
ar
X

iv
:1

11
0.

29
38

v1
  [

gr
-q

c]
  1

3 
O

ct
 2

01
1

Energy versus Angular Momentum in Black Hole Binaries
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Using accurate numerical relativity simulations of (nonspinning) black-hole binaries with mass
ratios 1 : 1, 2 : 1 and 3 : 1 we compute the gauge invariant relation between the (reduced) binding
energy E and the (reduced) angular momentum j of the system. We show that the relation E(j) is
an accurate diagnostic of the dynamics of a black-hole binary in a highly relativistic regime. By com-
paring the numerical-relativity ENR(j) curve with the predictions of several analytic approximation
schemes, we find that, while the usual, non-resummed post-Newtonian-expanded EPN(j) relation
exhibits large and growing deviations from ENR(j), the prediction of the effective one-body for-
malism, based purely on known analytical results (without any calibration to numerical relativity),
agrees strikingly well with the numerical-relativity results.

PACS numbers: 04.30.Db, 04.25.Nx, 95.30.Sf, 97.60.Lf

Introduction. – A ground-based network of interfer-
ometric gravitational wave (GW) detectors is currently
being upgraded and is expected, thanks to an improved
sensitivity, to detect, within a few years, the GW sig-
nals emitted during the inspiral and merger of compact
binaries. The realization of this exciting observational
prospect depends, however, on our theoretical ability to
accurately compute, within Einstein’s theory of general
relativity, the motion of compact binaries and its associ-
ated GW emission. Recent developments have made it
clear that the most efficient way to theoretically under-
stand the late stages of the dynamics of compact bina-
ries is to combine the knowledge coming from analytical
relativity techniques, such as traditional post-Newtonian
(PN) expansions [1–4], or the newer effective-one-body
(EOB) formalism [5–8], with the knowledge coming from
numerical relativity (NR) simulations (see [9] for a recent
review). Here, we shall restrict our attention to binaries
composed of two nonspinning black holes of masses m1

and m2. Our technique can, however, be applied to more
general systems.

The aim of this Letter is to present how NR data can
be used to explore, in a quite direct manner, the dy-

namics of black-hole binaries, by computing the relation
between the total energy, E , of the binary system, and
its total angular momentum, J . We compare the (gauge-
invariant) relation E(J ) extracted from NR simulations
to the corresponding analytical predictions from PN the-
ory [10], and from EOB theory [7]. We show that, dur-
ing the inspiral (at least up to the last stable orbit) the
gauge-invariant relation E(J ) is essentially independent
of the current uncertainties in the analytic modelling of
the emitted gravitational waveform, and can therefore in-
form us rather directly on the conservative dynamics of
a black-hole binary. [This aspect of our work is akin to
a recent study of periastron advance in black-hole bina-
ries [11].]

Numerical relativity. – Our results are based on new,
accurate numerical simulations of (nonspinning) black-

hole binaries, which combine a 3 + 1 Cauchy-evolved
spacetime (using a variant of the “BSSNOK” evolution
system, with moving punctures and an extended wave
zone [12, 13]) with a Cauchy-characteristic extraction
(CCE) technique [14, 15]. The initial data for the 3 + 1
evolution are conformally flat, Bowen-York Cauchy data,
with the initial position and linear momenta of the punc-
tures determined from a 3PN-accurate dynamical evolu-
tion starting from a large initial separation [16]. These
initial data lead to orbits having an eccentricity e ∼ 10−4.
The CCE technique yields unambiguous estimates of the
waveforms at infinity, without the need to extrapolate
data extracted at finite radii. Here, we consider three
simulations with mass ratios q ≡ m2/m1 equal to 1, 2
and 3. The corresponding initial Arnowitt-Deser-Misner
(ADM) total energy, E0 ≡ EADM, total angular momen-
tum, J0 ≡ JADM (oriented along the z axis), and eccen-
tricity are given in Table I.

We use these numerical simulations to compute the
sequence of instantaneous values (at the retarded time t),
E(t), J (t), of the system energy and angular momentum
during the inspiral, by using the laws of conservation of
E and J between the binary system and the emitted
radiation. Namely, we compute

ENR(t) = E0 −∆ENR
rad (t) , (1)

J NR(t) = |J0 −∆J
NR
rad (t)| , (2)

where the radiated energy and angular momentum, be-
tween the initial (retarded) time t0 and time t, are com-
puted from the multipole moments NNR

ℓm of the NR (com-
plex) “news function” at infinity (we generally use units
such that G = c = 1):

∆ENR
rad (t) =

1

16π

ℓmax
∑

ℓ,m

∫ t

t0

dt′|NNR
ℓm (t′)|2 , (3)
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TABLE I. Properties of the initial state of the NR simulations.

q ν e E
NR
0 J

NR
0

1 0.25 1.5× 10−4 0.9905197 0.9932560

2 2/9 1.2× 10−4 0.9908980 0.8559960

3 0.1875 7.6× 10−4 0.9933905 0.7675068

∆J NR
z rad(t) =

1

16π

ℓmax
∑

ℓ,m

∫ t

t0

dt′mℑ
[

hNR
ℓm (t′)(NNR

ℓm (t′))∗
]

.

