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Abstract

The coefficients of the higher-derivative terms in the low energy expansion of
genus-one graviton scattering amplitudes are determined by integrating sums of non-
holomorphic modular functions over the complex structure modulus of a torus. In the
case of the four-graviton amplitude, each of these modular functions is a multiple sum
associated with a Feynman diagram for a free massless scalar field on the torus. The
lines in each diagram join pairs of vertex insertion points and the number of lines de-
fines its weight w, which corresponds to its order in the low energy expansion. Previous
results concerning the low energy expansion of the genus-one four-graviton amplitude
led to a number of conjectured relations between modular functions of a given w, but
different numbers of loops < w — 1. In this paper we shall prove the simplest of these
conjectured relations, namely the one that arises at weight w = 4 and expresses the
three-loop modular function Dy in terms of modular functions with one and two loops.
As a byproduct, we prove three intriguing new holomorphic modular identities.



1 Introduction and summary of results

In an earlier paper [1] we elucidated certain properties of the non-holomorphic modular
functions that enter into the low energy expansion of the genus-one four-graviton scattering
amplitude in string perturbation theory.! These non-holomorphic modular functions arise
from vacuum Feynman diagrams for a massless scalar field on a torus of fixed modulus 7
with marked points at the positions of the four vertex operators. The lines in a diagram
correspond to Green functions (i.e., propagators) joining pairs of these points. The weight
w is the number of scalar lines in the diagram; it governs the order at which the diagram
contributes to the low energy expansion. The number of loops of a diagram will be denoted
L. Expressing a Feynman diagram in terms of the discrete momenta on the torus gives a
representation of its value in terms of a multiple sum over 2L independent integers that are
generalizations of the standard non-holomorphic Eisenstein series (for which L = 1)?. There
are contributions from diagrams of weight w with different numbers of loops L, subject to
the constraint L < w — 1. A key to the progress made in elucidating the properties of
these modular functions in [1] was understanding the structure that emerges by considering
families of modular functions with a fixed number of loops L.

e For L =1 (which is the lowest non-trivial value for L due to momentum conservation
on the torus) and weight w, the modular function is unique (up to a constant normalization
factor) and given by the non-holomorphic Eisenstein series F,,, defined by,

w
_ T2
Ew(TyT) = Z (7T|TTLT+77/|2> (11)
(m,n)#(0,0)

The sum is over integers m,n € Z which parametrize the discrete momenta on the torus; the
real and imaginary parts of 7 are respectively 7,7 € R; and the factor of 1/7% has been
included for convenience. The Eisenstein series satisfies the Laplace-eigenvalue equation,

AE, =w(w —1)E, (1.2)

where the Laplace-Beltrami operator A on the upper half plane is given by A = 472 9,0-.

e For I = 2, the most general vacuum Feynman diagram of weight w is given by a

I'Non-holomorphic modular functions are functions of the complex structure parameter 7 of the torus and
its complex conjugate 7 which are invariant under the canonical action of SL(2,Z) on 7 and 7 by Mobius
transformations. For paedagigical introductions to the subject, one may consult [2] [3], [4], while a historical
perspective is presented in [5]. Since we shall deal with both holomorphic and non-holomorphic functions
of 7 in this paper, we shall indicate the dependence on both 7 and 7 for non-holomorphic objects throughout,
which is a different notation from that adopted in [1].

2These bear some resemblance to multiple Kronecker—Eisenstein series of the type discussed in [6].



multiple sum of the form,

Ca1,a2,a3(7', 77') = Z m06n0 H ( |m - +n |2) (13)

(mr,ny)#(0,0)

The sum is over integers m,,n, € Z for r = 1,2,3, while m = m; + mo + m3 and n =
n1 + ny 4+ ng are constrained to vanish by the Kronecker symbols. The parameters ay, as, as
are positive integers subject to w = a; + as + as. A rich structure of the space of all L = 2
modular functions of arbitrary given weight w was exhibited in [1]. This was achieved by
showing that the functions C,, 4, 4, satisfy a system of Laplace eigenvalue equations whose
inhomogeneous parts are quadratic polynomials in Eisenstein series, and whose eigenvalues
and eigenspaces are governed by the representation theory of a hidden SO(2, 1). The simplest
examples may be exhibited for the lowest weights w = 3,4 where we have,

ACI,LI = 6FE;
(A=2)Cy11 = 9E,— E; (1.4)

The first equation may be integrated and the integration constant may be determined by
matching the asymptotic behavior near the cusp m — 0o to give Cy 11 = E3+ ((3), a result
that had been obtained earlier by Zagier by direct summation of the series [7]. The second
equation admits no such simple integration, but its significance will become clear shortly.

e For L > 3, the situation is more complicated and considerably less well-understood.
There is no longer a single formula (such as for C, ;. for L = 2) to evaluate all diagrams,
since more than a single diagram topology contributes when L > 3. Moreover, there is no
systematic way known to derive equations of the Laplace eigenvalue type for the correspond-
ing multiple sums. Therefore, the methods used to expose the structure at two loops appear
of little use for higher loop diagrams. It has been possible, however, to formulate certain
conjectured relations between the weight four and weight five modular functions.

The simplest of these conjectures was for the modular function D, characterized by three
loops, L = 3, and weight w = 4, and given by the following sum,

T2
E _ 1.
5m06n01j[(ﬂ‘mr7_+nr’2) ( 5)

(my,ny)#0

The sum is over integers m,,n, € Z with r = 1,2,3,4, subject to the vanishing of m =
my + ms + m3 + my and n = ny + ny + n3 + ny as enforced by the Kronecker d-symbols.

The purpose of the present paper is to provide an analytical proof of the conjecture for
Dy, which we shall henceforth refer to as the Theorem for D4. This involves the following
polynomial combination of modular functions,

F(1,7) = Dy(1,7) — 24C511(7,7) — 3Es(7,7)* + 18 Ey(7, 7) (1.6)
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By construction, F' is a modular function of weight 4 and involves contributions with one,
two, and three loops. The precise statement is as follows.

Theorem: The modular function D4(T,T) satisfies the relation
F(r,7)=0 (1.7)

The evidence for the validity of (1.7) presented in [1] was based on an analysis of the behavior
of F(7,7) near the cusp 7 — oo. The expansion of F(7,7) in powers of ¢ and ¢, whose
coeflicients are powers of 7, was verified to vanish to lowest and first orders in ¢ and ¢. This
gave us compelling evidence but, of course, did not constitute an analytic proof of (1.7). To
prove the Theorem, we shall first prove the following auxiliary Lemma.

Lemma:

1. The modular function F(7,7T), defined in (1.6), admits a decomposition in inverse
powers of 1o, with a finite number of terms,

7
= (7m2)* * Filq, q) (1.8)
k=0

2miT

T and @ = e ?™7;

where the coefficients F(q, q) are entire functions of ¢ = e
2. The coefficients Fj vanish for k =0,1,2,3,7;

3. The coefficients Fj for k = 4,5,6 are harmonic functions of ¢ and ¢, and may be
expressed in terms of holomorphic functions ¢y (q) of ¢,

Fi(q,q) = or(q) + ¢r(q) (1.9)

where ¢ (q) obeys the conjugation properties,

er(q) = x(q) er(1/q) = (=) ex(q) (1.10)

The first relation in (1.10) is complex conjugation and implies that the Taylor series
of ¢x(q) in powers of ¢ has real coefficients.

