R), where Rpn

denotes
the subring of R of pn-powers (here we use that k is algebraically closed and hence perfect). In
particular,

Dk(R) =
⋃
n

EndRpn (R).

The right side of this equation shows that Dk(R) is independent of k, and we therefore suppress k

from the notation and write D(R) instead of Dk(R).
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Lemma 3.1. Assume that k has positive characteristic p and that R is a finitely generated k-
algebra. For every multiplicative subset S of R there exists a natural isomorphism of left RS-
modules

(D(R))S ' D(RS),

where the localization on the left is performed as a left R-module.

Proof. Fix a positive integer n. As R is a finitely generated k-algebra it is finitely generated as a
module over the subring Rpn

. This implies that the exists a natural isomorphism

EndRpn (R)S ' End
Rpn

S
(RS),

Now conclude the argument by using the description of D(R) above (in positive characteristic). �

Let X be a variety over k. The sheaf of k-linear differential operators DX on X ([12]) is an OX -
subalgebra of Endk(OX) which is quasicoherent for both OX -module structures. If X = Spec(R) is
affine, the sheaf DX coincides with the quasicoherent OX -bialgebra associated to the R-bialgebra
Dk(R) defined above.

Recall that for a variety X over k the relative Frobenius morphism F : X → X ′ is defined (here
X ′ is the Frobenius twist of X). It follows from the above that

(3.1) DX =
⋃
n

EndOX
(Fn∗OX),

where Fn = F ◦ · · · ◦ F : X → X(n), (n times) and X(n) is the n-th Frobenius twist of X.
Denote Dr = EndOX

(Fr∗OX). Recall that a variety X is said to be Frobenius split if the
homomorphism OX′ → F∗OX of OX′-modules is split. Hence OX′ is a direct summand in F∗OX .
The following statement was shown in [2] (Proposition, Sec.1):

Lemma 3.2. Let X be a Frobenius split variety. Then

(3.2) H i(X,DX) = 0 ⇔ H i(X,Dr) = 0 for any r ∈ N.

Homogeneous spaces of semisimple algebraic groups are Frobenius split ([23]).

Remark 3.1. Lemma 3.2 and the above counterexample to the D-affinity ([20]) imply that for the
flag variety SL5/B there is a non-zero higher cohomology group:

(3.3) H1(SL5/B,Dr) 6= 0,

for some r ≥ 1. A priori, one can say nothing about these r’s. Hence, higher cohomology of the
sheaf D1 may still vanish.

3.2. Crystalline differential operators. The material of this subsection is taken from [7]. We
recall, following loc.cit. (see also [6] and [8]), some properties of crystalline differential operators
(differential operators without divided powers, or PD-differential operators in the terminology of
Berthelot and Ogus).

Let X be a smooth variety, T ∗X the cotangent bundle, and T∗(X) the total space of T ∗X .

Definition 3.2. The sheaf DX of crystalline differential operators on X is defined as the enveloping
algebra of the tangent Lie algebroid, i.e., for an affine open U ⊂ X the algebra D(U) contains the
subalgebra O of functions, has an O-submodule identified with the Lie algebra of vector fields
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V ect(U) on U , and these subspaces generate D(U) subject to relations ξ1ξ2 − ξ2ξ1 = [ξ1, ξ2] ∈
V ect(U) for ξ1, ξ2 ∈ V ect(U), and ξ · f − f · ξ = ξ(f) for ξ ∈ V ect(U) and f ∈ O(U).

If char(k) = 0 then DX is isomorphic to the sheaf of differential operators DX defined in the
previous subsection. If char(k) = p then DX shares some features with the characteristic zero
case; for example, DX carries an increasing filtration “by order of a differential operator”, and the
associated graded gr(DX) ∼= OT∗X canonically. On the other hand, some phenomena are special
to the characteristic p setting. We have an action map DX → Endk(OX), which is not injective,
unlike the characteristic zero case. For example, if X = A1 = Spec(k[x]), the section ∂p

x 6= 0 of DX

acts by zero on O. Further, the algebra F∗DX is known to have a large center, which is isomorphic
to F∗π∗OT∗(X) = gr(F∗DX) (here π : T∗(X) → X denotes the projection). Thus, there exists a

sheaf of algebras DX on T∗(X ′) such that π∗ DX = F∗DX (by abuse of notation we denote the
projection T∗(X ′) → X ′ by the same letter π). Moreover, DX is an Azumaya algebra on T∗(X ′).
Let i : X ′ ↪→ T∗(X ′) be the zero section embedding. Then i∗ DX splits as an Azumaya algebra,
the splitting bundle being F∗OX . In other words, i∗ DX = End(F∗OX).