(4)
Here hNR

ℓm is the NR multipolar metric waveform,
Nℓm(t) ≡ dhℓm(t)/dt and ℓmax = 8. We do not write here
the expressions for the radiative losses of the other com-
ponents Jx, Jy of J . We took them into account, though
they turn out to have a negligible effect on the computa-
tion of J NR(t). While ∆ENR

rad only depends on the news
function N(t) (which is a direct output of the CCE code),
the angular momentum loss also depends on the metric
waveform h(t). We computed (for each multipole) h(t)
from Ψ4(t) = dN/dt = d2h/dt2 by the frequency-domain
integration procedure of [17] (with a low-frequency cut-
off ω0 = 0.032/(m1+m2)). In contrast to most studies of
gravitational waveforms, we consider here the full time
development of the GW emission from the start of the
NR simulation, i.e., we crucially take into account the
losses associated with the “junk radiation”, viz the ini-
tial burst of radiation associated to the relaxation of the
unphysical Bowen-York-type initial data, before the radi-
ation settles down to a quasi-stationary inspiral pattern.
Finally, we replace the two t-parametrized series

ENR(t), J NR(t) by the corresponding unparametrized

curve ENR(J ). One example (for the mass ratio q = 1)
of our computations of the relation E(J ) is shown in
Fig. 1. Here and below we work with the binding en-
ergy per reduced mass, E ≡ (E −M)/µ, and the dimen-
sionless rescaled angular momentum j ≡ J /Mµ, where
M ≡ m1 + m2, µ ≡ m1m2/(m1 + m2). Fig. 1 com-
pares the NR relation ENR(j) to the predictions made
by two different analytical formalisms: PN theory and
EOB theory (as explained in detail below). The inset
shows the very significant effect of the energy loss due to
the junk radiation emitted at the beginning of the simu-
lation. Note that j decreases during the inspiral.
Post-Newtonian theory. – The gauge-invariant relation

E(j) has been computed in PN theory at the second post-
Newtonian (2PN) approximation in [18] and at the third
post-Newtonian (3PN) one in [10]. It has the structure

EPN(j) = −
1

2j2

[

1 +
c1(ν)

c2j2
+

c2(ν)

c4j4
+

c3(ν)

c6j6

]

, (5)

where cn(ν) are polynomials (of order n) in the sym-
metric mass ratio ν ≡ µ/M ≡ m1m2/(m1 +m2)

2. [See
Eq. (5.1) of [10], completed by [3] for the final determina-
tion of the 3PN dynamics, viz ωstatic = 0.] The “Taylor”

FIG. 1. Equal-mass case: comparison between four E(j)
curves. The standard “Taylor” PN curve shows the largest
deviation from NR results, especially at low j’s, while the
two (adiabatic and nonadiabatic) 3PN-accurate, non-NR-
calibrated EOB curves agree remarkably well with the NR
one.

(i.e., nonresummed) EPN(j) curve is shown in Fig. 1 (for
q = 1) as a dashed line.

Effective-one-body theory. – The EOB formalism
maps the conservative dynamics of a two-body system
onto the dynamics of one body of mass µ in a sta-
tionary and spherically symmetric “effective” metric,
ds2eff = −A(r; ν)dt2 + (A(r; ν)D̄(r; ν))−1dr2 + r2(dθ2 +

sin2 θdϕ2). The EOB potentials A and D̄ have been
computed at the 2PN approximation in [5], and at
the 3PN approximation in [7] (at 3PN one must com-
plete the geodesic dynamics by terms, Q(p), quartic
in momenta). Here, we use the 3PN-accurate ver-
sion of the EOB Hamiltonian, as defined in 2000 [7]
(with ωstatic = 0 [3]), i.e., with the effective-metric
potentials D̄(u) ≡ 1 + 6νu2 + (52 − 6ν)νu3, and
A(u) ≡ P 1

3

[

1− 2u+ 2νu3 +
(

94
3
− 41

32
π2

)

νu4
]

, where

u ≡ GM/(c2r), and where P 1
3 denotes constructing a

(1, 3) Padé approximant, so that A(u) is a rational func-
tion of u of the form (1 + n1u)/(1 + d1u+ d2u

2 + d3u
3).

