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RENORMALIZATION AND RESOLUTION OF SINGULARITIES
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ABSTRACT. Since the seminal work of Epstein and Glaser it is well

established that perturbative renormalization of ulwbati divergences
in position space amounts to extension of distribution® atidgonals.
For a general Feynman graph the relevant diagonals formtaiviahar-
rangement of linear subspaces. One may therefore ask fmatiaation
becomes simpler if one resolves this arrangement to a narassing
divisor. In this paper we study the extension problem ofritigtions
onto the wonderful models of de Concini and Procesi, whiategalize
the Fulton-MacPherson compactification of configuratioacgs. We
show that a canonical extension onto the smooth model a#@saiith
the usual Epstein-Glaser renormalization. To this end weearsan-
alytic regularization for position space. The 't Hooft idigées relating
the residues may be recovered from the stratification, amdri&rmann’s
forest formula is encoded in the geometry of the compactifinaCon-
sequently one subtraction along each irreducible compafehe divi-
sor suffices to get a finite result using local counterternssa &orollary,
we identify the Hopf algebra of at most logarithmic Feynmaapdps in
position space, and discuss the case of higher degree ofdivee.
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1. INTRODUCTION

The subject of perturbative renormalization in four-dirsienal interact-
ing quantum field theories looks back to a successful histdtyanks to
the achievements of Bogoliubov, Hepp, Zimmermann, Epstelaser, 't
Hooft, Veltman, Polchinski, Wilson — to mention just sometlo& most
prominent contributors —, the concept seems in principli-wederstood;
and the predictions made using the renormalized pertusbatxpansion
match the physics observed in the accelerators with tremendccuracy.
However, several decades later, our understanding ofstieaiinteracting
qguantum field theories is still everything but satisfyingotMnly is it ex-
tremely difficult to perform computations beyond the verwést orders,
but also the transition to a non-perturbative framework #redincorpora-
tion of gravity pose enormous conceptual challenges.

Over the past fifteen years, progress has been made, amarg,adththe
following three directions. In the algebraic approach tamum field the-
ory, perturbation theory was generalized to generic (ajrspace-times by
one of the authors and Fredenhaden [17], see also [28]. Qutliee hand,
Connes and one of the authors introduced infinite-dimeiasidopf- and
Lie algebras[[19, 35] providing a deeper conceptual undedshg of the
combinatorial and algebraic aspects of renormalizatitsg beyond per-
turbation theory. More recently, a conjecture concernimg appearance
of a very special class of periods[3)15] 16] in all Feynmaegrals com-
puted so far, has initiated a new area of research [10-12jhwdtudies the
perturbative expansion from a motivic point of view. The maurpose
of this paper is to contribute to the three approaches meedioby giving
a description of perturbative renormalization of shosgtaince divergences
using a resolution of singularities. For future applicaido curved space-
times it is most appropriate to do this in the position spaaeéwork of
Epstein and Glaser [17,23]. However the combinatoriabiiest of the res-
olution allow for a convenient transition to the momenturappicture of
the Connes-Kreimer Hopf algebras, and to the residues GfLfGn the
parametric representation. Both notions are not immegliatesious in the
original Epstein-Glaser literature.

Let us present some of the basic ideas in a nutshell. Congideuclidean
space-time\/ = R*, the following Feynman graph
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The Feynman rules, in position space, associateddalistribution

up (1, x2) = ug(xl — I3).

whereu(x) is the Feynman propagator, in the massless¢gsg = 1/22,
thex are 4-vectors with coordinate$, . . ., 2%, andz? the euclidean square
z? = (2°)2+ ...+ (23)?. Note that since.r depends only on the difference
vectorz; — x2, we may equally well consider(z) = ur(z,0). Because of
the singular nature af, atx = 0, the distributionur is only well-defined
outside of the diagonab,, = {z; = z,} C M?. In order to extendir
from being a distribution od/? — D, onto all of A/2, one can introduce
an analytic regularization, say

up () = ug*(2).
Viewing this as a Laurent series snwe find, in this simple case,

1 coo(x
up(@) = - = o

p— + Ry(x)

with ¢ € R, §, the Dirac measure & ands — R, a distribution-valued
function holomorphic in a complex neighborhoodsof 1, the important
point being that the distributioR, is definedeverywheren /2. The usual
way of renormalizing. is to subtract from it a distribution which is equally
singular atr = 0 and cancels the pole, for example

Ur r = (up — U%[wo]éo)‘sﬁ .

Herew is any test function which satisfies, (0) = 1 for then%[wo] =
—L-. Consequently
Ur p = Ry — Ri[wo]do

which is well-defined also a@t The distributionu. , is considered the solu-
tion to the renormalization problem fér, and different choices afy, give
rise to the renormalization group. Once the grapk renormalized, there
is a canonical way to renormalize the graph

1 3
2 4
which is simply a disjoint union of two copies bt Indeed,

ur (1, Ta, T3, T4) = ud (21 — 2)ug (13 — T4) = Up Qup)(T1 — Ta, T3 — T4).

In other wordsy is a cartesian product, and one simply renormalizes each
factor of it separately(ur g)(z1,...,24) = gl@fR(xl — Tg,x3 — x4). This
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works not only for disconnected graphs but for instance falso

1 3

1’1// —

2 4
which is connected but (one-vertex-) reducible, to be ddfiater. Indeed,

upn (11, 9, 13, 14) = ud(z1 — D2)ud (1o — 14)Ud(T3 — T4)

_ .23
= Ur (xl — X2, Ty — T4, T3 — $4)

Again, one simply renormalizes every factorgf on its respective diago-
nal. This is possible because the diagorals, D,, and D3, are pairwise
perpendicular im/*. Consider now a graph which is not of this kind:

19 3

" —

28 4

urm ([L’l, NN ,1'4) = U()([L'l —[L’g)’do([lj’l—[L’g)’do({lfg—l’g)Uo($g—$4)ug($3—l’4).

By the usual power counting we see that. has non-integrable singular-
ities atD34 = {.T3 = .T4}, at D234 = {1’2 = I3 = .T4} and atD1234 =

{z, = w3 = x3 = w4}. These three linear subspacesidf are nested
(D1234 C Do3y C Da3y) instead of pairwise perpendicular. In the geometry
of M* it does not seem possible to perform the three necessargasubt
tions separately and independently one of another. Forésafunction
has support on some of s@¥;»34, its support intersects alg0,34 — D1234
and D34 — Ds34. This is one of the reasons why much literature on renor-
malization is based on recursive or step-by-step methofdend instead
transforms)M* to another smooth manifold : Y — M* such that the
preimages undes of the three linear spacd3s,, D34, D1234 00K locally
like cartesian coordinate hyperplanggs.y; = 0, one can again perform
the three renormalizations separately, and project thdtreack down to
M*. For this procedure there is no recursive recipe needed —ehmetry

of Y encodes all the combinatorial information. The result &s$ame as
from the Epstein-Glaser, BPHZ or Hopf algebra methods, andnof our
approach just a careful geometric rediscovery of existilags.

In sectiorl 2 the two subspace arrangements associated yma&e graph
are defined, describing the locus of singularities, and toeid of non-
integrable singularities, respectively. In seclidon 3 aalyic regularization
for the propagator is introduced. Some necessary techrieadquisites for
dealing with distributions and birational transformasare made, and the
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important notion of residue density for a primitive graphdefined. The
rest of the paper is devoted to a more systematic developnfeattion
4 describes the De Concini-Procesi "wonderful” models far subspace
arrangements and provides an explicit atlas and stratdicdbr them in
terms of nested sets. Different models are obtained by matyie so-called
building set, and we are especially interested in the mihand maximal
building set/model in this class. Sectibh 5 examines thébpok of the
regularized Feynman distribution onto the smooth modelsindies rela-
tions between its Laurent coefficients wrt. the regulatarséctiori 6 it is
shown that the proposed renormalization on the smooth nsadisfies the
physical constraint of locality: the subtractions made barpackaged as
local counterterms into the Lagrangian. For the model canttd from the
minimal building set, this is satisfied by construction. farthe geomet-
ric features of the smooth models one arrives quickly at aiogy with
the Hopf algebras of Feynman graphs, and a section reldim¢wo ap-
proaches concludes the exposition. As a technical sintmitéan the main
part of the paper only massless scalar euclidean theoresaamsidered,
and only Feynman graphs with at most logarithmic singuésitThe gen-
eral case is briefly discussed in secfion 6.4.

This research is motivated by a careful analysis of Atiyalaper [1] — see
also [9]; and([4] for a first application to Feynman integialthe parametric
representation — the similarity of the Fulton-MacPherdaatigication with
the Hopf algebras of perturbative renormalization obsiag6,36], and
recent results on residues of primitive graphs and peribdsixed Hodge
structures[[10, 12]. Kontsevich has pointed out the releganf the Fulton-
MacPherson compactification for renormalization long &#]j,[and a real
(spherical) version had been independently developed toy(And again
independently by Axelrod and Singér [2]) in the context oe@hSimons
theory, see for example [B3]. In the parametric represematany related
results have been obtained independently in the recent fiate which
provides also a description of renormalization in termsimiting mixed
Hodge structures. That is beyond our scope.

An earlier version of this paper has been presented in [5].
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2. SUBSPACE ARRANGEMENTS ASSOCIATED TG-EYNMAN GRAPHS

Let U C R* be an open set. BP(U) we denote the space of test func-
tions with compact support iti, with the usual topologyD’ (U) is the space
of distributions inU. See [30] for a general reference on distributions. We
work in Euclidean spacetim& = R¢ whered € 2 + 2N = {4,6,8,...}
and use the (massless) propagator distribution

1 1

@ B R T N U EY L

which has the properties

2) up(Az) = X 7%uo(z), A€ R\ {0}
and
3) sing supp ug = {0}.

The singular support of a distributianis the set of points having no open
neighborhood where is given by a smooth function.

Let nowI" be a Feynman graph, that is a finite graph, with set of vertices
V(I') and set of edge&'(I'). We assume thdt has no loops (a loop is an
edge that connects to one and the same vertex at both endsleyhman
distribution is given by the distribution

(4) Ur(l’l, R ,xn) = HUO(xi _ l'j)mj

1<j

on M™\U,;.,;D;; whereD,; is the diagonal defined by, = z; andn,; is the
number of edges between the verticesd; (For this equation we assume
that the vertices are numberédI") = {1,...,n}). A basic observation

is thatur may be rewritten as the restriction of the distributi@f?'ﬁE Tl
D'(MEMI) to the complement of a subspace arrangement, contained in
MEMI as follows.



RENORMALIZATION AND RESOLUTION OF SINGULARITIES 7

2.1. Configurations and subspace arrangements of singularitieslt is
convenient to adopt a more abstract point of view as in [1@t ALbe an
infinite field, £ a finite set and:”* the k-vector space spanned &y An in-
clusion of a linear subspacég : W — k” is called aconfiguration Since
k¥ comes with a canonical basis, a configuration defines angena@nt of
up to| E| linear hyperplanes iii’ : namely for eacl € E the subspace an-
nihilated by the linear form"y;-, unless this linear form equals zero. Note
that different basis vectorse E may give one and the same hyperplane.

Given a connected gragh temporarily impose an orientation of the edges
(all results will be independent of this orientation). Thiefines for a ver-
texv € V(I') and an edge € E(I') the integer(v : e¢) = x1if v is
the final/initial vertex ofe, and (v : ¢) = 0 otherwise. The (simplicial)
cohomology ofl" is encoded in the sequence

(5) 0— k-5 kYO 2 kEO)  FYT, k) — 0

withe(1) = > cy v, 6(v) = X .cpry(v : €)e. This sequence defines two
configurations: the inclusion @bker c into £ and dually the inclusion
of H,(T, k) into k®T)V. We are presently interested in the first one, which
corresponds to the position space picture.

It will be convenient to fix a basi¥j of coker c. For example, the choice
of a vertexy, € V(I') (write V, = V(T') \ {vo}) provides an isomorphism
¢ : kYo — coker ¢ sending the basis elementc 1, to v + im c. We then
have a configuration

(6) ir =8¢ : kYo — pFD).

Eache € E(I') defines a linear forneir € (k'*)Y. It is non-zero since
I" has no loops. Consider instead(ét?)" the vector spacé\/'?)" where
M = R4. For eache € E(T) there is ad-dimensional subspace

(7) A, = (spaneVip)®?

of (M"?)¥. We denote this collection afdimensional subspaces(df/*°)"
by
(8) CT)={A.:e€ ED)}.

Note that thed, need not be pairwise distinct nor linearly independent. By
duality C(I") defines an arrangement of codimensicsubspaces in/"°

(9) (MY),ing(D) = | AL

ecE(T)
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where A is the linear subspace annihilated Hy. The image ofc® in
MV T is the thin diagonal\. It is in the kernel of all the:Vir, and there-
fore it suffices for us to work in the quotient spacger c. By construction
A = D;+A wherej andl are the boundaries ef In particular, ifl’ = K,
is the complete graph onvertices, then itis clear th&d/'0).;,,,(K,,) is the

large diagonal J,_, D;; + A. The compositiord : MY ™) — MY /A —
MY isgivenby®(zy,...,z,) = (¥1 =Ty, ..., Tn_1—T,), x; € M, where
anumberind/(T") = {1,...,n}, vy = n, of the vertices is assumed.

