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I. INTRODUCTION

A remarkable achievement of theoretical cosmology has been the construction, by Belinski, Khalatnikov and Lifshitz
(BKL), of a general solution to the 4-dimensional vacuum Einstein equations in the vicinity of a spacelike ( “cosmologi-
cal”) singularity [1], [2] [3], [4]. They found that this solution exhibits a never-ending oscillatory behavior, with strong
chaotic properties. They could describe in detail the statistical properties of this never-ending oscillatory behavior
by approximating the Einstein field equations (near the singularity) by a system of ODE’s for three variables a, b, ¢
(‘anisotropic scale factors’), namely

d*1
?I;“ = (b2 — )2 — a?, (1.1a)
d’Inb
92 02 — (2 —a?)? — b4, (1.1b)
dr?
d?1
2?{;0 = (a® —b?)? — 4, (1.1¢)
where dr = —dt/(abc), and by approximately reducing the continuous dynamics of a, b, ¢ to a sequence of discrete

maps. The crucial discrete map introduced by BKL relates the ‘Kasner exponents’ p,, py, p. describing the (ap-
proximately linear) T-evolutions of the three scale factors a, b, ¢ during two successive ‘epochs’ (i.e. two successive
segments of the dynamics (ILT]) during which the influence of the right-hand side is negligible). More precisely, BKL,
following ﬂﬂ], parametrize the three Kasner exponents p,, pp, p. (constrained to satisfy 1 = p, + pp+ pe = p2 + pi +p?)
by means of one real parameter u, and show that the interval 1 < u < oo is in one to one correspondence with the
unordered set {pa, py, pc}. In terms of this parametrization, BKL showed that the discrete map describing the passage
from one epoch to the next is
if u>2, u=u-—1 (1.2a)
1
while,if 1<u<2, o= — (1.2b)
w—
They also defined an ‘era’ as being a set of successive epochs during which u evolves according to the simple law
(CZ&a). This led them to realize that the ‘chaotic’ part of the discrete epoch dynamics () is essentially contained in
the “Gauss iteration map”

Tpy1 = {1/zn} = 1/x0 — [1/ 2] (1.3)
Here, x (with 0 < & < 1) denotes the fractional part of u during an era. Let us recall that the u parameter of all the
epochs belonging to the n-th era can be written in two essentially equivalent ways, which depend on the precise way
in which one defines an era as a collection of epochs. If one uses the definition of an era such that the corresponding
u parameters are always larger than one, the n*" era consists of k, epochs parametrized by values of u of the form
kn + Tn,kn — 1+ 25, ..., 1 + x,. The next era then starts by a value of u equal to k,11 + Zpt1 = 1/x,, so that
knt1 = [1/2,], and zp41 = {1/2,}. We shall refer to this definition of an era as the “standard” one (because it
was adopted in the treatise of Landau and Lifshitz [6]), or as the BKL,~; one. An alternative definition, introduced
by BKL in Eq. (5.4) of [4] (that we shall call the BKL,~o one) leads to considering that the n-th era starts with
u =k, +x, — 1, and ends with v = z,, < 1 (with the next era starting with v = k,+1 — 1 4+ z,41). We shall see
below that the latter, (alternative) definition of an era is more natural in the billiard picture, and this is the one we
shall actually use in our work. The iteration of the Gauss map ([3]) leads to a statistical behavior of the successive
values of z, with an asymptotic stationary probability distribution over the interval [0, 1] [3], [7], [4]:

1 dzx
C In21+a
For general reviews of the works dealing with the BKL singularity , see [§] [7] [4]. Later studies have refined the

description of the statistical properties of the chaotic BKL oscillations, notably by introducing and studying more
complete discrete iteration maps (involving several real variables), and notably by the two-dimensional discrete map

(4, [10], (1]

w(z)dx (1.4)

vy = {1y} =1/ — 1], (1.5a)
Tppr = L/ ([1/a]] + 7). (1.5b)

I Here {y} denotes the fractional part, {y} = y — [y] (where [y] denotes the integer part of y) of the (positive) real number y. We recall
that the Gauss map is at the basis of the expansion of a positive real number into a continued fraction ni + 1/(n2 +1/(n3 + ...)).



The iteration of this two-dimensional map (of the unit square into itself) asymptotically leads to a statistical
behavior for (z;, ;) € [0,1] x [0, 1] with probability distribution [d], [10], [11]

n?o

1 drtdx~
T oo )datda™ = —— 1.6
wlot o = LA (1.6)

Separately from the work of BKIE, and, with a different aim and motivation, Misner realized that generic Bianchi
IX homogeneous cosmological models have a “very complex singularity” ﬂﬁ] He described this complex dynamics
by a Hamiltonian formalism, in terms of a “system point” g = (84, _) bouncing against a system of “potential
walls”. A reformulation of this dynamics ﬂﬂ], ﬂﬂ] led to the simpler picture of a point moving on a Lobachevsky
plane and reflecting upon fized billiard-type cushions. This led Chitre (using earlier mathematical results by Hopf
and Hedlung) to remark that the dynamics of the system point is ergodic and mixing, with unique invariant Liouville
measure (restricted to a fixed energy shell) [16]

p = 0(H (g, p) — E)d*qd®p < 458 (1.7)

The description of cosmological singularities in term of billiards in (higher dimensional) Lobachevsky (or Lorentzian)
spaces has recently received a new impetus from the discovery that the billiard chambers corresponding to many
interesting physical theories can be identified with the “Weyl chambers” of certain (infinite-dimensional) Lorentzian
Kac-Moody algebras [17], [18], [19]. This has raised the conjecture that, hidden below the BKL “chaos”, there lies
zﬂ%emarkable “Kac-Moody symmetry”, akin to the duality symmetries of supergravity and string theories M], ﬂﬂ],
].

Coming back to the cosmological singularities in (3 4+ 1)-dimensional General Relativity, the problem of relating the
statistical properties of the discrete BKL map, such as Eq. (I4) or Eq. (L), to the invariance of the Liouville
measure (7)) in the continuous billiard dynamics, & la Misner-Chitre has been considered in some detail by Kirillov
and Montani ﬂﬁ] These authors have shown, by an explicit calculation, that the Liouville measure pur, Eq. (I71),
(which is a three-form) could be formally rewritten as the product of the invariant measure of the discrete BKL-type
map (L0]), namely the two-form

dzt Adx~

M2 = ma (1.8)

by a one-dimensional measure dp, measuring the proper (hyperbolic) length along the billiard motion on the
Lobachevsky plane. One of the aims of the present work is to better understand the link between the two different
invariant measures (LT), (L8)), and the origin of these measures within the symplectic structure of the (Lorentzian)
billiard dynamics. Another aim will be to go beyond the symmetry quotienting which has been used in most previous
studies of the statistical properties of cosmological billiards. Indeed, there is a basic trialityﬁ symmetry between the
three BKL dynamical variables a, b, ¢, and the discrete maps (L3)) or (LX) arise only if one effectively quotients the
phase-space dynamics by their symmetry. [An example of this quotienting is the fact that the parameter u, taken in
the interval 1 < u < oo, parameterizes the unordered set of Kasner exponents {pa,ps,p.}.] Here, we shall instead
consider the richer (continuous and discrete) billiard dynamics in the full, unquotiented phase-space. As we shall
see, this full dynamics contains new statistical features that do not appear in the traditionally considered quotiented
dynamics. Finally, we shall also compare and contrast the (unquotiented or quotiented) BKL dynamics of the (diag-
onal type-IX) a, b, ¢ system with the billiard dynamics that naturally arose in the recent studies that uncovered the
hidden presence of Kac-Moody-related structures in cosmological billiards ([17], [18], [19], [20], [21], [22]). Indeed, the
billiard dynamics which are most closely connected to such hidden symmetries take place in the Weyl chambers of
some Kac-Moody algebras. In the usual case of 4-dimension vacuum Einstein gravity, this Weyl chamber is what we
shall call a ‘small billiard’ , obtained by quotienting the full (a, b, ¢) billiard table by the six-fold permutation group
of the three letters a, b, c. As we shall discuss, the billiard dynamics in this quotiented (configuration space) billiard
table is not equivalent to the quotienting of the billiard dynamics in the full table, though the further quotienting of
this small billiard dynamics by modding out the action (in phase space) of the a — b — ¢ permutation is equivalent
to the (phase-space) quotienting of the full ‘big billiard” dynamics. Our present paper will focus on the usual case of
4-dimensional vacuum Einstein gravity. In a sequel paper, we will extend our results to higher-dimensional gravity
models, using the generalized “cosmological billiard” approach ﬂﬂ]

2 It seems that western physicists, and notably J.A. Wheeler who was in the audience, first heard about the BKL results from a seminar
given by Isaak Khalatnikov at the Institut Henri Poincaré, Paris, in January 1968; see }
3 Actually, what matters is a six-fold symmetry corresponding to the permutation group of the set {a,b, c}.



The paper is organized as follows. In Section II, we introduce cosmological billiards; this leads, in particular, to
contrasting the ‘big billiard” studied by Belinski, Khalatnikov, Lifshitz and Misner, with the ‘small billiard’, con-
nected with the Weyl chamber of a Kac-Moody algebra. In Section III, we discuss two conformal representations of
cosmological billiards, i.e. the disk model and the upper-half-plane model; in particular, we outline their represen-
tations of epochs and eras. In Section IV, we define integral invariants for general dynamical systems, which allow
us to find an invariant measures for the BKL discrete maps. In Section V, we analyze the big billiard, describe its
dynamics as a “hopscotch game” at different levels, and define the corresponding maps. In Section VI, we exploit the
symmetries of the big billiard to define a symmetry-quotiented map. In Section VII, we study the main properties
of this symmetry-quotiented map. In Section VIII, periodic phenomena in cosmological billiards are considered, and
some differences between the complete billiard and the symmetry-quotiented billiard are outlined. In Section IX, the
small billiard is introduced: its features are investigated, and its equivalence with the big billiard is discussed. Brief
concluding remarks end the paper.

II. REMINDERS AND TECHNICAL PRELIMINARIES

Let us start by defining our notation and recalling some basic facts about “cosmological billiards”. [We mainly
follow the notation of ﬂ2_1|]] In order to describe the evolution of a general inhomogeneous space-time metric near a
space-like singularity, it is convenient to use “pseudo-Gaussian ” coordinates, with vanishing “shift” N? = 0, but with
some convenient choice of the “lapse” N:

ds* = — (N(a°, :Ci)d:vo)z + gij (2%, 2*)datda. (2.1)

Here ¥ denotes the coordinate time associated to any particular way of choosing the value of the lapse function
N. The indices 7,5 = 1,...,d denote the various spatial dimensions. In the present work we shall consider the case
d = 3, but many of the general technical results recalled in this section are valid for any value of the space dimension
d. There are two useful choices of the lapse IV for exhibiting the “billiard nature” of the dynamics of g;; near the
singularity. The choice

N = /g, (2.2)

where g denotes the determinant of the spatial metric g;;, corresponds to using as coordinate time z° the parameter
7 introduced by BKL, i.e. the quantity

dr = -4, (2.3)

where dt = Ndz" denotes the (local) proper time. [A minus sign is introduced in (23) so that the cosmological
singularity conventionally located at ¢ — 07 (“big bang”) is approached as T—+o00 with respect to the 7-coordinate
time.)

The choice of ([22)), 23) leads to an asymptotic description of the gravitational dynamics in terms of a “Lorentzian
billiard in p-space”. More precisely, one first performs an Iwasawa decomposition of the spatial metric, i.e. one
(locally) replaces the d(d + 1)/2 functions g;;(2°, 2%) by the d functions 8%(2°, %), together with the d(d — 1)/2
functions N, (20, 2*) parametrizing an upper triangular matrix with 1’s on the diagonal, according to

d
9ij = Z e—2ﬂaNaiNaj' (24)

a=1

In the near-singularity &'r BKL) limit (¢ — 0" or 7 — +o00, or y_, 3% — +00), one finds that the upper triangular
matrix N has a limit [21] and that the only parts of the metric which have a “chaotic behavior” are the “diagonal
degrees of freedom” parametrized by the d functions 8%(x°, z¥). Then one finds that, at each point of space, the 3%’s
asymptotically follow a Lorentzian billiard dynamics: namely, the 8%(7)’s undergo a succession of constant-velocity
straight-line flights interrupted by collisions (and reflections) on some hyperplanes in 3-space.

The free-flight dynamics of the 8 particle between wall collisions is described by the free action

d
1 dﬁa dﬁb
/5d7’ Z Gab??u (25)

a,b=1



submitted to the constraint

g dg®
§ Gab g g = 0. (2.6)
a,b=1

Here, the [-space metric G,y is defined by

d
= > Gudp*dp’ = (dp")’ (Z dﬂ“) . (2.7)

a,b=1

The metric Go, endows the d-dimensional space of the ’s with a Lorentzian structure (signature — + +...+).
[In the case of 3 + 1 dimensional General Relativity, the 3-dimensional 8 space metric has signature — + +.
Note, however, that the coordinates 3!, 32, 3% are not of the canonical Lorentzian form. Indeed one has do? =
—2 (d61d62 +dB2dp3 + d63d61).] Note that the constraint (2.6 means that, between collisions, the 5 particle goes
“with the velocity of light” (in the sense of the Lorentzian structure G, in 8 space.) In other words, the free-flight
dynamics deduced from the action (23), namely

48— 0= B(r) = B2 + v°T, (2.8)

is restricted by the quadratic constraint

d 2
0= Z Gapv®o® = Z(U“)2 - <Z v“) . (2.9)

The free-flight dynamics ([2.8) in § space (and in the 7 parametrization) corresponds, in the BKL language, to a
“Kasner epoch” (between two successive wall collisions). The usually considered Kasner exponents p,, a = 1,..,d,
corresponding to a Gaussian (or synchronous) gauge (i.e. N = 1), are related to the d-dimensional velocity vector v®
in 8 space (and pseudo-Gaussian 7 gauge, N = /g) via

e

Pa = W. (210)

Note that while v satisfies the unique quadratic constraint (ZI)) (proportional to the combination ), (pa)® —
. pa)Q), the Kasner parameters p, satisfy the two well-known constraints

Y pa=1=> p2 (2.11)

The free flight dynamics (27)) is only valid if the ‘point’ j is sufficiently far from certain (Lorentzian) ‘wall hyperplanes’
in B-space. The equations of these wall hyperplanes depend on the field content of the theory that one considers, (e.g.
Einstein-Maxwell versus Einstein, etc...). They are of the general form

d
=> w)p =0. (2.12)
a=1

More precisely, the dynamics of the § particle is given by a Hamiltonian H of the form H = Hy + V', where Hj is a
free kinetic term describing (in Hamiltonian form) the free-flight part of the dynamics, namely

d
1
=3 Z Gy, (2.13)
a,b=1

where G is the inverse of the covariant metric tensor Gy (in 3 space), introduced in (Z7). Its components in the
B (Iwasawa-related) coordinates are explicitly given by

Z Gabﬂ—aﬂ'b = Z(ﬂ'a)z — ﬁ (Z ﬂ'a) . (214)

a,b a



As for the potential V(8) in the Hamiltonian H = Hy + V, it is a sum of “Toda-like”, i.e. exponential, terms:
V(B) ~ 3 4 caexp(—2w?(B)).

For a generic inhomogeneous metric, the set of linear wall forms w4 (3) always includes curvature (or gravitational)

walls (wfabc) (B)) and symmetry (or centrifugal) walls (w3,). They are explicitly defined by

w?abc)(ﬂ)zﬂa_ﬂb_ﬂc'i_Zﬂe (b#c), (215)

Wiy =B =B (a <b). (2.16)

Beware of the fact that the indices with parentheses appearing on the left-hand sides (L.h.s.) of these definitions
should be considered as labels (like the label A in Eq. (Z12))), and not as S-space tensor indices. E.g. in the linear

form of the f’s w‘gabc) B)=>. w‘gabc)eﬁe only the summed-over index e must be considered as a tensor index. In

addition, note that the index e on w'gabc)e is covariant, while the index e on (3¢ is contravariant. This means that,

when computing the Lorentzian scalar product between two wall forms, w?(8) = D> wA B and wB(B) = > wBpe
one should use the contravariant S-space metric G®:

w? - wP = ZG“bwfwf. (2.17)
a,b

Among all possible walls entering the Hamiltonian (see footnote above), only the subset of “leading” walls (those
not “hidden behind” another wall) should be retained to define the S-space billiard defining the asymptotic BKL-like
dynamics. Indeed, the billiard chamber is defined as the intersection of the positive sides of the set of wall hyperplanes,
i.e. the domain where all the linear forms w*(3) are positive. For instance, in the case of three spatial dimensions,

there are 6 gravitational walls, and 3 symmetry ones. However, among these, some walls are “subleading” in that

they are always behind some other walls. E.g. the symmetry wall w(Sls) = B33 — B! can be identically expressed as

w(Slg) =p—p24+p2-p = w(Slz) (B) + w(523) (B). Therefore the inequality w(S’13) (B) > 0 is a consequence of the
two inequalities w(su) (8) > 0 and wég) (8) > 0, meaning that the wall w(slg)(ﬁ) is behind the two walls wfw) (8) and
wég) (8) and is therefore subleading. Similarly, one finds that among the gravitational walls w‘gabc) the ones where

the first label is equal either to b or ¢ (b # ¢), i.e. pc(B) = —p°+ >, B¢ are always subleading. In d = 3, this leaves
only 3 a priori leading gravitational walls

w?123) (B) = 2617 w?ggl) (B) = 2627 w?312) (ﬁ) = 263' (2'18)
Moreover, the same reasoning which allows one to conclude that the symmetry wall w(513) (8) is ‘behind’ the two other
symmetry walls wfw) (8) and w(s23) (B) shows that the gravitational walls wégl) (8) and w?gu) (B) are both ‘behind’ the

combination of the walls {w(512), w(523),w27123)}. Therefore, for a generic inhomogeneous metric the asymptotic billiard
chamber in [ space is defined by the following three independent inequalities

Wiy (B) = 2~ B 20, (2.19a)
Wiy (B) = 8% — B* >0, (2.19b)
w'g123) () =28 >0. (2.19¢)

Note that the boundary of this billiard chamber is made of two (portions of) symmetry walls, and one (portion of)
gravitational wall. The occurrence of the symmetry walls here comes from terms in the Hamiltonian associated with
the kinetic energy of the off-diagonal components, N, in the Iwasawa decomposition ([24) of the metric. Note that
an alternative way of seeing the ‘constraining’ effect of the off-diagonal components of the metric consists of using,
instead of an Iwasawa decomposition, a Gauss decomposition of the spatial metric: g;; =, e 28" Ra R, with R,
being a rotation matrix, parametrized by three Euler angles. Such a Gauss decomposition was introduced by Belinski,
Khalatnikhov and Ryan in a preprint of the Landau Institute of Theoretical Physics (“ The oscillatory regime near
the singularity in Bianchi-type IX universes”, preprint order 469, Moscow, 1971) which ended up being published as
]. As shown there it entails the presence of centrifugal walls which are simply related to the (Iwasawa) exponential
symmetry walls exp(—2w(5ab)) via V(ffb‘;mf x [sinh(w(sab))]ﬂ.
In the special case of a homogeneous vacuum model of Bianchi-type IX, it is possible to restrict oneself (without loss
of generality) to considering a metric g;;6°¢? which is diagonal in a co-frame 6" = e* | dz™ of left-invariant one-forms.



In that case, the kinetic energy terms associated to the off-diagonal components of g;; vanish, so that the symmetry
walls do not appear. As a consequence, the billiard chamber for the special diagonal Bianchi-IX case is defined by
the three leading gravitational walls ([2.18)), i.e. by the three inequalities

Wy oq) (B) = 281 >0, (2.20a)
Wl (B) = 2532 > 0, (2.20b)
Wiy (B) = 233 > 0. (2.20c)

Note that these three billiard walls correspond to the leading terms that appear on the right-hand side (r.h.s.) of the
BKL a, b, ¢ system (L.I)) when using the exponential parametrization a = e=®, b =e~?, ¢ = ¢77. Indeed, in terms of
these variables, the a, b, ¢ system (L)) reads

o 17 4, —48 _ 4 —2(8+

d_TQ _ 5 [6 —e —e T 4+ 2 ( ’Y)} , (221&)
$PB 17 4 4 —a —2(at

i L B E (2210)
d? 1

dTZ . {6—47 _e—da _ 4B 26—2([3+a)] , (2.21c)

the terms oc e =4 e~47 =47 exactly correspond to the three wall forms (Z20), i.e. 6_461,6_462,6_463. They appear
even more clearly in the Hamiltonian constraint of the a, b, ¢ system which has the form H = %Gabﬂaﬂb +V(B) =0,
i.e., explicitly,

dadf dady dBdy

— L[, —da | —48 | —4 —2a,—28 —2a -2 —28_—2y] _
H:—Ed—T—d—TE—EE—i—Z[e +e e =267 — 27T —2e7 e ] = 0. (2.22)

It is easily seen that the three symmetry walls w(Slz) (8), w(523) (8), w(%l)(ﬁ) partition the § space chamber ([Z20)
into six sub-chambers which are all congruent (with respect to the Lorentzian geometry of -space) to the billiard
chamber ([2.19) corresponding to a generic inhomogeneous (and generically non-diagonal) metric. In view of this, and
for brevity, we shall refer, in the following, to the diagonal Bianchi-IX chamber (Z20) as being the big billiard by
contrast to the small billiard [Z19]) associated to a generic inhomogeneous metric. Note that, in the introduction, we
referred to the big billiard either as ‘the full a, b, ¢ billiard’ or as the ‘unquotiented a, b, ¢ billiard’. In addition, note
that the (six times smaller) billiard table of the small billiard is obtained by quotienting the big billiard table by the
permutation group of {3, %, 33}.