The proof of the Lemma will proceed by direct summation over the integers n, in the multiple
sum that defines Dy in (1.5), Cy14 in (1.3), and Es, £y in (1.1). This method generalizes
the calculation of Zagier for the function €' ; ;. The proof of items 1 and 2 will be relatively
straightforward, but the proof of item 3 will require extensive algebraic manipulations, most
of which will be summarized in Appendix B.

The proof of the Theorem itself will proceed by showing that the holomorphic functions
vr(q) for k = 4,5,6 are modular forms of weight 0, —2, and —4 respectively, and therefore

4



must vanish (¢4 must be constant by this argument, but will vanish in view of its asymptotic
behavior near the cusp).

Holomorphic Corollaries:

The vanishing of the holomorphic coefficients ¢y (q) for k = 4,5, 6 leads to three holomor-
phic identities given in (B.7), (B.22) and (B.32). While their vanishing is a consequence of
the Theorem, no direct analytical proof of the identities is known to us. The simplest of these

identities results from splitting ¢g(q) = goél)(q) - goé2)(q) and then proving by combinatorial

rearrangements that gpél) = 0, which leaves the non-trivial identity (ng)( g) = 0, namely,
26 = Y (™)L
) ey WBmamaim £ ma)* (1= )= )
! /
3 (1+g¢™)(1+g™) 9 g
! N 1.11
m1z,mz 16mim3 (1 —q¢m™)(1—qm2) ; 4mS (1 — g™m)? ( )

The sum extends over integers my, ms € Z which do not vanish (as indicated by the prime).
A direct combinatorial proof of this identity is not known to us, but we have confirmed its
validity order by order in an expansion in ¢ around ¢ = 0 using MAPLE to order O(¢'®).

Our proof of the D, conjecture of [1] provides significant encouragement that the con-
jectures advanced in [1] for the three non-trivial weight w = 5 modular functions, namely
D5, D311 and D, 51 may be proven by the same methods, even if the algebraic manipulations
involved will be even more arduous. One would hope that with more insight a simpler proof
will emerge, which would facilitate the proofs for D5, D31 1 and Ds 5 and the generalizations
to higher weight. We shall report on such developments in future work.

1.1 Organization

The remainder of this paper is organized as follows.

In section 2 we provide a brief review of the role of non-holomorphic modular functions
in the low energy expansion of genus-one string perturbation theory. In section 3, we provide
the proof of the Lemma, supported by results derived in Appendices A and B. In section 4,
we provide the proof of the Theorem by combining the results of the Lemma and further
results on the structure of F(7,7) derived in Appendix C. In section 5, we spell out the
various components of the Holomorphic Corollaries, and exhibit the holomorphic identities
which arise as spin-offs of the proof of the Theorem. Finally, in section 6 we summarize our
results, and discuss the outlook of our work.



2 String theory origin of the modular functions

We will here give a brief overview of the motivation for considering non-holomorphic modular
functions from the physical perspective of superstring perturbation theory. This section
is not essential for the remainder of the paper, whose purpose is rather to give a purely
mathematical proof of the Theorem stated in the introduction. The starting point is the
full genus-one four-graviton amplitude .A; in Type II closed superstring perturbation theory.
It is given by an integral over the moduli space of genus-one Riemann surfaces of a partial
amplitude B; which is defined at fixed modulus. It is this partial amplitude B; that will be of
direct interest in this paper, and we shall start by reviewing its structure. For completeness,
we shall also include a brief discussion of the structure of the full amplitude A;.

2.1 The partial amplitude B; at fixed modulus

We consider a torus with modulus 7 = 7 + i where 7, % € R and 7, > 0. The partial
amplitude B; is a family of non-holomorphic modular functions B (s, ¢, u|r, 7) which may be
defined in terms of an exponential of the scalar Green function G on the torus,

4
d*z; _
Bi(s, t,u|r,T) = | |/ Tj exp{ g sik G(2; —zk|7',7')} (2.1)
i=1Y%

1<j<k<4

The integral is over four copies of the Riemann surface ¥ of modulus 7. The parameters
S19 = 834 = S, So3 = S14 = t, and S13 = Sou = wu are dimensionless Lorentz invariants
s;j = —a'k; - kj/2 of the momenta k; of the four gravitons labelled by 7,7 = 1,2,3,4. They
obey the relation s+t-+wu = 0 in view of overall momentum conservation for massless states.
We exhibit all three parameters s, ¢, u — despite their interdependence — because B (s, t, u|T, T)
is in fact a symmetric function of s,t,u due to Bose symmetry of the gravitons.

The scalar Green function G(z|7,7) on the torus satisfies 9,0:G(z|,7) = m16@ (2) — /7.
In view of the relation s +t + u = 0, the Green function G may be shifted by an arbitrary
z-independent quantity without affecting the integrand in (2.1), or of By itself. We use this
symmetry to impose the normalization condition [ d®z G(z|r,7) = 0 on G, and express the
resulting Green function as a Fourier sum over the integers m,n € Z,

G(zlr, )= > G(m,n|r,7)emmend) (2.2)

(m,n)#(0,0)
where «, 8 € R parametrize z by z = a + 7. The Fourier modes G(m, n|r,7T) are given by,
2

(2.3)

Q(m,nhﬁ):m

and we shall set G(0,0|7,7) = 0 by convention. The integers m,n label the two-dimensional
momenta of the scalar field on the torus, the zero mode being excluded. For fixed 7, G(z|7, T)
is regular in z, except for a logarithmic singularity at the origin where G(z|7,7) ~ —1In |2|?.
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2.2 The low energy expansion

For fixed 7, the singularities of By as a function of s, ¢, u are simple and double poles located
at positive integer values of s,¢,u. Low energy corresponds to |s|, ||, |u| < 1, which is a
region where B; is analytic and admits a Taylor series expansion in s,t,u with finite radius
of convergence. This expansion was investigated in [1], following less complete work in [8,9].
The low energy expansion may be obtained by Taylor expanding the exponential of (2.1) in
its argument, and denoting the total degree of homogeneity in the variables s,t,u by the
weight w,

<1 d*z;
Bi(s,t ) =) — :
otdr?) =30 T

w=0

< Z sik Gz — 2T, %)) (2.4)

1<j<k<4

The coefficients in this expansion are modular functions of 7. They can be represented
by sums of vacuum Feynman diagrams in which the four vertices labelled by i = 1,2,3,4
represent the integration points z;, and in which £j; lines represent the Green function of
(2.2) joining the vertices j and k. The weight of the diagram is given by,

1<j<k<4

Carrying out the integrations over the vertex positions z; will then produce the multiple
sums that were described in the introduction. A systematic discussion of the combinatorial
notation for general Feynman diagrams encountered in the low energy expansion of B; was
presented in [1] following [8, 9], but will not be needed here. Instead, we shall content
ourselves with writing down the Feynman diagrams that correspond to the limited number
of functions needed in this paper.