3.3. Cohomology of the Frobenius neighbourhood. Our goal is to study the cohomology of
the sheaf DX for homogeneous spaces. Consider the first term of the p-filtration, that is the bundle
End(F∗OX). Given the above, one has:

(3.4) Hk(X ′, End(F∗OX)) = Hk(X ′, i∗ DX) = Hk(T∗(X ′), i∗i∗ DX) = Hk(T∗(X ′), DX ⊗i∗OX′),

the last isomorphism in (3.4) follows from the projection formula. Consider the bundle π∗T ∗X′ .
There is a tautological section s of this bundle such that the zero locus of s coincides with X ′.
Hence, one obtains the Koszul resolution:

(3.5) 0 → det (π∗TX′) → · · · → ∧k(π∗TX′) → ∧k−1(π∗TX′) → · · · → OT∗(X′) → i∗OX′ → 0.

Let us tensor the resolution (3.5) by the sheaf DX . The cohomology group on the right in (3.4) can
be computed via the above Koszul resolution. The following lemma, which reduces cohomology of
a filtered complex to those of its associated graded one, is standard:

Lemma 3.3. For j ≥ 0 one has:

(3.6) Hj(T∗(X),F∗ ∧k (π∗TX′)) = 0 ⇒ Hj(T∗(X ′), DX ⊗ ∧k (π∗TX′)) = 0.

Proof. We need to compute the hypercohomology of the complex Ck : = ∧k(π∗TX′) ⊗ DX , k =
−n, . . . , 0 (where n = dim X). Take the direct image of the complex C• with respect to π:

(3.7) R•π∗C
k = R•π∗(∧k(π∗TX′)⊗ DX) = π∗(∧k(π∗TX′)⊗ DX) = F∗DX ⊗ ∧k(TX′),

the morphism π being affine. The complex R•π∗C
k = F∗DX ⊗ ∧k(TX′) is a filtered complex, the

associated complex being isomorphic to gr(F∗DX)⊗∧k(TX′) = F∗π∗OT∗(X)⊗∧k(TX′). Clearly, for
i ≥ 0

(3.8) Hi(X ′, gr(F∗DX)⊗ ∧k(TX′)) = 0 ⇒ Hi(X ′,F∗DX ⊗ ∧k(TX′)) = 0.

There are isomorphisms:

(3.9) Hi(X ′,F∗π∗OT∗(X) ⊗ ∧k(TX′)) = Hi(X, π∗OT∗(X) ⊗ F∗ ∧k (TX′)) = Hi(T∗
X , π∗F∗ ∧k (TX′)).
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The last group is isomorphic to Hi(T∗
X ,F∗π∗ ∧k (TX′)), hence the statement of the lemma. �

Remark 3.2. The complex C̃k : = F∗π∗ ∧k (TX′) is quasiisomorphic to F∗i∗OX′ , the structural
sheaf of the Frobenius neighbourhood of the zero section. Below we show that if X is a smooth
quadric of dimension ≤ 4 or an incidence variety then

(3.10) Hj(T∗(X),F∗i∗OX′) = 0

for j > 0.

4. Quadrics

Fix a notation first. In the next two sections we denote π : T∗(X) → X the projection, X being
a scheme and T∗(X) the cotangent bundle to X.

Theorem 4.1. Let Qn be a smooth quadric of dimension n ≤ 4. Assume that p is an odd prime.
Then Hi(Qn,DQn) = 0 for i > 0.

Proof. A smooth quadric Qn ⊂ P(V ) is a homogeneous space, and a hypersurface of degree two in
P(V ). We first prove that Hi(Qn,D1) = 0 for i > 0. Consider an adjunction sequence

(4.1) 0 → TQn → TP(V ) ⊗OQn → OQn(2) → 0,

and the Euler sequence on P(V ) restricted to Qn:

(4.2) 0 → OQn → V ⊗OQn(1) → TP(V ) ⊗OQn → 0.