A. Hyperbolic billiards

So far we have recalled how the use of the time gauge [2.2)), (23] leads to a description of the asymptotic dynamics
of the metric, near a space-like singularity, in terms of a billiard motion in an auxiliary d-dimensional Lorentzian
space parametrized by the ‘logarithmic scale factors’ f%. [Note that, in the diagonal Bianchi-IX case the BKL scale
factors a, b, c are related to the 8’s via a = exp(—3'), b = exp(—3?), ¢ = exp(—3?)]. A convenient reformulation of
this Lorentzian billiard consists of decomposing the motion in g-space into radial, p, and angular, y¥*, parts. Here, the
terms “radial” and “angular” refer to Lorentzian analogs of the usual Euclidean decomposition of a position vector x
as X = rn, with r = (xz)% and n being a unit vector. Namely, one decomposes the (time-like) ‘position vector’ 5% in
Lorentzian space as

B =% p=(—GupB8Y)"2. (2.23)

When using such a decomposition, it is convenient to redefine the time gauge, and to replace the condition ([2:2)) by

[13), 1)
N = p*/3. (2.24)

One then finds that the radial motion asymptotically decouples from the angular one and leads to a uniform motion
of the logarithmic variable A = In p w.r.t. the coordinate time, say T', associated to the new gauge ([2.24)), i.e.

A (2.25)

dT =
p? P*\/g
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FIG. 1. The hyperbolic billiard on the unit hyperboloid Hs. The ‘big billiard’ chamber defined by the three gravitational walls
is sketched.

As for the “angular motion” y*(T') on the (future) unit (d — 1)-dimensional hyperboloid, say
Hior: Gay™’ = -1, (2.26)

it is found to be asymptotically described by a hyperbolic billiard, i.e. by a succession of constant-velocity (in 7'
time, Eq. (Z28])) geodesic flights on the unit hyperboloid Hg—1 (Z28]), interrupted by collisions (and reflections) on
hyperbolic walls located on some geodetic hyperplane in y-space. The 7y-space chamber within which this angular
billiard dynamics takes place is simply the projection (seen from the origin) of the corresponding [-space billiard
chamber onto the unit hyperboloid Hq—1, Eq. (226). For instance, in the case of D = 4 vacuum Einstein gravity that
we shall focus on in this paper, we end up with a non-compact, but finite volume billiard chamber on a 2-dimensional
hyperboloid Ha bounded by three geodetic lines. In the case of a generic, inhomogeneous metric, the billiard chamber
is defined by the Hs projection of the inequalities (219, i.e.

‘small billiard’ : 7% —~4'>0; v*—~2>0; 29' > 0. (2.27)
On the other hand, in the special diagonal Bianchi-IX case, the billiard chamber is the Hsy projection of ([220), i.e.
‘big billiard’ : 291 >0; 292 >0; 29° >0. (2.28)

The link between the projected ‘big billiard’ chamber on Hy and the corresponding big Lorentzian billiard in S space
is sketched in Fig. [

We have defined here the billiards on Hs in terms of the three components of the unit Lorentzian vector v* (satisfying
Gapy™y® = -2 (7172 + 9293 + 7371) = —1, see Eq. (1) with d = 3). This is a hyperbolic analog of defining a
billiard chamber on the unit sphere So by writing three linear inequalities w4(n) > 0 in the three components n!,
n?, n? of a unit Euclidean vector (satisfying (n')? + (n?)? + (n3)? = 1). For many purposes, the knowledge of the
linear forms w3 () defining the billiard walls (e.g. wfu) =72 — 4! for the first wall of the “small billiard” Z27)) is
all that is needed to compute most quantities of physical interest. For instance, the (hyperbolic-geometry) angle 645
between the walls wa(y) = wa,v* and wp(y) = wp.Yy* is given by

wA - WRB
VWA - wa\/Wp - wB

cosfOap = (2.29)

where wa - wg = G®wawpy, Eq. 217, G denoting the contravariant metric, Eq. (ZI4). E.g. one easily checks

that the three angles on the small billiard [2.27) are 0,  and 7, while the three angles between the three sides of the
big billiard ([2:28)) are 0, 0, 0. In addition, the law of reflection of the y-space T-time velocity vector, say V* = dy*/dT,

on a certain wall wa () is simply given (at the location of the collision, i.e. when w4 (y) = 0) by

ye=ya_ QM (2.30)

wA - WA ’
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where wa (V) = w4,V and where w9 = G®w 4y is the contravariant vector associated to the covariant components
wa, entering the wall form wa(y) = waey*. Eq. (Z30) relates S-space vectors that are (at the location of the
collision) all tangent to H4—1. It is obtained by projecting the corresponding S-space, 7-time collision law ﬂﬂ]

o ga _ gWAWS

2.31
TR (2.31)

which, contrary to ([230), involves time-independent vectors.

However, for some purposes, it is convenient to use an explicit parametrization of the billiard dynamics on Hq—1 =
‘H,, by means of n = d — 1 intrinsic coordinates. This can be done in several ways. Let us first emphasize that the
unit hyperboloid H,, is a model of the n-dimensional Lobachevsky space (i.e. it is diffeomorphic to R™ and has a
constant sectional curvature —1). As shown long ago by Beltrami (see, e.g., the textbook HE] and the review paper

1), H, admits several useful representations in an n-dimensional Euclidean space. Among these, the conformal
representations are useful because, as they preserve angles, they allow one to express the reflection law ([2.30) as
a usual (locally Euclidean) reflection law of the (local) velocity vector on the wall wy. The two main conformal
representations are:

(i) the ‘ball model’, say B,,, which represents H,, as a unit ball x? < 1 in n-dimensional Euclidean space x € R", with
metric ds? = 4dx?/(1 — x?)?; and
(ii) the ‘upper half-space model’, or ‘Poincaré model’, say P,,, which represents #,, as the half-space v > 0, u =
(ul,...,u""t) € R"1 with metric

B du? + dv?

2
ds 3

(2.32)

v

The ‘ball’ conformal representation can be geometrically realized within the (n+1)-dimensional Lorentzian S-space by
stereographically projecting (from the ‘South Pole’ vg, i.e. a center of projection located on the past unit hyperboloid)
the future unit hyperboloid ([Z26)) onto a (n-dimensional) hyperplane passing through the origin in S-space.

The Poincaré model can be obtained by a suitable geometric inversion of the ball model. In both models, the geodesics
of H,, become Euclidean circles orthogonal to the boundary (the boundary being a unit (n — 1)-dimensional sphere for
B,, and the plane v = 0 for P,,), while walls, i.e. geodetic hyperplanes, become (n — 1)-dimensional spheres orthogonal
to the boundary. Note that the ‘boundary’ corresponds to the ‘absolute’ of H,, i.e. its domain at infinity (which
corresponds to the future null cone, G,,3%3” = 0 when replacing the v%’s with projective 3 coordinates). In addition
to these Euclidean space representations (which naturally define n coordinates, (x!,...,2™), or (u!,...,u" ! v), on
H,), it might also be useful to coordinatize H,, by means of the hyperbolic analog of the polar coordinates on a
sphere. E.g. in the case n = 2, one can represent the metric on Hy as ds?> = df? + sinh? 0d¢?.

III. CONFORMAL REPRESENTATION OF THE D=4 COSMOLOGICAL BILLIARDS

In space-time dimensions D = d + 1 = 4, the walls reduce to (geodesic) lines on the 2-dimensional Lobachevsky
plane Ho. As recalled in the previous section, one can consider two different pure gravity billiards, in D =d + 1 = 4:
(i) the big billiard [Z28) (defined by an ‘ideal triangle’ on Hs, i.e. a triangle whose three sides meet at infinity
with pairwise vanishing angles) or (ii) the small billiard [2.27) (which has angles 0, £ and § and only one vertex at
infinity). The most symmetric representation of the big billiard (which manifestly respects the symmetry group, of
order 3! = 6, of the inequalities (Z28)) is obtained by using a disk model centered at the point 4! = 72 = 4. See
Fig. 2 which also exhibits the small billiard (Z27). By the Gauss-Bonnet theorem, (A + B +C — 7 = [ KdS) the
(hyperbolic) area of the billiard is equal to 7, while that of the small billiard is 7/6 (consistently with the fact that
there are six congruent copies of the small billiard within the big one). By using a Euclidean geometric inversion with
respect to the ‘cusp’ (i.e. the vertex on the absolute) of the small billiard, one obtains a Poincaré model of the billiard
in which that cusp is represented by the point at infinity of the upper half plane (v = 0o). In this representation (see
Fig. B) the geodesics v* = 0, v2 = 0 and v? — 4! = 0 are all represented as vertical straight lines.

As the explicit form of the transformations relating the original gravitational variables 3¢ successively to 7%, and
to its images in the ball and Poincaré models, tend to be unwieldy and not very illuminating, let us sketch how the
form of the final results can be obtained essentially without calculations, by using various geometric considerations.
In any Poincaré representation (say of coordinates u,v) a general wall 0 = w4 (7y) = w1yt +waz2y? + wazy® must be
(projectively) equivalent to the equation of a circle. Therefore each v must be of the form v*(u,v) = A(u, v)0*(u, v),
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U=—00 U=+

u=-—

N =

FIG. 2. The disk model B of the hyperbolic billiard. Both the big billiard (with walls a, b, ¢) and the small billiard (with
walls G, B, R) are sketched. The 6 fundamental Kasner intervals are indicated on the boundary of the disk, which is identified
with the Kasner circle.

>
u

FIG. 3. The Poincaré model P2 of the hyperbolic billiard. Both the big billiard and the small billiards are sketched.

with
§%(u,v) = A%(u? 4+ v?) + B + C%v + D, (3.1)

for some constants A*, B* C* D®. Moreover, if we choose to put the cusp of the small billiard at infinity in the
Poincaré plane, §'(u,v) = 0 and 6%(u,v) = 0 must be the equations of two vertical lines (see Fig. B]). Therefore, &
and 62 must simply be of the form ' = Blu+ D!, §2 = B%u+ D?. By contrast, 6°(u,v) = 0 must be the equation of
a circle centered on the v = 0 axis, i.e. §*(u,v) = A3(u? + v?) + B3u + D3, and cutting the v axis at the two points
§'(u) = 0 and 62(u) = 0 (see Fig. B). In addition, the infinity of Ha projectively corresponds to the light cone in
-space so that the infinity of the Poincaré model (i.e. v = 0) must correspond to G,;6*6” = 0. All these conditions
fix the expressions of §%(u,v) modulo an overall factor and modulo the parabolic subgroup of the symmetry group
(SL(2,R)) of Hy leaving fixed the cusp: i.e. v’ = au+ b, v = au. It was shown by Kirillov and Montani [23] that a
particular choice of a and b leads to expressions for §%(u, v) which are nicely compatible with the u-parametrization
of Kasner parameters which has been used by BKL @], ﬂﬂ] This choice leads to the expressions

8 (u,v) = —u, (3.2a)
82 (u,v) =u+1, (3.2b)
83 (u,v) = u(u + 1) + 02, (3.2¢)



11

which entail [in view of the quadratic constraint Z28)] v*(u,v) = §%(u,v)/(v/2v), i.e. explicitly

u

v (u,v) = v (3.3a)
2y, 0) = L1

v (u,v) = ok (3.3b)
3 u(u+1) 402 .

v (u,v) = T (3.3¢)

As shown in Fig. B in this normalization the gravitational wall ¥! = 0 (i.e. the a wall) which is common to the
small and the big billiard is located at u = 0; the symmetry wall y' = 42 of the small billiard (B wall) is located at
u = —1/2; and the other vertical gravitational wall of the big billiard, ¥2 = 0 (b wall), is at u = —1. On the other
hand, the remaining walls (either 42 = 0 or 4 — 4% = 0) are circles orthogonal to the v axis.

An essential role will be played in the following by the images in the Poincaré model of the ‘Kasner epochs’ of the
cosmological billiard, i.e. the free flights between two successive wall collisions. In (-space, these free-flight segments
are described by uniform motion (in 7-time) and in straight line, see Eq. ([ZT). The (S-space) ‘velocity’ of these free
flights is described by the Lorentzian vector v®, submitted to the constraint of being null, Eq. ([29). The ‘Kasner
parameters’ p, of each Kasner epoch are (projectively) related to the components of the S-space velocity v by the

relation (210I).

The disk-model (Bs) projection of consecutive S-space free flights is made of geodesic segments in Ba, i.e. arcs of

FIG. 4. Kasner epochs of the big billiard in the disk model B2 of the hyperbolic billiard.

circles orthogonal to the boundary circle of By. See Fig. ] which represents the ‘reflection’ of these geodesics on the
three gravitational walls of the big billiard.

When represented in the Poincaré model, instead of the disk model, each S-space straight-line segment (1) =
Bo +ve1 (with 71 < 7 < 73) gets mapped into a geodesic segment of the Poincaré plane Ps, i.e. a segment of a circle
orthogonal to the horizontal axis v = 0, say

u=~(ut+u") - %(qu —u”)cosé, (3.4a)

+

N — N =

v=—|u" —u" |sind, (3.4b)
with 0 < 01 < 0 < 0 < 7 Here 61 (which corresponds to 7 in the S-space “upstairs”) corresponds to the last collision,
and 02 (+> 72) to the next one. See Fig [l which represents the big billiard in the Poincaré model P2. Here, we are
considering oriented circles whose formal extension to the full interval 0 < 8 < 7 would start, when 6 = 0, at the

location u = u~ on the v axis, and end, when § = 7, at the location w = u™ on the v axis. [Note that the radius of
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an

uY

FIG. 5. Kasner epochs of the big billiard in the Poincaré model Ps of the hyperbolic billiard.

the circle is § | u™ —u™ |, while its center is located at u. = $(ut +u"), v. = 0]

For a given billiard table, the oriented pair of real parameters (u™,u ™) (exemplified in Fig. [l uniquely determines
the (oriented) geodesic segment corresponding to some Kasner epoch. More precisely, it is easy to see geometrically
that the ‘end’ parameter u™ uniquely parameterizes the family of $-space straight-line segments 8¢ = B¢ + vor
(without considering their 7 parametrization) that share a common (formal) asymptotic direction o v®. In other
words, ut uniquely parameterizes the three Kasner exponents of the considered Kasner epoch. The precise technical
link between u™ € R and the three p,’s is obtained by relating successively p,: (i) to v* (see Eq. [ZI0)); (ii) to 8%(7)
in the formal 7 — +oo limit (via Eq. @27)); (iii) to v*(7) = 8%/p in the same limit, and thereby (iv) to v*(u,v) in
the corresponding (formal) limit v — u™, v — 0 corresponding to the future endpoint of the circle in the Poincaré
model representing the formal extension of the Kasner epoch. In other words,

‘ . B +v'r im0 : 7 (u, v)

v
Po==——= lim =————= lim —=———~— = lim = 3.5
Ty e B P) e D00 vt 5,970, 0) 7

Using the Poincaré model expressions ([B3]), this leads to the result

pa = pZEE(u'), (3.6)

where the three functions p2%%(u) are the well-known u-parametrization of Kasner exponents introduced by Belinski,

Khalatnikhov and Lifshitz, namely

BKL(, \ — U

P (’LL) — ’LL2 Fu+ 15 (373)
BKL, y_ U+l

P (W) = e e (3.7b)
BrL, y_ wu+1)

) = (3.7)

In other words, as was found in Ref. m], the BKL u-parameter can be interpreted as the location on the real axis
of the future end point of the circle representing the considered Kasner flight in a suitably defined Poincaré model of
Ho.

On the other hand, if we now consider the formal extension of the considered Kasner flight towards the ‘past’ (in
7-time), there occurs a subtlety: the past end point u~ of the corresponding Poincaré circle does not correspond
(as one might naively expect) to the formal 7 — —oo limit of 5*(7) = 3 4+ v®7, but only to the finite past limit
7 — 70 such that B, . (7) = 8§ + v®7 intersects the S-space (future) light cone: GupB&, ..o (70)B% aner (T0) = 0, i.e.
p(70) = 0. As this limit again corresponds to a point at infinity for ¥, . ..(T) = B%.cner (T)/p(T) € Ha, one finds, by
changing the limits in Eq. (33]) that the past end point u = v~, v = 0 on the (oriented) Poincaré circle parametrizes
B asner(T0) Il & projective manner:

ﬁ%asncr (TO) _ BKL —
Zb ﬁf(asncr(TO) b (u ) (38)
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ki]0 <w <1 u'=1/u p1(w) = pi(u) |p2(u) = ps(u) |ps(u) = pa2(w)
ka|—1/2 <u <0 |u'=—(1+u)/ulpi(u) = ps(u)|p2(u’) = p1(u)|ps(u’) = pa(u)
ks|—1<u<—1/2|u" = —u/(u+1)|p1(u) = ps(u) |p2(u) = pa(u) |ps(u’) = p1(u)
ka|—2<u<-1 |u'=-1/(ut+1)pi(u) = pa(u)|pa(u) = ps(u)|ps(u’) = p1(u)
ks|—co<u< -2 |[v'=-u—1 _|pi(u)=pa2(u)|p2(v) = p1(u) |ps(u’) = p3(u)
TABLE I. Kasner transformation, k1, ..., ks mapping the indicated intervals of the u line (“Kasner circle”) onto the fundamental

interval 1 < u < 4o0.

As we shall need them below, let us note at this stage some features of the BKL u-parametrization of Kasner exponents
B). First, let us emphasize that the manifold of Kasner parameters, p,, restricted by the two constraints (ZI1),
is topologically a (d — 2)-dimensional sphere [indeed Eqs. ([2.I1])) represent the intersection of a (d — 1)-dimensional
sphere by an hyperplane]. In the case considered here where d = 3, this means that the three Kasner parameters
p1, P2, p3 run over a topological circle. In fact, this ‘Kasner circle’ can be identified, in the disk representation of
Ho, with the boundary of the unit disk, i.e. with the absolute of Hs. See Fig. In particular, the u-parameter in
Egs. [B) should be considered as running on the extended real line R = R U {oc}. The extended line u € R is then
naturally divided into the six permutations of the three letters (p1, p2, p3) which constitute the symmetry group of
the two Kasner constraints [2I1)). As the latter symmetry group is generated by reflections in the symmetry walls, it
is natural to divide the u line, i.e. the boundary of Ha, by means of these symmetry walls: v2 — 1 =0, v3 — 42 =

73 — 4! = 0, that is, by considering the solutions of the equations pPX% (u) = pBEL(u), or pPEL(u) = pPEL(u), or
pPEE(u) = pBEL(y). This leads to dividing the u-line into the intervals:
1 1
(—OO, _2)3 (_25 _1)3 (_15 _5)3 (_57 O)a (Oa 1)7 (17 +OO) (39)

If, following BKL, we consider the interval 1 < u < 400 as a ‘fundamental interval’, over which the Kasner exponents
are ordered as pPEE(u) < pBEL(y) < pPEE(u), the other five possible orderings of pi, p2, ps will be obtained
by applying to the variable uw a transformation implementing a composition of geometric reflections accross some
symmetry walls. It is well known that a geometric reflection acts on the complex variable z = u + iv of the Poincaré

plane according to

, az+b
=—— 3.10
cz+d’ ( )
with a,b,¢,d € R and ad — bc = +1. When acting on the boundary of the Poincaré model (v = 0), and composing
several reflections, this leads to transformations of the form

,_iau—i—b.

The explicit expression of the five transformations v’ = f;(u), i = 1,...,5 of the form BI0) that map the first five
intervals (33) into the last (‘fundamental’) one are given in Table [l In the following, we shall refer to these as
“Kasner transformations”. Note that each boundary Kasner transformation u’ = f;(u) uniquely determines the way
the corresponding combination of reflections acts on the interior of the Poincaré model: if the sign in Eq. @I is
+ (even isometry) it is 2’ = (az + b)/(cz + d), while if the sign in Eq. (BI1)) is — (odd isometry), it is given by Eq.
(BI0). If one adds the identity transformation, say ko (ko(u) = w), the six transformations {kg, k1, ..., ks } constitute
(under their composition) a realization of the permutation group of three objects (say, the three walls a, b, ¢).