For a distributionu on MY constant along\ we writeu = ®,u for the
pushforward ontd/"°. We usually writg(x1, . . ., z,,) for a pointinp/{t--n},
wherez; is ad-tuple of coordinates?, ... 297! for M. Similarly, if f €

(KY0)V then f9, ..., f¢-! are the obvious functionals oi/"* such that

fEr=(f0% o fh.

2.2. Subspace arrangements of divergencedNow we seek a refinement
of the collectionC(I") in order to sort out singularities whetg is locally
integrable and does not require an extension. In a first seeptabilize the
collectionC(I") with respect to sums. Write

(10) Cang(T) = {z A0S E C E<r>} .

This is again a collection of non-zero subspace$df®)". A subsetE’
of £(I") defines a unique subgraptof I' (not necessarily connected) with
E(v) = EF'andV () = V(I"). Each subgraph of I" determines an element

(11) A=) A
e€E(v)

Of Cying(I'). The mapy — A, is in general not one-to-one.

Definition 2.1. A subgraphy C I is calledsaturatedf A, C A, for all
subgraphd?(+') C E(T") such thatE(y) € E ().

It is obvious that for any given there is always a saturated subgraph,
denotedy,, with A, = A, . Also, A.NA,, = {0} foralle € E(I')\ E(~s).

Definition 2.2. A graphT is called at most logarithmidf all subgraphs
v C T satisfy the conditiod dim H, () — 2|E(~)| < 0.

Definition 2.3. A subgraphy C T is called divergentif d dim H,(y) =
2[E()I-

Proposition 2.1. LetI" be at most logarithmic. H C I' is divergent then it
is saturated.
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Proof. Assume thaty satisfies the equality and is not saturated. Then
there is are € E(v,) \ E(y). Sincey and~ U {e} have the same num-
ber of components but U {¢} one more edge, it follows fronil(5) that
dim Hy(y U {e}) = dim H;(v) + 1. Consequentlyd dim H;(y U {e}) =
2|E(y U {e})| + 2 in contradiction td" being at most logarithmic. O

LetI" be at most logarithmic. We define
(12) Caiv(I') = {A,; 0 C v C I, v divergent

as a subcollection af,;,,(I"). It is closed under sum (becausen H, (v, U
v2) > dim Hy(v;) + dim H;(72)). It does not contain the spage}. In the
dual, the arrangement

(13) (M) 43, (I") = U A
PCHCr
ddim H; (v)=2|E(7)]

in M describes the locus where extension is necessary:

Proposition 2.2. Let I' be at most logarithmic. Then the largest open
subset ofM"* to which u?‘E(F)‘ can be restricted is the complement of
(M") 4, (T). The restriction equals;- there, and the singular support of
ur is the complement @fl7*?) 45, () in (M"0) 5,5 (T).

Proof. Recall the mapr defining the configuratior {6). It provides
an inclusionit® : M"Y — MP®) Wherever definedy, may be written
up(@1, .. Tno1) = [Leepe wo (2, (v e)xy) with Vo = {1,...,n — 1}.
Sinceir(v) =) (v : e)e,in coordlnatesp(fl,...,gn_l): >, (v: €)&o) eer(r) -
it is clear thatup = (ig%)*u ?'E(F wherever it is defined. As by(3),
sing suppug = {0}, the singular support o&?‘E(F)‘ is the locus where
at least onel-tuple of coordinates vanisheg! = ... = 241 = ( for some
e € E(I). Its preimage undeif” is the locus annihilated by one of the,
whence the last statement. For the first statement we havetothat for a
compact subsek” C MY the integralur|k[1] = [, up(z)dz converges if
and only if K is disjoint from all thed., for y C I" such thatl dim H, () =

2| E(v)|. Assume thaf< N (A# \U,.cy A#) # () for somey. Write u, =
[Lecr) (X, (v 1 e)z) f where f = T].cprype.) w3, (v o e)zy).
The distributionf is smooth o, \U7 . Az sinced.NA,, = {0} for all
ee E(I')\ E(vs). The mtegralfK up(x)dz i |s over ad(n — 1)-dimensional
space. The subspazgts is given byd1m A, equations. Each single(x)

is of ordero(x?~%) asz — 0, and there areE ()| of them in the first factor
of ur. Hence the integral is convergent onlydifin A, > (d — 2)|E(7s)|,
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which is the same a3 E(v,)| > d dim H,(~,). Conversely if this is the case
for all v, C ~, then the integral is convergent. Our restriction to saadat
subgraphs; is justified by Proposition 21 1. O

From now on we will assume that is at most logarithmic. The general
case where linear, quadratic, etc. divergences occur ¢siséed in section

6.4.

2.3. Subspaces and polydiagonalsLet againy C T, that is E(y) C
E(T) andV (v) = V(I'). Recall from the end of sectién 2.1 that
(14) oA = [ D

e€E(v)

with the diagonalsD. = D;; for j and/ boundaries ot. An intersection
ﬂeeE(w) D, of diagonals is called polydiagonal

Just as in[(5) we have an exact sequence

(15) 0 — H(y,k) 5 kYD 20 kPO HY (5, k) — 0

with ¢, sending each generator 8°(~, k) (i. e. , a connected component
of ~) to the sum of vertices in this componen, — Zvec vando,(v) =
> ey (vt €)e. Itis then a matter of notation to verify

Proposition 2.3.
(16) O (A7) = ker 057,
0
A polydiagonal®~' (A7) corresponds therefore to a partitior(y) on

the vertex seV/(I") as follows: cc(y) = {Q1, ..., Qx} With pairwise dis-
jointcells@;, ..., Qr C V(I') such that the vectors

(17) ow,oi=1,..k
veQ;
generateker ¢.,.

In other words,cc(7) is the equivalence relation/partition "connected by
~" on the setV(I'). If I' = K, is the complete graph on vertices, this
correspondence is clearly a bijection

(18) {AL .~ C K.} = { Partitions ofV/ (K,)}.

The next proposition refines this statement. Recall oundmagation from
the end of section 2.1.
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Proposition 2.4. Let~,¢ C I". Then the set

(19) B={(e"ir)) :e€ Et),j=0,...,d—1}

is a basis of4, if and only ift is a spanning forest fafc(y),
where a spanning forest is defined as follows.

Definition 2.4. Let~, ¢ C I'. Thent is aspanning forest fotc(y) if the map
& kYD — kPO asin [I5) is surjective antler §; = ker 4.

Definition 2.5. Let~,¢ C I" andt be a spanning forest fatc(y). If t C
thent is a spanning forest ofy. If ~ is connected (then so 1§ thent is
called aspanning treef .

In other words, a spanning forestofis a subgraph of without cycles
that has the same connected components. A spanning fores{§0 has
the same property but needs not be a subgraph of

Proof of Propositiorf 2}4. By Proposition 2.8,A, = A, if and only if

ker ., = ker ¢;. It remains to show that the sét (19) is linearly independent
if and only if 9, is surjective. Sinc&er or C ker 6, the map), is surjective

if and only if i, = &,¢ : k0 — EF® (see[(6)) is surjective, which in turn is
equivalent to[(IP) having full rank. O

We also note two simple consequences for future use.

Proposition 2.5. Let~;,v, C I'. Then

(20) A, NA,=A,
where~ is any subgraph of with
(21) cc(y) Nee(ye) = ce(y).

The intersection”, N P, of partitions P;, P, on the same sét'(I") is
defined by, N P, = {Q1 N Qs : Q1 € P,Q2 € P»}. Itis easily seen
that this is a partition oV (I') again. We write0 for the full partition

{{v}:v e V(I')}.

Proof. It is clear from Proposition 213 that
O ((A), NAy,)T) = ker 629 4 ker 621

Y2 !
and one needs a partitien(~y) whose cells provide a system of generators
as in[17) but now for the spager 9., +-ker d,,. Letce(y;) = {Qf, ..., Q} }.

Since
Zvespan( Z Uyt Z v),

veQ} vEQLINQ? vEQLNQT,
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and similarly for1 and2 interchanged, the vecto@ve%my v generate
ker ., + ker d.,. O

Apart from the intersection of partitions as defined abotvés useful to
have the notion of a union of partitions. Let(v;), cc(+2) be partitions on
V(I"). One defines most conveniently

(22) ce(y) U ce(yz) = ce(y1 Ua).

From the description before ([18) it is clear that this defnidepends only
oncc(vy;) andee(r,) but not oy, andv, themselves. We immediately have

Proposition 2.6. Lety;,v2,v C I'. Then

(23) Ay + A, =4,
if and only if
(24) ce(y1) U ce(y2) = ce().

O

It will be convenient later to have an explicit descriptidritte dual basis
BY, for B as in Proposition 214, that is the corresponding basi¥ f. Re-
call our choice (above equatidd (6)) of a verigxn order to work modulo
the thin diagonal. Recall also that the edges are orientee@n@ spanning
treet of I', we saye € E(t) points tou, if the final vertex ofe is closer
to vg in ¢ than the initial vertex ok. Otherwise we say that points away
from vy. Furthermore, erasing the edgdrom ¢ separates into two con-
nected components. The onet containingy, is denoted,, and we write
Vi = Veg(t1) for the set of its vertices.

Proposition 2.7. Let BY = {b : ¢ € E(t),j = 0,...,d — 1} be the
basis of M"* dual to a basisB of (M"?)V as in Propositioi 214 , that is
(QViF)j (b];/) = 6@,8’ k- Then

be = (—1)% Z v.

(V1, being a subset of the basi$ of £'°, is also contained irk"?). We
defineq). = +1 if e points to/away fromy,.

Proof. Write b = °, . 35 v. We require
Seer = (€"ir)(be) = (€769)(be) = > B (v e)

veVp
Now fix ane. Write v;,(e), v, (e) for the initial and final vertex ot, re-
spectively. We havel; ., — 05 ) = landg; ., = B . forthe

Vout (3
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other edgeg’ except the onej, leading tov,, for which 552.,1(66) =0or
¢ . = 0, depending on the direction ef. Thus starting from, and

Uuut(e )
workiﬁg one’s way along the treein order to determine thg¢, all the
B¢ = 0 until one reaches the edgewhere: jumps up or down td or —1,

depending on the orientation efand stays constant then all beyand O

Let us now describe the mag? : MY — MF® in such a dual basis
BY. Letx € k", writex = 37 5y webe With b, = (=1)%< 37 . vasin
Propositior 2.I7. Writdv;, v;] C E( ) for the unique path in connecting
the vertices); andvj. It follows that

ZZ Z )9z (v 2 e)e.

ecE(T") veVp e/ €lvg,v]

For a givere, only two vertices contribute to the sum, namely the bound-
ariesv;, (e) and vy, (e) of e. All the terms(—1)% z, for ¢’ on the path
from v, to v;,(e) cancel since they appear twice, once with a negative
sign (vin(e) : €), once with a positive sigtiv,.:(e) : e). What remains
are the terms on the path infrom v;,(e) to v,,:(e). We writee’ ~ e if

e € [vin(e), Uout(e)] E(t). Then

(25) ir(z Z Z Ter€ = Z Tel + Z Z Ter€.

ecE(T) e'~e ecE(t ecE(T)\E(t) e/~e

Note that in the second sum there may be terms with onlyrpreontribut-
ing, namely whem, = A..

3. REGULARIZATION, BLOWING UP, AND RESIDUES OF PRIMITIVE
GRAPHS

The purpose of this section is first to review a few standactsfabout
distributions and simple birational transformations. $&@] for a gen-
eral reference on distributions. In the second part, theonmapt notion
of residue of a primitive Feynman graph is introduced byingis:.r to a
complex powes in the neighborhood of = 1 and considering the residue
ats = 1 as a distribution supported on the exceptional divisor dbavbp.

3.1. Distributions and densities on manifolds. We recall basic notions
that can be looked up, for example, in [30, Section 6.3]. Wiea wants
to define the notion of distributions on a manifold one hasdhoices: The
first is to model a distribution locally according to the idbat distributions
are supposed to generalize smooth functions, so they shranksform like
u; = (Y1) u; wherey;, ¢, are two charts. On the other hand, distribu-
tions are supposed to be measures, that is one wants theamséotm like
= | det Jac 0, |(v;20; 1) *11,. The latter concept is called a distribution
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density.

By a manifold we mean a paracompact connected smooth méttif@ugh-
out the paper. LetM be a manifold of dimension with an atlas(«;, U;)
of local charts); : M; — U; C R™.

Definition 3.1. A distributionu on M is a collectionu = {u;} of distribu-
tionsu; € D'(U;) satisfying

ui = (Y07 )
in ¢;(U; N U;). The set of distributions oM is denotedD’ (M).

Definition 3.2. A distribution densityiz on M is a collectiona = {u;} of
distributionsu; € D’'(U;) satisfying

i = | det Jac gy (L7 ) 4y
in v,;(U; N U;). The set of distribution densities owt is denotedD’ (M).

A density is callegmoothif all i; are smooth. The set of smooth densities
with compact support is denotég>e.

Proposition 3.1.
() C5*'(M) = D'(M).

(i) C§° (M) =D'(M).

(iif) Any strictly positive or strictly negative smooth densityi. e. an
orientation) provides isomorphisms+— u« betweerD’(M) and
D'(M), andC° (M) andC° (M), respectively.