Show first that Hi(Qn
′,F∗π∗OT∗(Qn)) = 0 for i > 0. Clearly, Q1 = P1 and Q2 = P1 × P1. For

projective spaces the vanishing of higher cohomology of differential operators was proved in ([13]).
If n = 3 then the quadric Q3 is a homogeneous space of the group in type B2 such that the parabolic
subgroup P, defining Q3, corresponds to the short simple root in the root system of type B2. As
was discussed in Remark 2.2, for a parabolic subgroup P that correspond to a short simple root in
the given root system the sheaf OT∗(G/P) has vanishing higher cohomology ([21], Theorem 6). For
n = 4 the quadric Q4 is isomorphic to the Grassmann variety Gr2,4, that is to a homogeneous space
of the group SL4. Recall that for a parabolic subgroup P of the group SLm the sheaf OT∗(SLm/P)

has vanishing higher cohomology ([24], Propositions 4.6 and 4.9, cf. also Remark 2.2). Hence, for
n ≤ 4 one obtains:

(4.3) Hi(Qn
′,F∗π∗OT∗(Qn)) = Hi(Qn, π∗OT∗(Qn)) = Hi(Qn,S•TQn) = 0 for i > 0.

The sequence (4.1) gives rise to a short exact sequence (see Section 2):

(4.4) 0 → ∧rTQn → ∧rTP(V ) ⊗OQn → ∧r−1TQn ⊗OQn(2) → 0.

Let us show that Hi(Qn
′,∧k(TQn

′)⊗ F∗π∗OT∗(Qn)) = 0 for i > r. We argue by induction on r, the

base of induction being r = 1. Tensoring the sequence (4.1) (on Qn
′) with F∗S

•TQn , one gets:

(4.5) 0 → TQn
′ ⊗ F∗S

•TQn → TP(V ) ⊗OQn
′ ⊗ F∗S

•TQn → OQn
′(2)⊗ F∗S

•TQn → 0.

By Theorem 2.1, one has for i > 0:

(4.6) Hi(Qn
′,OQn

′(2)⊗ F∗S
•TQn) = Hi(Qn,OQn(2p)⊗ S•TQn) = 0,
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Tensoring sequence (4.2) (on Qn
′) with F∗S

•TQn gives:

(4.7) 0 → OQn
′ ⊗ F∗S

•TQn → V ⊗OQn
′(1)⊗ F∗S

•TQn → TP(V ) ⊗OQn
′ ⊗ F∗S

•TQn → 0.

We see that Hi(Q
′
n, V ⊗ OQn

′(1) ⊗ F∗S
•TQn) = 0 for i > 0, the bundle OQn(1) being ample. We

saw above that Hi(Qn,S•TQn) = 0 for i > 0. Hence, Hi(Qn
′, TP(V ) ⊗ OQn

′ ⊗ F∗S
•TQn) = 0 for

i > 0. From sequence (5.7) we conclude that Hi(Qn
′, TQn

′ ⊗ F∗S
•TQn) = 0 for i > 1. The same

arguments show that Hi(Qn
′, TQn

′ ⊗ OQn
′(2) ⊗ F∗S

•TQn) = 0 for i > 1. Assume that for r ≤ m

one has Hi(Qn
′,∧k(TQn

′) ⊗ F∗π∗OT∗(Qn)) = 0 for i > r. Let us prove that Hi(Qn
′,∧r+1(TQn

′) ⊗
F∗π∗OT∗(Qn)) = 0 for i > r + 1. Tensoring sequence (5.6) (on Qn

′) with F∗S
•TQn , one gets:

(4.8) 0 → ∧r+1TQn
′⊗F∗S

•TQn → ∧r+1TP(V )⊗OQn
′⊗F∗S

•TQn → ∧rTQn
′⊗OQn

′(2)⊗F∗S
•TQn → 0.

By the inductive assumption we can also assume that Hi(Qn
′,∧r(TQn

′)⊗OQn
′(2)⊗F∗π∗OT∗(Qn)) = 0

for i > r. Let us show that Hi(Qn
′,∧r+1TP(V ) ⊗ OQn

′ ⊗ F∗S
lTQn) = 0 for i > 0. The long exact

sequence associated to sequence (4.8) will imply Hi(Qn
′,∧r+1(TQn

′)⊗F∗π∗OT∗(Qn)) = 0 for i > r+1.

From sequence (4.2) one obtains a short exact sequence:

(4.9) 0 → ∧j−1TP(V ) ⊗OQn → ∧jV ⊗OQn(j) → ∧jTP(V ) ⊗OQn → 0.

Glueing together these short exact sequences for j = 1, . . . r + 1, one gets an exact sequence:

(4.10) 0 → OQn → V ⊗OQn(1) → ∧2V ⊗OQn(2) → · · · → ∧r+1TP(V ) ⊗OQn → 0.