IV. INTEGRAL INVARIANTS FOR BILLIARDS

Let us start by recalling some well-known (and not so well-known) facts about integral invariants in Hamiltonian
systems. (See, e.g., [21], @]) For a general (possibly time dependent) Hamiltonian dynamics, with (Hamiltonian)
action (i =1,...,n)

S= /dt [pid" — H(a,p,1)] (4.1)
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the Poincaré-Cartan one-form
o9l = pidg’ — H(q, p, t)dt, (4.2)

which is defined in the (2n+ 1)-dimensional extended phase space X "1 = {(¢’,p;, t)} is a relative integral invariant
of the unparametrized Hamiltonian flow. This means that the integral

10) = § o2 (43)

of o) over any closed curve C in extended phase space remains the same if one displaces C' in an arbitrary manner
along the unparametrized flow lines of the Hamiltonian dynamics. [By unparametrized flow lines we mean here the
unparametrized lines in X 3”1 whose tangents are everywhere parallel to the Hamiltonian flow, i.e. proportional
(without being necessarily equal) to (0H/dp;, —0H/dq',1).] An equivalent formulation of this property is to say that
the Poincaré-Cartan two-form

wgé = —dagé =dq" ANdp; — dt NdH(q,p,t) (4.4)

is an absolute integral invariant of the unparametrized Hamiltonian flow, i.e. that the integral of w(®) over an arbitrary
two-surface X (with boundary) is invariant as ¥ is moved, in an arbitrary manner, along the unparametrized flow
lines. Note that these invariance properties are stronger than those that are usually stated, which only refer to the
simpler ‘Liouville’ forms of the unextended phase space X ™) = {(¢*,p;)},

J(Ll) = pidq’, (4.5a)
w(L2) = —da(Ll) = dq' Adp;, , (4.5b)

under the time-parametrized Hamiltonian flow (0H/dp, —0H/0q,1). Moreover, the absolute invariance of the two-

2 . . . . . .
form w%é, Eq. (£4), allows one to construct an invariant measure on any (2n)-dimensional transverse section moving

along the unparametrized Hamiltonian flow, namely
An
Qgg) = c(n) (wgé) = c(n)wgé A A wgé (with n factors). (4.6)

Here ¢(n) is a numerical factor which can be taken to be (—)™"~1/2(n!)~1 if one wishes to recover the usual normal-

ization. In the case when one restricts oneself to displacements along the time-parametrized Hamiltonian flow one

can replace the extended phase space form Qgg) by the Liouville measure

(2n) ,_ @\ _ g1 g2 n
Q7" =c(n) (w) =dqg Ndg® A ...ANdq" Ndpy Ndps A ... \dp, (4.7)
on the unextended phase space X (7).
In addition, if one is considering a time-independent Hamiltonian H (p, q), and if one wishes to restrict oneself to the
dynamics on a specific (2n — 1)-dimensional energy hypersurface, say Sgn_l), satisfying H(p,q) = F in unextended

phase space X (®™) the above results simplify in that one can drop the H-dependent contribution in {@2) and (@2
(because dH(q,p) = 0 on the energy shell) and conclude that the simpler Liouville-type two-form w(L2), Eq. (£35h),

is invariant not only under the usual time-parametrized Hamiltonian flows ¢ = 9,H, p = —0,H in £ 2n=1) Hut also
under more general ‘many fingered time flows’ ¢ = FO,H, p = —F0J,H , involving an arbitrarily varying time-rescaling
function F(g,p,t). This leads to introducing two possible measures associated to the dynamics on the energy-surface
Eg"_l). A first measure is the standard energy-shell reduced Liouville measure
2n—1 2
Qy ) = aPVs(H(q.p) - E), (4.8)

which is a (2n — 1)-form, and yields a smooth measure on the (2n — 1)-dimensional energy shell £27=1),

A second possible construction (which is linked to the general theory of the reduction of phase spaces with symmetry,
and was discussed in Ref. HE] as a way to define a measure in cosmology) is to use the invariance of the two-form



15

wgé, Eq. (@A), or simply w(L2), Eq. (E5h), under arbitrary ‘glidings’ along the Hamiltonian flow (which takes place
within £27~1) to define both a reduced (symplectic) 2-form

2 2
w@yi= W] s (49)
Qp

and a corresponding Liouville measure

)A(n_l) (4.10)

I

on the quotient space Qg

other words, Egnfl) /Fu is the space of unparametrized Hamiltonian motions on 55;"71). A concrete representation

of this quotient space can be obtained by considering any transverse section of Fg on £27~D ie. any ‘initial
conditions’ for Fp. Note that this transverse section does not need to be taken at some fixed time ¢, but can have

an arbitrary ‘slope’ in extended phase space. The invariance of wgé = w(L2) (on & (2"_1)) under Fp then guarantees

that the (2n — 2)-form ([@3) lifts to the quotient space Q2" "2 = €2V /Fyy ie. defines a measure on the (2n — 1)-
dimensional space of (unparametrized) motions with energy E.

n=2) _ Eg"_l)/}'H (where Fp denotes the unparametrized Hamiltonian flow on Sgn_2)). In

As a concrete example of this reduced (symplectic) form and reduced measure on a space of motions (or initial
conditions) one can have in mind the measure on the manifold of (unparametrized) straight lines in a Euclidean
plane. A straight line L, i.e. x(s) (where s measures the length along the line), can be parametrized by two vectors,
b, n, submitted to the two constraints: n> = 1, b-n = 0, namely x(s) = b + ns. In any Cartesian coordinate
system, one can explicitly parametrize (b,n) by two real numbers: b = (—bsina, bcosa), n = (cos ¢, sin «), where
b is the impact parameter between the origin and L, and « is the angle between the x axis and L. The reduced
symplectic form on the 2-dimensional manifold of (unparametrized) straight lines L can be obtained by starting
either from the unparametrized action S; = [ \/da? +dy? or from the parametrized one S» = [dti(i* + ?)
submitted to a fixed energy constraint. For instance, Sa corresponds to a 4-dimensional phase space (z, y, s, py) With
Hamiltonian H = § (p? + pj). Let us consider the 2-form (5D) reduced both by the energy constraint H = 1/2, i.e.

ps+p; =1, 0or p, = cosa, p, = sina, and by restricting it, e.g., to the section 0 = y(s9) = bcosa + spsina, ie.

sop = —bcota. These two constraints reduce the phase space to a 2-dimensional one parametrized either by zq, p.,
where ¢ = [x]y,=0 = —bsina + spcosa = —b/sina and p, = cosa, or by (b,«). The symplectic form reduced to
this section yields
(2 _ _ _
Wyoq = dxo Ndp, =d (— sina) Ad(cosa) = db A da. (4.11)

We see that the impact parameter b and the angle a constitute canonical coordinates on the 2-dimensional manifold
of straight lines. The reduced symplectic form ([@TII]) can also be written in a form that is manifestly invariant under
the group of Euclidean symmetries, namely

w2 = db An = db, Adng + db, A dn,, (4.12)

with the algebraic constraints n? = 1, b-n = 0. It is also easily checked that any other section (e.g. zo = 0 instead
of yo = 0) yields the same reduced form.

Note that, in the present example, the reduced phase space of Euclidean straight lines is 2-dimensional so that the
reduced symplectic form wr(f()i furnishes directly a measure on the space of straight lines. We spent some time on this
simple example because we shall later have to deal with the hyperbolic-plane generalization of this structure.
Coming back to the general case, let us mention that there is a simple link between the reduced (2n — 2)-form 955372),

Eq. (@9) and the usually considered energy-shell reduced Liouville measure Q(LQ_’%J), Eq. ([@38). First, note that these

forms define measures on different spaces: Q(L%{l) ‘lives’ on the (2n — 1)-dimensional energy surface 55;"_1), while

ingﬂ) ‘lives” on the (2n — 2)-dimensional quotient anil) of 5%2”71) by the Hamiltonian flow Fg. To see the

link between these constructs, we can introduce (at least locally) in the full, ambient (2n)-dimensional phase space
X©@n) — (¢, p;)} a new canonical coordinate system where the n-th momentum coordinate p2°¥ is equal to the

n
Hamiltonian: H (p°, go1q) = p™. In this new canonical coordinate system, the n-th conjugate position coordinate
QN is such that

dq™. OH
new =1 4.13
dt opnew (4.13)
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while the remaining coordinates (qg,pi), with ¢ = 1,...,n — 1 all satisfy quw =0 =p°, lLe. are invariant under the
Hamiltonian flow Fg (considered in unparametrized form, i.e. with many fingered time displacements: At = F(p, q)).

new
n

If we denote the conjugate pair (¢, p"*") simply by (s, H), and the (n — 1)-other pairs by (¢*, j;), we see that

the symplectic form w(LQ), Eq. (@35h), in the ambient phase space X (?™ reads

W (q.p) = wE(@,p) + ds A dH, (4.14)
where
n—1 _
w2 (a.p) =" dg' ndp; (4.15)
i=1

is clearly equal to the reduced symplectic form (@3] on the quotient space Qg"iz) = 5};"71) /Fn (independently of
the values of E and s).

If we now insert (I4) in the general definition ([8]) of the energy-shell-reduced Liouville measure, one easily sees,
using 0(H — E)dH = 1, that

QP =2 s, (4.16)

where, as explained above, s is a phase-space coordinate which is canonically conjugate to the Hamiltonian (which
implies that ds/dt = 1 along the Hamiltonian flow).

So far, we have been considering any autonomous Hamiltonian system (0H /9t = 0). We can, in particular, apply
the above results to general billiard systems, i.e. to a Hamiltonian of the form

n

Hpa) = Y 209 (@pins + Vaola), (1.17)

ij=1

where g% (q) is the matrix inverse of some (pseudo-)Riemannian metric g;;(¢)dg'dg’, and where the (formal) potential
function Vi (q) is equal to zero within some domain, say B (the “billiard table”), of the ¢ variables, and equal to +oo
outside of this domain. In that case, the general invariance of the reduced symplectic form wg’z{ under arbitrary, many

fingered time motions on the energy hypersurface (see Eq. ([@I4])) can be concretely used to show that the restriction
of the ambient phase space symplectic form w(L2) (q,p) on the boundary 0B (with the constraint H(q,p) = E) of the
billiard , say wggtr(q , Drestr), 1S invariant both under each collision on 0B and under each ‘free flight’ between
two successive collisions. In other words, we are here considering transverse (Poincaré-type) cross sections of the

restr

energy-reduced Hamiltonian flow on Sgn_l), defined, in a ‘stroboscopic’ manner, by the successive collisions. This
allows one to extract from the continuous Hamiltonian flow ¢; [2(t) = ¢+ (2(0)) with 2 = (¢, p)], the discrete ‘billiard
map’ say T, such that 2411 = T (zy) where xy = (¢n,pn) is the phase-space position just after the N-th collision on
0B and T (r) = ¢r(z)40(7) the stroboscopic Hamiltonian evolution between two successive collisions (including the

‘reflection’ effect of the second collision). In other words, the restrictions wﬁiﬁtr(qrem, Drestr) Of w(LQ) on the (2n — 2)-
dimensional phase space of [0B] Hp.g)=F after each collision gives us an infinite collection of concrete realizations of

the reduced 2-form wfi)i on the abstract quotient space Q?™) = £2n+1

) /Fm. Tt also yields several absolute integral
invariants of the billiard map 7, namely wﬁﬁgtr(qrem, Prestr) itself and all its exterior powers, and notably the reduced
measure Qgg—m, Eq. (#I0). Note that the link [@I6) between the energy-shell Liouville measure and the reduced

measure Qizg_m (invariant under the billiard map 7) is well-known in the mathematical literature on billiards (see,

e.g., @] ).

Let us now discuss the various ways in which the above results can be applied to cosmological billiards. We start
by recalling that the dynamics of the ‘diagonal’ degrees of freedom (i.e. the logarithmic scale factors 5 entering the

4 Note that the time 7(z) between two successive collisions generally depends on the starting position z, so that we need to use here the
invariance of the (Poincaré-Cartan (@) or Liouville (I5h)) two-form under the unparametrized many-fingered Hamiltonian flow.
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Iwasawa decomposition (Z4)) is described, near a cosmological singularity, by an action of the general form [21]

1 . -
Sp = /d:z:o {—NGabﬁaﬂb —~NV(B)|, (4.18)
2N
where 8¢ = ‘;go , and where V(3) is a sum of ‘exponential walls’:
V(B) = caexp(—20?(B)), (4.19)
A

with linear forms w?(3), see Eqs. (212 BI85 BI6). The spatial gradients of the metric and of the other fields enter
only in the coefficient ¢4 of the exponential walls. In the near-spacelike-singularity limit (‘BKL limit’) the time- and
space- dependent coefficients c4(2°,x) tend to some finite limits so that one can describe the asymptotic dynamics of
the 3%(z%,x) at each point of space by means of the Toda-like billiard ([@I8] E19) (with c4 replaced by their limits).
A further approximation (which also holds in the BKL limit) consists in replacing the exponential walls (Z19) by
their formal ‘sharp wall limit’, namely

Z Ouc(—2wa(f)) (4.20)

where the formal sharp-wall ©-function is defined as: O (x) := 0 if x < 0 and O () := +oo if > 0.
The action (I8) with V(8) — Voo (B) given by [@20) defines a Lorentzian billiard dynamics in the S-space. This
dynamics can be equivalently described by the Hamiltonian action

S = /d:co [waﬁ'a — Hy(p°, wa)] , (4.21)

Hg(8,7) = N BG‘“’%M + Vm(ﬂ)] ; (4.22)

which is of the general type ([@AIT) (with a flat Lorentzian-signature metric G,;). Here, 7, denotes the conjugate
momentum of 3%, i.e.

1, 48
N b 0"

(4.23)

Ta

Note that , is invariant under the redefinitions of the time coordinate z° (which affect both d2® and N=N /9
but leave invariant the product Nda® o< Ndz?).

As the (rescaled) lapse N is a Lagrange multiplier in the action S 3, Eq. ([@I8), we have the well-known Hamiltonian
constraint stating that Hg must vanish, i.e. that we must constrain ourselves to the specific energy hypersurface

Hy(8,7) = Eg = 0. (4.24)

We are therefore in the condition where we can apply the general results recalled above. [For simplicity, we can

assume that we are working in any gauge where N is given as some autonomous function of 8 and w. This is the case
both of the 7-time gauge N = 1, Eq. [23), and of the T-time one N = p? = —G4,3°4%, Eq. @Z5). | In particular,
we see that

w Ta = A dm, .25
22) —d dﬁa dﬁa d 4

is an absolute integral invariant of the Hamiltonian flow, as well as the corresponding energy-shell measure

2d—1) 2
QP = ¢(a) (w; >) 5(Hp). (4.26)
(2) (2d-2) _ o(2d—1)
In addition, we can consider the (double) reduction of the 2-form w;~ on the quotient space Q Ea o /FHg

Wiy = [dB% A dr,] Q@i - (4.27)



18

(2d—2
and the corresponding measure on Q )

A1)
2d—2 2
Qe =cd=1) (wing) (4.28)

The latter reduced measure is related to the Liouville-type measure ([@26]) via the general result (LI6) where s is a
B-phase-space coordinate which is canonically conjugate to Hg, Eq. (£22). These results are particularly simple if
one uses the 7-time gauge where N = 1, so that the Hamiltonian @22) is the sum of a constant-Lorentzian-metric
kinetic term %G“bmﬂrb and of a sharp-wall billiard potential.

The integral invariants we have just discussed concern the dynamics of the Lorentzian billiard in S-space. They
would be useful if one were studying the full S-space billiard dynamics. However, in this paper, we are interested
in discussing the projection of the §-billiard on the hyperbolic space Hy—1, e.g. described by the unit hyperboloid
([226) in S-space. This projection is obtained by separating out the motion along the ‘radial direction’ p, Eq. (Z23)).
Indeed, setting N = N/p? and A = Inp, the billiard action @I8), @20) can be rewritten as (see, e.g. [14] for the
d = 3 case and ﬂﬂ for the general case)

5= / dz® {% (-X" + Gm‘wb) ~NVa (7)] : (4.29)

where Vo (7) = - 4 Occ(—2wa(7)). [As usual, we are using here the simplifying fact that, in the limit p — 400, the
potential term becomes independent of p, i.e. becomes T-time independent.|

In the T gauge ZZ5), i.e. N = N/p? = 1, the radial kinetic energy term —%}\2 decouples from the angular motion
terms and leads to a uniform radial motion: dA\/dT = const. in that gauge, one can simply work with the “angular
action”

B 1 dy*® d”y
S, = / dT[ G V)] (4.30)

submitted to the constraint that the (constant) angular-motion energy

1 dy® dnb
E, = G b oT AT s (7) (4.31)

be equal to (d\/dT)? = const.

Note that while the S-space action Sz, Eq. (£ZI]), corresponded to a phase-space (8%, m,) with 2d dimensions,
the reduced action S, Eq. (@30), corresponds to a phase space with 2(d — 1) dimensions. In order to explicitly
describe the reduced dynamics, one needs to choose some parametrization of the (d— 1) dimensional hyperbolic space,

say ¢', where the index i takes only d — 1 values. The hyperbolic metric on H4_; will have some expression, say
(i,j=1,..,d—1)

Gapdy“dy’ = ds* = gij(q)dq'dg’, (4.32)
and the angular action (L28) will read
1 dq* dg’
= [dTl i . . 4.
5, = [ dr | 3@ 5 - vetr(a) (4.33)
The conjugate momenta to the ¢*’s read
d¢?
pi = 9ij(4) 7 (4.34)
while the angular-motion Hamiltonian will read
i L i
H,(d",pi) = 597 (0)pip; + Vo (7)), (4.35)

where ¢/(g) denotes the inverse of the (covariant) metric g;;(q).

Similarly to the discussion above, we can now introduce the (reduced) Poincaré-Cartan one-form

oV = pidg’ — H,(q, p)dT, (4.36)
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and the corresponding two-form
w? = —do\") = dg* A dp; — dT A dH,(q,p). (4.37)

As before a.(yl) (respectively w,(f)) defines a relative (resp. absolute) integral invariant of the unparametrized Hamilto-

nian flow in extended phase-space (¢,p,T). And, as before, we can use the absolute invariance of the two-form w,(f)
to construct an invariant measure. As we are again in a situation where we can work on a fixed-energy hypersurface
(here H, = E., = const, after eliminating the uniform radial motion A\(7")) we can drop the last, H,-dependent term

in w,(f), Eq. [@31), and work with the usual (y-space) symplectic form w,(f) = dq' A dp;. As before we end up with

having a whole set of integral invariants of the billiard dynamics in y-space (i.e. on the hyperboloid H,_1): the

two-form w§2) itself, and its various exterior powers, and its energy-shell restricted measure

- A(d—1)
QFTY = e —1) («2) 8 (pa) — By). (4.38)

~

Moreover, we can also use the invariance of the reduction of the symplectic form on the quotient space ngd%) =

S(E'deig) /]:Hw ’

wr(f()i = [dqi A dpi} Qa4 (4.39)
and its maximal exterior power
2d—4 2) \ 42
QE)/rcd ) = C(d - 2) (w'(yr)cd) : (440)

In addition, we still have a link of the type (@I0) (where s is a ~y-phase-space coordinate such that ds/dT = 1

along the Hamiltonian flow), and we also know that the abstract quotient-space reduced symplectic form wgld can

be concretely computed by restricting dg* A dp; by two conditions: H,(q,p) = E, and any cross-section condition

transverse to the Hamiltonian flow. In particular, we can use the events of collisions on successive walls of the billiard
02d-4)

and ~ycollision

as cross-sections, and thereby prove that w?

collision are invariants of the discrete y-billiard map 7 which
connects a collision to the next.

In this paper, we shall apply these general results to the case of the BKL cosmological billiards, in d = 3 spatial
dimensions. Moreover, we shall directly work with the radially-projected picture on the v-space, i.e. on the hyperbolic
plane #Hs. The corresponding phase-space is 4-dimensional, say (u, v, p., p,) in the Poincaré model. The corresponding
Hamiltonian reads

1
Hv(uavupuupv) = 5“2 (pi +p12;) + VOO(’Y(’U/,’U))- (441)

The energy surface €p, = {H,(u, v, py,py) = E,} is 3-dimensional. Finally, the quotient space Q, = €p. /Fp, is

(2

simply 2-dimensional. Therefore, in that case, the reduced symplectic form Wored

invariant measure of the discrete billiard map 7T .

on @, will directly provide an

There are many ways to compute the reduced symplectic form w(z)ed. Let us first note that it is the generalization
of the measure discussed above, on the 2-dimensional manifold of straight lines in a Euclidean plane. Here, indeed,

(2)

Wored is a measure on the 2-dimensional manifold of geodesic lines in a Lobachevsky plane. As in our Euclidean
calculation above, Eq. (£I1]), wgld can be obtained by reducing the ambient symplectic form du A dp,, + dv A dp, by

two conditions: the energy-shell condition v?(p? + p2) = 2F,,, and a cross-section condition locally transverse to the
Hamiltonian flow.

It is easily seen that, if we consider for simplicity the energy shell E = % for a geodesic (i. e. that the geodesic
motion on Hy proceeds with unit speed), the general solution in € B=1 for a geodesic (i.e. a circle orthogonal to the

boundary) can be parametrized as

u=U—Vcosf, v=|V |siné, (4.42)
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sinf 1 ~cosf)  cotd
- V7 p'U_ v - |V| 9

pu = sign(V) (4.43)

where 0 grows, according to df/dT = sin, from 0 to m as T formally varies from —oo to +00. The two constants of
integration (U, V') parametrize the two-dimensional manifold of geodesic lines on the Poincaré half plane. They are
related to the parameters v, u~ used in Eq. 34]) above via

U=z@w'+u), V=c(@u"—u). (4.44)

1
2
If, for instance, we use as cross-section to restrict w§2) = du A dp, + dv A dp, any v = const slice (i.e. 0 = dv =
sin 0d|V'| + |V| cos 0d) we get

1 dU N dV
w® = du A dp, :d(U—VCOSH)/\d(V> == (4.45)
Rewritten in terms of (u™,u™), Eq. (£Z4), this reads
dut A du~
) uzAdu (4.46)

RN T

The result (£45) or (£40) is similar to the Euclidean measure (Z.11]) or (£30) on the manifold of Euclidean straight
lines. Analogously to the fact that the measure ([LI2)) was invariant under the group of Euclidean symmetries
(translations, rotations and reflections), the measure [@45]), [A46) is invariant under the group of symmetries of the
hyperbolic plane. This group is SLa(R) X Zsa, and it acts on the boundary of the Poincaré model (i.e. on the parameters
ut and u™) by transformations of the form (BII]). This group of transformations is generated by v/, = auy + b,
u'y = —1/uy and v/, = —uy. It is then easily seen that (£46) is indeed invariant under each one of these generating
transformations. Note that this also gives a direct proof that the reduced symplectic form ([€40) is invariant under
the Hamiltonian flow of the billiard. Indeed, this flow is made of two types of evolutions: (i) a free-flight evolution
during which v+ and v~ do not vary, and (ii) collisions on the walls, during which the geodesic undergoes a hyperbolic
reflection, i.e. a transformation of the type (BI0) leading to Eq. [BI1]) with a minus sign.

V. HOPSCOTCH DYNAMICS OF THE BIG BILLIARD

We shall start our investigation of the various possible cosmological billiards for pure gravity in d = 3 spatial
dimensions by considering the ‘big billiard table’ delimited by the three gravitational walls appearing in diagonal
homogeneous Bianchi IX cosmological models, i.e. the walls wgl%) (B), ”27231)(5) and ”27312)(5)7 Eq.([ZI8), which
respectively correspond to the terms a* = e=**, b* = ¢7*7 and ¢* = e™* in the usual BKL representation [see Eqs.
@21), 222)]. Using Eqgs. (2I8), which express v o 8% in terms of the coordinates (u,v) of the Poincaré model,
we see that, in this model, the ‘a wall’ (or 8* wall) is located along the vertical line u = 0; the ‘b wall’ (3?) along the
vertical line u = —1; while the ‘c wall’ (3%) is located along the circle u(u+ 1) +v? = 0. The reflection laws of a point
z = u+ v € Py through these geodesics must have the form ([BI0). One can determine the values of the coefficients
a, b, ¢, d entering the transformation [B.I0) by requiring that the transformation leaves point-wise fixed the circle
through which one is ‘reflecting’ (in a hyperbolic-geometry sense) the point z = u + ¢v. Indeed, the condition 2’ = z,
ie. z=—(az+b)/(cz + d) yields as a locus of fixed points the circle

0=czz+dz+az+b=clu?+v)+(d+a)u+(d—aw+b (5.1)

which degenerates to a straight line when ¢ = 0.