We denote the Green function G(z; — 2|7, 7) by a line between the vertices i and j,

J k

G(zj — 2|1, T) = o——

We shall represent an integrated vertex by an unlabeled dot. For example, the integrated
string of two Green functions is denoted as follows,

D B2 G — 2l P Gz — 2l 7) = e

For an integrated string with a Green functions, we shall use the following notation,



Given this notation, it is straightforward to express the multiple sums encountered in the
introduction in terms of Feynman diagrams. For L = 1, we have,

where the vertex on the left side of the diagram is to be integrated, as is consistent with the
notation of the unlabelled dot. For L = 2, we have,

C'a,b,c =

¥

The lowest weight example with I = 3 is the modular function D, of weight w = 4, which
is the function of central interest in this paper and is associated with the following diagram,

Finally, we also list the modular functions of weight 5 that were also the subject of conjectures
in [1] that will be described later,

D221 =

[Ed]

Ao

The modular function D5 has L = 4, while D31, and D35, have L = 3. The expressions for
these modular functions in terms of multiple sums are easily obtained from the diagrams.
For example, for D51, we have,

/ 2 / 2

T2 72
Do T 2.6
2,2,1 Z ﬂermPH ( Z)7T2’mi+ni7-|2|m+mi+(n+m)7'|2) (2.6)

(m,n) i=1 (mi,n;

where the prime superscripts on the sums indicate that the zero mode is to be omitted.




2.3 The conjectured relations at weight 5

In addition to the conjectured relation for D, stated in the Theorem (1.7) of the introduction,
and which is to be proven in this paper, a number of further relations for weight five modular
functions were conjectured in [1]. These comprise the following relations,

0 = D5 — 60 03’171 — 10 EQ 01,1,1 + 48 E5 - 16 §(5)
0 — 40 D3,171 - 300 03,171 - 120 E2 E3 + 276 E5 - 7<(5)
0 = 10D321 —20C5,1 +4E; —3((5) (2.7)

Here, ((w) denotes the Riemann (-function, to which we assign weight w. Each equation
in (2.7) relates a weight five D-function to a weight five polynomial in modular functions of
lower loop number, i.e. lower depth. We expect that the conjectures of (2.7) may be proven
as well by the methods used in this paper. Further relations should be expected to proliferate
at higher weights w and it would be fascinating to understand their complete structure.

2.4 The full amplitude as an integral over moduli

The full genus-one four-graviton amplitude in Type II superstring theories, A;, is obtained
by integrating the partial amplitude B; over the moduli space M; of genus-one Riemann
surfaces [10],

Ay = 2R /M dp Bi(s,t, u|7, 7) (2.8)

The symbol R* denotes four powers of the linearized Riemann curvature tensor, and the
normalization x? is proportional to Newton’s constant in ten-dimensional space-time. The
integral is over a fundamental domain M; of the modular group SL(2,7Z) acting on the
upper half plane, and dy;, = d7y dmp/73 is the volume form of the Poincaré metric.

The integral of By over Mj is absolutely convergent only for purely imaginary s,t,u.
Constructing and evaluating A; beyond this region requires analytic continuation. This
analytic continuation was shown to exist, to be computable, and to produce dependences
on s,t,u which are no longer analytic near the origin s = ¢ = u = 0 in [11]. The physical
origin for this non-analytic behavior is well-known and well-understood, as it results from
the propagation of massless string states in closed loops.

The emergence of non-analyticities at low energy means that the expansion in powers of
s,t,uin (2.4) and the integration of By over moduli space M; in (2.8) cannot be interchanged,
since doing so would produce divergent integrals. To evaluate the low energy expansion,
one may first extract the exact non-analytic behavior to a given order in s,t,u, and then
evaluate the remaining finite part which is polynomial in s,¢,u. Alternatively, space-time
may be partially compactified on a flat torus 7%, and the non-analytic part may be canceled
when comparing the low energy contributions at different moduli of T%. We refer the reader
to [1] for detailed discussions of both approaches.
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3 Proof of the Lemma

In this section, we shall provide a proof of the Lemma given in (1.8)-(1.10).

The strategy for proving part 1 of the Lemma is to show that each term contributing to
F in (1.6), namely Dy, Cq1 1, Ey, and E3, admits by itself an expansion of the form (1.8).
To show this, and to compute the contribution to Fj from each term, we will perform the
summation over the integers n, (but not the integers m,.), using the fundamental formula,

1 . 1 + 627riz
Z Z2+n = 1— 627Tiz (31)

nez

This formula, and other formulas involving higher powers of 1/(z 4 n) that are derived from
it by taking successive derivatives in z, are discussed Appendix A. Inspection of the results
of these summations will prove part 1 of the Lemma, and will provide explicit formulas for
the coefficients F;. The proof of part 2 of the Lemma is an easy application of the explicit
formulas for F; derived in part 1.

The strategy for proving part 3 of the Lemma is to use extensive algebraic simplifications
and rearrangements of the coefficients F, to prove that all non-harmonic contributions cancel.
These calculations are considerably facilitated by the use of MAPLE.

To avoid a proliferation of factors of m and 7, while carrying out the calculation of Fj
described above, it will be convenient to extract from F a common factor of 73/7*, by
defining the following reduced functions,

4 4 4 s
F:T—24]: D4=T—24D 02,1,127——246 Es:T—ngs (3.2)
T T ™ T

in terms of which the decomposition of the Lemma takes the form,

7
I(Ta ’7_) = D(T> ’7_) - 246(7—7 77—) - 352(7_7 77—)2 + 18 ‘94(7—7 77_) = Z . Fk(qa Cj) (33)
where ¢ = €™ and F}(q, @) is an entire function of ¢ and q.

3.1 Expansion of & and &,

We will now write the expression for the Eisenstein series in a form that has the structure of
the power series in 75 on the right-hand side of (3.3), where the coefficients are functions of ¢
and q. We will later derive expressions for D and C in the same format. This representation
of & can be deduced from the defining relation for F in (1.1). To carry out the sum over n,
it will be convenient to split the sum over (m,n) # (0,0) into a contribution from m = 0, in
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which case the sum over n must exclude n = 0, and the contribution from m # 0, in which
case the sum over n runs over all integers. One obtains the following decomposition,

>t L 34

m#0 neZ

The first term on the right side of (3.4) equals 2¢(2s), and provides the leading behavior
near the cusp 7 — oo for Re(s) > 1. We shall evaluate the second term on the right side
for the special values s = 2,4 needed here.