In addition to the Hamiltonian dynamics defined by
A(u), D̄(u) (and Q(u, p)), the EOB formalism defines
a radiation-reaction force Fϕ. Here, we use the “newly
resummed” radiation reaction defined by [19, 20], with
3+2-PN accurate Taylor ρℓm’s, and without incorporat-
ing any “next-to-quasi-circular” (NQC) correction factor.
The main point is that the resulting radiation-reaction-
driven EOB dynamics uses only information that has
long been analytically known, and does not rely on
any information deduced from comparing EOB wave-
forms to NR waveforms. The resulting (nonadiabatic)
3PN-accurate, radiation-reaction driven EOB dynamics
leads to the curve EEOB3PN(j) shown in Fig. 1 as a red
solid line. In addition, we also show the adiabatic EOB
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FIG. 2. Differences between seven EX(j) curves and
EEOB3PN(j), for the three mass ratios considered. From top

to bottom the labelling is: X = PN, EOBwo NQC

5PN , EOBNQC

5PN ,

NR, EOB3PN (baseline), EOBNQC

3PN and EOBadiabatic
3PN . While

the PN curve exhibits the largest deviations, all EOB curves
remain close to the NR one during the full inspiral, especially
the 3PN-accurate, non-NR-calibrated one.

EEOBadiabatic
3PN (j) curve defined by considering the sequence

of minima in r (for a fixed j) of the (3PN-accurate)
EOB Hamiltonian HEOB3PN(r, j). This adiabatic curve
only depends on the potential A(u) and has a cusp at
the last stable orbit (LSO), jLSO. The vertical distance

EEOB3PN(j) − EEOBadiabatic
3PN (j) essentially represents the

kinetic energy linked to the (slow) inspiralling radial mo-
tion.
Results of the triple comparison NR-PN-EOB. – Fig. 1

already exhibits several of the new results of our study:
(i) The NR E(j) curve starts at large j’s (i.e., large radial
separations) close to the PN-predicted EPN(j) curve, but
then visibly deviates more and more from it during the
inspiral [conventionally ending at the adiabatic(-EOB-
defined) LSO, marked by a dashed vertical line]. (ii) By
contrast the NR E(j) curve is so close, on the scale of
Fig. 1, to the (3PN-accurate, nonadiabatic) EOB predic-
tion that their difference is barely visible not only during
the inspiral, but also during the subsequent plunge. [The
leftmost red vertical line in Fig. 1 denotes the EOB “light
ring”, viz the end of the analytical inspiral-plus-plunge
dynamics, and the beginning of the EOB description of
the merger and ringdown.] (iii) On the scale of Fig. 1, one
cannot see, during the inspiral, the difference between the
two EOB curves (nonadiabatic versus adiabatic). (iv) In
addition, when zooming on the beginning of the ENR(j)
curve (see inset), we find that, although it coincidentally

starts near the PN curve, it emits exactly the amount of
junk radiation required to relax to the EOB prediction.
When considering the mass ratios q = 2 and q = 3, we
obtained close analogs of Fig. 1, which exhibit exactly
the same results (i)–(iv).

In order to refine and quantify these results, we hence-
forth zoom on the small deviations between the var-
ious E(j) curves by using as horizontal baseline the
(nonadiabatic, 3PN-accurate) EOB curve, i.e., by plot-
ting the differences EX(j)−EEOB3PN (j), where the label
X denotes either NR, PN, EOB3PN

adiabatic, or other EOB
curves defined below. When focussing on the inspiral
dynamics (above the LSO), this leads to NR-EOB dif-
ferences of order 10−4, i.e., 300 times smaller than the
≃ 3× 10−2 change in the absolute value of E during the
inspiral, and 50 times smaller than the PN–NR differ-
ence ∼ 5 × 10−3 at the LSO. To discuss the meaning of
the small NR-EOB differences, it is important to esti-
mate the error attached to the NR ENR(j) curve. We
estimate an error on ENR(j) by measuring the effect
of changing, in turn, all the NR elements entering the
computation of the losses Eqs. (3)-(4): (i) we replaced
the CCE news by either the time integral of the cur-
vature waveform Ψ4(t) = dN(t)/dt extracted at a large
radius in the 3+ 1 code, or a Regge-Wheeler-Zerilli met-
ric waveform output by the latter code; (ii) we reduced
the maximum multipolar order ℓmax used in the sums in
Eqs. (3)-(4) from the default value ℓmax = 8 to ℓmax = 7
and ℓmax = 6; (iii) we varied the low-frequency cut-
off Mω0 used in the frequency-domain computation of
hℓm(t) from Ψℓm

4 (t) [17] between about 0.01 and 0.04;
(iv) we computed hℓm(t) from Nℓm(t) instead of Ψℓm

4 (t);
(v) we explored the sensitivity to changes of the initial
integration time t0 in Eqs. (3)-(4); (vi) we replaced the
high resolution NR data used as a baseline by medium
resolution ones.