O

Smooth densities are also callpgeudon-forms If the manifold is ori-
ented, every pseude-form is also a regulan-form. On the other hand,
then anmn-form w gives rise to two pseude-forms: w and—w. In a nonori-
entable situation we want to work with distribution derestand write them
like pseudo forms(z)|dz|.

3.2. Distributions and birational transformations. Let M be a smooth

manifold of dimensiom andx € M a pointin it. We work in local coordi-

nates and may assumd = R" andz = 0. Blowing up0 means replacing

0 by a real projective space = P"~(R) of codimension 1. The result is
again a smooth manifold as follows.

LetY = (M \ {0}) U & as a set. Tangent directions(ashall be iden-
tified with elements of . Let thereforeY” be the subset oM x £ defined
by z,u; = zju;, 1 < i,7 < nwherez,...,z, are the affine coordinates
of R® andw,, ..., u, are homogeneous coordinatesPdf '. The sety” is
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a smooth submanifold aM x £. On the other hand, there is an obvious
bijection A : Y — Y’ whose restriction ontout \ {0} C Y is a diffeo-
morphism onto its image. Pulling back aloaghe differentiable structure
induced onY’ defines a differentiable structure on all Bf The latter is
calledblowup of M at {0}. The submanifol& of Y is called theexcep-
tional divisor. There is a smooth proper map: Y — M which is the
identity onM \ {0} and sendg to 0. Viewed as a map from’ C M x &,

[ is simply the projection onto the first factor.

Note that ifn is even (which is the case throughout the paper) tHes
not orientable buf is. If n is odd thenY” is orientable buf is not. Indeed
Y can be seen as a bundie Y — £ over& with fiber R — the tautological
bundle. For example, for = 2, Y is the open Mobius strip.

In our case we work with distributions on open subspace$ffM be-
ing orientable, distributions can be identified with distiion densities, see
Propositior. 311 (iii). These densities can be pulled back@l3, one can
work with them there and push the result forward again alanighe image,
a density onM, can again be identified with a distribution @vt.

Letn be even from now on. Fdr; = R", i = 1,...,n, one defines maps
Pi - UZ - M X 87

(yb cee 7yn) = (('rlv s 737”)7 [1’1, <o 73:”])
(26) Ty = (—1)Zyz‘,

Tk = YilYr, kK F 1
wherez; are coordinates oMM and at the same time homogeneous coor-
dinates for€. Clearly p; maps intoY” and onto the affine chart ¢f where
z; # 0. Lety; = p;* on py(U;). Then(y;, U;) furnish an atlas fol”. We
note for future reference the transition maps

it Ui —{y; =0} — U; \ {y; = 0}
(yla---ayn> = (y177y;)
(27) yi = (=1 Jy;,

v = (=1 vy,

e = (=1 yn/y;, k #i,
and the determinants of their derivatives
(28) det Jac ;! = (—1)j+1y31._d.

Note that the atla&/;, U;) is therefore not even oriented on the openysgt
& diffeomorphic toM \ {0}. For the exceptional divisa@f = P"~*, which



16 C. BERGBAUER, R. BRUNETTI AND D. KREIMER

is given inU; by the equationy; = 0, we use induced chart¥;, ¢;) with
coordinatey, ..., v, ..., y, (in this very order) wherg; means omission.
The transition map
Gy Vi\{y; =0} — V; \ {y; = 0}
(y177@\7477yn> — (y:/[77y7{77y7/1>
(29) yi = (=1)"" /y;,
Y. = (=1)y/ys, k #i,j

has Jacobian determinant
(30) det Jac ¢;0; ' = ;¢ > 0.

The induced atlag/;, ¢;) is therefore an oriented one. The tautological bun-
dler is giveninlocal coordinates by: (y1,...,yn) — (Y1, Uir- -, Yn)-

Similarly one defines blowing up along a smooth submanifdlde sub-
manifold is replaced by its projectivized normal bundle.sése the sub-
manifold is given in local coordinateshy = ... = x;, = 0. Then a natural
choice of coordinates for the blowup is given again[by (2pplied only to
the subset of coordinates, ..., z,. See for instance [39, Section 3] for
details.

The mapg : Y — M is surjective, proper and smooth everywhere but
open (i. e. has surjective differential) only away from tixeeptional di-
visor. It is called the blowdown map. It will be useful to bdabo push
distributions forward and to pull them back along this map.

In general, letf : U — V be a surjective proper smooth map between open
setsU of R™ andV of R™. Letw be a distribution oi/. The pushforward of

u by f, denotedf.u, is the distribution ori” defined by( f.u)[¢] = u[f*¢]
whereg is a test function o and f*¢ is its pullback along : f*¢ = ¢of.

If « has compact support the requirement thake proper can be dropped.
Similarly, for f : M — N a surjective proper smooth map between man-
ifolds M and A\ with atlases(y;, U;) and (6;,V;), let . be a distribution
density onM. Then f,u defined by

onV;N(0: f;. ") (Uy), is a distribution density of. Letnowf : M — N a
surjective smooth map between manifolttsand V. It need not be proper.
Letu € D(M) and¢p € D(M). The densityu[¢]; € D'(N) is defined by

(31) ulgly = fi(du).
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Note that¢u has compact support so the pushforward is well-defined al-
though f is not necessarily proper. i is given by a locally integrable
functionu(z) on M = R* and N = {yi11,...,yn = 0} C R", i <

n, this notion corresponds to integrating out the orthogoahglement
{y1,...,y:i =0} of NinR" :

W) Wi s yn) = / Wb, y)dyns - dy.

The reverse operation of pulling back distributions alomgpeth maps is
only possible under certain conditions, se€e [30, Sectiohs&2, etc.] for

a general exposition. Here we only need the following: UgetU; C R”
open andf : U; — U, a smooth and everywhere open map. Then there is a
unique continuous linear mafy : D' (Us) — D'(U;) such thatf*u = wo f

if u e C°(U,). Seel[30, Theorem 6.1.2] for a proof of this statement. It can
obviously be generalized to the case of a submergion\ — N where

M is a manifold of dimensiom, by collecting pullbacks in the chart do-
mains:(f*u); = (f¢;)*u where(x;, U;) is an atlas forM.

If 5 is the blowdown map, by the pullbagk'a of a distribution density
@ € D'(M\ {0}) obviously the pullback along the diffeomorphisiy\¢
is understood. The result is a distribution density}oR £.

3.3. Analytic regularization. As a first step toward understandingas a
distribution-valued meromorphic function ein a neighborhood of = 1,
we study distributions: on R \ 0 of the formu = |z|~* wherea € Z.
Clearly if a < 1thenu € L} (R). The casez > 1 can be handled in a
canonical way using analytic continuation with respechtéxponent. Let
a € N be fixed. We extend® = |z|~* meromorphically to the arégs > 1
as follows. Letr = |a/2].

vl = [ votapdes [l ol

1 22np(2n)
(32) = /0 o (¢(x) +é(—x) — 2 (¢(0) T éT'(O))) di
* /R\[_M] 2™ ¢(z)de +2 ; @R)((2k + 1) —as)’

This holds forRs < 1+ % Seel[26, Section 1.3] for the complete argument.
There will be more poles beyond the half-plaRe < 1+ % but they are not
relevant for our purposes.
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Definition 3.3. The canonical regularizationf |z|~* is the distribution-
valued meromorphic function ine (—oo, 14 %) + iR given by

=2
elest” = Z (2k)] ((Qk + 1) as)

k:_

(33) + |zl 5

wheren = |a/2| and

el = [ (6600 =00 =2 (000 + .. + %)) e
(34) + /R - 2|~ p(z)d.

The functions — || is holomorphicin(—occ, 1 + 1) + iR. When the
context allows, we simply writ¢z|~ |z|..’ again. Letf € C*(R).
Sinces — f*[¢] is holomorphic, it makes sense to define the canonical
regularization foz|~* f also:

(35) (2] Ve = leler - 1
(a+b)s

This does notwork fof € L} .(R). For example|z|_.; # || 588 |z 0

Unfortunately, the term "regularization” is used for twdfdient notions
in the mathematics and physics literature that need to kefudlyr distin-
guished. While in the mathematics literature, the "regm&ad” distribution
is usually understood to be|;,, a physicist calls this the "renormalized
distribution, and refers to the mappirg— |z|~* as a regularization (in
fact, one out of many possible regularizations). The lat@iso our con-
vention.

We finally note the special cage= 1,
20

(36) ol = ==+ [al75
R\[-1,1]
And, for future reference, in the aré < 2H2-1
2 )
D-Ds—1 _ 0 D—Ds—1
(38) |$’ ext - D 5 — ‘l‘ | |fm

whereD € 2N.
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3.4. Primitive graphs, their residues and renormalization. We consider
the blowups : Y — M as in sectiof_3]2 where nowt = M"Y for a
Feynman graph' (see sectiohl2 for notation). In this section we continue
to use the coordinates;, ..., z4;,—1) ON M"Y andy,, ... . Yd(n—1) ON the
chartsU; for Y. Note thatn is now the number of vertices ®f Recall that
sinceY is not orientable (and the induced atlas}oR¢ is not oriented), top
degree forms and densities can not be identified, in paatiquilling back
(along a diffeomorphism) a form is different from pullingdbkaa density.
We only use forms on the oriented submaniféldwhere the two notions
coincide. We writddzx| for the Lebesgue measure .

Definition 3.4. A connected Feynman graphs calledprimitiveif Cy;, (I') =

{Ar}.

Lemma 3.1. LetI" be primitive. Lett be a spanning tree fof and¢ a
subforest of. Then

dE@)] < (d=2)(ED)| = [E(t\ 1))
and equality holds if and only if = ¢.

Proof. Clearly dim A; = dim Ay + dim Apy anddim Ay = d|E(t')].
Sincel is divergent,(d — 2)|E(T")| = dim A;. Sincel" has no divergent
subgraphs(d —2)|E((t\t'))| < dim Aq\y), = dim Ay for all subforests
t' of t. O

Lemma 3.2. Let d¢ (resp. ‘y—lg‘) be collections of distributioflsin the U;
given by(dg); = do(y;) and (1/|ye|); = ﬁ in U;. Letw be a locally inte-
grable volume fornw on €. Thenwds andw/|y¢/|, locally
(U)(Sg)l = WZ(CSS)Z = wi(ylv s 7,3//\2'7 s 7yn)60(y2)7
(w/lyel): wi/lyeli = wiyr, -+, Uir - Yn) /|4l

define densities oH.
Proof. By (28) and [(30) det Jacy;v; | = det Jac ¢;¢; * - |1/y,| and

bothd, and1/|y;| transform with the factofl /y;| under transitiod/; — U;.
O

Theorem 3.1.LetI" be primitive. Writedr = d| V.

We do not claim that they are distribution or densitiestothemselves as they do not
transform correctly.
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(i) By pullback along the diffeomorphisfy- ¢, the distribution den-
sity ur = uy|dx| furnishes a strictly positive density- onY \ &€,
given in local coordinates df; by

- 1 .
(39) (wr)ildy| = |y,|(fr)i(y1,---,yi,---,yn)ldyl
where(fr); € L*(V;). The(fr)idyr A ... A cfy\z A...Ady, ineach
V; determine an integrable volume forfp on £. We may therefore
write wr = fr/|yel.
(i) The meromorphic density-valued functior» @i = g*uf.,

s (fr);ldy|
(wp)ildy| = W

has a simple pole at = 1. Its residue is the density
2
(40) ress=1 'LDIL?‘ = ——5€fr>
dr

supported on the exceptional divisor. Pushing forward glgh
amounts to integrating a projective integral over the exmeyal di-

visor:
(41)
s 2 2 —
8. (vessr ) = ——5O\dx\/fp: ——50/ (Fr)idys - dy,
dr € dr " Jv,
for anyi.

(i) Lety € D(RY) with £(0) = 1, andv = *u. Letr : Y — & be the
tautological bundle. Write§. = 3, (w;). Then
(42) ﬁ’ii,R = Wp — Wp[v], ¢
defines a density-valued function Bnholomorphic in a neighbor-
hood ofs = 1. Also 8,0 = . g = (U — U [p])do|dz].
The density[(4D0) is callecesidue densitythe volume formjr residue
form, and the complex number

2
(43) res[' = _d_r/gfr

residue ofl". The distributionu,. ,, is defined on all of\/"* and said to be
therenormalized distribution.

Proof of Theorermi 311(i) For (39) observe that itv; the map3 is given by
p, seel(2B). The Lebesgue measlite] on M"° pulls back to|y;|4r—!|dy|
onU;. By @), (8*ir); scales likex®=DIEMI asy; — \y;. Sincel is di-
vergentdr = (2 — d)|E(T")|, which explains the factor/|y;| in (39). Fur-
thermorefr clearly does not depend gn That fr € L}, (V;) follows from
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Propositioi 2.2, whera/}? = Af = {0}, and3|y-¢ being a diffeomor-
phism. In order to show that € L!(V;) one uses Lemnia3.1 as follows:
Choose a spanning trééor I' such that the coordinate equalge"ir)° for
somee € E(t) (see Proposition2.4). Write/ = (e"ir)’ fore € E(t),j =
0,...,d—1.Inthis basiguy is given byur({z2}) = [T.cpr) o(Xu.e )
(seel(Zb)). Therefore, if the coordinatgse € E(t') defined by’ a proper
subforest of, go toco, then there are exactly(¢,) \ E((t\ t')s) factors of

ug the argument of which goes to. Lemmd 3.1l shows that the integration
over that subspace converges. One verifies that all subsgaseeptible

to infrared divergences are of this form. Therefofe); € L'(V;). Finally,
(fr); transform likey; @ under transition between charts. By|(30) this makes
fr a density or€. Sincef is oriented, a strictly positive density is also a
strictly positive (},,)- volume form.