To compute the sum over n for &, we decompose the argument of the sum, which is a
rational function in z = m7 for m # 0, into partial fractions, and express the result using
the notation z = x 41y for z,y € R,

1 1 1 7 1
S - - 3.5
Al ARG An? BRGEnR PGt WG (3:5)

The summations over n may now be performed by using (3.1) and the first formula in (A.2).
The result is,

T 1+qgm 2 qm
.C. 3.6
+Z(4m331—q +m2 T =g +c.c (3.6)

Here and below, the notation c.c. denotes the addition of the complex conjugate of the
entire preceding expression. The first term on the right-hand side of (3.6) accounts for the
contribution from m = 0, which has been evaluated, noting that 2¢(4) = 7*/45.

The calculation for &, proceeds by decomposition into partial fractions as well, and
requires the use of (A.1), as well as all three formulas in (A.2). The result is as follows,

8

s b 1+4g¢™ 5m?
£ = +z( (i a
m#0

m

4725 32mTr] 1—qm™  8mb7rd (1 — q™)?

3 m(1 m 4 m 4 2m 3m
LT Sq(+q) ™ 4q e et (3.7)
2mdry (1 —qm)3 6mir) (1 —qgm)*

The first term is the m = 0 contribution, which is equal to 2¢(8) = 7®/4725.

The expressions (3.6) and (3.7) for & and £, manifestly have the structure of the repre-
sentation of Fj, in terms of a power series in 1/75 on the right-hand side of (3.3). In fact, the
contributions to Fy from &, are manifestly harmonic, and thus satisfy the property of F; in
part 3 of the Lemma.
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3.2 Expansion of C

Obtaining an expansion of C in a form that is analogous to the expansions of &, &, is more
involved. We start with the expression for C as a multiple sum, which may be obtained from

crr= Y O (33)

(mr,n)#(0,0) |m17' - n1|4 |m27' + n2|2 |m37' + n3|2

To carry out the summations over the integers n,, we must again partition the contributions
according to the vanishing pattern of the integers m,. Note that the summand is symmetric
under the permutation of the indices 2,3, but there is no such symmetry with index 1. As
a result, C may be decomposed as follows,

C(r.7) =C¥+ Y (2¢P(mir) + CV(mir)) + Y 6o CO(mar, mar,msr)  (3.9)

m17#0 my#0

where the combinatorial coefficients take into account the symmetries of the various multiple
sums. The partial contributions are given by,

On,0
cB® = —m
2 nyngng

ny#£0

c@ On,0
(21) = Z Z n3 |z +ni|*| — 21 + nsl?

n2#0 ni1,n3

c® On,0
(21) Z Z 2|zl+n1|2|—z1+n3|2

n2#0 ni,n3

On
CO(z1, 29, 23) = Z|zl+n1|4 0 (3.10)

|ZQ + n2|2 |23 + ’113|2

Conservation of m, imposes the condition z; 4+ 25 + 23 = 0 with 2z, # 0 in C©). We have
retained the dependence on all three variables z,, as the associated manifest permutation
symmetry in their indices will be convenient for later purposes.

The calculation of the constant C® is presented in Appendix A, and we find,

3) 278

14175 (3.11)

The evaluation of the remaining C-functions proceeds in analogy with the evaluation of &,
given earlier, and has been performed using MAPLE. In expressing the results, we shall use
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the notation ¢, = ¢*™* and v, = Im (z.). The results are as follows,

’ ’ ] “ 1t an
CD(y) — (W i 4 >< 1 I Ch_ >_7T_—
G = (e T izgt) \Toa? T a)2) i aP

5 SN 1—qg = 1)1 —q:q
( U 7T_5) “l 7T_5(QI + @) 4q1q1) (3.12)
32y 8yy ) [1—q 8yy 11— qi
and
> 3 I —qq ™ 14+ qq
cW(z :(7T _— —W) + 3.13
(=) 90y; 24y?  32y] ) 1—aq* 1697 |1 —qf? (3.13)
Finally, the most involved part is C(¥), which is given as follows,
4 14+ ¢
CO (2, 29, 25) — 77 3.14
Br25) = e = el - @)1= ) (314
U (1 + ) 3y +2y2) (1 + )

+ -
8yt ys (1—q1)*(1 — @) 8yt yays (11— q1)* (1 —qo)
CmA(6yF +8yiye +3u3) 1+ )1 +qo) 7y —3y2) (1 +q) (1 + )

64yl y2 v3 (1=q)(1—q) 64ytys (1—q)(1— )
w2 Q2 + Q3

+ -
64y3y3 (1 —q)(1 — gs)

+ (24 3)+c.c

The notation (2 <+ 3) denotes the addition of the contribution obtained by interchanging
indices 2 and 3 of the entire expression, while c.c. denotes the addition of the complex
conjugate of the entire expression. After substituting 2z, = m,7 and ¢, = ¢ forr =1,2,3
into C®, W, and C©), we see that the contribution of C to F has the same form as the
expansion in powers of 1/7, on the right-hand side of (3.3), thereby proving part 1 of the
Lemma for C.

3.3 Expanding D

The expansion of D proceeds in analogy with the expansions used above for &, &, and C.
We start with the expression for D as a multiple sum, which may be derived from (1.5),

4
_ 1
Dir7) = Y bmoduo 1:[1 T (3.15)

(my,nr)7#(0,0)

where m = my + mg + mg + my and n = ny; + ny + n3 + ng. To carry out the summations
over the integers n,., we partition the contributions according to the vanishing pattern of the
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integers m,.. As a result, D may be decomposed as follows,

D(r,7) = DY+ Z 6 D (m;7) + Z 46,0 DY (Mo, maT, myT)

mi1#£0 ma,m3,ma7#0

+ Z Om.0 DO (my, mot, maT, myT) (3.16)

mi,mz,m3,ma70

By a slight abuse of notation, m will stand for the sum of all summation variables m,.,
whether that number of variables is three as in the third term on the right side, or four as
in the fourth term. The reduced contributions are given by,

0.
4 o n,0
D( ) - Z 2,2 0,2.,2

mozo 1 T2 T3 1
On,0
D(2) (Zl) = n,
nBJlZMéO nl%gz TL% nézl |Zl + ’I’L1|2 | — 21+ n2|2
D(l)(ZQ 23 z4) _ Z Z @ 4 .
9 ) > B
n1#0 na2,n3,ns€Z ny —2 (ZT‘ + nT)(Zr + nr)
4
1
D(O) - K 3.17
(21, 22, 23, 24) Z 0 H (z + 1) (2 + 1) ( )

ny€Z r=1

In each case we impose the m, conservation condition, ) z. = 0.

e The contribution from the constant D* is evaluated in Appendix A, and we find,
DW= (3.18)

There is no D@ contribution because imposing the vanishing of three of the integers m,
implies the vanishing of the fourth one as well. The remaining D-functions are as follows.

e The contributions to D? partitions into two parts: one from ny +ny = —ng —ny # 0,
and the other from ny; 4+ ny = —ng — ny = 0. Collecting both gives,
DP(z) ( LS ) L~ 0udt (3.19)
z21) = | —+-— )
1 18y " 3y7  16y7) 1 — il