By successively identifying the point-wise fixed circle (&) to the three diagonal Bianchi IX walls, one finds the
following reflection laws (acting on the end points u*, according to Eq. (BII) with a minus sign). For the ‘a wall’
(u=0), ut — A(u™) with

Aut) = —ut; (5.2)
for the ‘b wall’ (u = —1), u™ — B(u%) with

B(u®) = —u® - 2; (5.3)
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and for the ‘c wall’ (u(u + 1) +v? = 0), u™ — C(u™) with

uE

O™ =gz 71

(5.4)
Note that all these reflection laws act diagonally (i.e. separately) on u™ and u~. A billiard motion in the presently

considered big billiard is a succession of geodesic flights (or ‘Kasner epochs’) connecting two different walls. For
instance (as illustrated in Fig. [

weab—oa—=b—=a—ce— (5.5)

In this work, we shall define a ‘Kasner era’ as a set of Kasner epochs joining the same two walls, with the condition
that the epochs preceding and following the considered Kasner era involve the third wall. The length of an era is
defined as the number of epochs (i.e. geodesic flights) it contains. For instance, in the sequence (53] there is an era
of length 3 between the walls a and b, namely

Es(b,a): b—a—b—a. (5.6)

Here, we have introduced the notation Ej(z,y) for an era of length k = 1,2,3, ... whose first free flight is from the
wall z to the wall y (were z,y € {a,b,c},z # y). Note that (z,y) is an ordered pair as one should distinguish an era
which starts on x and then goes to y, from an era which starts on y and then goes to z. Note also that the beginning
of an era is defined by checking (as sketched in (5H)) that the previous connecting flight started from a wall z # z
and y (similarly for the end of an era). Note that the above definition of a Kasner era corresponds to one of the two
different definitions of an era considered by BKL. More precisely, it is the definition they consider in Eq. (5.4) of the
review M] In this definition (called BKL,~¢ in the Introduction), the BKL u parameter varies (using the notation of
the Introduction) from k — 1+ x to x (with 0 < # < 1 and k € R). [This contrasts with the other (more standard)
definition of an era used by BKL, the BKL,~1 in which the u parameter varies from k + x to 1 4+ z (so that u stays
in the interval [1,+00])]. As noted in the second footnote on p. 753 of [4], the former (less standard) definition of an
era (that we shall use here) is more natural when considering the dynamics of the variables Ina, Inb, Inc. In terms of
the billiard picture, this more natural character does correspond to the definition we gave above of collecting all the
epochs joining the same two walls. By contrast, in the other BKL definition (k + x to 1 4 z), the era corresponding,
for instance, to the sequence (5.5) would consist of the three epochs ¢ — b — a — b, and what is in our definition the
last epoch of the era (of the type b — a) would be considered as the first epoch of the next era. Note that in both
definitions the Kasner era has the same length: in our example a length 3; the last epoch ¢ — b of the preceding era
having been added as a first epoch, in replacement of the last b — a in Eq. (&.0).

The shortest possible length of an era is kK = 1, i.e. an era corresponding to only one epoch. E.g., as we shall see
later, the simplest periodic big-billiard orbit (involving the golden ratio) proceeds along the equilateral (hyperbolic)
triangle geodesically connecting the ‘middles’ of the three a, b, ¢ walls, and is made of only one-epoch eras, say

wc—ab=sa—=c—ob—oa— e, (5.7)

or the reverse.

A. Hopscotch dynamics

As just recalled, the dynamics of the big billiard is described as a sequence of eras Ey(x,y), where each era Fy(z,y)
is made of k epochs, i.e. k ‘arrows’, x — y — x — ..., connecting the walls x and y (z # y,z,y € {a,b,c}). Note
that the last wall involved in the era Ey(z,y) will be y if k is odd, and z if k is even. To describe mathematically
the discrete big-billiard dynamics induced by the effect of the successive collisions, i.e. of the corresponding discrete
‘billiard maps’ T,transforming the phase-space variables on a x wall (just after the z-collision) to the phase-space
variables on the following y wall, it is useful to use the Poincaré plane variables. [Note, however, that though
the Poincaré-plane variables are algebraically more convenient, it is generally more enlightening to geometrically
visualize the billiard dynamics on the disk model. See Fig. [d] As recalled above, in the Poincaré plane each epoch
trajectory (i.e. each geodesic segment connecting two successive sides) is uniquely parametrized by an ordered pair
(u—,u™), where u~ (respectively u™) is the end point (resp. starting point) on the v = 0 axis (or ‘absolute’) of
the corresponding, extended geodesic. In terms of these variables, the billiard dynamics induces a discrete map T
transforming a point in the (v, u*) plane (describing some epoch) into another point (v’ =, u'*) (describing the next
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epoch): (u'~,u't) = T(u",u't). Looking at Fig. [ it is clear that the knowledge of (u~,u"), i.e. the knowledge of
the initial epoch, uniquely determines the wall on which it will next collide, and therefore uniquely determines the
explicit form of the transformation 7, among the three possible explicit forms A, B, C, listed in Egs. (52)), (53]) and
(GA4). It is also clear that the transformation 7T is one-to-one because its inverse 7! is defined by “reversing the
time evolution”, i.e. exchanging the roles of u* and u~. As for the iteration of 7, T o T o T o ..., it corresponds to
composing a sequence of (u~,u™) transformations [among Eqs. (5.2), (53] and ([54)] corresponding to a sequence of
wall collisions. E.g. the sequence (B.0) will correspond to successively composing the actions of

..C—>B—>A—>B—>A—>C— .. (5.8)
on the (u~,u™) plane, i.e. the combined map (in reverse order)
.CoAoBoAoBoC(.. (5.9)

Note also that the composition of maps (9] can also be expressed as the corresponding matrix product of the matrices

(o)

(with ad — bc = 1) corresponding [via v/, = —(aux +b)/(cusr +d) = (—auxr — b)/(cux + d)] to the fractional linear
transformations (.2)), i.e.

.C.AB.AB.C.. (5.10)

A:<_10>, B:(_1 _2>, C:<_1O>, (5.11)
0 1 0 1 2 1

and where the dots in Eq. (&I1) denote the ordinary matrix product.

where

Summarizing so far: the representation of the big-billiard dynamics in the (u~,u™") plane is the following: (i)
during each epoch (i.e. free flight) the reduced phase-space point (uv~,u") stays fixed; (ii) the effect of each collision
on the wall a, b or ¢ consists in transforming the phase-space point (v ™, u™) into a new point (v'~,u'") = T(u™,u™),
where the explicit expression of (u/~,u/T) is uniquely defined by the initial phase-space point (v =, u™ )}, and is either
of the form (A(u™), A(u™)), (B(u™),B(u™)) or (C(u~),C(ut)) [with A(u*), B(u*), C(u*) given by Egs. (E2),
E3) and (B4, respectively], where the choice between A, B or C is determined by the a, b, ¢ wall that is next
crossed by the oriented geodesic defined by (u~,u™). In other words, we can think of the (u~,u™) plane as a big
‘hopscotch courtf on which the representative phase-space point (u~,u™) jumps around, in a deterministic manner,
(u™,ut) = T(u",uT) = T oT(u",u") — ... according to a sequence of ‘jumps’ whose concrete form is of the type
(E8). These jumps act diagonally, i.e. in the same way on ut and u™.

As we shall discuss below, though each “collision transformation” A, B or C acts on u™ (respectively, on u™)

independently of u~ (respectively, of u™*), one needs to keep track of the successive values of the pairs (u™,u™) to
determine the entire (two-sided) sequence of maps, such as Eq. (&.9), corresponding to the billiard dynamics. The
big-billiard hopscotch dynamics T just defined differs from the usually discussed BKL dynamics in several respects.
Indeed, in order to simplify their discussion, and go to the essence of the Bianchi IX dynamics, Belinski, Khalatnikhov
and Lifshitz did not keep track of the order of the Kasner exponents during an era (i.e., in their notation, whether
(P, pm) 18 (p1,p2) or (p2,p1) in an era of oscillations between the a and b walls). Moreover, BKL further simplified
their discussion by using the 6-fold permutation symmetry among (a,b,c), so that they also did not keep track of
which unordered pair {a,b}, {b,c} or {c,a} an era referred to, nor of the ordering of the first pair in a given era. By
contrast, our description above explicitly keeps track of both ordering and labeling issues. Below, we shall discuss
how one can ‘quotient’, in a precise manner, the more complete big-billiard dynamics down to the usual BKL discrete

5 As we shall discuss below, the initial value of the ut alone suffices to determine the explicit form of 7 among A, B, C.
6 The child game called ‘hopscotch’ in English is called ‘marelle’ in French and ‘campana’ in Italian.
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dynamics.

As an example of fuller description in the big-billiard representation, note that the particular length-3 era Es3(b, a),
Eq. (@4), corresponds to applying, successively, to the values (u}?ba, Upy,) Parametrizing the first epoch of E3(b,a)
(i.e. the first arrow in (B.6])) the transformations A,B, and then A. This yields successively

= Alu) = —uky, (5.12a)
uf = B(ul) = upy, — 2, (5.12b)
u}t’ac = u/:i:ll = A(ulzli:) = _u%‘ba + 25 (512C)

where, as indicated by the notation, uic =AoBo A(uiEba) are the phase-space parameters of the first epoch of the
following era (which oscillates between the a and ¢ walls, starting on a). Note that the transformations appearing in
the era composition A o B o A do not include the effect of the first wall b in (0. Indeed, the collision on b would
be (conventionally) included in the composition of transformations appearing in the previous era (which oscillated
between ¢ and b, ending on b). By contrast, we conventionally include the effect of the collision on the last wall of
an era in the composition of transformations associated to this era (e.g. the last transformation in (5I2) represents
the last collision, on the wall a of the era (5.6])). The number of transformations which are composed during an era
Ei(x,y) is equal to the length k of the era, i.e. to the number of arrows (or of epochs) in the diagram (56) of the era.

The successive transformations,
u—=—u—u—2—>-u+2—->u—4— .. (5.13)

that appear in a long era of big-billiard oscillations between the a and b walls differ from the standard BKL result for
oscillations between a and b, namely:

u—u—1l—-u—-2—-u—-3—->u—4— .. (5.14)

However, this difference is only due to the fact that the big-billiard description is keeping track of an information
that BKL did not wish to keep track of: namely, the precise order between the Kasner exponents p;, p,, (in the
notation of BKL) associated to the ‘oscillating’ diagonal metric components a? ~ t2P1, b? ~ t?’m . As an unordered set
{p1,pm} = {p1,p2} (With p; < py < p3 as in section [[Ill above). Indeed, we see in the list of ‘Kasner transformations’,
Table[ll labeling the possible permutations of the Kasner exponents, that the transformation

u =ks(u)=—-u-—1, (5.15)

which corresponds to the permutation between p; and ps, maps each one of the apparently discrepant values of u
(namely —u, —u + 2, etc) in the big-billiard sequence ([.I3)) into the corresponding usual BKL one (BI4]). To wit

ks(—u) =u—1; ks(—u+2)=u—3; etc. (5.16)

Let us now clarify what is the shape of the ‘hopscotch court’, i.e. the part of the (u™,u™) plane which parametrizes
the dynamics of the big billiard. This full hopscotch court is naturally divided into six separate ‘boxes’:(1) a box,
say Bgp, parametrizing the epochs going from a to b, (2) a box, say By, parametrizing the epochs going form b to a,
etc, when considering the other ordered pairs (z,y) with (z,y) € {a,b, c}. The precise boundaries of the box B, are
easily obtained by requiring that, in the Poincaré half plane, there exists an oriented half circle (orthogonal to the
boundary) crossing the walls 2 and y in that order. For instance, it is easily seen that the box By, is defined by the
inequalities

Bap: 0<u” <+o00, —oo<u’ < —1. (5.17)

The inequalities defining all the boxes B, are gathered in Table [, and the corresponding regions in the (v, u™)
plane are represented in Fig[6l Two important remarks concerning these boxes are: (i) all the boxes have a rectangular
shape, and (ii) the union of all the boxes (together with their boundaries) does not cover the full (u~,u™) plane.
More precisely, the domain of the (u*,u™) plane which does not parametrize any epoch is the union of the following
three ‘vacuum boxes’

Voi: 0<u™ <+o0, 0<u’ < +oo, (5.18a)
Vo: —oco<u <—1, —oo<ut < —1, (5.18b)
Vo: —l<u <0, —-1<ut <. (5.18¢)
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Bup|—oco<ut < —1|0 <u” < o0
B |0 < ut < o0 —co<u” < —1
Bac|-1<um™ <0 |0<u” <oo
Bre|-1<ut <0 |—co<u™ < -1
Bea |0 < ut < 00 —l<u <0
By |—c0o<ut < —1|—-1<u™ <0

TABLE II. Hopscotch Court

For instance, we illustrate in Fig. [fla long era of epochs oscillating between b and a (see the points marked 1,2, 3,4, 5)
which starts (point 1) in the upper right part of the box Byp,, and then jumps successively from By, toward B, and
back until it ‘exits’ by terminating in By, (point 5). Then the (v ™, u™) point will jump from By, to Bep, as part of a
next era of the Fj(bc) type.

We have seen above that the (bijective) applications A, B, C (Egs. (52), (53), (54))) corresponding to the collisions

on the walls a, b, ¢, respectively, leave invariant the two-form wg&, Eq. ([#44), that we shall simply denote in the
following as
du™ A du~

w_2(u+—u_)2' (5.19)
Therefore the 2-form w defines an oriented measure on the full hopscotch court that is invariant under the hopscotch
discrete map 7 defined above. We would seem to be able to straightforwardly apply the tools and results of ergodic
theory to our full hopscotch game. In particular, we know that this hopscotch game must be ergodic in the sense
that it cannot leave invariant a subdomain, having a non-zero measure with respect to the form w, Eq. ([&I9), of the
full hopscotch court. Indeed, our hopscotch game is a projection of the billiard motion within an ideal triangle on
the hyperbolic plane Hs. If the projected billiard motion could leave ‘unvisited’, for an infinite ‘time’, a continuous
subdomain of the full hopscotch court, this would be inconsistent with the fact that the billiard dynamics on an ideal
triangle on Hs is known (since the classic work of Hedlung and Hopf) to be ergodic, and therefore to visit the full
3-dimensional phase-space (u~,u™,s) which lies ‘above’ our hopscotch court.
However, there is a catch in that, contrary to what is usually assumed in most investigations of ergodic theory, the
full invariant measure of our (projected) phase-space, i.e. the integral of the two-form w, Eq. (EI9), on the full
hopscotch court defined in Table [l is infinite! Indeed, the form (G.I9) is singular along the line ™ = u~, as well as
at infinity |u*| ~ |u~| ~ oo, where the integral of w is logarithmically divergent. We see on Fig [f] that the singular
line u™ = u~ lies mostly in the excluded ('vacuum’) part of the hopscotch court. However, this line touches the
boundaries of the court around the points (v, u") = (0,0) and (v~ ,ut) = (—1,—1). In addition, the boxes By
and By, extend at infinity, where [w diverges logarithmically. It is also easily seen that the integral of w over Be,
and B, diverges logarithmically near (u™,u™) = (0,0), and that the same is true for [w near (u™,u”) = (-1, —1).
The three points (0,0), (—1,—1), (00, 00) correspond to the three ‘cusps’ of the ideal triangle on Hs. Indeed, another
way to understand why the integral of w is infinite is to remember that wfi& = w can also be written (in ‘Birkhoff
coordinates’) as dl A d(sin «) = cos adl A da, where [ measures the length of the boundary of the billiard, and where
a, —m/2 < a < /2, is the angle between the normal to the boundary and the velocity vector. The integral of sin «
yields a factor 2, while the integral over di yields the total length of the boundary of the billiard. In the case of the
ideal triangle, the length diverges logarithmically at each corner.

Before discussing other issues concerning the invariant measure w, Eq. (519), in the 2-plane (u=,u™), let us note
that, by marginalizing the variable u~, we can deduce from w an invariant measure for the dynamics of 4™ alone. We
already noticed that the hopscotch map T acts diagonally on (u™,u™) (i.e. separately, and actually in the same way,
on u~ and ut). We warned the reader above that, in spite of this diagonal action, one needs to keep track of the
action of T on the two variables (v ™, u™) in order to determine the full, two-sided sequence of collisions corresponding
to the billiard dynamics taking place within the chamber of the big billiard. However, if one ignores the variable v,
and only considers the action of 7 on u™, it is easily seen that the sole knowledge of the initial value of u™ suffices to
determine the explicit expression of 7 (among A, B or C) and therefore all the future values of u™. Indeed, a look at
Fig. Bl shows that there are three, and only three, possible cases: (i) if u* belongs to the interval [—oco, —1], the next
collision will be on the b wall so that the action of T is v'* = T (u™) = B(u™); (ii) if u™ € [—1,0], the next collision
is on the ¢ wall, so that 7 (u") = C(ut); and (iii) if u™ € [0, +oc], one has T (u") = A(u™). Therefore, once we know
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Bba

.5 Bbc

FIG. 6. Billiard phase space in the v~ u" parametrization: the epoch hopscotch court. The B, regions are sketched, and filled
with different colors (shades of gray).

ut, we can uniquely determine all its T iterates. [Reciprocally, it is easy to see that the knowledge of the initial value
of u~ suffices to determine all the past values of u™, i.e. all its 71 iterates.] In other words, if we simply ignore the
variable u~, the map 7 defines a dynamics for 4™ alone, which is an unquotiented version of the usual BKL dynamics
on the single variable u recalled in the Introduction. [Remember that the BKL variable u actually coincides with our
variable u*.] These remarks show that the unquotiented generalization of the BKL u-map defined by v/, = T (u4.)
will admit an invariant one-dimensional measure w(u™)du™ obtained by marginalizing (i.e. integrating upon) the
variable v~ in the two-dimensional measure (5.19). Explicitly, we can then define w(u™t)du™ as

wut)dut = %/M wdut = /(u_fiti;_)z, (5.20)

so that
E 5.21
Dt —u (ut) uy (ut)’ (5:21)

Here, u, (u™) denote the various boundaries of the integration domain on the v~ axis, and €, the associated signs.
As one sees on Fig. [ these boundaries are piecewise-constant functions of 4. For instance, when u™ > 0, there
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are two boundaries: u_;, = —oo (with epmin = —1), and u},, = 0 (with €pax = +1). This leads to w(ut) = 1/u™.
When —1 < u™ < 0, one has four different boundaries (on each side of the vacuum domain in the middle of Fig. [G).
Finally, we can conclude that the unquotiented, big billiard dynamics of the variable u™ considered separately leaves

invariant the measure w(u™t)du™ where

: + ) —
if 0<u’ <400, w(u )—U—Jr, (5.22a)
i —l<ut<0, wuh)=—— L1 (5.22b)
’ ut+1 ot ut(ut +1)’
1
if — tT<—-1 N 5.22
i oo <u” < -1, w(um) p—— (5.22¢)

The existence of this invariant one-dimensional measure for the (unquotiented) BKL dynamics is not well known, and
the explicit expression of w(u™)du™ has, as far as we know, never been written down before.

It was indicated in Fig. B that u* € R should really be considered as a coordinate on the Kasner circle, i.e. the
manifold of solutions p1, p2, p3 of the two Kasner constraints. Note that one could also parametrize the Kasner circle
by an angle 6 (with the usual 27 period). In addition, one can require that 6 be equal, say, to 0 at the ab corner
(uT = +00), to 27/3 at the bec one (ut = —1) and to 47/3 at the ca one (u™ = 0). With these requirements, and
remembering that the disk model of Fig. Bl is related with the half-plane model of Fig. Bl (in which u™ appears
as a natural coordinate along the absolute) by a fractional linear transformation between the complex coordinates
z =u+iv of Fig. Bl and ¢ = 2 + iy of Fig. @ of the form

(=S 6:23)
the transformation between u® and @ (as defined above) is given by (with ¢ = ie?® on the Kasner circle, i.e. the
absolute)

= # (5.24)

The expression of the invariant measure w(ut)du™, Eqs. (5.22), in terms of the angle 6 on the Kasner circle (in the
disk representation) is then easily obtained by using Eq. ([@24). It is found to only depend on the angular distances
between 6 and the two big-billiard “corners” surrounding it. Let us denote the angular location of the “corner ab”,
between the walls a and b, see Fig. [2 by 0.5, and similarly for the angular location 6. for the corner be, and 6., for
the corner ca. These three angles correspond to u™ = +o00, —1 and 0, respectively, and with our chosen normalization,
take the values 04, = 0, Op. = 27/3 and 0., = 47/3 or —27/3. With this notation, the invariant measure w(#)df on
the Kasner circle is given, when 6, < 6 < 6. (i.e. when 6 is on the “negative”, or “shadow”, side of the b wall) by

V3 do
w(@)de = T sin 9729“ oo 9bc2*9 (6‘,117 <0< 6‘170). (5.25)

Its expression in the two other intervals 6. < 6 < 0., and 6., < 6 < 64 is obtained by cyclic permutations
abc — bea — cab. Note that this measure is invariant around the middle points, e.g. (045 + 65.)/2 for the interval
[Oab, Ove] of Eq. (B28), and is logarithmically divergent as 6 tends to the extremities. For instance, as § — 04, = 0,
Jow(0)do" ~ [,d0’' /6" ~1n1/0 in keeping with the logarithmic divergence ~ In(—u™) of the corresponding u™ interval
B22k) as ut — —oo, given the link § ~ —/3/ut deduced from Eq. (5.24) as ut — +oo0.