(il) The simple pole and (40) follow froni (89) by (36), the &aexpres-
sions matched together using Lemma 3.2. Eor (41pletD(M*?). Then

B (ress—1 Wr)[¢] = ress—1 wr[B*¢]. The distributionres,_; wr, being sup-
ported ong, depends only oi*¢|s = ¢(0). By the results of (i), fr is a
projective integral and it suffices to integrate inside onart sayU;. There
ress—1 wr[6°¢] = =3 [, do(yi) fr(v)o(p(y))dy = —26(0) [, fr(y)dy =
—§¢(0) fg fr, where again integration in one chart suffices by the previous
argument.

(iii) There is no pole at = 1 sincev|s = 1. The (W} ;); furnish a den-
sity by Lemmd3.2: The Jacobian &f cancels the one df. ],. For the

last statement, let agai’;, U;)i—1....
(¢4, Vi)i=1,...dm—1) the induced atlas fof. Since& is compact, there ex-
that(, € D(Vi), & > 0and) (&) (z) = 1forallz € & Letr :

Y — £.Then(&¢;7)i—1, _awm-1) iS @ partition of unity ort” subordinate to
(¥, Ui)i=1,....amn—1) (hOwever not compactly supported). We fix such a parti-
tion of unity (§;). In U; we writey for (yi, ..., y,) andy; for (y1, ..., %, ..., Yn),
for example¢;(y) = &(y;) since it is constant along;. We also write
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w(ys, i) = u(yys, - - - Yis - - - Yiyn) fOr convenience. Lef € D(M™).
Be(up p)f] = Bulwp —wiplv]-de)(f]
= Z(wf“ — W[Vl 0¢)il§iB" f]

= 3 [ (@it = [ @ @t 55)dz00(00)
x&i(y) f (i yiyi)dy
= % [ w06 i

—wp(y) (Y, ¥:0i)&i (0, ) £ (0)dy
= ) (Buabp — BB [Ev]00) [f]-

i

|

The following corollary concerns infrared divergences gfraphl’. Those
are divergences which do not occur at m¢ but as the coordinates of
M"o approacho, in other words, if one attempts to integrate against a
function which is not compactly supported.

Corollary 3.1. LetI" be at most logarithmic and primitive. Them is not

(globally) integrable onM/"o \ M} (T'). However(yur)[1; ® u] is well-

defined, ifu is a test function on a non-zero subspaceélff, 1, the con-
stant function on the orthogonal compleméntand y the characteristic
function of the complement of an open neighborhoat/¢f (T') in M.

Proof. This follows from part (i) of Theorern 3.1. O

The renormalized distributionr z = U?,R|s:1 obtained from the theorem
depends of course gn Write ur r for one usingu andur. , for another
one using./, then the differencer z — u’F,R is supported o and of the
form cd, with ¢ € R. This one-dimensional space of possible extensions
represents the renormalization ambiguity.

Here is an example. Let/ = R*. For
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the latter a distribution od/" \ {0} = M \ {0}. Pulling back along3,
_ vk g dy|
*u ; dul = ; 1 *ﬁ*u d — |

inU; —{y; =0}, =0,...,3. As ar was not defined &ai, (5*ur); is not
defined at, given locally by{y; = 0}. Raising to the powes gives

i |dy|
(B ap)ildy| =
: lyil*=3(1 + Zj;éi %2‘)28

—do(¥:) 0) |dy|
= +o(s—1)
(2(5 —1) (1+ Zj;ﬁi %2)28
Therefore the residue densitysat 1 is given, in this chart, by
1 1
s=1(B*ur);|dy| = —=0do(y; dy|.
resoc ()7 dy| = = 530() sl
The residue is given as a projective integral by
resrz_l/zi(—l) YidVin...ANdY; A ... ANdY,
2 Je Y+
whereYy, . .., Y, are homogeneous coordinates. In any of the charend
for the integration one chart suffices,

o 1/dy1/\...m7y\i/\.../\dyn
T = ——
% (L4225 93)?

2

As mentioned before, there is a 1-dimensional space of lplessktensions
up, g due to the choice gf that needs to be made. There is no canonical
However from practice in momentum space the following caascuseful.
In momentum space, the ill-defined Fourier transformpis

d*k
*2
(Fug)™ : prikz(/{:—p)?

A regularization or cutoff is now being understood in theegrial. This can
be renormalized, for example, by subtracting the valug’ at m? where
m > 0 has the meaning of an energy scale.

d'k d'k
*2 _
(Fuo)g = pr— / k2(k —p)? / k*(k —p)?
This prescription has the advantage that it is useful farudations beyond
perturbation theory. The Fourier transform of the disthidid(p* — m?)
is a Bessel functiop(x) (with noncompact support), which can be approx-

imated by a sequenge, — u of test functionsu,, with compact support.
Sincem > 0, ;1 # 1, and infrared divergences do not occur.

p2=m2
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In the case of primitive graphs, the renormalization openatiescribed
above can be performed, and the residue be defined, whilé'enwithout
blowing up. For general graphs however blowing up providesdvantage,
as will be shown in sectidn 6: All divergences can be removedeasame
time while observing the physical principle of locality. i§ltoncludes our
discussion of primitive divergences, and we start with theegal theory for
arbitrary graphs.

4. MODELS FOR THE COMPLEMENTS OF SUBSPACE ARRANGEMENTS

In sectior 2 a description of the singular supporupfand of the locus
whereu; fails to be locally integrable was given as subspace arrargés
in a vector space. In general bath/*?);,,(I") and (M"?) 4, (") will not
be cartesian products of simpler arrangements. In thisoseate describe
birational models fol/"* where the two subspace arrangements are trans-
formed into normal crossing divisors. For this purpose tasvenient to
use results of De Concini and Procesi![22] on more generapade ar-
rangements. See also the recent baok [21] for a generadinttion to
the subject. Although for the results of the present papér thhe smooth
models for the divergent arrangeme$'©) ;;, (') are needed, it is very in-
structive, free of cost, and useful for future applicatiomptimitive graphs,
to develop the smooth models for the singular arrangem@uts ) ;,,, (")
at the same time.

4.1. Smooth models and normal crossing divisorsConsider for a finite
dimensional real vector spadé a collectionC = {A4,,..., A,,} of sub-
spacesd; of V¥ and the corresponding arrangemépt= | J .. A~ in V.
The problem is to find a smooth manifol¢ and a proper surjective mor-
phismg : Y, — V such that
(1) g is an isomorphism outside of (V).
(2) The preimag€ of V¢ is a divisor with normal crossings, i. e. there
are local coordinates, . . ., z, for Yz such that3—1(1¢) is given in
the chart by the equation - ... -z, = 0.
(3) §is a composition of blowups along smooth centers.

Such amap : Y, — V is called asmooth model fob;. Sinceg is a com-
position of blowups, it is a birational equivalence. By thassical result

of Hironaka it is clear that for much more general algebrais & such a
model always exists in characteristic 0. For the specia cdsubspace ar-
rangement$, a comprehensive and very useful treatment is given ih [22].
It will be instructive to not only consider one smooth modwif a family

of smooth models constructed below along the lines of [23].aBuse of
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language, a smooth model may be seen as a "compactificatidiné com-
plement of the arrangement, forif C V' is compact, them|z-1 (k) is a
compactification of V' \ V) N K sinceg is proper.

In the following we construct the smooth models of De Conaird Procesi
for the special case 8f = M"° andC = Cy;,y(T') OF C = Cyo(T).

4.2. The Wonderful Models. For a vector spac& write P(1') for the
projective space of lines il. For any subspacg of V' there is an obvious
mapV \ U — V/U — P(V/U). The smooth models of De Concini and
Procesi, called "wonderful models”, are defined as the ¢co3p of the
graph of the map

(44) VAV — [ P(v/AY)

AeP
(the closure taken itV x [] ,.» P(V/A*)) whereP is a subset of , subject
to certain conditions, to be defined below. The Betontrols what the
irreducible components of the divis6rare, and how they intersect. In other
words, one gets different smooth models as one varies theesitb We
assume that the collectighis closed under sum. The following definition
describes the most basic combinatorial idea for the wontlerbdels.

Definition 4.1. A subsef of C is abuilding setif every A € C is the direct
sumA = @, B; of the maximal elements; of P that are contained i,
such that, in addition, for everyy € C with C' C A alsoC = ,(C N B;).
Elements of a building set are callédilding blocks

Our definition is a slight specialization of the onelinl[22 dhem (2) in
2.3]. In their notation, our building sef8 are those for whicl = Cp (see
[22, 2.3]). Note that a building set is not in general closedar sum again.
Definition[4.1 singles out subsef of C for which taking the closure of
(44) makes sense. Indeed one has

Theorem 4.1(De Concini, Procesi)If P is a building set, then the closure
Yp of the graph ofi(44) provides a smooth model for the arranggrvie Its
divisor £ is the union of smooth irreducible componeéis one for each
AeP. O

4.3. Irreducibility and building sets. Let us now turn toward the building
sets and the wonderful models fgr= M'0 andC = Cg;,,y(T) OF Cyir(T).
We review some basic notions from [22] and apply them to tleeisp case
of graph arrangements.

Definition 4.2. For an A € C adecompositiorof A is a family of non-zero
Ai,...,Ap eCsuchthatdA = A, ¢...® A, and, foreveryB C A, B € C,



26 C. BERGBAUER, R. BRUNETTI AND D. KREIMER

alsoBNA;,...,BNA,eCandB = (BNA)®...® (BN Ag). If
A admits only the trivial decomposition it is call@deducible The set of
irreducible elements is denotef(C).

Itis easily seen thad is irreducible if and only if there are né;, A, € C
suchthatd = A;® A;, andB = (BNA;)+(BNAy)forall BC A, B eC.
Forif A= A, & Ay, @ Al is adecomposition ofl, thenA = A, & (A, B A))
is a decomposition ofl into two terms sincéB N A;) & (BN A)) C
BN (A @ Ab).

We now describe the irreducible elementCof,,(I'), Ca;,(I'). Recall our
definition of a subgraph of I" : If " is a graph with set of verticels (I")
and set of edge&(I"), a subgraphy is given by a subsel () C E(T") of
edges. By definitioV’(y) = V(I"). However, we defind/ () to be the
subset of vertices i () which are not isolated — a vertexs not isolated

if it is connected to another vertex throughWe say~y is connected if it is
connected with respect a4 (y) and E(). In other words, the connected
components ofy exclude by definition the isolated vertices. For two parti-
tions P, P, write P, < P, if {i, 7} C Q € P, implies{i,j} C Q' € P, for
some)’. Write P, < P if P, < P andP, # P,.

Definition 4.3. Let G be a collection of subgraphs of A subgraphy of

I is calledirreducible wrt.G if for all subgraphsy;,v, € G — defining
partitions P, = cc(y1), Pa = cc(y2) on V() — such thatP, U P, = cc(y)

and P, N P, = 0 there exists a subgraphe G with cc(g) < cc(y) which
is not the union of a subgraph iR, with a subgraph inP,. (A subgraph in
P, is a subgraphy; of " such thatc(g;) N P; = cc(g;).)

It follows from the definition that all subgraphs with only dwertices
(|Ver ()| = 2) are irreducible (because there are no siiclnd P, at all).
Also, every irreducible graph is connected. Indeedldte irreducible
wrt. G and~ have two componentg = ~; U . Taking P, = cc(;) and
P, = cc(v2) one arrives at a contradiction. Note also that the notion of
irreducibility of v wrt. G depends only onc(~) andg.

It turns out that the irreducible graphs are exactly thosehvprovide irre-
ducible subspaces:

Proposition 4.1.

(45) F(Csing(I')) = {A, € Csing(T") : v irred. wrt. all subgraphs of '},

(46) F(Cuin(I')) ={A, € Csin(I") : ~ divergent and irreducible wrt.
all divergent subgraphs df},
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(47) F(Csing(K)) = {Ay € Coing(K,) = v connected.

Proof. (45)-(46): By the remark after the definitiod,, is reducible in
Csing(I') (Cain(T)) if and only if there are (divergent) subgrapfs . of
I'suchthatd, = A, ® A,, andA, = A, N A, + A, N A, for all (di-
vergent) subgraphg of I with A, C A, (which means:c(g) < cc(y)).
Using Proposition 2]5 and Proposition|2.6, this is equivele saying that
ce(y) = ce(y1)Uce(a), cc(y1) Nee(v2) = 0 andec(g) = (ce(g)Nee(yr))U
(cc(g) Nece(v2)), whence the statement.