_(W_4+37T2)1+Q1C]1+ 70 ( Q1 n qQ )
6yt 8y7) I1—al* 45y \(1—@)*  (1—q@)?
e The contribution DM (2, 23, 24) may be expressed as follows,
DW 2y, 23, 24) = (20, 23) + P23, 24) + P(24, 20) (3.20)

14



where we have defined the function,

4 1+gq, I+ qs
Q(zr,25) = R R;
(Z Z> 12y3y§ ‘ (1_%“) ‘ (1_QS)
7T3 R < QTQS"f'Cjt >
4y Ys Ui (1 =)L —qs)(1 —q)

7T2 ( QT QS - Qt )
+— Re _ 3.21
8Yr syt (1—¢q)(1—q)(1—q) (3.21)

with ¢ € {2,3,4} and ¢ ¢ {r, s}, so that y, + ys + v = 0 and ¢,¢sq; = 1.
e The contribution from D must be partitioned into the part for which all pairs satisfy

zr + 25 # 0 for r # s, and the part for which we have z; + 2o = 23 + 24 = 0 or permutations
thereof. The results may be collected as follows.

4
1
D(O) (Zla 29y 23, 24) — T
Y19293ya (1 —q1)(1 — q2)(1 — g3)(1 — qa)
3(1—6 — (37,
7 ( y1+y2,0) (142 Q3Q42 4 2 perms
A yaysya(yr +y2) (1 —aq1)(1 —q2)(1 — g3)(1 — qa)
740y, 1420 0193
: —— + 2 perms
vl (1—q)*(1 — @3)?
U (1 — ©203Gs)
- - - — + 3 perms
4y%y2y3y4 (1 - Q1)(1 - QQ)(l - Q3)(1 - Q4)
+ complex conjugate (3.22)

The terms listed on the second and third lines correspond to the partition (12]34); the two
permutations to be added correspond to the partitions (13]24) and (14|23). The term listed
on the fourth line corresponds to the partition (1/234); the three permutations to be added
correspond to the partitions (2]134), (3|124), and (4[123). The complex conjugate, which
interchanges ¢, with ¢, and leaves y, invariant, of the entire expression is to be added.

3.4 Summary of contributions to Fj

A summary of the contributions of the various non-vanishing components of D, C, £2 and
&4 to F, is presented in table 1.

Substituting z, = m,7 and ¢, = ¢"™" into the expressions (3.19), (3.20) and (3.22), results
in expansions of the functions D@, DM, and DO in the form of power series in 1/7. We
therefore see that the contribution of D to F is again expressed as a power series in 1/7,
of the same form as the right-hand side of (3.3). This completes the proof of part 1 of the
Lemma, since now all contributions, namely D, C, £2 and &; have been proven to have the
form given in (3.3).
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DO 7_2—4 72—5
DO Ty 1 Ty 5 Ty 6
2 o 3 -4 -5 6 7
DE 3 Ty To Ty Ty Ty Ty
D 4 7_O
2
0 I 5 6
c© Ty Ty Ty ;
1 —3 56 | =
c® T, Ty i Ts . T5 .
2 — — —
c® Ts Ts TS
c® Tg
) 0 21 -3 -4 5.6
& Ty | Ty TS Ty . Ty i Ty ) _
0 . — —_ —_
&, Ty Ty Ty Ts 5

Table 1: The non-vanishing powers of 7, in the expansion of the contributions to F.

3.5 Vanishing of the contributions F;, with £ =0,1,2,3,7

By inspection of the above results, one readily shows the vanishing of the coefficients Fj, for
k=0,1,2,3,7. The arguments are as follows.

e The cancellation of Fy follows by checking the pure power terms, as was done in [1],
since none of these terms depend on ¢ or g. The result of [1] is double checked by
adding the contributions computed to this order, which come from the terms listed in
the first column of table 1,

DW —24CB) — 3 x4 x (4> +18 x2x((8) =0 (3.23)

1

e The cancellation of F; results from the observation that no terms of order 7, arise in

any of the contributions to F.

e The cancellation of F; results from the combination of just two contributions, namely
D) and £2. They both have the same functional dependence on ¢ and g,

1 q" q"
2 e ((1 EpTER T W) (3.24)

m#0

Upon properly including the combinatorial factors, we find that their sum cancels.

e The cancellation of F3 results from combining the three terms of order 7, in D®),
CW, and &£2. They all have the same functional dependence on ¢, g, given by,

3 L 1= (3.25)

m? (1—q)(1—q")

16



The coefficients are as follows (including combinatorial factors),

1 1 1 1
M — — IX — X = = 2
6><18 X 950 3 X 5 X3 0 (3.26)

e Finally, the cancellation of F; results from combining the four terms of order 7, ',

namely in D@, ¢ C? and &,. These four contributions all have the same functional
dependence on ¢, g, given by,

1 1 _ amm
P ¢4 (3.27)

2ot =1~ ")

The coefficients are as follows (including combinatorial factors),

3 1 ) )
S Ux () —24x2%x — 418 x — = 2
6><16 x(32) X ><32+ 8><16 0 (3.28)

This cancellation completes the proof of part 2 of the Lemma that F, = 0 for k =0,1,2,3,7.

3.6 Harmonic structure of 7, for £k =4,5,6

The analysis of the remaining terms in F, namely, F;, F; and Fg is considerably more
complicated, and we relegate the detailed discussion to appendix B.

There, we will begin by collecting all the terms that contribute to Fj for k = 4,5,6.
Some contributions to Fj are manifestly harmonic in view of the fact that they enter as the
sum of a holomorphic function of ¢ and its complex conjugate. Other contributions are not
manifestly harmonic, and will be collected into a sub-contribution denoted by Fr!. Using
extensive algebraic rearrangements of the sum of the terms in F* it will be shown that
all non-harmonic dependence in FP" in fact cancels, so that Fi* also contributes harmonic
terms, thereby proving that Fj is a purely real harmonic expression of the form,

Fi(T,7) = wr(q) + ¢r(q) (3.29)

The explicit form of g (q) will be presented in Appendix B. By inspection, we will show that
the functions ¢ (q) satisfy the conjugation properties of (1.10) of the Lemma given in the
introduction. From the first equation of (1.10), we conclude that ¢y is a real function of ¢,
whose Taylor series expansion in powers of ¢ has real coefficients. The combination of these
two properties implies that, when viewed as a function of 7, the function ¥y (7) = ¢x(g) has
the following equivalent conjugation properties,

Ui(T) = (™) Yo(r) = (=) (7)
Ye(=7) = (=) ¥u(7) (3.30)
Using these explicit formulas, and MAPLE based calculations, we have shown that ¢x(q) =

O(¢*). In the subsequent section, we shall produce a proof of the vanishing of ¢ to all
orders in ¢ by exploiting the modular invariance of F(r, 7).
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4 Proof of the Theorem

The Lemma of the introduction, proven in the preceding section, strongly constrains the
structure of the non-holomorphic function F(7,7), introduced in (1.6). To prove the Theorem
(1.7) we need to prove that F' = 0. Our strategy will be to combine the strongly constrained
structure of F', derived from explicit computations of F; in the preceding section, with the
modular invariance property of F.

