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Using accurate numerical relativity simulations of (nonspinning) black-hole binaries with mass
ratios 1: 1, 2: 1 and 3 : 1 we compute the gauge invariant relation between the (reduced) binding
energy F and the (reduced) angular momentum j of the system. We show that the relation E(j) is
an accurate diagnostic of the dynamics of a black-hole binary in a highly relativistic regime. By com-
paring the numerical-relativity E~"(j) curve with the predictions of several analytic approximation
schemes, we find that, while the usual, non-resummed post-Newtonian-expanded EPN(j) relation
exhibits large and growing deviations from ENT(j), the prediction of the effective one-body for-
malism, based purely on known analytical results (without any calibration to numerical relativity),
agrees strikingly well with the numerical-relativity results.

PACS numbers: 04.30.Db, 04.25.Nx, 95.30.Sf, 97.60.Lf

Introduction. — A ground-based network of interfer-
ometric gravitational wave (GW) detectors is currently
being upgraded and is expected, thanks to an improved
sensitivity, to detect, within a few years, the GW sig-
nals emitted during the inspiral and merger of compact
binaries. The realization of this exciting observational
prospect depends, however, on our theoretical ability to
accurately compute, within Einstein’s theory of general
relativity, the motion of compact binaries and its associ-
ated GW emission. Recent developments have made it
clear that the most efficient way to theoretically under-
stand the late stages of the dynamics of compact bina-
ries is to combine the knowledge coming from analytical
relativity techniques, such as traditional post-Newtonian
(PN) expansions , or the newer effective-one-body
(EOB) formalism |, with the knowledge coming from
numerical relativity (NR) simulations (see [d] for a recent
review). Here, we shall restrict our attention to binaries
composed of two nonspinning black holes of masses m;
and my. Our technique can, however, be applied to more
general systems.

The aim of this Letter is to present how NR data can
be used to explore, in a quite direct manner, the dy-
namics of black-hole binaries, by computing the relation
between the total energy, &£, of the binary system, and
its total angular momentum, 7. We compare the (gauge-
invariant) relation £(J) extracted from NR simulations
to the corresponding analytical predictions from PN the-
ory [10], and from EOB theory [7]. We show that, dur-
ing the inspiral (at least up to the last stable orbit) the
gauge-invariant relation £(7) is essentially independent
of the current uncertainties in the analytic modelling of
the emitted gravitational waveform, and can therefore in-
form us rather directly on the conservative dynamics of
a black-hole binary. [This aspect of our work is akin to
a recent study of periastron advance in black-hole bina-
ries [11].]

Numerical relativity. — Our results are based on new,
accurate numerical simulations of (nonspinning) black-

hole binaries, which combine a 3 + 1 Cauchy-evolved
spacetime (using a variant of the “BSSNOK” evolution
system, with moving punctures and an extended wave
zone m, |E) with a Cauchy-characteristic extraction
(CCE) technique [14, [15]. The initial data for the 3 + 1
evolution are conformally flat, Bowen-York Cauchy data,
with the initial position and linear momenta of the punc-
tures determined from a 3PN-accurate dynamical evolu-
tion starting from a large initial separation HE] These
initial data lead to orbits having an eccentricity e ~ 1074
The CCE technique yields unambiguous estimates of the
waveforms at infinity, without the need to extrapolate
data extracted at finite radii. Here, we consider three
simulations with mass ratios ¢ = ma/m1 equal to 1, 2
and 3. The corresponding initial Arnowitt-Deser-Misner
(ADM) total energy, & = Eapm, total angular momen-
tum, Jo = Japwm (oriented along the z axis), and eccen-
tricity are given in Table I.

We use these numerical simulations to compute the
sequence of instantaneous values (at the retarded time t),
E(t), J(t), of the system energy and angular momentum
during the inspiral, by using the laws of conservation of
& and J between the binary system and the emitted
radiation. Namely, we compute

EN(t) = & — AELG (1), (1)
TER() = |To — ATmd (#)], (2)

where the radiated energy and angular momentum, be-
tween the initial (retarded) time ¢, and time ¢, are com-
puted from the multipole moments N\t of the NR (com-
plex) “news function” at infinity (we generally use units
such that G = c=1):
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TABLE I. Properties of the initial state of the NR simulations.