(47): Since the connectedness-ofs necessary for., to be irreducible
(see the remark after Definitian 4.3), we only need to shovicsency.
Let thereforey, v1,v2 be connected subgraphs &f, such thatec(y) =
ce(y1) U ce(y2) andee(y:) N ce(y2) = 0. Pick an edge € E(K,,) which
joins a vertex inVg(y1) with one inVeg(v2). This gives amd, € Cypy(K)
suchthat4d. N A,, = A. N A,, = {0}. Consequently, is irreducible. O

Recall the definition of a building set, Definition #.1, whiale can now
rephrase as follows: Al € C have a decomposition (in the sense of Defi-
nition[4.2) into themaximalbuilding blocks contained ir.

The irreducible element$(C) of a collectionC are the minimal building
set for the compactification of \ [ J, .. A*.

Proposition 4.2. The irreducible element&(C), andC itself, form building
setsinC, and F(C) C P C C for every building seP in C.

Proof. (see also [22][Proposition 2.1 and Theorem 2.3 (3)]) It igiobs
that everyA € C has a decomposition into irreducible elemeBts As-
sume one of them is not maximal, sdy= €, B; with B, C B € F(C).
LetC € C, C C B,thenB = @,(BnN B;) with C = P,(CNB;) =
D, CN(BNB;) would be a nontrivial decomposition &. ThereforeZ (C)
is a building set. Let nowP be an arbitrary building set, andl ¢ F(C).
There is a decomposition of into maximal building blocks, but sinceé
is irreducible the decomposition is trivial antlis a building block itself.
Consequently=(C') C P. The remaining statements are obvious. O

We conclude this section with a short remark about redudiltergent
graphs.

Proposition 4.3. Lety C I" be divergent, and letl, = A, © ... ® A,, be
a decomposition i€, (I'). We may assume that the are saturated, that
isv; = (7:)s- Then allv; are divergent themselves.

Proof. Using (15), we need to concludeé — 2)|E(v;)| = dim A,, from
(d — 2)|E(vy)] = dimA,. Since they; decomposey and are saturated,
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we have a disjoint uniot(y) = E(y;) U ... U E(y). Also dim A,
> ;dim A,,. Consequently, if we had ansuch that(d — 2)|E(y;)|
dim A,,, then there would be g such that(d — 2)|E(v;)| > dim A,
in contradiction td" being at most logarithmic (see Definitibn2.2). O

A

4.4. Nested sets.LetP be a building set id. We are now ready to describe
the wonderful model¥’. Note thatl; = V() since(A4; @ Ax)* = A1 N

Ay . Consequently, using Propositibn 412, = Vp. The charts foY, are
assembled fronmestedsets of subspaces, defined as follows (see also [22,
Section 2.4))

Definition 4.4. A subseiV of P is nested wrtP if forany A;, ..., A, e N
pairwise non-comparable we haﬁe:f:1 A; ¢ P (unlessk = 1).

Note that in particular the=(C)-nested sets are setsiokducible sub-
spaces. We now determine tiienested sets of = Cy;y(I"), Cain(I),
Csing(K,,) for the minimal and maximal building sef8 = F(C) andP =
C, respectively. Lety be a subgraph df. Recall from section 2|3 that,
depends only on the partitiam(~y) of the vertex set/(T').

Proposition 4.4. A subsetN' = {A,,,..., A, } is nested irC = Cy;,,(T")
(resp.Cyin (1))

(i) wrt. P = C if and only if the sef{cc(v1), ..., cc(yx)} is linearly
ordered by the strict orde& of partitions,

(i) wrt. P = F(C) if and only if the~; are irreducible wrt. all (di-
vergent) subgraphs df, and for all I C {1,... k}, |I| > 2,
the graphlJ,., v: is reducible wrt. (divergent) subgraphs, unless
ce(v;) < ce(v;) for somei, j € 1.

Proof. Straightforward from the definitions. O

Proposition 4.5. A subsetN' = {A,,..., A, } is nested inC,,(K,)
wrt. the minimal building set if and only if thg are connected and far# j
if either Veg (i) C Ver(75), Verr(75) C Verr(73), OF Ve () N Ve (5) = 0.

Proof. Straightforward from[(4]7). O

We recall further notions from_[22, Section 2]. Lt be a building set
and N\ aP-nested set fo€. For everyz € V'V \ {0} the set of subspaces
in N/ = N U {VV} containingz is linearly ordered and non-empty. Write
p(x) for the minimal elementinV’. This definesamap: V¥V \ {0} — N

Definition 4.5. A basisB of V'V is adaptedo N if, for all A € N the set
B N A generatesA. A markingof B is, for all A € N, the choice of an
elementr, € Bwithp(za) = A.
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In the case of arrangements coming from graghs; Cying (L), Cain (L),
particular bases are obtained from spanning forests, chd3itior 2.4.

Proposition 4.6. Lett be a spanning tréof . Then the basi = {(¢Vip ) :
e€ E(t),j=0,...,d—1} of (M")"is adapted to\ = {A.,,..., A, }
if and only if the graph with edgels: € E(t) : e < cc(y;)} is a spanning
forest force(y;) foralli = 1,... k.

Proof. Straightforward from Propositidn 2.4. O

We call such a spanning forest adapted spanning foresalso, a marking
of the basis corresponds to a certain subfofe@t,) C E(t) with k + 1
edges, and a choice of one outdodopies for each edge.

Proposition 4.7. Let A/ be aP-nested set fof = Cg;,,,(I") or C4,(T'). Then
there exists an adapted spanning tree.

Proof. By induction on the dimension: Let, ,..., A,, be the maximal
elements inV contained in a givenl,. Assume an adapted spanning forest
(see Proposition 41.6) for each of tHe, is chosen. The union of these bases
is then a basi#’ for @, A,, (the sum is direct becausé is nested and the
A, maximal). The se{(eVir)? : e € E(v)} is a generating set fad.,.
Extending the basis’ to a basis forA., using this generating set provides,
by Propositioi 24, an adapted spanning forest/for O

Let us now return to marked bases in general. A marking of apted
basisB provides a partial order off : y; < s if p(y1) C p(y) andys is
marked. This partial order determines a mapV — V as follows. Con-

sider the elements d8 = {y1,...,yx} as (nonlinear) coordinates on the
sourceV. The (linear) coordinatege, . . ., x;) of the imageo(yy, ..., yx)
are given by

48)  mi=JJu= { Yi [ lpyncaya if y; is not marked,
v J

Yi <Y a Hp(yi)CA Yya If Yi |S marked
1 2Yj

The mapp, and already the partial ordet, determine implicitly a sequence
of blowups. Indeed
Proposition 4.8. (see[22, Lemma 3.1)

(i) pis a birational morphism,
(i) p({ya =0}) = A+ and
(iii) p restricts to an isomorphisii \ |J oy {za =0} = V\ U, AT

2Recall thafl" is connected.
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(iv) Letz € VV\ {0} andp(z) = A € N. Thenz = x4 P,(y;), where
Tp= HijyZ_ y; and P, is a polynomial depending on the variables
y; < x4, and linear in each variable, that i8> P, /0y? = 0.

O

4.5. Properties of the Wonderful Models. Recall the definition[(44) of
the wondeful modelsYy is the closure of” \ Vp» embedded intd/ x
[T1cp P(V/A*). The birational mag : Y» — V is simply the projection
onto the first facto/. Let ' be aP-nested set i, and B an adapted,
marked basis of V. Both determine a birational map: V' — V" as defined
in (48). For a given building blocB € P setZp = {P, =0,z € B} C V.
The composition of) with the rational mag/ — V/AL — P(V/AL) is
then defined as a regular morphism outsideZgf Doing this for every
factor in[],.» P(V/A*), one gets an open embeddify : US = V \
Upep Z5 — Yp [22, Theorem 3.1]. Writ&/,3 = ;5(UF). As N and
the marking ofi3 vary, one obtains an atld¥’3, (;5)~!) for Yp. Itis also
shown in [22, Theorem 3.1] that the divisér= 3-!(V5) is given locally

by

(49) G HENYY) = {HyAZO}

Remarks.In the case of the complete graph,, the minimal wonderful
modelYz,,,,x.) IS known as the Fulton-MacPherson compactification
[25], while the maximal wonderful modét.,,  x,) has been described in
detail by Ulyanov[[43]. For any graph, the beneﬂt of the miairmodel
is that the divisor is small in the sense that it has only a maiinumber
of irreducible components, whereas the actual constnudtjoa sequence
of blowups is less canonical. On the other hand, for the makmodel,
which has a larger number of irreducible components, onepocaceed in
the obvious way blowing up strict transforms by increasimgeahsion. See
figures[1[2[ B for an example. Also the resolution of projectirrange-
ments described in_[24] and referred to in![10, Lemma 5.1Feeds by
increasing dimension and corresponds to the maximal wéuideodel.

4.6. Examples. For the fixed vertex set’ = {1,2,3,4} we consider a
series of graphs ol with increasing complexity. Only some of them are
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FIGURE 1. A picture ofR® (I,).

sing

relevant for renormalization.

~

w
~
o

I'h = Iy =
2 4 4
1 3 I 3
Iy, = I's =
2 1, 2 4
1 ] 5
I's = I's =
2 4 2 4

For these graphs, we examine the arrangemaf}fs, and M,°, the irre-
ducible subspaces and nested sets for the minimal and mialuib@ing
set, respectively. Writel;; for A. with e an edge connecting the vertices
1 andj. Note thatAlg + A23 = A13 + A23 = Alg + A13 etc., and in the
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FIGURE 2. (Spherical) blowup of the origin iR (K,),

where projective spaces are replaced by spheresg. The maxi-
mal wonderful model would proceed by blowing up all strict
transforms of lines incident to the exceptional divisorgd an
finally the strict transforms of the planes.

examples a choice of basis is made.
Csing(rl) - {A127 A23, A34, and their Sumb

} = {A127 A23, A24, A34, and their Sumb

Csing P5) = {A127 A13, A23, A24, A34, and their SumF
Caing(T'6) = {Ai2, Az, A1s, Asz, Aoy, Azq, and their sump

The divergent arrangements are determined by the collectibdual spaces:

Cdiv (Pl) = @
Cai(T2) = {A2}
Caiw(T'3) = {Ass, Aoz + Asa}

= {Asy, Ao+ Asa, Ao + Aoz + Asy}

(I'2)
(I's)
Caiw(Ta) = {A12, Asy, Aoz + Asy, Arg + Aszy, Ao + Az + Az}
(I's)
(Ts) = {Aia+ Apz + Az}
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FIGURE 3. Minimal (spherical) model oRsmg( 4), COI-
responding to the Fulton-MacPherson compactification of
the configuration space of 4 points I After the central
blowup, only those strict transforms of lines are blown up
which are not a normal crossing intersection in the first

place.

The irreducible singular subspace collections are

F(Csing(T'1)) =

F (Csing(2))
F(Csimg(I's)) 0 =
F(Csing(T'a))

)
F(Csing(I's)) =

F(Coing(T's)) =

{A12, Ags, Ass }
{A1g, Aoz, Aos, Asy, Ags + Az}

{ A2, A1z, Agz, Aoy, Asy,

Ay + Aig, Aog + Agy, Arg + Agz + Asu}
{A12, Arg, Ay, Ass, Agy, Asy,

Apg + Az, Arg + Ang, Aiz + Ay, Aos + Az,
Ay + Ags + Asa}

Remark.Note that these irreducible single subspace collectiomsaone-
to-one correspondence with the terms generated by the agpéatgebra
[11,/34] if one takes into account the multiplicities gernedaby a labeling
of vertices. A detailed comparison is left to future work.
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The irreducible divergent subspace collections are
f(de(Fl)) e (Z)

F(Cain(T2)) = {A1}

F(Caiw(L'3)) = {Ass, Az + Ay}

F(Caiw(Ly)) = {Ai2, Az, Aoz + Az}

F(Caiw(L5)) = {Ass, Agz + Az, Arp + Agg + Asy}
F(Caiw(Lg)) = {Arz+ Asg+ Az}

The maximal nested sets of the divergent collection wrtnti@mal build-
ing set:
forTy: ()
forTy:  {Ap}
forTs:  {Ags, A}
forT'y:  {Aia, Aoy, Asy}
forI's : {A134, Agza, Asa}
for I's : {Av234}
The maximal nested sets of the divergent collection wrtnthgimal build-
ing set:
forly: 0
forTy:  {Ap}
for's:  {Agsy, Asq}
forIy : {Av234, A1a ® Az, Ara},
{A1234, A1y © Asy, Asy},
{A12347 A2347 A34}
forI's {A1234, Agza, Asa}
forTg:  {A}

5. LAURENT COEFFICIENTS OF THE MEROMORPHIC EXTENSION

5.1. The Feynman distribution pulled back onto the wonderful mockel.
Recall the definition[(4) of the Feynman distribution = [,_; uo(z; —
x;)™. We writeup = ®,ur whered is the projection along the thin diago-
nal defined at the end of sectionl2.1. It is clear from the disiun in section
2 thatu, = (il@d)*u?‘E(F)‘. Let 3 : Yp — MY be a wonderful model for
the arrangementV/*?) 4, (T") or (M"°),.,(T). The purpose of this section
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is to study the regularized pullbagku;. (as a density-valued meromorphic
function ofs) of 7. ontoYp \ £.