4.1 Modular properties of 1 (7)

We begin by describing the strong structural constraint derived in the Lemma in a manner
that will be suitable for investigating the modular properties of ¥, (7) = ¢x(g). To this end,
we restore the normalizations of (3.2), and use the decomposition provided by the Lemma
in (3.3) and (3.29) to arrive at the following expression,

' F(r,7) = H(t,y) + H(7,y) (4.1)

where we use the notation y = 7 for later convenience. The function H may be expressed
in terms of the holomorphic functions v (7) with & = 4,5,6 by the relation,

1 1
H(7,9) = ta(r) + 2 5(7) + Z5%6(7) (4.2)

It will generally be more convenient to express the modular properties on the form of H in
terms of v, since then all dependence will be manifestly in terms of the modulus 7. The
conjugation properties of (1.10) for ¢ (q) and (3.30) for 1 (7) guarantee that H satisfies the
following conjugation properties,

H(r,y) = H(7,y)
H<_T7_y) = H<7—7y) (43>

We shall sometimes refer to the functions H as almost holomorphic.

Next, we analyze the constraints on ¢x(q) = 1% (7) imposed by the modular invariance
of F. Since p(q) admits a g-expansion near the cusp, it is an entire function of ¢ and hence
invariant under the modular transformation 7" : 7 — 7 + 1, which implies the periodicity,

¢k(T+1) = wk(T)
H(r+1ly) = H(my) (4.4)

Modular invariance of F' under the transformation S : 7 — —1/7 requires,
F(r,7)=F(-1/1,—-1/7) (4.5)

18



Making use of the identities
L= 2= — 427 (4.6)

allows us to express F/(—1/7,—1/7) as the sum of an almost holomorphic function H*(7,)
and its complex conjugate H®(7,v),

T F(—1/7,—1/7) = H%(1,9) + H*(7,y) (4.7)

where H® may be chosen as follows (the decomposition is not unique, as may be seen by
adding an imaginary constant to H%),

H%(r.y) = tu(=1/7) = 2irips(=1/7) — A%(—1/7)
1 1
+€;<72¢5(_1/7)-4¢T&¢6(_1/7)) + 5rh(-1/7) (4.8)
It is clear by inspection that H® satisfies the same conjugation relations as H does in (4.3).

By eliminating F' between (4.1), (4.5), and (4.7), we obtain a relation which expresses the
modular S-invariance of F' in terms of the functions H and H”,

H(r,y) + H(7,y) = H*(r,y) + H(7,y) (4.9)
An alternative representation of the same formula is given by
K(r,y) = —-K(7,y) (4.10)
where we have defined the function K by,
K(r,y) = H(r,y) — H(1,y) (4.11)

In view of relation (4.10), K is purely imaginary for all 7 and y, while in view of the
conjugation relations of (4.3) for H and H®, the following conjugation relations hold,

K(ry) = K(7,y)
K(-1,—y) = K(1,y) (4.12)

Furthermore, from the expressions for H and H® in terms of 1 (7) and ¢,(—1/7), we see
that K (7,%) has an expansion in powers of y just as H and H® do,

K(7,y) = K4(7) + $K5(7') + y—12K6(7') (4.13)

where K (1) are holomorphic functions of 7.
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In appendix C, we show that the general form of K in (4.13), subject to the condition
that it be purely imaginary, and satisfies the conjugation properties of (4.12), implies® that
K is restricted to the following form, for a real and as yet undetermined constant A,

K(r,y)=A+ iAT (4.14)

The relation between H, H® and K depends on y and 7. These may be viewed as indepen-
dent variables, as follows from writing y? K (7,%) as a power series in 7 and 7. Consequently,
the various powers in y may be identified by comparing (4.11) and (4.14),

Vu(T) — Yu(—1/7) + 2iTs(—1/7) + 472 (—1/7) = A
Ps(7) — T2s(—=1/7) + ditPp(—1/7) = iAT
¢6(7—) _7'41/}6(—1/7') = 0 (415)

These equations must hold for all 7.

4.2 Proving the vanishing of A, and 1y, ¢5, ¥

The last equation in (4.15) implies that ¢4(7) is actually a modular form in 7 of weight —4.
Since we have already shown that ¢y (7) = ¢x(q) is a holomorphic function of 7, we deduce
that 16(7) = 0, as no holomorphic modular forms of weight —4 exist. To make progress on
the remaining equations in (4.15), we need further information on A. We shall show next
that further use of the periodicity 1y (7 4+ 1) = ¥, (7) implies A = 0.

To do so, we consider the transformation 7 — —1/(7 — 1) by the element T'S €
SL(2,7Z). Tt has a fixed point at 7 = 1/2 + iy/3/2, which is one of the orbifold points
of the canonical fundamental domain of SL(2,7Z) in the upper half-plane. Having already
determined that v = 0, we now apply the transformation 715 to the second equation in
(4.15), use periodicity of ¢ under T, and multiply by (7 — 1)? throughout. This results in,

(1= 1)s(=1/(1 = 1)) = 9s(7) = —iA (T = 1) (4.16)
Applying the transformation 7 — —1/(7 — 1) in this equation gives,
2 s(—1/7) — (1 — 1) ¥s(—1/(7 — 1)) =iA7(T — 1) (4.17)

Adding the second equation of (4.15) to (4.16) and (4.17) leads to the following condition,
iA(1 — 7 4 7%) = 0. Since this relation has to hold for all 7, we deduce that A = 0. The
second equation in (4.15) (with 16(7) = 0) now simplifies to,

Vs(7) = T2Ps(—1/7) (4.18)

3We are very grateful to Stephen Miller for suggesting this procedure for constraining K.
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This condition means that 15(7) is a modular form of weight —2; since it must also be
holomorphic, it must vanish, ¢5(7) = 0. Finally we see that the first equation in (4.15) with
A = g = 15 = 0 implies that 1)4(7) is a holomorphic modular form of weight 0, which must
be constant. This constant must vanish since the asymptotic behaviour near the cusp at
T9 = 00 has no constant term, and so we have 1, = 0.

Since the functions 1, (7) = pr(q) vanish for k = 4,5, 6, it follows from (3.29) that Fj
vanishes for those values of k. Together with the results of section 3.5 for £ =0,1,2,3,7, we
conclude that Fy vanishes for £k = 0,1,---,7. Therefore, in view of (1.8), we have, finally,
proven the Theorem (1.7) of the introduction.

5 Holomorphic corollaries

In section 4, we proved that the holomorphic functions ¢4(q), ¢5(¢q), and ¢g(q) are modular
forms of respective weights 0, —2, and —4. Therefore, using the known asymptotic behavior
of 4 near the cusp, it follows that ¢4, v5 and @g must individually vanish. These results
were obtained by exploiting the holomorphicity of ¢4, ¢5 and g, and the vanishing of Fj
for k =0,1,2,3,7 established in section 3.5, along with the modular invariance of F'.