Tensoring the above sequence (on Qn
′) with F∗S

•TQn , we conclude that Hi(Qn
′,∧r+1TP(V ) ⊗

OQn
′ ⊗ F∗S

•TQn) = 0 for i > 0. Using Lemma 3.3, we get Hi(Qn,D1) = 0 for i > 0.

To finish the proof of Theorem 4.1, recall that in the work [5] Berthelot constructed sheaves
of arithmetic differential operators D̄k of level k. The construction yields that D̄k is an Azumaya
algebra on T∗(Xk), where Xk is the k-th Frobenius twist of X. Further, the Azumaya algebra D̄k

splits when restricted to the zero section, the splitting bundle being Fk
∗OX . In other words, the

central reduction of D̄k is isomorphic to Dk. The sheaf D̄1 is isomorphic to D, the sheaf of crystalline
differential operators from Section 3. The arguments used above for the sheaf D1 on a quadric can
be applied as well to the sheaves Dk. We thus get Hi(Qn,Dk) = 0 for i > 0. Remembering (3.1),
one gets the statement. �

Remark 4.1. The vanishing of higher cohomology of D1 for quadrics of dimesnion n ≤ 4 and for
all p was established earlier, by a different methdod, in [25].

Remark 4.2. Undoubetdly, Theorem 4.1 should hold for quadrics of any dimension. If we knew the
vanishing (4.3) for arbitrary n then all the other arguments would apply verbatim. Unfortunately,
at present, we are not able to show that (4.3) holds for any n, though it is very likely that there
exists an elementary proof to this fact. This question will be addressed in a subsequent paper.

5. Incidence varieties

Let V be a vector space over k of dimension n, and X the flag variety F1,n−1,n, a smooth divisor
in P(V )× P(V ∗) of bidegree (1, 1).
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Theorem 5.1. Hi(X,DX) = 0 for i > 0.

Proof. We argue as in the proof of Theorem 4.1. Consider the line bundle OP(V )(1) � OP(V ∗)(1)

over P(V ) × P(V ∗). Then X is isomorphic to the zero locus of a section of OP(V )(1) �OP(V ∗)(1).
One has an adjunction sequence:

(5.1) 0 → TX → TP(V )×P(V ∗) ⊗OX → OX(1) �OX(1) → 0.

Note that TP(V )×P(V ∗) = TP(V ) � TP(V ∗). One has the Euler sequences:

(5.2) 0 → OP(V ) → V ⊗OP(V )(1) → TP(V ) → 0,

and

(5.3) 0 → OP(V ∗) → V ∗ ⊗OP(V ∗)(1) → TP(V ∗) → 0.

Hence a short exact sequence:

(5.4) 0 → OP(V )×P(V ∗) ⊕OP(V )×P(V ∗) → V ∗ ⊗OP(V ∗)(1) �OP(V )(1)⊗ V → TP(V )×P(V ∗) → 0

We have already seen that in type A one has the cohomology vanishing:

(5.5) Hi(X ′,F∗π∗OT∗(X)) = Hi(X, π∗OT∗(X)) = Hi(X, S•TX) = 0

for i > 0. Similarly, the sequence (5.1) gives rise to a short exact sequence:

(5.6) 0 → ∧rTX → ∧rTP(V )×P(V ) ⊗OX → ∧r−1TX ⊗OX(1) �OX(1) → 0.

As above, let us show that Hi(X ′),∧k(TX′)⊗F∗π∗OT∗(X)) = 0 for i > r. We argue by induction

on r, the base of induction being r = 1. Tensoring the sequence (5.1) (on X ′) with F∗S
•TX , one

gets:

(5.7) 0 → TX′ ⊗ F∗S
•TX → TP(V )×P(V ∗) ⊗ F∗S

•TX ⊗OX′ → OX′(1) �OX(1)⊗ F∗S
•TX → 0.

By Theorem 2.1, one has for i > 0:

(5.8) Hi(X ′,OX′(1) �OX(1)⊗ F∗S
•TX) = Hi(X,OX′(p) �OX(p)⊗ S•TX) = 0,

On the other hand, tensoring sequence (5.9) (considered first on P(V )×P(V ∗)′ and then restricted
to X ′) with F∗S

•TX gives:

(5.9) 0 → F∗S
•T ⊕2

X → (V ∗ ⊗OP(V ∗)(1) �OP(V )(1)⊗ V )⊗ F∗S
•TX → TP(V )×P(V ∗)′ ⊗ F∗S

•TX → 0

The leftmost term in the above sequence has vanishing higher cohomology by (5.5). The middle
term is the bundle F∗S