Theorem 5.1. Let N be aP-nested set iy, (T') (Csing(T)), and B =
{ye' ce€ E(t),1=0,. — 1} an adapted basis with marked elements
v, A€ N.Then,in the charUN,

(50) Sur({yi}) = fwed) T] Wi
AeN
wherefr € Li, (US) (C*>*(U%)), andn, € —2N U {0}. More precisely

(51) na, = (2 = d)|E(ys)]-
In addition, fr is smooth in the variableﬁf, AeN.

Note: ~, is the subgraph defined in Definitibn P.1. Divergent subgsaph
are saturated (Propositibn 2.1).

Proof. Recall from the last paragraph of section]4.5 that the map
given in the charUﬁ, by p (see [@78))'

p: Z Z yéb]eHZ > I wedd

j=0 ecE(t j=0 ecE(t) J.<y

where < is the partial order on the basi& = {y?} of (M/"?)" adapted to
N. Consequently, usin@ (25),

Fur({yl}) = uy®ip({yl})

d—1

(52) = H Ug ({Ee’venyj/jyk”ys”} '_0) .

ecE(T) c =
By Propositio 4B (iv), eaclyy = >, 7 is a productz’y P.; ({y;})
where A = p(¢J) € N. As v, is homogeneous(2), the factaf! =
[Tacnen yg'?, can be pulled out, supplied with an exponent d. Since
2y = [lacpys', the factor(yA )2~4 appears once for eache FE(I')
such thatd, C A, in other words for each < cc(y). Hence [(B1). We
finally show that the remaining factor

(53) Jr {y, H Uo {PJ {yf}) )

ecE(T)
of B*uy satisfiesfr € L}, .(UF) if the divergent arrangement was resolved
or fr € C>=(U%) if the singular arrangement was resolved, respectively.
The setU§ contains by definition no point with coordinatgssuch that for
any building blockB € P all P,({y/}) = 0, z € B. Inthe case of,;,,(I"),
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all A, € P, (e € E(I)), since they are irreducible, see Proposifiod 4.2.
On the other hand4. is spanned by the/, j = 0,...,d — 1. Therefore
none of theP,; in (&3) vanishes oW/§.. Hence, using(3)fr € C>(Ug,).

In the case o€, ("), let v be divergent. By Propositidn 4.3 we may as-
sume without loss thad, is irreducible. Thereforel, € P as in the first
case. By the same argument as above, not aIPgQén the arguments of
[1cx(,) uo can vanish at the same time o, whence this product is now
locally integrable. In order to see th#t is smooth in the;;i(‘, it suffices

to show that not all of thePg({yf}) — 0 (forj =0,...,d—1) as the
yi{* — 0 while the other coordinates are fixed. From Proposition &) (
we know that everyP, is linear in they;, if therefore allP.; vanished at

somey'{ = 0 they would have/’;* as a common factor. This contradicts
Proposition 4.8 as them¢.) C A. O

In the preceding theorem;. was pulled back alongd as a distribution. The
next corollary clarifies the situation for the densitiir = 5*(urp|dz|). We
write |dy| for [dy? A ... A dydt.

Corollary 5.1. Under the assumptions of Theoreml 5.1,

(54) srar({yldyl = fr{yiy) T Wil 1dy]
AeN

where

(55) ma, = 2|E(vys)| — ddim Hy(vy,) — 1 > —1.

In the case of the divergent arrangemépt,(I'), all m 4, = —1, and more-
over

(56) gras({yildyl = Qi) TT Wit dyl
AeN
whered, = dim A.

We also writed., = d 4., .

Proof. Formally,

jdef = | AN dedl=[ A\ ] vl

¢€E(t),j=0....d—1 yi=yb,
= T Wil N\ vl
AeN

where they, are determined as follows. Since thg (j
spanA., the factoryi{;7 appears from aliz? such that

0,....d—1)
cc(y), except

IN
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FIGURE 4. The edges of are broken lines, the edges of
t\ s full lines. p; ({vo,v1,v2,v3}) = vo, Prs(vs) = vs,
Pt,s({%,%,@?}) = Us, pt,s(US) = Ug, pt,s('UQ) = Vy.

one, namely;le;;:V itself which corresponds to the marking. Sincis an
adapted spanning tree, the gete E(t¢) : e < cc(y)} defines a spanning
forest ofy, and one concludes using Proposition 2.4 that = d, — 1.
Finally note thatlim H,(v,) = |E(vs)| —d,/d andI is at most logarithmic.
O

5.2. Combinatorial description of the Laurent coefficients. Let V' =
V(I'),E = E(I")andp : V — V'amap of sets which is not injective. In the
dual this definesamap’ : k" — k" sendingy oy a0 103,y oy v-
Let E(y) C E(I'). Then the graph, with vertex set/(+,) = V' and set of
edgesE(y,) = E(v) suchtha®, = d,0p¥ : kY0r) — KEO) (see[(IB)) is
calledthe graphy contracted along p

Note: The graph contracted alopgmay have loops. It is not necessar-
ily a subgraph of* anymore.

We assume, as inl(6), a distinguished vertgxe V' (T') such thatl, =
V(') \ {wo}. Let nowt be a spanning tree df ands C t a subforest of.
This definesamap, , : V(I') — V(T') as follows: Letv € V(I") be given.
Sincet is a spanning tree df, there is a unique path in t from v, to v.
Let p; s(v) be the unique vertex which is connectedstby edges ok only
and is nearest tg, on the path,. See figuré 4 for an example. This gives
us a grapt’,, .. Itis obvious from the construction that, s is a spanning
forest ofl",, , whereas all edges ofare transformed into loops.

LetNV ={A,,..., A, } be aP-nested set i€, ,(I") or Cy,(T'). Lett be
an adapted spanning tree. Allare assumed saturated. We define the graph
vi/ /N as follows. LetA,, .. "Am be the maximal elements A,,. Let
s be the forest defined b¥(s) = E(t) N (E(yj,) U ... U E(y;)). Then
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~://N is the graph with edgeB(v;) \ U _, E(v;,,) contracted along the
mapp; .

The graphy;//N obviously depends on although only up to a permu-
tation of the vertices, as is easily verified.

Lemma 5.1. Under the assumptions above:

(i) The graphy;//N has no loops.

(ii) If ~; is connected, sois;/ /N (wrt. Veg(v://N)).

(iii) In the case of the divergent collecti@y;, ('), let A be a maximal
nested set. Ify; is connected;;//N is at most logarithmic and
primitive. Thereforees(;//N) is defined (seé (43)).

(iv) In this caseres(y;//N) does not depend upon the choice of an
adapted spanning trefe

Note that forP = F(C) every~; is connected (as it is irreducible). For
non-connected;, the statements hold for each component.

Proof. (i) Supposec were a loop iny;//N at the vertexv. Since~; has
no loops,|p;. (v)| > 1. However,p, ; moves only the vertices adjacent to
edges ofs. We concludes € E(v;,,) as they; are saturated, and have a
contradiction.

(i) By constructiony” (3 v,/ a0 V') = P (Xwreviing ) = Xeviny v
since the sum is ovell vertices ofV.;(;) (the vertices not ifv.g map to0).
On the other handy”(z) of a sumz = 3", v whereU C Vg (7://N),

is not contained iBpan » yv. Write 6 = 6., andd, = d(,), -

UEV(%
0 o(y;) LV (i) 0 EE ()
p\/
0 HO(y, ) JN) — Ve O/IN) o, BNy B(i)

Note thats, as a map intd:”()») is the same as as a map irt6"://\)
since the missing edges are all loops. Consequently, & ker 6, then
pY(x) € kerd, by definition of (v;),. However, because; is connected,
kerd = span} .y, v. Thereforedimkerd, = 1, if 4, is restricted to
Ve (vi//N), and hencey;/ /N connected.

(i) By definition, a graphy on V(') is divergent if and only itlim A, =
(d—2)|E(y)|. Itis convergent itlim A, > (d — 2)|E(v)|. We may restrict
ourselves to saturated subgraphs because the number gfiedgeases the
susceptibility to divergences, and every divergent grapsaturated. Let
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v C 7i//N be saturated as a subgraph~gf /. ThereforeE(y,) C

E(nyi)\Uf%:1 E(~;,.)- Letnow, be the saturated graph fgy as a subgraph
of ;. Sincep maps each component of , to a single vertexy;//N has

S dim A,, components more than. More generally,
dimA, = dimA, —dimA,,,.
On the other hand,

[E(w)| = [E(s)] = [E((s N 7s)s)l-

Therefore(d — 2)|E(v,)| < dim A, , and equality only ify, = ~; (equiv-
alentlyy, = ~;//N) by the maximality of\V. It follows that~;//N is
divergent, and proper subgraphs of ~;//N are convergent, divergent,
worse than logarithmically divergent if and only if they @®subgraphs of
v:; whencey;/ /N is also at most logarithmic and primitive.

(iv) Let ¢, be two choices of an adapted spanning tree. Ther and
"\ s are spanning trees of//N, and by the argument in the proof of
Theorem 31 (iixes~;/ /N is independent of the basis chosen. O

We will shortly use this lemma in connection with the followgitheorem,
which helps understand the geometry of the divisam Yp.

Theorem 5.2. (see[22, Theorem 3.9]Let 5 : Yp — M be a wonderful
model.

(i) Thedivisorist = |Jp.p Ep WithEp smoothirreducible and(Ep) =

Pt

(i) Thecomponentsy,, ..., p, have nonempty intersection if and only
if {P,..., P} isP-nested. In this case the intersection is transver-
sal.

|

We consider only the divergent cagg, (I") with arbitrary building seP
and conclude for the Laurent expansion at 1 :

Theorem 5.3. Letwj = *af as a density.
(i) The densityr} has a pole of ordetV,,,, ats = 1, whereN,,,, Is
the cardinality of the largest nested et
(i) Let
(57) W= Y ars(s— DR

k=—Nmazx

SWe suspect, but this is not needed here, that in the diveagearigement all maximal
nested sets have (equal) cardinality,...
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Then, fork < —1,

suppary = |J [ &

IN|=—k AyeN
which is a subset of codimensierk. The union is ovefP-nested
sets\.
(i) LetP = F(Cuin(T)). Let N be a nested set such thal'| = N,
Then
(58) Ar,— Npna. [1] = Z H res(y//N).

‘N‘:Nmaw A"/EN
where ally are assumed saturated.

Recall from Theoreni 511 thaf- is smooth in they’s. Therefore the
canonical regularization can be used consistently (sgg.(IHe identity
(B8) is known as a consequence of the scattering formuladhif2a mo-
mentum space context. More general identities for the migbefficients
can be obtained but are not necessary for the purpose ofapes.p

Proof. (i) From (88),ws|dy| = f& HA€N|y (da=1)=das|qy| in local co-
ordinates. By the results of section]3.3, in particular (38)

(59)  aildyl = ¢ [[ ( R ) dy),
AeN A<S )
whence the first statement. ,
(ii) This follows from (59), using tha£,, is locally given byyi(:7 = 0. The-
orem5.2 (ii) shows that the codimensiorkis
(iif) Throughout this proof we assume alldefining the nested set are sat-
urated. By Theorem 5.2 (i), fot\V| = Nyae, the setn, cx&, intersects
no otheré.,, v ¢ N. Using (i), ar _n,,,. is in fact supported on a disjoint
union subsets of codimensiénand we may computér _y,,..[1] on each
of them and sum the results up. It suffices, therefore, to show
(60)
(2% [ o T ootwid/asfasl = T vesto//a) im0
AyeN AyeN

for all maximal nested setd’. Integration inside one chart suffices since
there is no other nested s®t such thatj(Ux~) coversna. cn&, and charts
from another choice of marked basis need not be considezedhe argu-
ment in the proof of Theorem 3.1 (ii). Recdl[{25) 61" and KE_JZ)

we({yl) = Gue){wih) = T] w(£d_ [T ik

e€E(I) eyl <k,
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in US-. In order to studyfr

S ,one observes that all produtﬁ[sj <ok, yfj,,
AW - -

vanish aty , Ay = 0, oncee’ € E(y). If all d components?,, ... %" of
all ¢ ~ ¢ vanish at the same time, this does not affctas it is taken
care of by a power o§;* pulled out ofur in (60). Consequently, for a fixed
eec E(I),

w{ Y TT viizd T w2 I st

e’:e’«»ey =y, AyENecE(y ) AveN
_ k 1d—1 ZA'y d—2
= uo({ E H Yer j:O) H (yA )
e/:e’~~eand VAyeEN yj, _<yk” A-\/GN,BGE( )

e/ €E(v)=e€E(y)

On the other hand, consider the graphi V" wherey € V. Writep = p;_
whereE(t,) = E(t)NE(y), t is the chosen adapted spanning tred fand
s, the subforest defined by the maximal elements of the nestediseined
in . Sincey is connected,, is a spanning tree of. A vertexv, , € Veg(t,)
is chosen. For each componerf s., there is a unique element € Vg (c)
which is nearest to, , in t,. By definition,

ZUIE%H(C) /U, If v = UC7
p'(v)=4 0 if v e Ver(sy) \ U{ve},
v if veV()\ Veg(sy).