In addition, we obtained explicit expressions for 4, @5, pg respectively in (B.7), (B.22),
and (B.32), which, in view of the above result, manifestly satisfy the corollaries:

e They are modular forms of weights 0, —2, —4 respectively;
e They therefore vanish as functions of g.
Neither of these properties is manifest from the explicit expressions for ¢4, 5, g in (B.7),

(B.22), and (B.32), and we have not succeeded in proving either of these properties directly
from the explicit expressions of ¢y, s, g by analytical combinatorial methods.

Remarkably, the identity ¢g(¢) = 0 may be split up into two simpler sums,

v6(q) = 057 (q) + 05 (q) (5.1)
where
!
(1) 3 9 (14+g™)(1+q™)
W @=3O+ 2 G Tl (=) o
and
/ /
(2) 15 9 qm 3 (1 —+ qm1)(1 + me)
— _— 6 —
sl 50 ; am® (-2 mzm 16mim3 (1 —q™)(1—q™2)
!
3 (14+q™)(1+q™)
n 5.3
m1+Zm2750 16myma(my + ma)* (1 — g™ )(1 — g™2) (5:3)
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each of which vanishes separately. We have verified the validity of these identities using
MAPLE up to order O(¢*®). In addition, the identity @él)(q) = 0 may be proven by simple
combinatorial arguments. Since the proof of the Theorem has provided a proof for pg(q) = 0,
it follows that the identity goég)(q) = 0 is also proven.
To prove goél)(q) = 0, we evaluate the sum,
2 /
%6 =3¢ ©)+ >

m1+ma7#0
where f(z) = (14+2)/(1 —x). Using the symmetry property f(1/z) = —f(z) of the function
f(z), we recast the sum as follows,

b5 = 2C(6) +2 > Fl@™)f(q™) = flg™) f(g™F™2) — f(g™2) f(g™ ™)

mam3(my + mo)?

f(g™) f(g™)

m2m3(my + mo)

(5.4)

2

(5.5)

Using the algebraic identity f(z)f(y) — f(x)f(zxy) — f(y)f(xy) = —1, the numerator in the
sum equals —1, and the summand is therefore independent of ¢,

2 1

mi,ma>1

Repeated use of the partial fraction identity for positive integers a,b > 0,

a+b—1 (7‘—1) a+b—1 (r—l)

1 _ a—
manb - Z = a+b—r + Z ( :

r=b <m1 + m2>Tm1 r=a

5.7
my + m2)7~mc21+bfr ( )

leads to the following evaluation of the general sums,

> m%mg(n; ) T;;ﬁ ((::D ((e+r,s)+ (2 B D e+ r,s)> (5.8)

mi,mz>1

r,s>0

where the multi-zeta function ((rq,rs) is defined by,

C(ri,re) = Z Tll > (5.9)

nin
O<na<ng 1 '72

Therefore we find that,

65 = 50(6) — 4(4,2) — 8¢(5,1) = 0 (510)

It is easy to show that there is no analogous way of partitioning the sum of the six terms
in the explicit equation ¢4(q) = 0 into separate identities, as we did for pg(q). To see this,
one can simply truncate the g-expansion of each term to the first six non-trivial orders, and
show that no linear combination other than their total sum can vanish. Thus, the identity
©4(q) = 0 cannot be reduced further. The holds true for ¢5(q) = 0.
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6 Discussion

The proof of the Theorem confirms the conjectured relationship that expresses D, as a poly-
nomial in functions of lower depth, namely, the functions Cy; 1, £y and Ey. The conjecture
made in [1] was based on the analysis of the first two lowest powers of ¢ = €™ in the
expansion of these modular functions near the cusp 7 — oo. Each of these terms was ac-
companied by a Laurent polynomial in 7 so the conjecture was based on matching a number
of leading and sub-leading coefficients. Analogous conjectures were made, based on similar
asymptotic analysis, that related each of the weight w = 5 functions, D5, D311, and Dso 1,
to polynomials in modular functions of lower depth. Although the proof of the D, conjecture
suggests the validity of the weight 5 conjectures in (2.7), the methods used in this paper
may be too cumbersome to be applied systematically to these cases.

In a separate paper we will present an alternative formulation of the Feynman graphs in
which the modular functions are expressed in terms of single-valued multiple elliptical poly-
logs based on generalized Bloch-Wigner polylogarithms discussed in [12]. Tt seems likely that
this approach will lead to a more general analysis of the properties of the modular functions
that arise in the low energy expansion and we are hopeful this will lead to an understanding
of higher-weight terms and possibly to the complete one-loop amplitude. Separately, there
has been some progress in expressing one-loop amplitudes in terms of multiple elliptical poly-
logs [13] of the type discussed, for example, in [14] and it would be interesting to discover
the relationship of these to the closed string expansion under discussion in this paper.

Finally, a natural generalization of the questions addressed here and in [1] is to the
case of genus two and higher. In fact, the study of the modular properties of the low
energy expansion for the two-loop four-graviton superstring amplitude in [15,16] was a direct
motivation for the investigations in [1]. It would be fascinating to understand further the
modular structure of two-loop partial amplitudes, and the possibility that modular relations,
such as the ones proven here, emerge also at two loops.
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A Calculations of the ¢ expansions

In this section, we shall provide various details of the proof of the Lemma, part 1.

A.1 Basic summation formulas

In the course of the calculations we make repeated use of the summation formula,

S gt (A1)

nez 2T 1—q

where we shall use the convenient abbreviation ¢ = €*™*. The sum is only conditionally

convergent and, following Eisenstein, should be understood as defined by the limit as N — oo
of the cutoff sum with —N <n < N. The identity (A.1) is evident from the equality of the
its residues at the poles located at z = —n for n € Z. Further identities that will be of use
here follow by differentiation of (A.1) with respect to z, and we also have,

1 —  _4n2 q
2t = "ate

nez
1 . g+
—— = 4in®
Z (n+ 2 (1-qp
1 8 4 4 2 3
Sy = At (A2)
2 (n+t2) 3 (1—4q)

and so on. The general formula may be expressed as follows,

1 s 2mk+1 = ot A
5 ki o S s

neL

There are obvious variants of these formulas that will be needed as well when the summation
over n excludes the value n = 0, and we have for example,

/

1 1 1
Z = —iT R (A.4)

nez 2T I=q¢ =

where the prime superscript instructs us to omit the value n = 0 from the sum. Formulas
analogous to (A.2) and (A.3) may be derived again by successive differentiation.
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A.2 Calculations of the constants C®) and D®

To compute C®), defined in (3.10), we eliminate ns = —n; — ng, so that,

1
c® = A5
> Y a9

n17£0 n2#0,—n1

The summation over ny, for ny # 0, gives,

1 212 6
= - — A.
D n

na#£0,—ny
The remaining summation over n; gives,
272 6 42
¥ = ——— — | = —=¢(6) — 12¢(8 AT
2;03”? 5 ) = 50~ 126(8) (A7)
ny

which readily leads to the result of (3.11).