Let us note finally that it is straightforward to check directly the invariance of the measure w(u™)du™ defined above
under the explicit transformation laws A, B, C' defined in Egs. (£2), (B3), (54). However, to do that one must note
that, contrary to the two-dimensional map 7T acting on the (u™,u™") plane (which is one-to-one), the one-dimensional
action of 7 on the real line of the variable u™ is no longer one-to-one, but rather two-to-one. [Indeed, the preimage
of a certain u™ located within one of the three intervals [—oco, —1], [—1,0], [0, +0o0], can lie in either one of the two
other intervals.] In such a case, one must remember @] that the definition of the invariance of a measure ;1 under
T is that, for any measurable set U, u(U) = u(T *U), where 7! is the pre-image (rather then the image) of U.
When applied to an infinitesimal interval I = u™ 4 %du*‘, one must then take into account that 711 consists of two
separate infinitesimal intervals.

The invariant measure w(u™)du™ (or w(#)df) on the Kasner circle is not normalizable. Indeed, we pointed out that
its integral diverges logarithmically near each one of the three corners of the big billiard (i.e. near u™ = co, —1 and 0,
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or § =0,27/3 or 47 /3). Therefore, the invariant measure of both the two-dimensional map 7 and its one-dimensional
restriction are not normalizable. It can seem strange to have an invariant measure of a projected phase-space which is
infinitely large, while the invariant measure of the original, unprojected, phase-space was finite. Indeed, the invariant
Liouville measure of the billiard on an ideal triangle, namely

du Ndv A\dS

3
o) = .

(5.26)

v
where the angle 8 (0 < 8 < 27) parametrizes the angular direction of the unit velocity vector, integrates to the
product of the finite area of the idea triangle [ [ dudv/v? = 27 and of [ d = 2m. As proven in full generality (for any
time-independent Hamiltonian system) above, see Eq. (@I6), the energy-shell-reduced Liouville measure is simply
equal to the reduced product of the symplectic measure Qgg_l) x (wﬁf&)“"’l) by ds, where s denotes a phase-space
coordinate which is canonically conjugate to the Hamiltonian (so that ds/dt = 1 along the Hamiltonian flow). In the
present case, where n = d — 1 = 2, this yields

Q¥ = wu, ut) Ads (5.27)

where s measures (when considering a unit velocity billiard) the hyperbolic length along the billiard orbit. This agrees
(modulo an unimportant factor) with the result (25) of [23]. In terms of the phase-space coordinates (U, V,6), or
equivalently (ut,u™, 0 of Bqs. @A2)-@Zd), we have ds = df/sin 6, so that

s(u”,ut,0) = so(u™,u) + lntang =so(u,ut) + % In 14—%22' (5.28)
Here, we can choose the u*-dependent integration constant as we wish. For instance, we can choose it so that, for
any given (ut,u™), s(u™,u™,d) varies between 0 and some maximum value, say o(u~,u") as § varies between the
starting wall and the ending wall along the oriented geodesic defined by (u~,u™). With this choice, we see that the
full three-dimensional big-billiard phase-space has the shape, in (u™,u™, s) coordinates, of a ‘slab’, above the (u™,u™)
hopscotch court, of varying thickness 0 < s < o(u~,u™). Using Eqs. (528) and ([42), one can express the thickness
o(u~,u™) of this slab in terms of the values of the u coordinates (in the Poincaré model) of the starting and ending
walls along the geodesic (say Usgars (U™, 4T ), Uena(u™,u™)), namely

(tend — u ™) (U — Ustart)
(UJF - ucnd)(ustart - ui) '

_ 1 Uend — U~
ol ,ut) == |In in —In—
2 U — Uend U — Ustart

Ustart — u-

1
=-1 5.29
It is then easily checked that o(u™,u™") tends to zero near each corner of the billiard, thereby ensuring the convergence
of the Liouville measure (5.27), i.e. the convergence of [ [w(u™,u")o(u~,u"). [For instance, near the corner
u”™ — 00, ut — oo] (With ustart = 0, Uena = —1 or the reverse), the result (529) yields a thickness o(u™,ut) ~
%(ucnd - ustart)(ull - Uzl) — 0.

The ergodic theory of transformations preserving a measure on an infinite-measure space (or infinite ergodic theory)
is an active field of current mathematical research [ in which, however, there are many less concrete general results
than for the case of finite measure. In order to be able to avail ourselves of the usual ergodic theorems (such as the
equality between the ‘time average’ and the ‘measure average’), it is useful to transform the problem onto another
one exhibiting a finite measure. Several different strategies are possible for doing so.

As a first strategy, we could lift the full big billiard hopscotch game back to the hyperbolic billiard it came from.
This would mean considering the ergodic properties of functions on the three-dimensional phase-space (ut,u™,s),
with the finite Liouville measure (B.27)). In this case, we would be considering a continuous Hamiltonian flow, so that
the relevant ergodic theorem would assert that, for almost every phase-space point x,

T ! /

T=oo T Jo J w(z) (5:30)

7 The unit (Euclidean) velocity vector (vpw,vpu) = (cos B,sin ) = (sign(V)sin 6, cos ) so that we have a link of the form B + 7/2 =
—sign(V')0 which ensures that the inequality 0 < 6 < 7, together with the fact that V' can be either positive or negative, corresponds to
an angular direction [ of the velocity vector varying over a 27 range.

8 See, e.g., m} for an entry into the literature on infinite ergodic theory.
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Fupl-co<ut < -1 |0<u™ <1

F |0 <u™ < oo —2<u” < -1
Fu|l-1<ut <0 l<u” <oo

Fp|l-1<ut <0 —co < U < =2
Fol0<ut < —l<u” <1/2

Fopp|—co<ut < -1 |-1/2<u” <0

Ly|-2<ut < -1 |0<u” <oo
Lia|0<u® <1 —co<u” < —1
Loc|—1<ut < —1/2[0<u” < 0
Lyc|—1/2 <ut <0 |—co<u” < -1
Lea|l <u™ < o0 —l<u <0
Lep|—co<ut <=2 |-1<u™ <0

TABLE III. Starting and ending subregions

Here f(z) is a (measurable) function on phase-space, Fp(z) denotes the Hamiltonian flow over a timd] 7', and p

denotes the relevant, finite measure, i.e. u = Q(Lg), Eq. (B21). Then, if we were interested in the ergodic properties
of phase-space functions f(x) = f(u~,u™",s) that do not depend on s, i.e. on functions f(u~,u™) that live on the
(ut,u™) hopscotch court, we can conclude from (5.30) (using the fact that ds/dT = 1 along each geodesic segment)
that

lim 27127:—01 o (T (u=,u™)) fF (T (u",ut)) _ Jwuw ,uM)o(u,ut)f(u,ut)
N—oo Zﬁf;ol o (T (u=,ut)) Jw(u=,ut)o(u=,ut)

(5.31)

where o(u~,u") is the thickness (in the s direction) of the phase-space slab ‘above’ the point (u~,u™), and where
T denotes the billiard map, i.e. the discrete hopscotch map transforming any (u~,u™) parametrizing one Kasner
epoch, into the values (u’ , ;) parametrizing the next Kasner epoch. As explained above, T is equal to A, B or
C depending on the wall on which the considered geodesic segment will collide. The notation 7™ denotes the n-th
iteration 7 o T o...o T, i.e. a composed transformation of the type of Eq. (5.9). Note how the continuous time
average of Eq. (5.30) has reduced itself (for functions depending only on v~ and u™) to a discrete-time average, i.e.
to a discrete sum (531 involving the successive iterates of the hopscotch map. However, the continuous-time origin
of (B3T)) is recalled through the occurrence of the ‘weights’ o (7" (u~,u™")) involving the successive thicknesses of
the phase-space slabs, encountered along the billiard trajectory in (u~,u™, s) space. [In (u~,u™,s) space the billiard
motion becomes a so-called special flow @], i.e. a combination of uniform motion in the ‘vertical’ s direction, with
0<s<o(u,ut), with discrete jumps in (u~,u") and in s (back to zero when it reaches o(u™,u™)).]

A second strategy for reducing the problem to a discrete map having a finite measure is to follow BKL in lumping
together the epochs into eras, and to focus on the statistical properties of eras rather than epochs. In order to do
this, we need to know on which subregions of the full hopscotch court, Fig. [ each type of era E.(x,y) must start.
[here, as above, (x,y) denotes an oriented pair of walls, and F, denotes the union of all E}’s, i.e. an era of arbitrary
length k = 1,2,3, ... ] This is straightforwardly obtained by using the transformation rules A, B, C discussed above.
For instance, the sub-region say Fy;, (where F' stands for ‘First’) of the hopscotch court corresponding to the start of
an era of the F.(a,b) type must come from a ¢ wall, and include the process ¢ — a — b. Using either some simple
geometric reasoning, or working with the algebraic relations defining the transformations A, B and C, Eq. ([&I2),
one finds that the Fj;, subregion is the rectangular subdomain of the B, box defined by the inequalities

Fup: 0O<u <1, —co<u™ < —1. (5.32)

The full set of inequalities defining the six possible starting subregions F,, with x,y € {a,b,c} are listed in Table
Il For compactness, we also indicate the six possible subregions on which an era of the type F.(x,y) can end. They
are denoted by L, (where L stands for ‘Last’). If we consider the overlap domain F,, (| L, between the start and

9 As recalled in Section [[TA] the appropriate time variable for the hyperbolic billiard is the T-time of Eq. (Z25).



29

ab __ + _ —
Fap|n®” = [_UF,,,,] Um,, = Ur, +m—1 Umy, = —UF,, — M
ba __ + _ —
Foa|n™ =[up, 1+ 1 |um,, =ur, —n+1 Umy, = —UF,, +M — 2
Fo|nec = | — L " _ 1 U =1
“ “Itac e m—1+1/up,, MMea mA1/up,,
ca __ 1 _ 1 _ 1
Feg [0 = lt +1 Umeqg — m—1—1/ur,, Umge — m—2—1/ur,,
ca
be 1 1 1
Fype |0 = | 4—— Umy, = =1 — ——————— |Um, = —1 + ———F—
up  +1 m—1—7— m—TT
L be J 1+upb 1+upbc
cb __ 1 _ 1 _ 1
Foy I = | st fume, = 14—t um,, = 1 = b
L Fep m—1— 1+quh m=—2+ 1+uFrb

TABLE IV. Epoch Hopscotch

the end of some (z, y)-type era, it must correspond to an era Ey(z,y) of length & = 1, i.e. containing only one epoch.
For instance, we see on Table [[TI] that the intersection Fy, () Lpa corresponds to the small box

Fl: —2<u <-1, 0<u’ <1. (5.33)

The box F)l. Eq. (5.33), describes the starting domain, in the (u",u~) plane, of all the one-epoch eras of the
ba-type. More generally, it is not difficult to write down the inequalities defining the starting domains, say ny, of all
the k-epoch eras (with k = 1,2,3,...) of the (starting) xy-type. They are given by intersecting the full F,, with the
condition

nY(ut) =k (5.34)

where n®Y(u™) is the integer-valued [ function listed in the second column of Table [V] which yields the length
of the era starting at some given point (4~ ,u™) in phase-space. This leads to the ‘era hopscotch court’ of Fig. [1]
which represents the six era-starting domains, and their division in k-epoch subregions ny Note that the function
n®¥(ut) giving the length of each era depends only on u*, and not on u~. This corresponds to the fact that on
Fig. [ all the boundaries between the kay boxes are horizontal. We have also indicated in Fig. [1 the special points
(= ut) = (—¢— 1,6), (u™,ut) = (=g, 6+ 1), (u™sut) = (~1/(2+ ¢), ~1/(1 — ¢) (where ¢ = (V5 — 1)/2 ~ 0.618
denotes the ‘small’ golden ratio) corresponding to the simplest periodic hopscotch orbit corresponding to the infinite
succession of one-epoch eras (5.7). [There exists also the ‘time-reverse’ version of (51, namely a — b — ¢ — a...
which jumps between FY, — FL — FL — ..]

For completeness, we have also indicated in Table [[V] the discrete sequence of values of ui, where 1 < m < n*¥
describing the successive epochs “contained” within an era that starts from some u* € FI"; ’ (one example of such
sequence of epochs was drawn in Fig. B)). In Table [Vl w,,,, denotes either U:Ly OF Uy, [we indeed recall that the
discrete hopscotch map 7 acts on a diagonal manner on ™ and u™: v/, = T(u") and v = T (u™)]. Moreover, within
some era Fy«y(x,y) starting with an epoch of the x — y type, roughly half of the epochs contained in E,«v(x,y) are
of the z — y type (namely those corresponding to m = 1,3, 5,...) while the other half are of the y — x type (those
corresponding to m = 2,4, ...).

B. Era hopscotch dynamics

If, following the spirit of Belinski, Khalatnikhov and Lifshitz, we focus on the discrete dynamics of successive eras,
we can consider a hopscotch game based on the ‘era hopscotch court’ represented in Fig. [1 i.e. the six era-starting
domains Fy, (further divided in sub-boxes labelling the length of the era). The resulting discrete era-transition maps
Tora (mapping the (u™,u™) point of the first epoch of an era to that of the first epoch of the next era) will be
obtained by composing the individual epoch-transition maps contained in the considered era. E.g. an era F3(a,b),
ie. a = b — a — b, would correspond to Te.q = Bo Ao B. Depending on the parity of the number n® of epochs

10 The notation [z] for z € R denotes the usual integer part of z when x > 0 (e.g. [7] = 3), and —[—2] < 0 when = < 0 (so that [—7] = —3).
We did not find useful to introduce other definitions of the integer part (e.g. the ‘floor’, ‘ceiling’, or ‘Hurwitz’ ones).
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Flbe

Flbe
Fibe

FIG. 7. The era hopscotch court in the (u~,u") parametrization. The six starting boxes F, are sketched, and filled with
different colors (shades of gray), according to Fig. [6] as explained in Table[[TIl For each starting box Fj,, the starting sub-boxes
corresponding to k-epoch eras (as described in Table [[V]) are indicated for k = 1,2,3; namely Fxly, Fgfy and Ff’y The three
(u™,u") points of the simplest periodic orbit are denoted as asterisks. Please note that, for typographical reasons, the ny’s
are in this figure indicated as Fkxy.

contained in the considered era E,=y(z,y), the era-transition map 7er, will map the initial starting rectangle F, to
a nert starting rectangle, say I, , where the labels 2’ and y’ are fully determined by the knowledge of (z,y) and of
the parity of n® (i.e. whether it is even or odd). The explicit rules giving Fy, , for each Fy, are given in the first
columns of Table [Vl In addition, the explicit form of the corresponding era-transition map,

uE = Toe (uf) , (5.35)

transforming the phase-space point ulfmy of the first epoch in some era F,«y(z,y) into the phase-space point uf,

z’y’
of the first epoch in the next era E, .., (2',y’) are explicitly given in the last column of Table [Vl For instance, if
we consider up,, = (up, ), ¢ ~ 0.618 denoting the small golden ratio as above, we shall have (from Table [V])
n® = [¢] + 1 = 1, which is odd, so that (from Table [V]) the next era will be F’_, and the new starting phase-space

point in F_ will have as coordinates (from the last column of Table [V])
Up = —Up, Up = —¢. (5.36)

We have proven above that the 2-form w, (5I9) was left invariant by each individual wall collision transformation A,
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ac / 1
Foc odd |Fyy |ur, = —————1—
nac it
UFqc
n even|Fl, |up,, = ——1—
nact
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c / 1
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n even u =71
cb Fep nea_
uFCO/
Fye |0 odd | Fly|urp, = —1+ - 1
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be / 1
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n 1+ 1+U’FCb
cb / _ 1
n® even|F,.,|ur,, = —1-+ —T—
nebp———
1+upcb

TABLE V. Era Hopscotch

B or C' (and more generally by any symmetry transformation of Hs). Therefore, w will be invariant under the era-
transition maps 7y, which are certain compositions of n*¥ wall-collision transformations, e.g. Tg, (a5 = Bo Ao B.

A crucial property of the era-Hopscotch court, Fig. [7 is that the integral of w over the era court is finite. Indeed, the
points (0,0), (=1, —1) and (o0, 00) leading to the logarithmic divergence of the w-measure of the full epoch hopscotch
court of Fig. 6l are well separated from the six F,, era rectangles of the era hopscotch court. For instance, the region
at infinity of the Fy, rectangle is —2 < u~ < —1, u™ — 400, which leads to convergence for [w(u™,u").

We are therefore in the usual conditions for applying the results of ergodic theory on a finite-measure space. In
other words, after many iterations of the era map Tora We can consider that the phase-space point (u™,u%) behaves
in a stochastic manner, described by a ‘probability measure’ equal to w/I, where I is the integral of w over the era
hopscotch court of Fig. [l Note that, in the present context of the iteration of a discrete map 7, which is ergodic
and admits an invariant measure w, the ‘probability’ measure is w itself, and its meaning is that the ratio f A w/ fD w
(where A C D is a subregion of the full domain D of the era hopscotch court) yields the n — oo limit of the fraction
n/n of the number of eras n 4 spent in A among the n first iterates of an arbitrary initial phase-space point. In other
words, the word ‘probability’ refers here to a limiting era-frequency. We shall explicitly compute some probabilities
in the era-hopscotch dynamics below.

VI. SYMMETRY-QUOTIENTING THE BIG BILLIARD

As already mentioned, the basic a, b, ¢ system, Eq. ([.1]), underlying the big billiard dynamics is formally invariant
under the six-fold group of permutations of the 3 letters a, b, ¢, say S3. This group S3 is the symmetry group of
the (ideal) triangle, in the Lobachevsky plane, represented on Fig[Il It comprises (when seen in the disk model) two
rotations by £27/3 (that exchange the corners among themselves), and three reflections with respect to the lines
bisecting the corners (that permute two sides among themselves). Note also that the action of the six elements of S3
on the boundary of the disk correspond to the 5 Kasner transformations given in Table (Il), together with identity
transformation, say ko (with v’ = ko(u) = u).

We can use the symmetry group Sz to quotient the dynamics of the big billiard. There are (at least) two ways of
thinking about this quotienting. One way would be to consider a kaleidoscopic version of the big billiard dynamics in
which the single “moving ball” of the billiard, shown e.g. in Fig. [ is augmented by its 5 (generically distinct) images
under S3. This leads to a billiard game where 6 (symmetry related) balls simultaneously move within the same billiard
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table, and (simultaneously) bounce on its bounding walls. The phase-space points of this kaleidoscopic billiard is a
symmetry orbit of the original (single ball) phase-space point, i.e. an unordered set of (at most) six (two-dimensional)
¢"’s and six (two-dimensional) p;’s (restricted by the condition ¢”p;p; = 1). [Some of these variables are allowed to
coincide when the original ball crosses one, or several, of the fixed sets of S3 (bisecting lines).].

A second way to look at the quotiented dynamics is to replace the latter kaleidoscopic phase-space point

{qfl), qéQ), o qu);pgl),p?), ...,pEG)} by its unique representative, say g, within a fundamental domain of Ss, together
with its corresponding momenta piep. For instance, one can use as fundamental domain the small billiard, with sides
G, B, R in Fig. [We shall use this relation when considering the small billiard dynamics below.] When passing
from the continuous billiard dynamics to the discrete billiard map from an epoch to the next epoch, the quotienting
of the big billiard leads to a quotiented version of the epoch hopscotch game of Fig. [6l For instance, the kaleidoscopic
version of Fig. [ would replace each (u~,u") point indicated there by six symmetry-related points, i.e. u® and its
five transforms under the Kasner transformations of Table [ namely ki (u™), ko(u®), ks(u®), ka(u®), ks(ut). These
six points would then simultaneously “jump”, after a (six-fold) collision on a gravitational wall, to their next six-fold
positions in the (u~,u") plane. For instance, the Sz orbit {11,111 1711 11V 1V 1V} of the point 1 in By, (Fig. @)
would jump onto the new Sy orbit {27,211 2111 2IV 9V 9VIY = In the alternative, fundamental-domain, version of
the quotiented dynamics we could replace each S3 orbit in the (v, u™) plane by its unique representative located
within, say, the box Bp,. [Indeed, the six boxes B, of Fig. [l are exchanged under S3.] In that view, the discrete
quotiented big billiard would become a map from the box By, onto itself. For instance, in the example shown in
Fig. [@ the initial point 1 would first jump to the point 2’ (midway between the points 1 and 3), then to a point 4’
(midway between 2 and 5, and belonging to By,). The next epoch would be the image of the point 5 € By, which
belongs to By,. As suggested by our description of the example of Fig. [f, one finds that each era gets quotiented into
a succession of (u~,u™") representative points within By, which lie on a straight (Euclidean) line of slope +1 (as the
line passing through the points 1 and 3 in Fig. [f). More precisely, if we denote by (uz,u})€ By, the first epoch of a
quotiented era, the By,-representative of the version of the considered era is made of the points

(up,up); (up—Lup—1); (up —2,uf —2); i (up — [uf], up — [uf]) (6.1)

obtained by successively subtracting 1 both from uy and u}. As indicated, the length of the era is simply given by
k = [uf] + 1, so that the last point of an era is reached when its uT coordinate is between0 and 1: u} = uf — [u}f] =
{uf}. Note, however, that the u~ coordinate of the last epoch is given by u; = up — k+1 = uj — [u}], so that it
depends both on uj and on u; (while the sequence of the u™ values depends only on the starting value of u} of u™).

Then, it is easily seen that the next epoch (i.e. the first point of the next era) will be (when mapped back to By, by
S3)

1 1
) o

If we ignore the u~ coordinate, we see that the law giving the successive values of the u™ coordinate coincides with the
law found long ago by BKL (when using the BKL,~( definition of an era, as discussed above) namely: u; =x+k—1,
uf —1=a+k—2, down to uf =, with k = [u}] + 1 denoting the length of the era. This shows that the BKL
discrete dynamics of the variable w is obtained by: (i) quotienting our more complete hopscotch dynamics by the
permutation group Sz, and (ii) ignoring the u~ coordinate and identifying the BKL variable u with u™. Note again
that this link between the hopscotch dynamics and the BKL dynamics is particularly simple if one uses the BKL,~q
definition of an era, rather than the BKL,~1.