q v e &R R

1 0.25 1.5 x 1074 0.9905197 0.9932560
2 2/9 1.2x 1074 0.9908980 0.8559960
3 0.1875 7.6 x 1074 0.9933905 0.7675068

Lmax  pt
1 *
AT = 7= >, [ drmd NI E) ]
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(4)
Here thWP} is the NR multipolar metric waveform,
Nom (t) = dhim (t)/dt and £y = 8. We do not write here
the expressions for the radiative losses of the other com-
ponents J, J, of J. We took them into account, though
they turn out to have a negligible effect on the computa-
tion of JNR(¢). While AEXR only depends on the news
function N (t) (which is a direct output of the CCE code),
the angular momentum loss also depends on the metric
waveform h(t). We computed (for each multipole) h(t)
from Wy(t) = dN/dt = d*h/dt? by the frequency-domain
integration procedure of [17] (with a low-frequency cut-
off wg = 0.032/(m1+mz)). In contrast to most studies of
gravitational waveforms, we consider here the full time
development of the GW emission from the start of the
NR simulation, i.e., we crucially take into account the
losses associated with the “junk radiation”, viz the ini-
tial burst of radiation associated to the relaxation of the
unphysical Bowen-York-type initial data, before the radi-
ation settles down to a quasi-stationary inspiral pattern.
Finally, we replace the two t¢-parametrized series
ENR(t), JNR(t) by the corresponding unparametrized
curve ENR(7). One example (for the mass ratio ¢ = 1)
of our computations of the relation £(J) is shown in
Fig. 1. Here and below we work with the binding en-
ergy per reduced mass, E = (£ — M)/u, and the dimen-
sionless rescaled angular momentum j = J /M pu, where
M = my 4+ ma, p = mima/(my1 + ms). Fig. 1 com-
pares the NR relation ENR(j) to the predictions made
by two different analytical formalisms: PN theory and
EOB theory (as explained in detail below). The inset
shows the very significant effect of the energy loss due to
the junk radiation emitted at the beginning of the simu-
lation. Note that j decreases during the inspiral.
Post-Newtonian theory. — The gauge-invariant relation
E(j) has been computed in PN theory at the second post-
Newtonian (2PN) approximation in [18] and at the third
post-Newtonian (3PN) one in [10]. It has the structure

) 1 a)  e(v)  es(v)
PN/ _ 1 2 3
E (3)__2]_-2 1 22 T A T 676 | (5)

where ¢, (v) are polynomials (of order n) in the sym-
metric mass ratio v = u/M = mimsa/(my + m2)?. [See
Eq. (5.1) of [10], completed by [3] for the final determina-
tion of the 3PN dynamics, viz wstatic = 0.] The “Taylor”
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FIG. 1. Equal-mass case: comparison between four E(j)

curves. The standard “Taylor” PN curve shows the largest
deviation from NR results, especially at low j’s, while the
two (adiabatic and nonadiabatic) 3PN-accurate, non-NR-
calibrated EOB curves agree remarkably well with the NR
one.

(i.e., nonresummed) EPN(j) curve is shown in Fig. [ (for
g = 1) as a dashed line.

Effective-one-body theory. — The EOB formalism
maps the conservative dynamics of a two-body system
onto the dynamics of one body of mass p in a sta-
tionary and spherically symmetric “effective” metric,
ds’q = —A(r;v)dt? + (A(r;v)D(r;v)) " Ldr? + r2(d6* +
sin?@dp?). The EOB potentials A and D have been
computed at the 2PN approximation in ﬂﬂ], and at
the 3PN approximation in [7] (at 3PN one must com-
plete the geodesic dynamics by terms, @Q(p), quartic
in momenta). Here, we use the 3PN-accurate ver-
sion of the EOB Hamiltonian, as defined in 2000 [7]
(with wstatie = 0 B]), i.e., with the effective-metric

potentials D(u) = 1 + 6vu® + (52 — 6v)vu®, and
Aw) = Pil—2u+2vu®+ (% — 27?) vu?], where