•TX tensored with a semiample sheaf on X (i.e. the sheaf isomorphic to
either OX(k) � OX or OX � OX(k). Let L be a semiample line bundle on X. For any l ≥ 1
there is a filtration on Sl(TP(V )×P(V ∗) ⊗OX), the graded factors of this filtration being isomorphic

to Si(TX)⊗(OX(l−i)�OX(l−i)). Tensoring Sl(TP(V )×P(V ∗)⊗OX) with L, the graded factors SiTX⊗
(OX(l−i)�OX(l−i)) get twisted by L. For i < l the higher cohomology of the corresponding graded
factor vanish by Theorem 2.1. On the other hand, the higher cohomology of Sl(TP(V )×P(V ∗)⊗OX)⊗L
are easily seen to vanish (use the Koszul resolutions associated to the Euler sequences (5.2) and
(5.3), and the Kempf theorem ([14])). One obtains that Hi(X, S•TX ⊗L) = 0 for i > 1. Hence, the
cohomology of the middle term in (5.5) vanishes for i > 1, and Hi(X ′, TP(V )×P(V ∗)′ ⊗ F∗S

•TX) = 0
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for i > 1. Coming back to sequence (5.7), one gets Hi(X ′, TX′ ⊗ F∗S
•TX) = 0 for i > 1. The

inductive step is completely analogous to that in the proof of Theorem 4.1 (one uses sequence (5.9)
to ensure that Hi(X ′,∧r+1TP(V )×P(V ∗)′ ⊗ OX′ ⊗ F∗S

•TX) = 0 for i > 1). This allows to complete
the induction argument.

�

6. Tilting equivalences

6.1. Tilting sheaves. Recall some facts about tilting sheaves. The definition and lemma below
are taken from ([18]).

Definition 6.1. A coherent sheaf E on X is called a tilting generator of the bounded derived
category Db(X) of coherent sheaves on X if the following holds:

(1) The sheaf E is a tilting object in Db(X) – that is, for any i ≥ 1 we have Exti(E , E) = 0
(2) The sheaf E generates the derived category Db(X) of complexes bounded from above – that

is, if for some object F ∈ Db(X) we have RHom•(E ,F) = 0, then F = 0.

Tilting sheaves are a tool to construct derived equivalences. One has:

Lemma 6.1. Let X be a smooth scheme, E a tilting generator of the derived category Db(X),
and denote R = End(E). Then the algebra R is left-Noetherian, and the correspondence F 7→
RHom•(E ,F) extends to an equivalence

(6.1) Db(X) → Db(R-modfg)

between the bounded derived category Db(X) of coherent sheaves on X and the bounded derived
category Db(R-modfg) of finitely generated left R-modules.

One of the main results of [7] is the derived Beilinson–Bernstein localization theorem (loc.cit.,
Theorem 3.2) for crystalline differential operators. It asserts that for p > h, where h is the Coxeter
number of G, there is an equivalence of derived categories:

(6.2) Db(X ′,DX′ −modc) ' Db(U0(g)-modfg).

Here X = G/B, and U0(g) is the central reduction (modulo the “Harish-Chandra part” of the
center) of the universal enveloping algebra of g ([7]). We refer the reader to loc.cit. for the definition
of both categories in (6.2). A similar equivalence (singular localization) is proved for G/P in [8].
An immediate corollary to these equivalences is the following:

Lemma 6.2. Let X = G/P be a homogeneous spaces of a semisimple algebraic group G over k.

Assume that p > h. Then the bundle F∗OX is a generator in Db(X).

Proof. One has to show that if an object M of Db(X) is orthogonal to F∗OX , i.e.
RHomX(M,F∗OX) = 0, then M = 0. From the orthogonality condition and by the adjunc-
tion of direct and inverse image functors one obtains that such an M satisfies (up to passing to
the dual)

(6.3) H∗(X, F∗M) = 0.
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The Frobenius morphism is an affine morphism, thus from (6.3) we get the equality
H∗(X, F∗F

∗M) = 0. Now the object F∗F
∗M is a complex of F∗DX -modules; indeed, the ob-

ject F∗F
∗M is a complex of modules over EndOX

(F∗OX) (the Cartier descent), and the latter
algebra is the central reduction of the algebra F∗DX . Using the equivalence (6.2) and the condition

(6.3), we see that the object F∗F
∗M of Db(X ′,DX′ −mod) is zero (since the functor establishing

the equivalence (6.2) is the derived global section functor). By the projection formula one has
F∗F

∗M = F∗OX ⊗M, hence M = 0.
�

Theorem 1.1 now follows.
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