The S3-quotiented hopscotch dynamics, i.e. the discrete dynamics mapping By, onto itself, defined by Egs. (61) and
([62)), constitutes a two-variable generalization of the BKL map, say

’

(u™,ut) € By — (u™ ,ut) = Toa(u™,u™) € Bpa. (6.3)

Like the full (unquotiented) epoch hopscotch dynamics, the quotiented discrete map, Tpq, (63) leaves invariant the
measure w However, like in the unquotiented case, the integral of w on the domain (and image) By, of the map Tp,
is infinite.

Before discussing the obtention of a finite-measure discrete map associated with 7p,, let us note that, as we did
for the unquotiented hopscotch dynamics, we can also consider the action of the quotiented billiard map 7T, on the
single (BKL-like) variable u*. It is defined as

1
uh —suf—1— . —uh—[uf] > —— 1> .. (6.4)
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ks U = —uap — 1
kZ Ul;? = _(Uac + 1)/“0,6
ks |ubé = —upe/(upe + 1)

ey |ube = 1/Uca

Ea|ub? = —1/(uep + 1)

TABLE VI. The Kasner maps for each starting box of the big billiard table

In other words, it is just the usual BKL map on u recalled in the Introduction (in its BKL,~¢ version). Note the
appearance of —1 in the definition of the new “first u™” of the next era. This takes into account that the unordered
triplet of Kasner exponents of {u}} < 1 is identical to that of {u}.} ! and should therefore not appear twice in the
sequence of transforms of u™.

As in the unordered case discussed above, we can obtain an invariant measure for the one-dimensional version, say

7;((11) of the quotiented billiard map by marginalizing over u~ the two-dimensional invariant measure wp, (i.e. the
restriction of w to the region By,). We use the same definition as above, Eq. (520). The difference is that, now,

ut is restricted to be in the interval 0 < u™ < 400, and the boundaries of integration over u~ are u_;, = —oo and
u”max = —1 (where u_,  differs from its previous value). This leads to the invariant one-dimensional measure
du™
Nyt =
Wpe (U™ )du"™ = ———. 6.5

It is again easy to check directly that wp,(u)du™ is invariant (in the sense recalled in Section [[V] above) under the

discrete map 7;511) [one needs to take into account that 7;((11) is two-to-one so that the preimage of an infinitesimal
interval ut + Ldu™ consists of two infinitesimal intervals.] Note that if, instead of considering the definition above of

777(;), one considers the “standard” BKL,~; map (where u remains always > 1 and decreases by units of 1 until the
value 1 + {u}, after which it jumps to 1/{u}), the expression of the invariant measure reads

_

WBK L, (W)du (6.6)

u

As far as we know, the results in Eqs. (6) and (6:6) have not been explicitly discussed before in the literature.

It should be noted that the one-dimensional measure wpq (u™)du™ differs from the restriction to By, of its unquotiented
analog discussed in Section [V]labove. [Indeed, we had before w(u™)du=(du™ /u™ when u™ > 0.] This is an effect of the
quotienting which means that one must fold back onto By, the symmetric images that were elsewhere (and notably
in Bg,). Finally, we note that, as before, the invariant measure w(u™")du™ is not normalizable. Indeed, it diverges
logarithmically when 4+ — +o00. Note, however, that it converges at the lower boundary u™ — 0. [The same is true
of the invariant measure wgkr,, ., (v)du = 1/u of the standard BKL u-map, with 1 < u < +00].

Let us now come back to discussing the two-dimensional quotiented map Ty, acting on Bp,. To get a discrete map
preserving a finite measure, we need to consider the quotiented analog of the era hopscotch dynamics. In fact, we
obtain an era hopscotch dynamics simply by ignoring the intermediate epochs and focusing on the map transforming
the (quotiented) first epoch of an era (ug,u}) into the first epoch (u;/,u;/) of the next era. We shall denote this
quotiented era map as . When using, as we did above, a representative of the Ss orbit within the By, box, the
quotiented era map T is a map of Fy, onto itself. We recall that Fy, is the domain of the first points of eras starting
as b — a. It is the rectangular domain —2 < up < -1, 0 < uJIE < 400 (see Fig. [M). The explicit expression of the
map T is given by Eq. ([62), i.e.

1

Tuf =+——F-1 (6.7)
This maps leaves invariant the restriction of the two-form w to the domain Fp,, i.e.
dut A dusy
wp = 2 DO (6.8)
(up —up)

By contrast with the original measure w on the full hopscotch court, this restricted measure has now a finite integral,
namely

/ wp =2In2 (6.9)
WEpq
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We shall also refer to the map T as being the Chernoff- Barrow- Lifshitz- Khalatnikov- Sinai- Khanin- Shchur map
for the big billiard, or CB-LKSKS map in short. This one-to-one map between two variables was introduced in ﬂg
while Ref. HE] and ] showed how such a two-variable map appears as a completion of the original BKL analysis,
when keeping not only the original BKL variable u™ (parametrizing p1, p2 and p3), but also a variable § related to
the amplitude of oscillations of the a, b, ¢ metric variables during an era (the precise relation between our variables
and those used in [10] and [11] will be given below). The CB- LKSKS map is one-to-one over its domain Fy,. Note,
however, that the original map 7 on the era hopscotch court, whose quotienting leads to T, is such that both the
image, T Fyq, and the pre-image 7! Fy,, of Fy, is the union of an infinite number of rectangular domains belonging
to two different F),,, boxes. For instance, the image T Fy, is of the form Py, U Pq., where Py is the union of an infinite
number of disconnected rectangles contained within Fy., while P,. is the union of an infinite numbers of disconnected
rectangles contained within F..

As already pointed out in E], the CB-LKSKS map preserves the eigen-directions of the uf variables. In other words,

r3

T T T T 0
-2 -12 -14 -14 -1.2 -1

FIG. 8. CB-LKSKS map | of a rectangular region straddling the boundary between two successive ny, boxes. We consider as
example the green (gray) rectangular box 0.51 < u}, < 1.8 and —2 < uj < —1. The image of this rectangle by the CB-LKSKS
map consists of two new boxes: (1) the blue (dark gray) box, for which 0 < u} < 0.96 and —2 < u < —1/2, which originates
in the portion of the green (gray) box such that 0.51 < u}, < 1, and (ii) the yellow (light gray) box, for which 0.25 < u}f < +o0
and —1/2 < uy < —1.33, which originates in the portion of the green box for which 1 < ult < 1.8. If the initial green box had
a larger vertical extension, so as to straddle two boundaries between ny, boxes, the CB-LKSKS map would have produced a
further intermediate box, spanning the entire interval 0 < ult < +o00.

it maps horizontal intervals into horizontal intervals and vertical intervals into vertical intervals. Nevertheless, further
investigation is in order when discussing the action of T on a rectangle. A rectangle can be mapped either into a
single rectangle or into two separate rectangles. The distinction between these two cases crucially depends on whether
the initial rectangle is contained within a single F} box or not. See Fig. [1l for the shape of these boxes (that we shall
simply call np, boxes): they are all squares of sides of length 1, piled up vertically. More precisely, the ny, box is
defined by the inequalities —2 < up < =1, npe — 1 < u;; < Npg-

If the initial rectangle is contained within a single ng, starting box (i.e. within the domain ny, — 1 < u;? < Npa,
—2 < up < —1), it will be mapped to a single rectangle. In particular, the full ny, starting box, i.e. the full rectangle
Npe — 1 < u}L, < npe, —2 < up < —1, is mapped into a single rectangle which is infinitely extended in the vertical (u™)

11 The definition of the map in IQ} and our definition match when one relates the variable denoted as x in ﬂg}, which we shall call X¢opg,
with our u, by Xogp = —1/(uj + 1). For the sake of completeness, let us also note that the names of the Kasner exponents p1 and pa
are exchanged in [9].



35

_ Npa+2
Npat1
By contrast, if the initial rectangle straddles the boundaries between two successive boxes, say the np, one and the

Npe + 1 one, its image under T will be the union of two non-overlapping rectangles. This is illustrated in Fig. B which
shows the T image of the rectangle 0.51 < u; < 1.8 and —2 < uy < —1, which straddles (along the horizontal line
u;C = 1) the common boundary between the box ny, =1 (i.e. 0 < uJ}S < 1) and the box np, =2 (i.e. 1 < u;C <2).

direction, namely the rectangle 0 < Tu; < o0, —”fj—“ < Tu; <
ba

Note that u} and uj play asymmetric roles in the T map. Indeed, for all the starting boxes Fj,,, the boundaries of
the subdomains corresponding to a given era-length are horizontal (see Fig. [[). Therefore, whether a given rectangle
in I, is T-mapped into one or several rectangles only depends on the range of u;? independently of the range of up.
As a consequence, the ‘mixing’ character of the T map is essentially contained in the u* direction. Actually, we see
by differentiating Eq. (61) that

duyp

(up — [up))?

d(Tup) =— (6.10)
As =2 < up < -1 and [u}f] € N, the denominator (uf — [u}])? is always strictly larger than one. Therefore,
|dTup| /dup <1, ie. the T map is contracting in the uj direction.

Finally, let us clarify the link between the CB-LKSKS map as defined above and the unit-square map given in ﬂﬁ]
and ] The range of the variables u ™, u™ in the above-defined CB-LKSKS map is the infinite vertical rectangle Fy,,
ie. =2 <wu” < —1,0 < ut < +oo. By contrast, the statistical analysis developed in HE] and ﬂl_1|] is based on two
variables x;,x_, defined in the unit square, i.e. 0 <y < 1,0 < zy < 1.

Let us consider the following transformation mapping Fp, into the unit square 0 < x4 <l and 0 < 2x_ < 1:

! (6.11a)
Ty = —F]" 1la
" uf+1
r_ =—up— 1L (6.11b)
In terms of the unit-square variables (z_,z ), Eqs. (GI1)), the CB-LKSKS map reads
To, = {i} , (6.12a)
1
Te. = ——r—, (6.12Db)
r_ + {i}

consistently with the results of [11]. As the unit-square transformation in (BII)) does not consist of applying the
same fractional linear transformation to both variables vt and u~, the two-form w is not invariant under (G.IT]), but
becomes

_, dry Ndx

wpr = m (613)

The choice of By, (and Fy,) as representative boxes for the quotiented big billiard dynamics does not affect the unit-
square results (6I12) and (6I3). Had we considered another representative box By, and defined a correspondingly
modified version of the unit-square transformation (I1]), we would have ended up with the same results (612) and

©.13).

VII. SOME PROPERTIES OF THE SYMMETRY-QUOTIENTED DYNAMICS

In this section, we shall start from the Fj,-box version of the CB-LKSKS map (or, simply, T map), Eq. [61), and
study some of its properties, recalling, when needed, some results obtained by previous authors and focusing on new
results.

A. Probabilities

Let us indicate how, in our set-up, one can compute the probability for an era to contain a given number of epochs.
The probability P, for an era to contain a number n; of epochs, 1 < n; < 400, is proportional to the integral of
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the two-form wr (G.8) over the relevant region of the up, u; space. In the considered case of a given number, n;, of
epochs, the relevant region is simply the box F}'!', as defined above, i.e. the domain —2 < up < —1,n1—1< u;; <ni.
To normalize this probability, we must then divide by the integral of wp over the full domain Fj,, as given in Eq.
©3), 2In2. As a result, we obtain that the probability P,, for an era to contain a number n; of epochs as

1 m -t 1 1 (n1 +1)3
P, =— d+/ dup—F——s=—Ih—F—"—. 7.1
' 2/, “r 9 “r (uf —up)?  In2 t ni(ny + 2) (7.1)

This agrees with the result of BKL (which was obtained from the stationary probability distribution (I4]) of the
Gauss iteration map).
For instance, the probabilities for the length of an era to take the values n; = 1,2,3,4,5 are

Py = 0.4150 (7.2a)
P, = 0.1699 (7.2b)
Ps = 0.0931 (7.2¢)
P, = 0.0589 (7.2d)
Ps = 0.0406, (7.2¢)

whose sum is 22:1 P, = 0.7775. Hence, 77.75% of the eras have lengths smaller or equal to 5, and actually 58.49%
of the eras have lengths smaller or equal to 2. This shows that most eras have rather small lengths. The asymptotic
behaviour of P,,, as n; — 400 is

1
P, ~—, 7.3
o (73)

with ¢ = In2 ~ O 69315. Therefore, the probability to have ny > N; is asymptotically given (for large N7) by
P(ny > Nyp) ~ N , which decreases rather slowly as N7 increases. In other words, though most eras have rather
small lengths, from time to time eras with unbounded lengths can arise. The rather slow decrease of P,, as n;
increases implies, in particular, that the mean value of n; is infinite (being given by the logarithmically divergent
series En1>1 P,,n1). Note, however, that a finite result is obtained if one considers the expectation value of the
geometric mean of large sequences of independent era lengths, i.e. the exponential of the expectation value of Inn;
(known as the Khinchin number). This yields [32]

exp Y Py, Inng ~2.6854... (7.4)

nlgl

This result confirms that the “typical” length of an era is rather small.

Let us now consider the computation of a probability of a more specific event (not explicitly considered by BKL):
namely the probability P, », for an era of length 1 < n; < oo to be followed by an era of length 1 < ny < co. This
probability is obtained by integrating the form (EI9) over the appropriate range of the variables u;, up. This range
is determined by Table ([V]) (as in the previous case), and by the properties of the CB-LKSKS map: combining the
two information, the range n; — 1+ < u;? <ng—1+ n% is obtained. The range of u} is determined as in the
previous case. As a result, we obtain

ny— 1+
du duF — 1y (n1nz2+1)(ninz+ni+n242) (7 5)
n1 nz ln2 F L —u )2 T In2 (ning+ni+1)(nine+na+1) ) ° .
e Jr712-%-1 r

n2+1

Note that this probability is symmetric in ny and ne. The previous probability P,, is (as it should) recovered by
summing P,, ,, over all the values of ns.

N =00 5
_ 1 — (n1+1)
Py, = n2 Z Py, = 11121 (nl(lerz)) : (7-6)
na2= 1
Note that in both cases we were considering events that depend only on u;C so that the result involved marginalizing
the variable u, i.e. integrating the (normalized) w form over the complete range of . And, indeed, integrating the
(normalized) two-form wp over the complete range of u, (—2 < uj < —1) yields the one-form
-1 -+ +
1 dupduy 1 dup,

- = 7.7
n2 /., (uf—wup)? In2(uf+1)(uf+2) (7.7)
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which yields the Gauss distribution (IA4), i.e. w(z)dz = ﬁli—xx when parametrizing u}. €]0, +oo[ by x €]0, 1], such
that uf =1 —1 (with 0 <z < 1).

Note that the (integrable) invariant one-dimensional measure (1) differs from the (non-integrable) invariant one-
dimensional measure ([6.5)): while the former refers to the discrete dynamics of the 4™ value of the first epoch era, the
latter refers to the discrete dynamics of the u™ values of all the epochs. Note also that the probability P,, to have
an era of length ny is obtained (in view of the link ny = [u}] + 1) by integrating the measure (7)) over the interval
n—1< U; <ni.

It is interesting to note that the (pseudo-)random variables ny and mg (i.e. the lengths of two consecutive eras)
are not independent of each other, because P, pn, # Pn, Pn,. However, the variables n; and ng are approzimately
independent statistical variables. Indeed, using the explicit expression ([I]) and (Gl one finds that the ratio Ry, n, =
Pyyny/ Py Py, which would be, by definition, equal to one if n; and ng were independent random variables, takes values
rather close to 1. For instance, Rq11; ~ 0.8826, Ri2 = Ro1 ~ 0.9985, R13 = R31; ~ 1.051 and Rys ~ 1.008. Therefore
the low values of n; and na (which are of greatest importance for many issues) are approximately independent. As
concerns the large values of n; and ng, let us note that the asymptotic value of P, ,, is

1

Py, =~ cn%n_%’ (7.8)
where ¢ = In2 as above. This implies that the ratio Ry n, = Poyny/Pn, Pn, is asymptotically constant, and equal to

¢ =~ 0.69315. Having seen that the lengths of consecutive eras are approximately independent random variables, we
expect that such an independence property will become more and more exact as one considers eras that are more and
more separated.

B. Continued fractions

Let us briefly recall (from [4]) the usefulness of the continued-fraction representation of the variables v, u*t in
describing the effect of iterating the CB-LKSKS map.
Any number 0 < y < +00, can be uniquely decomposed as

y = [yl +{v}, (7.9)

where [y] is its integer part, while {y} is its fractional part. This decomposition can be iterated by considering the
decomposition ([T9) of 1/{y}. This leads to the unique continued-fraction decomposition of y > 0
1

{y} :n1+n_’_71 = [nl;TLQ,?’Lg,...], (710)
2

n3+ 1+1

where ny,n2,n3, ... are natural integers. In Eq. (ZI0) we have introduced a notation for the continued-fraction
expansion which distinguishes (by means of a semi-colon) the first integer ny = [y]. In the case where ny = 0 (i.e.
in the case 0 < y < 1, i.e. y = {y}), we shall also use the notation {y} = [n2,n3, n4,...] (without semi-colon). The
continued-fraction expansion contains a finite sequence of integers ny, no, ... if y is rational, while it contains an infinite
sequence of integers if y is irrational.

With this notation, the continued-fraction expansiondd of the first (v, u") values of a (quotiented) era starting
(as above) in the box Fp, can be written as

uf = npe — 1+ [na,n3,na, ...] = [Mpa — 512,13, 04, ..., (7.11a)
up = —1—[mi,ma,ms,...]. (7.11b)

Here, we have denoted the first integer of the decomposition of u}. as np, — 1 = [u}f], so that n,, = [u}] + 1 denotes

the length of the era starting with u;; In terms of these decompositions pertaining to the first era, we can write the
first u—,u" values of the N-th era (with N = 2,3,...), i.e. the (N — 1)-th iteration of the T map

N—-1
T ’U,;;ZTLN—1+[7’LN+1,TLN+2,TLN+3,...], (712&)

TN_lu; = —1 = [AN, N1, ey N2y b, TT, TN, -] (7.12b)

12 Here, we adopt the definition of integer part of a negative number given in Footnote [0, and we define the fractional part of a negative
number accordingly, e.g. {—7} = —0.14....



38

In other words, at each iteration of the CB-LKSKS map, the information about the length of the corresponding era
is ‘transferred’ from the u™ variable to the u~ variable. Note that the information contained in u}, (i.e. the sequence
of integers my,ma,...) is progressively decaying in the “tail” of the iterates of up. By contrast, the iterates of u;
progressively uncover the “tail” of u;, thereby exhibiting the chaotic character of the u} dynamics which progressively

amplifies smaller and smaller details of the continued-fraction expansion of the initial u}i

C. Recovering information about the unquotiented dynamics

Up to now, in this Section, we have discussed the quotiented dynamics (viewed within the representative box By,
or F, when considering the first epoch of an era). This quotienting has ignored the fuller information contained in
the original, unquotiented era hopscotch dynamics, namely the precise corner, {xn,yn} (with znx,yn € {a,b,c}) and
orientation, (xn,yn), (l.e. xn — yn), of the first epoch of the N-th hopscotch era. For each starting box, say Fiy,
the specific Kasner transformation mapping the region Fj, into the representative region F}, is given in Table [V1l

Therefore, if we start an unquotiented era hopscotch dynamics in some specific region F,,, we can first map it to the
+[ba]

reference region Fy, by some specific Kasner transformation k., to get its ba-representative, u Fay namely
+[ba] __ +
up, " = koyup, . (7.13)
Then starting from [u}my]ba we can define its continued-fraction decomposition, say
b
u;z[y“] — kmyu;r«;y = Ngy — 1+ [7’1,2,7’1,3, ] (714)

Here, the so-defined integers 14y, 12,13, ... give us the values of the successive lengths of all the eras that will evolve

from the initial value u;? .
zy

This reasoning shows how the knowledge of any era-starting values (up,u}.) in the (u™,u") plane determine the

subsequent era-length history. First, the location of up in the plane determines the initial corner xy. Second,
the knowledge of the initial corner uniquely determines k,, (mapping it to Fy,). And, third, the computation of
kmyu;wy and of its continued-fraction expansion, determines all the era-lengths ngy,n2,n3,.... However, we need
more information if we wish to recover the full hopscotch dynamics from the simpler quotiented hopscotch dynamics
discussed above. Specifically, we need to recover information about: (i) what is the succession of corners (among the
three corners of the big billiard) that will be visited, and (ii) what is the succession of the directions (clockwise or
counter-clockwise) in which the oscillations within these corners will take place. Let us now show how one can recover
this missing information from the knowledge of the era-starting values (u;zy , u;?zy) in the (u™,u™) plane.

Before doing so, let us establish some notation. Looking at Fig. Bl we shall say that an era is clockwise if its first

epoch connects two billiard walls in the clockwise sense with respect to the unit disk, i.e. if it is either ba, ac or cb.
In the other case (first epoch of the type ab, bc or ca) we shall say that the era is counterclockwise.
Now, we remark that the information about this direction of motion is contained in the determinant of the Kasner
transformation k;, that maps each era-starting box Fj, onto the reference box Fp, (as given in Table V). More
precisely, if the determinant of ky, say D[ks,] is equal to 41, the era Fy, is clockwise, while if D[k,,] is equal to
—1, the era is counter-clockwise. Given two era-starting regions F}, and Fj,, it will sometimes be convenient to say
that they are “parallel” if they have the same direction of motion (clockwise or counter-clockwise), and “antiparallel”
in the other case.

Le us now show how one can encode the information which is missing in the quotiented billiard in a pair p, 77, where
p takes three different values, and n two different ones. In more mathematical terms, p € Z3 and n € Za, where Z,
denotes the cyclic (multiplicative) group of order n. The values of p can be {1, exp(i27/3),exp(—i27w/3)}, and are
encoding rotations in the disk model of the billiard by the angles 0, 27/3 or —2m/3 respectively. The values of n are
{+1,—1} and can encode the two possible “directions of motion” of an era (clockwise or counter-clockwise).