Letas = 3. p,) @ebe With b, = (=1)% 37 ;v as in Propositiof 2]7.
One findsp¥ (b.) = (—1)% > vevi\vinvig () ¥ Wherec is the component of
s, which contains:, andc = 0 if e € E(t, \ s,). In particularp” (b.) = b,
if e € E(t, \ s,). Consequently

iyyn(z) = op'(x)

- Z Z (—1)9 20 Z (v:e)e

e€E(v//N) e’€E(ty) vEVI\VINVeg (c)
- Y Y e
e€E(v//N) ,eg(;&\w

wheret., \ s, is a spanning tree foy//N . Therefore

ayr = ] w30 IT wed

e€E(Y//N) elnoe

e/ €E(ty\sv) y = y "

% H “‘f Y @=2IEQ/ N gy .
vCy! eN
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In a final step, define for each € E(T") the minimal elementl,, € N
such thate € E(v.). We haveE (") = |_|AveN{e € E(T) : v =~}
= Ua, e E(v//N) as is shown by a simple induction. Similad(t) =
Laende € E@) 2 7e =7} = Ua en £(t5) \ E(s,) is a decomposition
into spanning trees sindels adapted Writ¢dy| | /\ e dye| and

ye#yAA

ir N = wr({yi}) T Wi 10(i)ldy]
AyeN

= ML wd XTI b IT w2

eEE(F el:e/~»eand VA—\/GN J <k AWEN
e/ €E(y)=e€E(y) Yer =Yen e€E(y)

(61) = T @@= T wd X2 [T vhyichldgl

A,ye_/\/' ecE(I") e/~e y /<y )

Ye=7Y V! =7e “€
= ® Ay /N ~1

AyeN
Consequently(61) integrates to the product of residuetaaned. O

Theoreni 5.2 and Theordm 5.3 (ii) implicitly describe a #icztion of Y.
In the next section we will show that all the information kelet for renor-
malization is encoded in the geometrygf.

6. RENORMALIZATION ON THE WONDERFUL MODEL

In this section we describe a map that transforifis = 5*uf into a
renormalized distribution densityy. , holomorphic ats = 1, such that
Ur,p = Buf pls—1 is defined on all ofd/" and satisfies the following
(equivalent) physical requirements:

() The terms subtracted fromy in order to getur r can be rewritten
as counterterms in a renormalized local Lagrangian.

(i) The ur g satisfy the Epstein-Glaser recursion (renormalized equa-
tions of motion, Dyson-Schwinger equations).

One might be tempted to simply defing ; by discarding the pole part in
the Laurent expansion of. , at s = 1. However, unlesd’ is primitive,
this would not provide an extension satisfying those resyagnts, and the
resulting "counterterms” would violate the locality pripte. Seel[18, Sec-
tion 5.2] for a simple example in momentum space.

The equivalence between (i) and (ii) is adressed in the rmalgivork of



RENORMALIZATION AND RESOLUTION OF SINGULARITIES 43

Epstein and Glaser [23], see al50l[14/17,42]. We circumaenitmber of
technical issues by restricting ourselves to logarithnierdences of mass-
less graphs on Euclidean space-time throughout the paper.

6.1. Conditions for physical extensions.In this section we suppose as
given the unrenormalized distributions € D'(M" \ (M"?)4,(T)), and
examine what the physical condition (ii) implies for the semalized dis-
tributionuy. , € D'(M"°) to be constructed.

Let V. = {1,...,n} be the vertex set of all graphs under consideration.
The degree of a vertex is the number of adjacent edges. Inréwops
sections,I" was always supposed to be connected. Here we need discon-
nected graphs and sums of graphs. Therefore all graphs gpesed to be
subgraphs of théV-fold complete graphs¥ onn vertices withV edges
between each pair of verticed! can always be chosen large enough as to
accomodate any graph, in a finite collection of grapte V, as one of its
subgraphs.

We writely = (ly,...,1,) for anNy- multiindex satisfying) _ I, € 2Nj.
Alsoly—ky = (h—Fky, ..., la—kn), () = (1) .- (i) etc. LetV = TLLJ.
Let Bip(k;, k) be the set of, J)-bipartite graphs ofY, where the degree
of the vertexi is given byk;. Finally, let (p; ;)ocrcv be a partition of unity

subordinate to the open covgl;,, C; of A" \ {0} with

Cr= MY \ (Mvo)sing(KLV\f)
where K ; is the completd, J)-bipartite graph (i. e. the graph with ex-
actly one edge between each I and each € J). The se{M"0);,,, (K )

is therefore the locus where at least ane- x; = 0fori € I, j € J.

The Epstein-Glaser recursion for vacuum expectation galtieme-ordered
products (se€ [17, Equation (31)]) is given, in a euclidearsion, by the

equality
(62)
ly I
ly _ x krk
ty = Z D pr.y Z (kv)tIItJJ | Z ur
V=IuJ ky =0 I'eBip(ly—kr,ly—ky)

Yierli—ki=>Xjeglj—v;

on MV \ A = & '(M" \ {0}). The distributionst!Y therein, vaccuum
expectation values of time-ordered Wick products, relatbe single graph
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distributionsur and their renormalizations- ; as follows:

tl‘y = Z crur an)_l(MVO\(MVO)smg<Kn>>
reGr(ly)
63) &/ = Y curp onMY
reGr(ly)

Gr(ly) is the set of all graph§ with given vertex set/(I') such that the
degree of the vertekis /;. There are no external edges and no loops (edges
connecting to the same vertex at both ends). The combiaatmnstants

o = E?:lllf’, wherel;; is the number of edges betweermnd j, are not
i<j big”

needed in the following. See [31, Appendix B] for the comglatgument.

Proposition 6.1. On the level of single graphs, a sufficient condition for
equation[(6R) to hold is, for anl,

(64) Ur,R = Uy, R Ung, R UT\ (v, L1y2) ON ! (MVO \ (Mvo)sing(r\ (11U72)))
whenevery;, v, are connected saturated subgraph$'o$uch that/.¢(~v;)N
Vet (72) = 0.

Note thatu.,, r-u., r iS in fact a tensor product sinee(y;) Nce(y2) = 0.
The locus where the remaining factag, (,,.,,,) is not smooth is excluded
by restriction toM" \ (M"0),,,(I" \ (71 U 72)). The product is therefore
well-defined. Note also that (64) trivially holds dd" \ (M"?)4,(T) by
the very definition[(¥) ofur. Proposition 6.1 implies, in particular, that
if T is a disjoint union T = ~; Uy, andVig(y1) N Veg(r2) = 0), then
UT R = Unyy, R @ Uy R everywhere.

The system of equatioris (64) is called the Epstein-Glasers®n forur .
Recursive equations of this kind are also referred to agnealized Dyson-
Schwinger equations (equations of motion) in a momentumespantext
[8,137].

Proof of Propositio 6J1. Let all ur z satisfy the requirement of (64).
We only need the case whefé, J} with I = Vig(71), J = Veg(2) is a
partition, i.e./LI.J = V. Since(M"°) i, (T\ (71U72)) C (MY0)ging(Kr.1),
(64) is valid in particular orC’; O supp p; ;. Furthermore, since; and-,

are saturated’ \ (v, U ,) is (I, J)-bipartite. Thereforet)¥ as in [63)
with (€4) inserted, provides one of the terms on the righthside of [62).
Conversely, every graph with prescribed vertex degrees can be obtained
by chosing a partitiond U J = V, taking the saturated subgraphsfor 7
and-; for J, respectively, and supplying the missing edges from(1hd)-
bipartite graph. O



RENORMALIZATION AND RESOLUTION OF SINGULARITIES 45

6.2. Renormalization prescriptions. We consider the divergent arrange-
mentC = Cy, (") only, with building setP minimal or maximal, that is

P = F(C) orC. Let N be a nested set which, together with an adapted
spanning treeé and a marking of the corresponding baSisprovide for a
chartU§; for Yp.

By Theoreni 5.8 (i) the subset of codimension 1 whéfehas only a sim-
ple pole ats = 1 is covered by those chart& where A" = {A,} with ~
any divergent (and irreducible® = F(C)) graph. From[(59) one has

iA
200(y.') i, (D)
fi

S d
d7(5—1)+|yA | y‘

wrldy| = f7
In these charts, one performs one of the following subtastin order to
get a renormalized distribution. In the first case, only tbke fis removed
~ 8 ~8 s i d S— d —1
(65) ildy| = 5, |yl = FElye [ dy]
One might call thigocal minimal subtraction

ForA, € NletA, ..., A, € N be the maximal elements contained
in A, where all graphs are assumed saturated. For dach \ choose a
va, € C(Yp) such that,, 0= 1 andv,., depends only on the coor-

Ay _
yA»y =
dinatesy], e € E(t)N(E(y)\ E(U}_,7;))in U}, and has compact support
in the associated linear coordinatels e € E(t) N (E(y) \ E(Uf_,7))).

Thev,, are calledenormalization conditionsIn practice, thes,, will be
chosen as described at the end of sedfioh 3.4.

The second renormalization prescription is then
wpldy| — wp g, |dyl
(66) = @ — [y |9 wal 00y ) £l dyl,

which is calledsubtraction at fixed conditionsThe notatiorjv],, means
integration along the fiber of the projection

_ d— “ia d—
Pa s Yoy Yepoo) > W WA Ve
defined in[(31l). Both prescriptions provide us local exgmssholomor-
phic ats = 1 in all chartsU§ where " contains a single element.
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In the chartd/%, for a general nested s&f, where
5 i 1

wpldy| = f7 Al}\[ WW@/\
one applies the subtractidn (65) in every factor (local malisubtraction)

~8 1 d 1 —d S
(67) @ moldyl = f2 TT i1 ™™ 1yl

AeN
Similarly, by abuse of notation, in the same chart,
(68) wF,RM\dyI = W, H 1 — ... [va PAéo(yA )) |dy|
AeN

generalizing the subtraction at fixed conditidns (66). Acize notation for
(68) — which disguises however the multiplicative naturénhig operation —
is

1
~5 o k k
wF,R#|dy| - Z (—1) H | |dAS (da—1) [szlij}PAl ,,,,, Ay
(A1, AR YCN AeN Vi
k 4
(69) x [ 0o(yal) fildyl
j=1
wherep,, a4, isthe projection omitting the coordinat@fé‘jj,j =1,...,k

Corollary[3.1 shows that there are no infrared divergendesmpushing
forward alonggs.

Note thatwy r |—1|dy| defines a density oy, but this is not true for
generals. One needs a moment to verify thé;,Ru|dy| is a globally well-
defined density for al$ in a neighborhood of = 1.

Proposition 6.2. The local expressions;. ;, |,—1|dy| given by[(6F) define a
density ony». Thewy. , given by [(68,69) define a density-valued function
on Yy, holomorphic in a neighborhood af= 1.

Proof. Note thatwy. is by construction a density for all Local minimal
subtraction: They';! |len transform like|y’i*|~! under transition between
charts. Subtraction at fixed conditions: Each term in the @@ differs

fromw{ by a number of integrations in ti@éfjj and a product of delta distri-
butions in the samgz_j. Under transition between charts, the contribution

to the Jacobian from the integrations cancels the one frendéfta distri-
butions. It remains to show that; , has no pole at = 1 : Using that
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valjia = 1, we have in local coordinates
A
b _250@2“]') A d d
~5 i TA; —1—d~s
Wr g, = Z (_1)kH ———~ YA [fn VA,
: dF(S 1) J J
{Al ,,,,, Ak}CN j=1
ia, —250(y') in1dy—l—dys \ s
: 50(ijJ)> 11 (W—Al) + il )
AEM\{Ay,. A} ST
Combining this to a binomial power finishes the proof. O

Theorem 6.1.LetP = F(Cy,). Then both assignments
' — ﬂF,Ro = 6*/1‘7]18—‘,R0‘3:17
I' — drg, = B0 R, ls=1

(with consistent choice of the,) satisfy the locality condition (64) for
graphs.

The proof is based on the following lemmata.Af € P then~ is sup-
posed saturated. Recall that an atlas¥feiis provided by the/%..

Lemma 6.1. Under the assumptions of Propositionl6.1, ket € P and
ce(y) £ ec(y1 Uy,). Then

& S BTHM, (T (1 Una))).
Proof. If cc(y) £ ce(71Uyz), theny contains an edgee E(I'\ (:U72)).

1%
Consequentlyéﬁy_ = ﬂeEE('y) Aé_ - UeEE(F\('ylu'yg)) Aé_ = Msi%g(l—‘ \ (’}/1 U
72)). Since ' (A5) 2 &,, the result follows. O

Lemma 6.2. A subsei\/ C G is nested wrt. the minimal building set if and
only if N' = N; U N5, where\; is a nested set wrt. the minimal building
set for the connected graph with vertex sev g (v;).