u = GM/(c*r), and where P} denotes constructing a
(1,3) Padé approximant, so that A(u) is a rational func-
tion of u of the form (1 + nyu)/(1 + diu + dau? + dsu?).
In addition to the Hamiltonian dynamics defined by
A(u), D(u) (and Q(u,p)), the EOB formalism defines
a radiation-reaction force F,. Here, we use the “newly
resummed” radiation reaction defined by [19, [20], with
32PN accurate Taylor pg,,’s, and without incorporat-
ing any “next-to-quasi-circular” (NQC) correction factor.
The main point is that the resulting radiation-reaction-
driven EOB dynamics uses only information that has
long been analytically known, and does not rely on
any information deduced from comparing EOB wave-
forms to NR waveforms. The resulting (nonadiabatic)
3PN-accurate, radiation-reaction driven EOB dynamics
leads to the curve EFOBsPN(5) shown in Fig. 0l as a red
solid line. In addition, we also show the adiabatic EOB
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FIG. 2. Differences between seven EX(j) curves and
EFOBseN () for the three mass ratios considered. From top
to bottom the labelling is: X = PN, EOBYgx ¢, EOBISY,
NR, EOBspn (baseline), EOBJSX and EOB3EEP* . While
the PN curve exhibits the largest deviations, all EOB curves
remain close to the NR one during the full inspiral, especially
the 3PN-accurate, non-NR-calibrated one.

EEOBRR" (j) curve defined by considering the sequence
of minima in r (for a fixed j) of the (3PN-accurate)
EOB Hamiltonian HEOBsPx(r j). This adiabatic curve
only depends on the potential A(u) and has a cusp at
the last stable orbit (LSO), jLso. The vertical distance

adiabatic

EEOBsen () — BEOBspN™™ () essentially represents the

kinetic energy linked to the (slow) inspiralling radial mo-
tion.

Results of the triple comparison NR-PN-EOB. — Fig.[Il
already exhibits several of the new results of our study:
(i) The NR E(j) curve starts at large j’s (i.e., large radial
separations) close to the PN-predicted EFN(j) curve, but
then visibly deviates more and more from it during the
inspiral [conventionally ending at the adiabatic(-EOB-
defined) LSO, marked by a dashed vertical line]. (ii) By
contrast the NR F(j) curve is so close, on the scale of
Fig. [ to the (3PN-accurate, nonadiabatic) EOB predic-
tion that their difference is barely visible not only during
the inspiral, but also during the subsequent plunge. [The
leftmost red vertical line in Fig. [ldenotes the EOB “light
ring”, viz the end of the analytical inspiral-plus-plunge
dynamics, and the beginning of the EOB description of
the merger and ringdown.| (iii) On the scale of Fig.[I one
cannot see, during the inspiral, the difference between the
two EOB curves (nonadiabatic versus adiabatic). (iv) In
addition, when zooming on the beginning of the EN%(5)
curve (see inset), we find that, although it coincidentally

starts near the PN curve, it emits exactly the amount of
junk radiation required to relax to the EOB prediction.
When considering the mass ratios ¢ = 2 and ¢ = 3, we
obtained close analogs of Fig. Il which exhibit exactly
the same results (i)—(iv).

In order to refine and quantify these results, we hence-
forth zoom on the small deviations between the var-
ious E(j) curves by using as horizontal baseline the
(nonadiabatic, 3PN-accurate) EOB curve, i.e., by plot-
ting the differences EX(j) — EFOBsP~(5), where the label
X denotes either NR, PN, EOB3EN, . " or other EOB
curves defined below. When focussing on the inspiral
dynamics (above the LSO), this leads to NR-EOB dif-
ferences of order 1074, i.e., 300 times smaller than the
~ 3 x 1072 change in the absolute value of E during the
inspiral, and 50 times smaller than the PN-NR differ-
ence ~ 5 x 1073 at the LSO. To discuss the meaning of
the small NR-EOB differences, it is important to esti-
mate the error attached to the NR ENR(j) curve. We
estimate an error on ENR(j) by measuring the effect
of changing, in turn, all the NR elements entering the
computation of the losses Eqs. B)-@): (i) we replaced
the CCE news by either the time integral of the cur-
vature waveform Wy (t) = dN(t)/dt extracted at a large
radius in the 341 code, or a Regge-Wheeler-Zerilli met-
ric waveform output by the latter code; (ii) we reduced
the maximum multipolar order £y,, used in the sums in
Eqs. @)-@) from the default value £pax = 8 10 lipax = 7
and lhpa = 6; (iii) we varied the low-frequency cut-
off Mwy used in the frequency-domain computation of
B (t) from 4™ (t) [17] between about 0.01 and 0.04;
(iv) we computed hgy, (t) from Ny, (t) instead of Wi (t);
(v) we explored the sensitivity to changes of the initial
integration time to in Eqgs. @B)-{); (vi) we replaced the
high resolution NR data used as a baseline by medium
resolution ones.