Adding the effect of all these changes, and focussing
on the crucial change in the energy loss ∆Ejunk linked
to the initial burst of junk radiation, leads to a con-
servative error bar around ENR(j) indicated by a gray-
shaded region in Fig. 2. In that figure, we plot the dif-
ferences EX(j) − EEOB3PN(j) for q = 1, 2 or 3, and for
six different labels X: NR (solid, thick, black curve), PN
(upper, dashed blue curve), EOBadiabatic

3PN (lower, dash-

dotted magenta curve), EOBNQC
3PN (black, dashed curve,

just below the baseline), EOBNQC
5PN (upper solid red curve)

and EOBwoNQC
5PN (dashed red curve, close to the previous

one). Here, as above, the EOB baseline EEOB3PN (corre-
sponding to the horizontal axis), as well as its adiabatic,

EOBadiabatic
3PN , and NQC-completed, EOBNQC

3PN , avatars,

use the 3PN-accurate EOB potentials of [7]. [EOBNQC
3PN

is defined according to the methods introduced in [20] by

adding a factor fNQC
22 (a1, a2) in the ℓ = m = 2 mode,

tuned to the maximum of the NR modulus.] Finally,

EEOB
NQC

5PN and EEOB
woNQC

5PN use the NR-calibrated, 5PN

potential A5PN(u) = P 1
5 [A

Taylor
3PN (u) + νa5u

5 + νa6u
6],

for (a5, a6) = (−6.3722, 50) [which lies in the middle
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of the “good region” of Ref. [20]], either with (NQC)
or without (wo NQC) NQC corrections. Figure 2 al-
lows us to refine and strengthen the conclusions drawn
above from Fig. 1, namely: (i) The PN-predicted EPN(j)
curve disagrees strongly with the NR results; (ii) The
3PN-accurate nonadiabatic EOB curve, EEOB3PN (i.e.,
the horizontal baseline) is remarkably close to the NR
results during the entire inspiral, with deviations that
are smaller than the “2σ” level. (iii) The inclusion of
nonadiabatic effects is important in continuing to ensure
this agreement during the late inspiral (see the difference

EEOBadiabatic
3PN − EEOB3PN). (iv) The inclusion of the NR-

fitted NQC correction has a negligible effect during the
inspiral: EwoNQC − ENQC . 2 × 10−5. (v) The EOB
predictions based on the NR-calibrated, 5PN potential
A5PN(u) of Ref. [20] (with or without NQC corrections),
are less close (especially for q = 1 and 3) to the NR result
than the purely analytical 3PN-accurate EOB prediction.
We verified that the same conclusion holds for the NR-
calibrated 5PN EOB potential suggested in [21].
Summary. – We showed how to combine the knowledge

of the initial (ADM) energy and angular momentum of
a black-hole binary with accurate NR computations of
its subsequent GW emission (including the initial burst
of junk radiation), to derive the relation between the
rescaled binding energy E ≡ (E −M)/µ and the rescaled
angular momentum j = J /(Mµ). Though the relation
E(j) does include nonadiabatic effects (linked to the ra-
dial kinetic energy during the inspiral, and thereby to the
radiation reaction Fϕ) we have verified that the analytic
uncertainties in the description of Fϕ were essentially
negligible during the inspiral, down to, at least, the LSO.

This makes the NR-acquired knowledge of the E(j) curve
an accurate diagnostic of the conservative dynamics of a
black-hole binary in a highly relativistic regime. By com-
paring ENR(j) to various analytic descriptions of binary
dynamics, we found that, while the usual, nonresummed
3PN-expanded relation EPN(j) exhibits large and grow-
ing deviations with respect to ENR(j), the EOB formal-
ism, based purely on known analytical results (without
NR calibration) predicts a relation EEOB(j) which is re-
markably close to ENR(j). We found that the various ex-
istent NR-calibrated EOB formalisms fare somewhat less
well than the purely analytic 3PN-accurate EOB formal-
ism in agreeing with the NR results. This clearly shows
that the NR curve ENR(j) contains valuable information
about the conservative dynamics of the binary during the
inspiral that can usefully complement the information
contained in the waveform (which mixes in an intimate
manner dynamical and radiative effects). We leave to fu-
ture work a detailed discussion of the information that
can be extracted from ENR(j).
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