Our aim is, starting from some initial (era-starting) position (u;my,u}my)e F,,, to determine the ordered corner

N, yn within which the N-th unquotiented 7 iterate, TN(u;,u;S) of (up,u}) will oscillate (i.e. the first epoch of

the (N +1-th era). We parametrize the ordered corner xx, yn by the pair px,nny where py is the rotation, in the disk
model, mapping the initial (unordered) corner {z,y} into {xn,yn}, and where ny gives us the relative orientation
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between zn,yn and z,y. (i.e ny = +1 if they are parallel, and ny = —1 if they are antiparallel).
One can iteratively build the values of py and 7y by using the following elementary facts:

e an (intermediate) era F,/,, containing an odd (respectively, even) number of epochs is followed by an era Fy,»
whose relative direction of motion is parallel (resp., antiparallel);

e the rotation (in the disk model) between some intermediate era F,/, and the following Fj,~ is equal to e*#27/3
(resp. e~*2™/3) if F,,, contains an even (resp., odd) number of epochs.

To exhibit the iterated effect of these elementary rules, it is convenient to define the following quantities (taking the
values +1):

e = (=) (7.15)

where n; denotes the number of epochs contained in the j-th era defined by the initial value of uJIS With this notation,
the Z3 x Zy valued pair (pn,nn) giving the rotation (with respect to the original era-starting domain F,) and the
relative “sense of motion” (parallel or antiparallel to zy) corresponding to the ordered corner of TV (up, u}) is defined
by (with D[kr] = 41 denoting as above the determinant of the Kasner transformation kp mapping (uz,u}) to Fy,)

pn = €% with Oy = —D[kp]%.r (€1 + €162 + ... + €1€9...€N) , (7.16a)
NN = €1€2...€N. (716b)

Note that ny can be rewritten as ny = (—)%~, where

N
Qv=N+> (7.17)
k=1

Note also that the absolute sense of motion (clockwise or not) of the N-th era is given by

D[kF]T]N = D[kF]Eleg...EN. (718)

Given this result, we can now write, for any starting point (u;,u;?), the explicit result of iterating N times the
unquotiented 7 map, i.e.

+ N, + +
up =T ug, =To..oToTug , (7.19)
in terms of the simpler action of the quotiented T map, namely

_ N
ufﬂmNny = kv n T kayug, . (7.20)
[For brevity, we have denoted above the phase-space point (uy, u;) simply as ufﬂ] Here, k,, is, as above, the Kasner
transformation mapping the initial era-starting box Fj, to Fj,, and k;& N is the inverse of the Kasner transformation

mapping the ordered corner of 7 Uzirxy onto the “standard” ba corner. The transformation is determined from the
above-computed values of (pn,nn). More precisely, the procedure determining k;& N is : (i) starting from k,, and

the continued-fraction decomposition of ky,uf = ny — 1 + [n2, n3,...], one determines the ¢;, Eq. (ZI5), and the py
and ny; (i) then py determines the rotation between xy and the final corner xy,yxn, and 7y determines whether
this corner is “parallel” or “antiparallel” to the initial zy; (iii) finally, knowing the ordered corner (z™¥,y?), Table[VI]
determines the transformation k,~ ,~ that maps it onto the ba corner.

Let us note the dissymmetric roles of 4 and u~. In the above construction, it was the knowledge of the initial
value of «* which allowed one to recover the full information about the future evolution of the unquotiented dynamics.
The situation would be different if we wanted to describe the past unquotiented dynamics. In that case, it would be
the continued-fraction of the ba transformation of the initial u that would encode the needed information.

To make the above construction more concrete, let us end this subsection by working out an explicit example.
We consider (for simplicity) an initial era-starting box of the ba type. For the convenience of the reader, we list in
Table [VTIl the concrete meaning, for this case, of the six different values of (pn,nx) in determining the ordered corner



40

xI\/IyI\/I

1 ba
—1||lab

ac

>
S
=
S

|
.

3
—

|
.

3
I
—

ca
cb
be

|
.

3
—

|
.
ol ol ol colng

DD [ | | ==

3
I
—

TABLE VII. The exit possibilities for a sequence of eras starting with Fy,. The rotation pas is considered 27.

of the N-th iterate of the initial point. Let us for instance consider u}?b + 1 = [n1;ne,...] of the form u}i +1=42,

ie. uf +1=/[1;2,2,..], and consider the second iterate T? uy, . In that case, zy = ba and ky,, = ko (the identity),
and therefore Dlkgy] = +1. As n; is odd and ngy even, we easﬂy ﬁnd that po = 1 and 1, = —1. This shows that the
second iterate (i.e. the third era, if we count the 1n1t1al one) is of the ab type. The explicit expression of T2ur Ty, 18
then

T2uFb = kablT U’Fb (721)

where ko, = ks in the list (Il We have thereby reduced the computation of the iteration of 7 to the simpler
computation of the iteration of its quotiented version T.

D. On the anisotropic behavior of the unquotiented big billiard

The aim of this subsection is to highlight one interesting feature of the unquotiented big billiard that is lost in its
quotiented description: its anisotropy, i.e. the fact that, after each given era (taking place in some corner, with some
sense of motion for the first epoch) the next era has more probability to take place in a specific ordered corner, namely
a corner obtained from the previous one by rotating it in the same direction as the first epoch in the disk model, and
keeping the same sense of motion for the first epoch (by +27/3). For instance, if the first era is, say, of the ba type,
the following era has more probability to be of the ac type rather then the bc one (which is the other possibility).

Indeed, the general formulas ([I6]) above show that, when N = 1 i.e. after one iteration, the second era is obtained
from the first by applying the rotation p; = e, w1th 01 = —2ED[KF]er, and that its relatwe sense of motion is
N1 = €1. Here, e = (=)™ is determined by the parity of the length ny of the first era. On the other hand, the sign
€1, which determines both p; and 7, is a statistical variable whose probability distribution is determined by that of
ny, i.e. by Py, Eq. (TI). Among the two possible values of €1, the most probable is e, = +1, corresponding to n4
being odd. Indeed, this probability is obtained by summing (1) over ny = 2k + 1, k € N, and reads

=1 (2k + 2)? Inm —1In2
P(e; = o — = ~ 0.651 .22
(& ~ Podd = kz ) ( 2k+1)(2k+3)) In2 0.6515 (7.22)
The complementary probability that e; = —1 i.e that nq be even, is
(2k+1) 2In2 —Inn
Ple; = — oven ~ (0.3485 7.23
(& - Zln2 ( (2k+2)> n2 (7.23)

In other words, we have a strongly anisotropic behavior after one era: if the first era is, say, of the ba type, the
following era will be of the ac type in 61.15% of cases, and of the bc one in only 34.85% of cases.

Let us now see what happens after two iterations. Fixing for simplicity the initial ordered corner to be ba, the
ordered corner after two iterations can be of four different types:

e if (e1,e2 = (4+1,+1) (corresponding to 3 = —47/3, ne = +1 ), it will be ¢b;

o if (61,62 = (+1,—1) (corresponding to O = 0, 72 = —1 ), it will be ab;
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o if (e1,e2 = (—1,+1) (corresponding to 0 = 47 /3, ny = —1 ), it will be ca;
o if (e1,e2 = (=1, —1) (corresponding to 03 = 0, 2 = +1 ), it will be ba.

The probabilities corresponding to each one of these cases is easily computed from the probability distribu-
tion (), for ni,n2 (remembering that e = (=) e = (—)"2T1). For instance, P(e; = +1,e2 = +1)
= Zk2207k120 P2k1+1,2k2+1 = Podd,odd is found to be

Ple; = 41,62 = +1) = Poqd.oda ~ 0.4199. (7.24)
Similarly,

P(€1 = +1, €o = —1) = POdd.,Cvcn g Z P2k1+1_’2k2 >~ 02316, (7253)

k2>1,k1>0
P(el = _17 €2 = +1) = Pcvcn,odd = Z P2k1,2k2+1 - Podd,cvcn =~ 023167 (725b)

k22>0,k1>1
Pleg=—1,ea=-1) = Poveneven = 9, Pary.25, ~0.1169 (7.25¢)

k2>1,k1>1

Again we see a strong ‘anisotropy’ among the various possibilities. In particular, the most probable case is again that
corresponding to applying the two rotations (by £27/3) in the direction indicated by the first epoch, keeping the same
sense of motion. The calculation gets more involved for higher iterations. One expects that, after many iterations,
the memory of the initial ordered corner will get lost, and that one will end up with asymptotically equal probabilities
in any one of the six possible ordered corners. Note, however, that the anisotropic behavior we are discussing here
will continue to be present locally: after each era (whether or not it is much “later” than the initial era), the next era
will take place in a preferred corner with respect to the previous one.

VIII. PERIODIC ORBITS

Let us briefly discuss periodic orbits in the big billiard with a focus on the differences between the notion of periodic
orbit in the unquotiented billiard, and the corresponding notions either in the quotiented billiard or in the BKL map
(acting solely on u™).

Given any discrete map, say 7T, acting on some space X, a periodic orbit is a set of successive T images of a point
r € X, say {z,Tx,...,T™ ta}, such that 7™z = x. The (minimal possible) integer m is called the period of the
discrete map 7. As the CB-LKSKS T map is a quotiented version of the full hopscotch map T, it is easily seen that
any n-periodic orbit of 7~ will automatically “descend” to a corresponding periodic orbit of T. However, the period
of the corresponding T orbit might be a divisor of m. On the other hand, it is a priori possible that periodic orbits
of T could not be “lifted” to periodic orbits of 7. To study these two issues (the change in period from 7 to T, and
the possibility of lifting periodic orbits from T to 7) let us start from some given n-periodic orbit of T.

A first issue that should be discussed is the relation between periodic orbits of the BKL map Trkr, (i.e. the restriction
of the two-dimensional map T to the one-dimensional map v/, = Tgkr(u+)), and periodic orbits of T in the (u™,u™)
plane. The periodicity condition of Tk, involves only one condition, namely uq = Tk (ug) = Tm(u+), while the
periodicity condition of T looks much more restrictive as it involves two separate conditions, namely u, = Tm(u+)
and u_ = T"(u_,[uy]) (we recall that the action of T on u, only depends on u., while its action on u_ depends,
in addition, on the integer part of u,). However, we have seen above that the T map was always contracting in
the u~ direction (see Eq. (GI0))). Therefore, we expect that the iterated effect on any starting value of u~ of the
finite collection of maps indexed by the various values of [u4] in the periodic orbit T (u~,[uT]) will converge to some
corresponding fixed orbit of u~ values.

Let us then start by an arbitrary m-periodic orbit of the one-dimensional BKL map: Tfk (u®) = ut. It is
well-known, [4], [33], ﬂ:;j], and evident from the explicit form of the action of T on the continued-fraction expansion
of u™, that any such m-periodic orbit is parametrized by the special values of ™ that admit a (regular) periodic
continued-fraction expansion (cfe) of the type

ut +1=[n1;n2,n3,...Nm,n1,N2,13,...]. (8.1)
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By well-known theorems going back to Euler and Lagrange all such values of u™ + 1 are quadratic irrational numbers,
i.e. irrational real roots of quadratic equations of the form ax? + bx 4+ ¢ = 0 with integer coefficients and a positive
discriminant b? — 4ac (that is not a perfect square). The simplest example of such periodic-cfe numbers is the (large)
golden ratio u™ +1 =& = [1;1,1,1,1,...] = (v/5+1)/2 ~ 1.618 (so that u™ = ® — 1 = ¢ = (/5 — 1)/2 is equal t
the small golden ratio ¢ = ® — 1 ~ 0.618). The second simplest examples are of the type u™ + 1 = [n;n,n,n,...] =
(Vn?+4+n)/2, with some integer n > 1 and are sometimes called “silver ratios”. Note that in the cases of the
golden ratio, or of the silver ratios, the period m of the BKL orbit is m = 1.

Let us first show that any m-periodic orbit of the one-dimensional BKL map Tgky, gives rise to a unique correspond-
ing m-periodic orbit of the two-dimensional T map. This follows from the explicit expression (.12 of the iterated
action of T on an arbitrary starting value of u~, written as Eq. ([232). By repeatedly iterating the (u"-dependent)
action of T on u~ one sees that the information contained in the initial value of u~ is lost in the receding tail of the

cfe of TV u~ so that the sequence of values of u™~ tends to a fixed orbit that is entirely defined by the periodic cfe of
u™. More precisely, the limiting value of u~, which pairs with the given u™ to define a two-dimensional m-periodic
orbit of T is given by

— (14 u") = [Mn, N1y - -+ 2, ML, My Mo —1,4 - - -] - (8.2)

Having shown that any m-periodic orbit of the one-dimensional BKL map T, u™ — Tgkr(u™), i.e. any (regular)
periodic cfe of the type, Eq. (1), uniquely determines a corresponding m-periodic orbit of the two-dimensional T'
map, (ut,u”) = T'(u™,u™), we now discuss the issue whether any m-periodic orbit of T' can be lifted to some periodic
orbit of the full, unquotiented billiard. This question can be answered positively by studying the m-iterated action of
the unquotiented map 7 on the initial point (u~,u™) € By, of a m-periodic orbit of the quotiented map T. The fact
that T (u=,ut) = (u~,u") means that the Ss-symmetry orbit of 7™ (u~,u") coincides with that of (u~,u*). This
means that there exists a particular Kasner transformation k, (which depends on m and on the considered periodic
orbit of T) such that

T™(u ,ut) =ke(u",ut). (8.3)

The set of six Kasner transformations is a realization of the S3 permutation group (of order 3! = 6). In fact, this
permutation group consists of the identity, 3 transpositions [(12), (23) and (31)], and 2 cyclic transformations [(213)
and (321)].We recall that the order of a particular group element, such as k., is the smallest integer p such that
kY = ko. As a transposition is of order 2, and a cyclic permutation, (123) or (321), of order 3, we see that the order
p of k. must be equal to p = 1,2 or 3. Therefore, by iterating ([83]), we get

T (uw"ut) =kl (u,ut) = (u",ut), (8.4)

and mp will be the smallest such integer. In other words, (u~,u™) is the initial point of a periodic orbit under the
unquotiented billiard map 7, with period pm, where p = 1,2, 3 is the order of k..

We have therefore proven that any periodic orbit of the quotiented map T (or, even, any periodic orbit of the
one-dimensional BKL map Tpkr,) can be lifted to a periodic orbit of the unquotiented big billiard map 7. Note
that this property extends to the corresponding continuous billiard motion in the unquotiented big billiard (simply
by considering the geodesic segments corresponding to all the (u™,u")’s belonging the periodic orbit). To make this
general result more concrete, let us consider a particular example. The simplest periodic orbit of the quotiented
billiard is that given by the golden ratio, namely

1
ut+1=[1;1,1,1,..] =& = V5 +

(8.5a)

2
—(u_—l—l):[l,l,l,...]:qﬁ:\/52_1. (8.5b)

“Downstairs” its period is m = 1. However, the T transform of the above “golden-ratio” point (u™,u™) = (=1 — ¢, ¢)
is given by reflection in the a wall, i.e. by the matrix A of Eq. (5.14]), so that

Tut = —ut = —9¢, (8.6a)
Tu =-u =1+¢. (8.6b)
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The transformation ' = —u is not one of the Kasner transformation. However, in keeping with the general reasoning
above one can use the fixed-point property of this golden-ratio periodic orbit (namely ¢(1 4+ ¢) = 1) to rewrite the
r.h.s.’s of the above equations as

1 1
+ _— _ — =k +
Tu T4 e a(u™), (8.7a)
1 1
T=—=- = ky(u™ 8.7b
Tu =5 = = ki) (8.7h)
where ky(u) = —1/(u+1) is one of the Kasner transformations of Table[ll Therefore, the specific Kasner transformation

k.« corresponding to the particular “golden-ratio” periodic orbit of T is k. = k4. The latter Kasner transformation
correspond to the element of S5 realizing the cyclic permutation (p1,p2,p3) — (p2, p3, p1) of Kasner exponents. The
order of such a cyclic transformation is p = 3 : kg4 o k4 o ky = identity. This shows that the golden-ratio initial
conditions above define a periodic orbit of the unquotiented billiard of order pm = 3 x 1 = 3. We recover the periodic
orbit of Eq. (1) made of three successive one-epoch eras between the middle of the three successive gravitational
walls a, ¢ and b.

Note that, in the general case of a starting value for ut of the type ([8I), an m-periodic orbit of the quotiented
billiard will contain m eras containing, successively, ni,na,...,n,, epochs (so that it contains nq + no + ... + ny,
epochs in all), while the lift of this periodic orbit onto the unquotiented big billiard will contain pm eras, containing
p(n1 +mn2+ ...+ ny) epochs in all.

Finally, let us note that the billiard periodic orbits discussed here are the projection down to hyperbolic space Hs of
Lorentzian-billiard motions in S-space which are not periodic there. Indeed, the spatial metric g;;(T,x) corresponding
to these dynamics is expressed in terms of the (s, rather than the projected 7’s, say (for the diagonal Bianchi IX
case of relevance to the big billiard)

gi; (T, x) = Z e 28" ¢a(x) e5(x), (8.8)

with
BUT) = p(T)y*(T), (8.9)

and
p(T) ~ exp(cT), (with ¢ > 0) (8.10)

where we used the result [17], [21] that A = In p is (asymptotically) a linear function of the coordinate time 7" defined
in Eq. (220). A periodic orbit of the big billiard is such that v*(T' 4+ nP) = v*(T') for n € N and some period P
in T-time. This periodicity “downstairs” in T-time does not correspond to a periodicity of the metric coefficients
9i;(T,x). It does not even correspond, as one might have thought, to a discrete self-similar symmetry of the metric
(i.e. g;j(T +nP,x) = A"g;;(T,x)) but to a rather different discrete transformation under which the “scale factors”
aq(T) = e #"(T) (ie. the BKL variables a, b, ¢) change as

ao(T + nP) = [aa(T)N (8.11)
with
A=eP >1. (8.12)

As the v*’s are confined by the big billiard walls to remain (non strictly) positive, the (periodic) scale factors a,(T")
stay < 1, and we see on Eq. (8I1) that (apart when they collide on a gravitational wall, where the corresponding
scale factor becomes equal to 1) the scale factors tend to zero super exponentially with the number n of periods.

IX. SMALL BILLIARD

Up to now we have been discussing the big billiard, with three walls a, b, c making up an ideal triangle in hyperbolic
space (see Fig. Rlor Fig. Bl). This billiard corresponds to the dynamics of the diagonal Bianchi IX model, i.e. the
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BGlu™ < -1, ut > ua

—1<u <-1/2, ut > ug
BRlu™ < —1, ug <u’ < uq
RG|-1<u™ < —1/2, ua <u’ <ug
—-1/2 <u” <0, ut > ua
RB|-1/2<u” <0, ut <ug

<u <1, ua<u+<u5
GRlu™ > 1, us <u’ <ug
GBl0<u™ <1, u' < uq

u > 1, u+<u5

TABLE VIIIL. The regions of the ™4™ plane, where the dynamics of the small billiard takes place.

a, b, c system of BKL. However, as recalled above, in the most general (non-diagonal, inhomogeneous) case, the use
of an Iwasawa decomposition of the spatial metric, as in Eq. (24)), leads to a closely related but slightly different
billiard, namely the small billiard made of one gravitational wall, and two symmetry walls. As in Fig. @ or Fig. B we
shall denote the (partial) gravitational wall as G (for gravity or green), and its symmetry walls as B (for blue) and
R (for red). More precisely, in the notation of the Poincaré model of Fig. Bl

e the G wall is the portion © = 0,v > 1 of the gravitational wall a = 0;
e the B wall is the portion u = —1/2,v > v/3/2 of the symmetry wall a = b;
e the R wall is the portion u? +v? = 1,—1/2 < u < 0 of the symmetry wall a = c.

Our aim in this section is to relate the dynamics within the small billiard to the dynamics within the big billiard
studied above. Somewhat surprisingly, though the two billiard tables are closely related, the two corresponding
dynamics cannot be straightforwardly mapped among themselves.

A. Dynamics of the unquotiented small billiard

We start by considering the dynamics within the three walls G, B, R of the small billiard, without introducing any
extra quotienting. Indeed, the small billiard table is already a fundamental domain of the six-fold symmetry group
S3 of the big billiard acting on Hs, therefore one could a priori expect that the small-billiard dynamics be equivalent
to the quotient of the big-billiard one by S3 (as studied above). Actually, this is not the case. We shall find that
the small billiard dynamics is not equivalent to the quotiented big billiard dynamics. The basic reason for this non
equivalence is that the small billiard table is obtained by quotienting only the configuration space (q space) of the big
billiard dynamics by S3, while the S3-quotienting we considered above was done in phase-space (g, p space). When
considering on its own the small billiard dynamics it is natural to introduce analogs of the notions introduced (by
BKL) in the big billiard context. First, we shall define an epoch of the small billiard as a geodesic segment (i.e. a
Kasner motion) connecting two successive walls. For example, a B — G epoch (or, for short, a BG epoch) is an epoch
starting from the blue (B) wall and ending on the green or gravitational (G) wall, etc.

The dynamics of successive epochs of the small billiard is similar to that of the big billiard. For instance, the
following sequence of epochs

R—-G—-B—-G—R (9.1)

corresponds to a succession of “collisions” on the G, B and G walls for a dynamics which started on the red wall and
returned on it. As in the big billiard case, it is convenient to parametrize each epoch by a point in the (u™,u™") plane,
with ™, resp. u™, parametrizing the end, resp. beginning, of the extended geodesic corresponding to the considered
epoch. A first difference with the big billiard case is that the regions of the u~u™ plane which describe the small
billiard dynamics are quite dissimilar to the corresponding big-billiard regions drawn in Fig. 6.