Adding the effect of all these changes, and focussing
on the crucial change in the energy loss AFEjunk linked
to the initial burst of junk radiation, leads to a con-
servative error bar around ENR(j) indicated by a gray-
shaded region in Fig. In that figure, we plot the dif-
ferences EX(j) — EFOBseN(§) for ¢ = 1, 2 or 3, and for
six different labels X: NR (solid, thick, black curve), PN
(upper, dashed blue curve), EOBadiabatic (Jower, dash-
dotted magenta curve), EOB3N§$ (black, dashed curve,
just below the baseline), EOB?IQNC (upper solid red curve)

and EOB‘Q’S&I\I Q€ (dashed red curve, close to the previous
one). Here, as above, the EOB baseline EFOBsey (corre-
sponding to the horizontal axis), as well as its adiabatic,
EOngiﬁba“C, and NQC-completed, EOB?P%? , avatars,
use the 3PN-accurate EOB potentials of [7]. [EOBI\II%C
is defined according to the methods introduced in m by
adding a factor foo2C(ar,as) in the £ = m = 2 mode,
tuned to the maximum of the NR modulus.] Finally,
EEOB?ISNC and EEOBT')NIEIIJQC use the NR-calibrated, 5PN
potential Aspn(u) = P [Aggﬁor(u) + vasu® + vagu"),
for (as,ag) = (—6.3722,50) [which lies in the middle



of the “good region” of Ref. [2(]], either with (NQC)
or without (wo NQC) NQC corrections. Figure [ al-
lows us to refine and strengthen the conclusions drawn
above from Fig.[I namely: (i) The PN-predicted E*N(5)
curve disagrees strongly with the NR results; (ii) The
3PN-accurate nonadiabatic EOB curve, E¥OBs~ (je.,
the horizontal baseline) is remarkably close to the NR
results during the entire inspiral, with deviations that
are smaller than the “20” level. (iii) The inclusion of
nonadiabatic effects is important in continuing to ensure
this agreement during the late inspiral (see the difference
EEOB3™" _ EEOBarx)  (iy) The inclusion of the NR~
fitted NQC correction has a negligible effect during the
inspiral: EwoNQC — ENQC ,S 2 x 107°. (V) The EOB
predictions based on the NR-calibrated, 5PN potential
Aspx (1) of Ref. [20] (with or without NQC corrections),
are less close (especially for ¢ = 1 and 3) to the NR result
than the purely analytical 3PN-accurate EOB prediction.
We verified that the same conclusion holds for the NR-
calibrated 5PN EOB potential suggested in ﬂﬂ]
Summary. — We showed how to combine the knowledge
of the initial (ADM) energy and angular momentum of
a black-hole binary with accurate NR computations of
its subsequent GW emission (including the initial burst
of junk radiation), to derive the relation between the
rescaled binding energy F = (£ — M)/u and the rescaled
angular momentum j = J/(Mp). Though the relation
E(j) does include nonadiabatic effects (linked to the ra-
dial kinetic energy during the inspiral, and thereby to the
radiation reaction F,) we have verified that the analytic
uncertainties in the description of F, were essentially
negligible during the inspiral, down to, at least, the LSO.

This makes the NR-acquired knowledge of the E(j) curve
an accurate diagnostic of the conservative dynamics of a
black-hole binary in a highly relativistic regime. By com-
paring ENR(4) to various analytic descriptions of binary
dynamics, we found that, while the usual, nonresummed
3PN-expanded relation EPN(j) exhibits large and grow-
ing deviations with respect to ENR(j), the EOB formal-
ism, based purely on known analytical results (without
NR calibration) predicts a relation E¥OB () which is re-
markably close to ENE(j). We found that the various ex-
istent NR-calibrated EOB formalisms fare somewhat less
well than the purely analytic 3PN-accurate EOB formal-
ism in agreeing with the NR results. This clearly shows
that the NR curve ENR(j) contains valuable information
about the conservative dynamics of the binary during the
inspiral that can usefully complement the information
contained in the waveform (which mixes in an intimate
manner dynamical and radiative effects). We leave to fu-
ture work a detailed discussion of the information that
can be extracted from ENE(j).
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