Proof. Let P(G) = F(Cun(G)) for a graphG. First, sinceVeg(v1) N
Ve (72) = 0, every connected subgraphof v, L 7, is either contained in
71 Oriny,. LetnowN C G be nested wrtP(T"). All irreducible graphs are
connected. We can therefore writé = N, U N, where the elements of
N; are contained in;. Sincev; is saturated, a subgraphgfis irreducible
as a subgraph of; if and only if it is as a subgraph a@f. Consequently the
N; areP(~;)-nested becausB(v;) C P(T'). Conversely, suppos¥; and
N, are given. Let soms;,, ..., 7, € v andy;,,...,7;.,. C 72 be pairwise
noncomparable. Then the sun,_, A, + >0, Ay, isin fact a decom-
position into two terms and therefore not containedii"), unless one of
the two terms is zero. But in this case, the other term is arivaadtdecom-
position itself, for it is not contained iR (~;). Therefore it is not contained
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in P(I"), and; U N, is nested wrtP(T). O

Proof of Theoreri 6l1Let I, v, v, as in Proposition 611. Let € D(M"°)
such thatupp ¢ N Ms‘f;g(F \ (11 Un2)) = 0. In a first step, we study the

compact sefX = supp ¢ wherey) = 3*¢. We say~y has property(x) if it
satisfies

(x¥) ~ C I divergent andc(y) £ cc(y; U7z).

LetG = {A, € P : v has not propertyx)} C P. By Lemma6.]l,X does
not intersect any, wherey has property (*). Therefore

X Nn(UR) € ivngUxng)

(where at the right hand side the marking®fs restricted ta\V' N G). In

a second step, consider the map, : Yp(,,) X Yp(,,) — M which is
the cartesian product of two wonderful models (with two mial building
sets). IfUN is a chart forYp(.,), thenU U is a chart for the product.
As the nested set¥; and\; and the marklng81 and B, of the basrs vary
one obtalnsian atlas fdfp (1) X .Yp(,m. . Similarly, Ietqfﬁ1 %2 = qu ® q N
be a subordinate partition of unity with compact supportfiercompact set
X' = supp 6;,2‘? in YP('y1) X YP('yz)'

In a third step, we use Lemrha 6.2 to identfyT")-nested setd/ C G with
N1 U Ns, and to show that there is a partition of unjt§ for X C Yp
subordinate to the atlasg, which looks locally likegy!2 . SinceUf =
Ugt x UN2 \ Uaep\gZa, (See sectiof 4l5), witlh = 81 |_| By andjk =
lel x ji2, theqyt"2 provide indeed such a partition of unity with compact
support, because a small enough neighborhool dbes not intersect the
strict transformsZ,4, A £ G.

Finally in a chart/%, identified withU} x U2, by definition [6T.6B), the
renormalized distributions satisfy

'J]RR(y) |dy| = m71,Rw72,RwF\(’Y1u’yz) (y) |dy|

Wherew%‘,R ® w“{zﬂ = ﬁi2(a%‘ﬂ ® a“fzﬂ) andwp\(’huw) = 6?,2711\(%&&)'
Leti, o = B7,¢. Since also3 = (3, in this chart, we have) = ;5 in
local coordinates. This finishes the proof. O

Remarks Local minimal subtraction is easily defined, but dependshen
choice of regularization in a crucial way. The subtractibfix@d conditions
is independent of the regularization and therefore the atktli choice for
the renormalization of amplitudes and non-perturbativeatations.

If one extends the requirement {64) to general decompaositlp = A, &
A,, into connected saturated subgraphs, then it is obvioudtteahinimal



RENORMALIZATION AND RESOLUTION OF SINGULARITIES 49

model (P = F(Cu»(I"))) provides exactly the right framework for renor-
malization. On the other hand, the maximal model= C,;, (")) requires
unnecessary subtractions if there are disjoint or, moregdy, reducible
divergent subgraphs. Locality must then be imposed by aadit condi-
tions. It can be shown that local renormalization schemeb s1$ local
minimal subtraction can also be applied on the maximal (dndtarmedi-
ate) models, as will be reported elsewhere.

6.3. Hopf algebras of Feynman graphs.In this section we relate our pre-
vious results to the Hopf algebras introduced for renorzaéitbon by Connes
and Kreimer([[19, 35], and generalized in[11]. This is noirehyt straight-
forward, see also the remarks at the end of this sectionatlagl suitable
polynomials in masses and space-time derivatives, pas#pace Green
functions can be chosen to have a perturbative expansiarnmstof log-
arithmic divergent coefficients. Thus, in summary, as loagvarse than
logarithmic divergences are avoided, the Hopf algebrassioormalization
in momentum spaceé [11] and position space are the same.

Only the divergent collectio@y;,(I") and the minimal building sepP =
F(Cain(I')) is considered at this stage, amgeducible and nestedrefer to
this setting.

Definition 6.1. Two Feynman graphk,, I'; are isomorphicif there is an
isomorphism between their exact sequenicels (15) for a $eitatentation
of edges.

Lemma 6.3. Lety C I' be divergent graphs where is connected and

at most logarithmic. Let be an adapted spanning tree for the nested set
N = {T',~v}. Then the isomorphism class6f /\ is independent of and
I'/ /N connected, divergent and at most logarithmic.

In this case we writ&//~ for the isomorphism class &f/ /N

Proof. Follows from Lemma 5]1 (ii),(iii) and the definition of the ofient
graph using; . O

Let Hrg be the polynomial algebra ov&r generated by the empty graph
(which serves as unit) and isomorphism classes of conneateabst loga-
rithmic, divergent graphs. There is no need to restrict &pbs of a specific
interaction, but this can obviously be done by introducirtemal (half-)
edges and fixing the degree of the vertices. All subgraphsawe un-
derstood to have vertex s&lz. Products of linear generators ®f. are
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identified with disjoint unions of graphs. One defines

(70) AT)=> y®T//v

~yCr
where in the sum only divergent subgraphare understood, including the
empty graph. The quotient grapl/ /v is well-defined and a generator of
Hre by Lemmd6.B. One extends as an algebra homomorphism onto all
of Hra.

By the analysis of [11, Section 2.2], the m&p: Hrg — Hrg @ Hrg
is coassociative. Note that divergent and at most logaréimplies one-
particle-irreducible (core) as in [11]:

Definition 6.2. A graphI is called core (one-particle irreduciblé) dim
H,(T'\ e) < dim H, (") for anye € E(I").

Proposition 6.3. A divergent, at most logarithmic graghis core.

Proof. If dim H,(I" \ e) = dim H,(I") for somee € E(T') thenT \ e
would be worse than logarithmically divergent. O

One can dividé+ z¢ by the idealZ generated by all polynomiats— [];
whered, = A, ®...®A,, isanirreducible decomposition, asin[11, Equa-
tion (2.5)]. Indeed, ify is connected and., = A,, & A, a decomposition
theny is a join: E(y) = E(y) U E(y2) andVeg(m1) N Ver(y2) = {v}.
We refer then tol[11, Equation (2.5)] for the complete argnimbatZ is

a coideal. The quotient Hopf algebra is denctég; = Hrq/Z, and we
will use only this Hopf algebra in the following. It correspats to the min-
imal building set. The antipode is denot8dand the convolution product
of linear endomorphismg x ¢ = m(f ® g)A. Note that a connected di-
vergent grapH’ is primitive in the sense of Definition_3.4 if and only if
AM)=0T'+T 0.

Theorem 6.2.1f I is irreducible,
ST = > (=)W v/,
AreN AyeN
where the sum is over nested s&fswvrt. F(Cy;, (T)).
Proof. Since the antipode satisfi€$()) = () and
ST ==> " Sr//v,
Y&r

for T" irreducible,~ divergent, one has(I') = —I"if " is primitive. Let
now I’ be general irreducible. The sum over nested Aétsrt. F(Cy;,, (T'))
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containingAr can be written as a sum over proper divergent subgraolis
I" and nested sef§” wrt. F(Cq4;, (7)) containing the irreducible components
of A, such that\" = N’ U {Ar}. By Lemmd6.8I'/ /vy = T'//N, and the
statement follows by induction.

By Theoreni 5.8 (ii)-(iii), the antipod® describes thus the stratification of
the divisor€ of Yp. A similar (but weighted) sum is given by x Y where
Y is the algebra homomorphisi : Hrg — Hpg, Y(I') = dim H, (I')T,
see for example [20]. This provides the link between thetsgag formula
of [20] and Theorerh 513 (iii), and we refer to future work foetdetails.

In the case of dimensional regularization and minimal sdbion, one con-
siders algebra homomorphisms fr@y.; into an algebra of Laurent series
in the regulator, and a projector onto the finite part of thiéesein order
to describe the renormalization process [19, 20, 35]. Inflamework, the
Hopf algebra is encoded in the geometry of the divisor. Themmal-
ization process is simply to approach the divisor and perftite simple
subtraction along the irreducible components, and to tag&@toduct of the
subtracted factors where the components intersect. Tdrerdfe renormal-
ization schemes studied hetel(67)}(69) can again be deschip the an-
tipode twisted with a subtraction operator. The latter delsehowever on
local information as opposed to global minimal subtractiércomprehen-
sive discussion of the difference between local renorraibn schemes as
described here and (global) minimal subtraction is resefmefuture work.

RemarksThe role of the Connes-Kreimer Hopf algebras in Epsteins&la
renormalization was previously discussed!in! [2[7],/ [41] §rid The third
paper, which is about entire amplitudes and uses rooted, trekes on a
quite symbolic notation which is now justified by the reswoltshe previous
sections. A general flaw in the first paper/[27] is reveiledhe introduc-
tion of [41]. On the other hand the coproduct in the seconcep{pl]
does not seem to be coassociative the way it is defined. Asrder@xam-
ple consider the cycle on four vertices plus two additionigjes between a
pair of vertices. This can be repaired by introducing iredie, core or at
most logarithmic and saturated subgraphs as it is done Bee[11, Sec-
tion 2.2] for a general discussion for which clasge®f graphs the map
Al) = Etgg v ® TI'//~ has a chance of being coassociative.

6.4. Amplitudes, non-logarithmic divergences and regulators.In this
section we briefly sketch how to extend our previous resultsch are so
far confined to single graphs with at most logarithmic diegrces, to a more
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general class of graphs. Indeed, if one considers amp#fudevacuum ex-
pectation values of time-ordered products in the Epstdas€ framework,
one wants to regularize and renormalize sums of Feynmambdisbns si-

multaneously, and some of them will obviously have worsa thgarithmic

singularities.

For an introductory discussion of non-logarithmic diverges the reader
is referred to[[11, Section 7.4], [18, Section 5]. The gehghdosophy is
to reduce seemingly non-logarithmic (quadratic etc.) d@jeaces to loga-
rithmic ones by isolating contributions to different termghe Lagrangian
(such as wave function renormalization, mass renormaizgt and by
projecting onto a subspace of distribution-valued merguhiar functions
where local terms with infrared divergences are discardéds shall only
be sketched at the example of the primitive graph

|d°x|
8

D=\ up()dz =

in d = 6 dimensions, which is quadratically divergent. Byl(38}, has
relevant poldbat s = 3 ands = 1. Indeed, by[(3B),

~ l ir‘s dy 6D 6(,)/ 015—8s s l

Note that neither the residue at= % nor |y0|§i;n88f§ is globally defined
as a distribution density. One would like to work in a spacealistribu-
tions wherewr is equivalent to a linear combination of distribution densi
ties with at most logarithmic singularities, having only @eats = 1. If
one disposes of an infrared regulation such that the seetatliabatic limit
vanishes

(72) up[1] =0

4Just as in dimensional regularization, the (linear) dieege at = 7/8 is not detected
by the regulator.
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one can subtraat;.[1]6, from (71) without changing it:

Bldyl = wh— 6o(y?) / B3(2))dz

- QZ(% ; + 8((52( )) \yo\fcmgs) Fiy)|dyl

1 .
—6o(y°) <—4S —3 + holomorphic term> ,

which kills the pole at = % and leaves a linear ultraviolet divergence. Us-
ing similar subtractions of zero the linear divergence nientbe reduced
to logarithmic ones and convergent terms, again at the esgpefnintroduc-
ing infrared divergent integrals which vanish however inuatient space
whereu;:[1] = 0 for all I'. We have not worked out the general case, but di-
mensional regularization suggests that it can be done stensly. Indeed,
the ideal(7R) can be traced back to the "identity”

(73) / dkk** =0, o« arbitrary

in momentum space dimensional regularization, see alsdga&ions 4.2,
4.3], [11, Remark 7.6]. Equatioh (I73) is a consequence ofabithat di-
mensional regularization balances ultraviolet and ieftladivergences, us-
ing only one regulatod.

A complete treatment of non-logarithmic singularities antire amplitudes

is reserved for future work, as well as a more general studggnflarization
methods, such as dimensional regularization, in positpats. Whereas
the analytic regularization used in this paper is based mgathe prop-
agator to a complex power, dimensional regularization weaplaced by
d—2s,s € Cin (T). This can be seen to lead to very similar expressions,
simplifying the constants i (43}, (b6) etc.

7. FINAL REMARKS

Pulling back the Feynman distribution onto a smooth mod#é wormal
crossing divisor seems an obvious thing to do for an algelgaometer.
Less obvious is maybe the question which kind of smooth msdese-
ful. In the recent paper [11], which studies the parame#resentation
though, a toric compactification of the complement of therdowte linear
spaces is used. We also mention![13, 38] for recent relatshreh in the
parametric representation, [29] with regard to the openatoduct expan-
sion, and[[40] for cohomological aspects.
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Apart from the open problems already mentioned there awseithme-
diate questions. The first is to find the right analytic fraragwin order to
generalize these results to arbitrary propagators on wldsifwith a more
versatile regularization than the ad-hoc analytic regzddion used here.
The second question is how the motivic description in [1X¢lated to our
approach.
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