They are drawn in Fig. 10: they comprise six allowed regions, labelled as BG, BR, RG, RB, GR and GB, and a
large, connected forbidden (“vacuum”) region which occupies the central part of Fig. 6 (between the upper hyperbola-
like curves and the lower ones). The precise definition of the allowed regions is given in Table XII where we used a
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FIG. 9. The phase space of the small billiard in the =, u" parametrization. The regions RG and RB are delimited by solid
thick lines, the regions BR and GR are delimited by dashed thick lines. The Kasner intervals are indicated on both axes by
thin gray lines. The subdomains corresponding to the first few eras of RG and RB are also sketched.

short-hand notation for the following functions of u™:
1
W= —— 9.2

U pye (9-2a)
u” +2

=__- "= 9.2b

Y T 11 (9.2b)

+ =

As we see the boundaries of the various allowed (and forbidden) regions are made of segments of hyperbolas: u

(au™ +b)/(cu™ +d). This is different from the big billiard case, where all the boundaries corresponded to horizontal
or vertical lines (see Fig. [6). In addition, the forbidden region of the big billiard (white domains in Fig. [6]) was
made of three disconnected pieces. If we compare Fig. [0l and Fig. [0 we can roughly consider that the small-billiard
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u~uT picture, Fig. [@ is obtained by “morphing” the big-billiard one, Fig. 6, via a deformation where the By, box
becomes the BG one, B., — RG, By, — BR, B, — GR, B,y — RB and B, — G B, while the three disconnected
forbidden regions of Fig. 6 “percolate” among themselves into the connected central forbidden domain of Fig. [0l This
correspondence between the two pictures exists because, for instance, the extension to the big billiard of a small-
billiard BG epoch corresponds to a ba epoch, etc. However, contrary to what one might have naively expected, it is
not possible to find a globally-defined transformation vt = U(u~,ut), u=" = V(u~,u" (leaving invariant the 2-form
w, Eq. (53)) that maps Fig. [@ into Fig. @ The main obstacle to the existence of such a transformation is the fact
that the forbidden regions of the small billiard comprise (say in the Poincaré model) not only all the forbidden regions
of the big billiard (geodesics in the Poincaré half-plane that do not intersect the abe triangle), but, in addition, new
forbidden regions (geodesics that intersect the abe triangle but not its GBR subtriangle) that were allowed before.

Let us now briefly describe the dynamics of the small billiard, as seen in the u~u™ plane, Fig. It is similar to
the “hopscotch game” associated to Fig. Bl Namely, each initial point (¢~,u™) in the occupied regions of Fig. [ will
“jump” to another position according to the following rules:

e if the point (u™,u™") belongs either to the BG region or the RG one (so that it corresponds to an epoch starting
either on B or on R and ending by a collision on G) it will jump by a G-collision, i.e. by the transformation:

G wall (u=0):u* = Gu*) = —u* (9.3)
e if (u™,u™") belongs either to the RB or G B regions, it jumps by the transformation:

B wall (u= —%) cut = BuF) = —ut —1 (9.4)

e if (u™,u™") belongs either to the BR or GR regions, it jumps by the transformation:
Rwall (u? 402 =1):u* = Rut) =1/u®. (9.5)

Note that a point in some XY region will jump either to the Y X or the Y Z region (with {X,Y, Z} = {G, B, R}).
Note also that the “jumping rules” above are similar to, but different from, the corresponding A, B, C' jumping rules
of the big billiard, see Eqs. (512).

The small-billiard hopscotch game defined above leaves invariant the 2-form w, Eq. ([@40). However, as in the big
billiard case the integral of w over the allowed regions of the small billiard is logarithmically infinite. As in the big
billiard case, this logarithmic divergence comes (when writing w in terms of Birkhoff coordinates along the sides of
the billiard table) from the infinite hyperbolic length of the G and B walls that meet on the absolute. This suggests a
natural way of by-passing this divergence problem: to consider the (Poincaré) return map of the small billiard on its
red (R) wall, which is the only wall having a finite length. In other words, it is very natural, within the small billiard,
to collect together all the epochs corresponding to bounces between the G and B walls into small-billiard eras, and
to focus on the small-billiard era hopscotch dynamics which maps the beginning of such an era to the beginning of
the next one. For instance, a small-billiard era comprising four epochs was indicated in Eq. (@.]). For definiteness,

we shall define the first epoch of a small-billiard era as the epoch which starts on R (for instance the leftmost R — G

epoch in Eq. (@1))). Clearly, the era-hopscotch transformation uzi,, =f (uf) mapping the v coordinates of the first
epoch in an era to the coordinates of the first epoch in the next era, being obtained by composing the individual

G, B, R rules above, will be given by some diagonal fractional-linear transformation:

au+b
cu+d’

uid =Tsput, up =Tspuy, with Tspu=

(9.6)
and will leave invariant the restriction to the R wall of the usual two-form w, Eq. [@46). More precisely, the analog
of what was before the “first-epoch” domains (such as the Fp, subregion of By, represented in Fig. 7) become the
“R-leaving” domains. Contrary to what happened in the big-billiard case, we do not need here to delineate these
regions as subregions of the full small-billiard hopscotch court of Fig. 10. Indeed, by definition the era-starting region
of the small billiard consists of the union of the RG and RB regions in Fig. 10. The RG region represents the
first-epochs of the small-billiard eras that leave R towards the G wall, while the RB region represents the first-epochs
of the small-billiard eras that leave R towards the B wall. They are indicated by solid thick lines in Fig. 10. The
era-hopscotch rule Ts 5 ([@.6]) will map RGURB onto itself (mapping sometimes, say, RG to itself or to RB, etc.). Now,
the small-billiard era-map Tsp leaves invariant w on a space (RG U RB) on which w has a finite integral. Therefore
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we are now in the good conditions for applying ergodic theory, and considering that w defines a probability measure
on RG U RB. More precisely, one finds that

/ lw:lln 3 , / 1w:lln2 (9.7)
e 20 T2\ 2 520 T2

so that the normalized probability measure on RG U RB is

dut Adu~ 1 1 3 1 1

—_— ith —==In( = —In2=-1In3. 9.8

“wr—w)e T 2n<2)+2n 2 (98)
It would seem that, at this stage, we have obtained a small-billiard era-dynamics that is very similar to the

quotiented big-billiard era dynamics, i.e. the CB-LKSKS map T between the big-billiard first-epoch region Fy, to

itself. An apparent qualitative difference is the fact that the small-billiard era-starting region RGU RB is made of two

disconnected pieces. However, it is easily found that if we transform the RB region by the diagonal transformation

uy =—ug —1 (9.9)

(which leaves invariant w), the RB region will be mapped onto a new region say RB’, of the u~u™ plane which is
contiguous to RG (along its left boundary). Therefore, we can simply replace the RG U RB domain by a thicker,
connected domain RG U RB’ (delimited in Fig. [ by a dotted line), and consider the dynamics of the (suitably
transformed) era-hopscotch map Tsp from RGU RB’ onto itself. At this stage, we have an era-hopscotch map which
looks quite similar to the quotiented map T from Fj, onto itself. Moreover, if we look at the asymptotic region of
long eras, i.e. the u™ > 1 region of RG U RB’ (where the RB’ part came from the u™ < —1 region of RB) we see
that the shape of our new small-billiard first-epoch domain is simply

—l<u <0, ut > 1 (9.10)

In other words, it is asymptotically rectangular and, modulo a simple shift of ™ by one unit, seems to coincide with
the (exactly rectangular) quotiented big billiard domain F,.

This asymptotic coincidence (modulo some suitable identifications) between the small-billiard red-return map and
the quotiented big-billiard era-map T was physically expected because long eras of the big billiard (with u®™ > 1)
correspond to many bounces between the b and a walls which clearly (see Fig. 5 together with Fig. 3) will correspond
to roughly twice as many bounces between the B and G walls of the small billiard. Here, we have in mind folding
some, say, a — b — a oscillation of the big billiard back onto the small billiard by introducing a B “mirror” in the
middle of the ba corner, so that the big billiard bounces a — (B) — b — (B) — a (which do not “see” the B wall)
become transformed in small-billiard oscillations of the type G — B — G — B — (G, where we used the fact that,
deep into the corner, a and G coincide. However, this asymptotic (large u™) coincidence does not extend to the
small-u™ (short-era) region. In other words, there does not exist a w-preserving transformation of the u~u™ plane

T
that would map the RGURDB’ % RGURB' dynamics onto the Fp, — Fj, one. Indeed, if such a transformation
existed the w-area of FRU RB (or equivalently RG U RB’) would be equal to that w-area of Fy,. However, we have

1 1 1 1 1 1
/ —w—i—/ —w:—ln§+—1n2:—1n37éln2:/ —w. (9.11)
a2l T g2 T2 2T 2 . 2

However, this non equivalence does not mean that the small-billiard is unrelated to the big-billiard. [Actually,
we shall discuss in the following subsection a well-defined, accurate relation between the two billiards.] It mainly
means that the natural definition of eras in the small-billiard, as R-return maps, cannot be identified with the natural
definition of eras in the quotiented big billiard. It is true that, roughly speaking, the small-era definition (which
means, when viewed in the big billiard, that an era ends when one crosses one of the three symmetry segments
connecting the center of the disk to the middles of the three gravitational walls in Fig. ) signals the passage from an
oscillation in one of the corners of the abc billiard to an oscillation in another corner. However, the problem is that
the precise definition used in the big billiard of the transition between an ab-type oscillation to, say, a bc-one cannot
be equivalently characterized as the crossing of one of the three symmetry segments (similar to the R segment in
Fig. 2). This non equivalence essentially stems from the fact that a big-billiard epoch (going to a gravitational wall to
another gravitational wall) can, on its way, cross either 1, 2, or even 3 symmetry walls. And even if one considers the
three symmetry segments of the type of the R one in Fig. 2, some big-billiard epochs can cross either 1 or 2 R-type
symmetry segments. This non constancy in the number of crossing of symmetry walls or segments prevents one from



48

RG™, n odd |u” >1, v~ < —1/2, (ua,us,uy,ul)
RG™, n evenlu™ >1, u~ < —1/2, (UQ,U5,ZL71 Julth
RB™, n odd |[u" <0, u™ > —1/2, (ta,us, UL, U
RB™, n even|u® <0, u~ > —1/2, (ua,ug, U} ", UM")

TABLE IX. Small billiard hopscotch

being able to define, in a uniform manner, a transformation between big-billiard eras, and small-billiard ones, which
respects, say, the number of epochs during an era.

In addition to this non equivalence in the definition of eras, a technical inconvenience of the unquotiented small-
billiard era-hopscotch map defined above is that it is more difficult to find the generic, explicit expression of the
small-billiard era map Tsp, Eq. [@6]). Indeed, while it was easy to define the small-billiard epoch hopscotch map, see
Table [X] and Egs. @3), @), [@3) for any starting point u~u™, the corresponding definition of the small-billiard
era map Tsp (as the return map on the R wall) has remained rather implicit. Given some (v~ ,ut) € RGU RB one
needs to iterate the epoch map a certain number of times (which depends on the starting point) to find the explicit
expression of the red-return map Tsp. Actually, with some more effort it is possible to define T'sp nearly explicitly.
Let us indicate how. First, we can delineate the small-billiard analogs of the Ffu boxes of the big billiard, i.e. the
subregions of the RG and RB regions that will lead to (small-billiard) eras having some given number of epochs.
Let us call RG,, (resp. RB,) the sub-region of RG (resp. RB) which provides a starting point for an n-epoch era.
Here, as it is easily seen, n > 3 for RG and n > 2 for RB. [For instance, any RG-starting era must go through
R — G — B — R before returning to R.] These regions are defined by the domains described in Table [Xl In this
table the last column lists the equations of the four curves that delimit, for each n, the corresponding era-starting
subdomains. These curves are given by equations of the type u™ = f(u™), where the functions f(u~) are either the
functions uq(u™), ug(u™) defined in Egs. ([@.2), or the following functions

° un — 1 72u7n+2u7+n272n+5,
b 2 —2u—+n—1 I

P 1 —4n+7—2u7n+4u7+n2 .
n - 2 —2—2u—+n ’
b__ _12u n—2u"+n?-2n+5.

o Uy=—3 2u-Fn—1 ;
n __ _l3+2u7n+2n2

® Utl - 2 2u— +n

Some of the corresponding regions, for n < 5, are represented in Fig. @ As we see, contrary to the big-billiard case
where the boundaries between the ny boxes where always horizontal (i.e. of the type u™ = const), here the boundaries
between RG,, or RB, boxes are curved. This contributes to the difficulty of writing an explicit expression for the
red-return map Tsp. Anyway, given these results, we can semi-explicitly defined Tsp by the following algorithm.
Given some red-starting point (u~u™), one must first find to which box, RG™ or RB"™ it belongs by using Table [X]
Then, knowing the type (RG or RB), and the length (n) of the era starting from (u~u™), one can write Tsp by
composing n — 1 transformations of the G or B type, and one final R transformation. Let us give an explicit example.

If (u”u") € RG3, we will have
Tsp(u~,u") = RoBoG(u ,u"), (9.12)

where the explicit expressions of the R, B and G transformations have been given in Eqgs. (@3), (@4), [@3) above.

Collecting all these ingredients together, it is easy to evaluate the probability Prx» for a small-billiard era RX to
contain a certain number n of epochs. These probabilities are obtained by integrating the w form over the suitable
domain, as explained in Table [Xl Because the domains are not defined by straight lines, but by hyperbolas, the
explicit expression for such probabilities would be somewhat awkward to write down. Nevertheless it is nevertheless
always possible and straightforward to calculate it.

As the most direct example, we evaluate the probability Prpg=, i.e. the probability for a RB era to consist of 2 epochs.
As we see from Fig. [@ and Table [X] the subregion of RB corresponding to this case is the simplified domain

0<u” <o¢, ul<u’ <ug, (9.13a)
p<u” <1, uy<ut <ug, (9.13b)
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where u? = —(u™ +2)/(u~ + 1), and u, = u? at u~ = ¢. The probability then reads

[ar [t [ [ )]4 .11

We remark that, while, in the BKL case, the probability for an era to consist of k epochs was a monotonically
decreasing function of &, in the small billiard, this probability is a non-monotonic function of k: it increases for the
lowest values of k£ and then starts to decrease. Furthermore, the probabilities Prp/gn for an era to contain n epochs
in the RG U RB’ domain can also be investigated. The most interesting information is obtained in the asymptotic
region for large u™, as described in the above. For the RG region, in this asymptotic regime, the u~ boundaries can
be considered as vertical straight lines, i.e. —1/2 < u~ < 0, and the vt boundaries can be considered as horizontal
straight lines, as given by the asymptotic behavior of the functions uy — (n —1)/2, uly — (n — 2)/2. On the other
hand, the probabilities for the region RB’ are obtained applying the transformation (O.I0]) to the appropriate functions
in Table [X] For large values of u™, the region RB’ is delimited by vertical straight lines v~ = —1 and v~ = —1/2,
and the horizontal lines delimiting the n-epoch era starting region are u™ = (n —2)/2 and u™ = (n — 3)/2.

This way, the probability, say Prp/gn, to obtain a n-epoch era starting from the RG U RB’ extended region is given
by the integral of the w form over the appropriate domain, i.e.:

PRBQ—C

1 2 0 1 2 —1/2 1 1 (n—1)2
Prprgn = d*/ d‘7+/ d+/ du~ = 21 :
e 33 /nTQ ! -1/2 ! (ut —u™)? =g -1 ! (ut —u=)? 7In3 " n(n + 2)

i (9.15)

For large values of n one finds

4 1
PRB’G” ~ 1—

—. 9.16
n3n2 ( )

Note that the result ([@QI6]) differs from the corresponding quotiented big-billiard (or BKL) result which is P,, ~ ﬁ L.
ni

This difference shows that the natural notion of small-billiard era cannot be precisely mapped on the usual notion of
BKL eras.

B. Quotiented small billiard

The direct, seemingly natural red-return map approach to the small billiard discussed in the previous subsection
leads to a rather complex description of its dynamics. In particular, the fact that the n-epoch boxes RG, and
RB,, defined in the previous subsection have curved boundaries would make it difficult to define a small-billiard
analog of the nice continued-fraction BKL description of the (big billiard) era dynamics. Here, we wish to show how,
starting from the definition of the small-billiard, one can recover its deep relation with the big billiard, and uncover
the technically simple BKL-like description of its dynamics. To start with, let us show several ways of relating the
small-billiard dynamics to the big-billiard one. First, we can see this relation by using a graphical representation of
the big-billiard dynamics which has been introduced by BKL. Namely, we mean the plot of the three logarithmic
scale factors @ = ' = —lna, f = 82 = —Ilnb, v = 52 = —Inc as functions of 7. Modulo a conventional change
of sign in the definition of a, 8,7 (introduced here to ensure that «, 3, are always > 0), this representation was,
e.g., used in Fig. 2 of the review @] In terms of this graphical representation, the dynamics of the variables
o, B3, of the small billiard is simply related to that of the variables a, 3,~ of the big billiard in the following way:
starting from a BKL graph of a(7), 8(7), v(7) [in which the three lines a(7), 8(7), v(7) can cross and keep (nearly)
constant slopes except when one of them touches, from above, the horizontal axis (gravitation wall)] one can define the
corresponding graph of o/(7), 5/(7), 7/ (7) simply by defining o/(7), for each 7, as /(1) = inf[a(7), 5(7),v(7)], v/ (1)
as v/ (1) = sup|a(7), B(7),~v(7)] and f’(7) as the remaining middle curve among the three curves a(7), 5(7), 7(7). In
other words, o/(7) is defined as the lower envelope of the three original «, 8, curves, v'(7) the upper envelope, and
B'(7) the intermediate curve. The three curves o/(7), 5'(7), 7/ (1) satisfy o/(7) < /(1) < /(1) and keep constant
slopes expect when either two of them “collide” (symmetry wall), or when the lower one, i.e. o/(7) “collides” with the
o/ = 0 axis (o/-gravitational wall). One easily sees that o/, 3’,7" are the logarithmic scale factors of a small billiard
(with gravitational wall o/ = 0 and symmetry walls o/ = 3’ and 8’ = +/). In other words, a suitable (time-dependent)
re-ordering of the three big-billiard variables «, 8,~ transforms the big-billiard dynamics in the small-billiard one.
Reciprocally, starting from the graph giving the three curves o/ (7), 8'(7), 7/(7) of a small-billiard dynamics one can,
starting from an arbitrary identification of a, 8,7 with o/, 3,7’ at some initial time, extend the definition of the
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a(T), B(1), v(7) curves by the condition that the only changes of slopes of these curves happen when one of them
touches the zero axis. This graphical reasoning shows that there is an essential equivalence between the two billiards.
Note in passing that this graphical approach can also clarify why the definition used in the previous subsection of the
red-return eras introduces an artificial difference between the two billiards. Indeed, the red-return eras are defined
by the “collisions” 3'(7) = 4/(7) between the two upper curves. By contrast, the usual big-billiard eras are defined
by a different condition consisting in finding when the “oscillations” between the crossing curves «(7) and 5(7) cease
to give rise to oscillations between either az and v or 5 and . The difference between these two definitions of “eras”
give rise to the technical differences found in the previous subsection.

A second way of relating the two dynamics consists of introducing some further quotienting of the small billiard.
Explicitly, if we replace the small billiard by its kaleidoscopic version (as explained above in the big billiard case),
i.e. by replacing the single moving ball of the small billiard by its six images with respect to the symmetry walls, we
end up with a quotiented small billiard where the symmetry walls have no effect (because of the equivalence of the
Ss orbits) and where the only effective collisions take place on the gravitational walls. Finally, we conclude that the
symmetry-wall-quotiented small-billiard coincides with the symmetry-wall-quotiented big-billiard. This shows again
that, modulo some discrete relabellings, the two billiards are essentially identical.

X. BRIEF CONCLUDING REMARKS

In this work, we have analyzed several aspects of “chaotic” cosmological billiards, in (3+ 1)-dimensional gravity, and
of their statistical behavior as one approaches the cosmological singularity. We have reviewed how the dynamics of
the diagonal degrees of freedom (logarithmic scale factors 8%) of the spatial metric near the singularity is conveniently
described by Lorentzian, or (after projection) hyperbolic-space billiards. We emphasized that the hyperbolic-space
billiard table for the usual, Bianchi IX abe system is an ideal triangle (with three vanishing angles), which contains six
copies of the “small billiard” that is naturally “related” to the Weyl chamber of an hyperbolic Kac-Moody algebra,
see Fig. We reviewed several useful facts about integral invariants in Hamiltonian systems, and showed how their
application to cosmological billiards allowed one to derive several forms and measures that are invariant under both the
continuous and the discrete billiard dynamics. Contrary to previous treatments of cosmological billiards (starting with
the classic work of Belinski, Khalatnikov and Lifshitz, BKL), we did not use the six-fold symmetry group (S3) of the
Bianchi IX a, b, ¢ system to symmetry-quotient its dynamics. This led us to defining a richer “hopscotch dynamics”
between several sub-regions of the two-dimensional phase-space (u~,u™) parametrizing successive Kasner epochs.
Several aspects of this hopscotch dynamics have been discussed in detail: (i) the existence of a non-normalizable
measure on the two-dimensional (u~,u™) hopscotch court; (ii) the existence of a non-normalizable measure on the
single variable u™, i.e. on the Kasner circle parametrizing the exponents of successive Kasner epochs; (iii) the existence
of a normalizable measure on the subset of the hopscotch court describing the first epochs of successive eras; (iv) the
link between the unquotiented hopscotch dynamics, and its quotiented version, equivalent to the usual BKL dynamics.
Several statistical features of the hopscotch dynamics have been discussed, e.g. (1) the joint probability P, », for
two successive eras to have specified lengths n; and ns, and the fact that the random variables n; and no are not
statistically independent; (2) the “anisotropic” behavior of the hopscotch dynamics, i.e. the fact that the successive
corners, between which the billiard ball representing the metric bounces, are statistically correlated. We briefly
discussed the link between periodic orbits in the unquotiented hopscotch court, and the usually discussed periodic
orbits in the quotiented, BKL description. Finally, we discussed the relation between the billiard dynamics within the
full ideal triangle associated with the (diagonal) Bianchi IX model, and the dynamics between the “small billiard”
that naturally arises in the treatment of the gravitational dynamics that uses an Iwasawa decomposition of the spatial
metric.
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