To compute D?, defined in (3.17), we eliminate ny = —n; — ny — ng, and partition the
contributions according to whether n; 4+ ny = 0 or not,

1 1
DO=3 > =+ > D e (A.8)

4
n1#0n3#0 13 g #£0 na#£0,—ny n3#0,—ni—n

The first term readily evaluates to 4¢(4)?, while the sum over n3z may be carried out in the
second term with the help of (A.6), and we find,

DY =404+ > nfln% (3(711247: n2)?  (m fn2)4) )

n17#0 ng#0,—nj

To sum over ny, we make use again of (A.6) for the first term in the parentheses, and of the
following summation formula for the second term in the parentheses,

1 t4pr 15
> o A (A.10)

it 2(n1+n2)*  45m  3n]  nf

The sums over n; may be performed in terms of ordinary (-values, and we find,

2874 8
E C(4) — 2472¢(6) + 18¢(8) = o (A.11)

DW = 4¢(4)* +
which is the leading asymptotic term in the expansion of D in (3.18).

25



B Harmonicity of F4, F;, and F;.

In this appendix, we shall collect and simplify the contributions to the coefficients F; in
(4.2) for k = 4,5,6, arising from D, C, £ and &;. We shall show that all contributions
combine into a purely harmonic result. We shall calculate the functions ¢ (q), and prove their
conjugation properties, by inspection. The analysis of these contributions is considerably
more complicated than the analysis for k = 0,1, 2, 3,7 considered in the body of the text.

B.1 Vanishing of non-harmonic terms in %

We begin by collecting all contributions to J, which are not manifestly harmonic, and denote
the result by F. It is given as follows,*

/ /
1 1+ q 1 14 g™ 14 ¢™
o - e (1) o
4 Z m4 1 _ qm|2 n _;.ng;,go m%mg 1— qm1 1 — qm2
!
qmqr 6 q"q"
+ ;#0 1m2 (1 —qgm™)2(1 — gm=2)? +Zm4|1_qm|4
mi+mso m
qmlqm2
— B.1
lemQ mimj (1 — ¢™)2(1 — gm2)? (B.1)

The first term arises from D®| including the combinatorial factor of 6; the second term arises
from DU including the combinatorial factor of 4, and a factor of 3 to account for the sum
over three equal terms in P™); the third term arises from the non-generic case with a single
independent pair vanishing in D, including the combinatorial factor of 3; the fourth term
arises from the non-generic case with a two independent pairs vanishing in D, including
the combinatorial factor of 3; and the fifth term arises from —3&3.

e The last three terms in (B.1) manifestly cancel one another.

e To show the absence of non-harmonic terms in the first two terms, we use the identity,

/ 1+qm
pu— B.2
;WR (1—qm) ’ (B2)

which follows from the fact that the summand is odd in m. Using (B.2), the second term of
(B.1) is expressed as follows,

/

1 14 g™ 14 g™ 1 14 g™ 2
R R = — | R B.3
> e () e () =S [ R (55 B3

m1+mo7#0 m

4Here, and in the following formulas, the prime superscript on the summation symbol indicates that the
term with m,. = 0 is omitted from the sum.
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which may be decomposed into harmonic and non-harmonic sums as follows,

3o [ ()] - S (- (o) o

m m

e The first term of (B.1) can be usefully re-expressed with the help of the following
rearrangement of the numerator,

—~m 1 m 1 m
Lq"q" = 51 ="+ 51+ q" (B.5)
so that the sum becomes,
/ / /
1 1+4+q¢mg™ 1 11+ g™
— —_— = — — — —_— B.6
e T T >

The second term on the right side of (B.6) cancels the last term in the sum on the right side
of (B.4). The remaining terms, namely the first term on the right side of (B.6), and the first
two terms in the sum on the right side of (B.4) are manifestly harmonic, and will need to be
retained to compute ¢4. Therefore F, is harmonic.

B.2 Calculation and properties of p4(q)

Collecting all harmonic contributions to F; is most easily done by regrouping the terms that
constitute y4(q), and we find,

/

pala) = ) oo :

mimomamy (1 — g™ )(1 —qgm2)(1 —q™s)(1 — q™)

mi1,m2,Mma3,mq
/

_ Z 12010 L+q™
o mimam (1= qm™)?(1—gm2)(1 = g™)
! /
3 qmlqmz ].8 q2m
— +y = 4 (B.7)
P e e AP L

The first term on the right side arises from D©: the second term from C©; the third term
from —3&2; and the fourth term arises from combining the contributions from 18&,, —48C®),
the harmonic terms in (B.4), and the constant term in (B.6).

It may be readily verified, by inspection term by term of (B.7), that ¢4(q) obeys the
conjugation properties of (1.10) for k = 4. In particular, its Taylor series in powers of ¢ has
real coefficients.
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B.3 Vanishing of non-harmonic terms in f;

We begin by collecting all contributions to /5 which are not manifestly harmonic, and denote
the result by F2b. Tts expression may be organized as follows,

/ /

. 2 1—-qmq" 3 (L+q¢™)q™
Fib = Z —|2+f5 P VP - N S Re (( =

m?® [1 g T2 L—gm)(1—qm)?
/ /
(¢"+q") (A —q"q") 6 1—¢mq" 1 1—q¢mq"
+Zm5 1_qm|4 Zm:mS |1_qm|2 +;m5 |1_qm|2
/
12 T+ g™
- 2 EmE e <(1 _qufl);zlq_ ijz)) (B8)
mi+ma£0 12
where we have used the following abbreviations,
/
0) _ M R qm1+m2 + qu
’ Zm1m2m§ ‘ ((1—qm1)(1 —qm)(1—qm)
5(1) _ 2 3 (Sm O - 5m1+m2 0) R,e ( qm1+m2 - q7n3+m4 )
2m1m2m3m4(m1 + mg) (1 — qml)(l — me)(l — q—m3)<1 — q—m4)
/
25m m1 __ am2+m3+my
@) _ _Z 0 e( " —q ’ _ ) (B.9)
mimamsmy (1—=gm)(L —qm)(1 —qm)(1—qm™)

The first term in (B.8) arises from 6D4(12), the second from 4D§1), the third and fourth from
Dflo), the fifth from —3E&2, the sixth and seventh from —48C?), the eighth from —24C™), and
the ninth from —24C(®. We have the following simplifications.

e The first term on the second line of (B.8) cancels the term on the third line, using
(B.2).
e To simplify féo), we use the following identity for the numerator in the sum,
1
g =1 Y (o™ od )1+ o 7 (B.10)
o,0'=%1

as a result of which we obtain,

/ /
© _ 0 3 0m.,0 30m.0 R 1+ ¢™
o= ) mz 4mymaoms3 < ) 2m1m2m§ ‘1= qm
JONN _z/: 3 0m,0 (1+¢m™)(1+q" )(1+(7”3) (B.11)
’ 4m1m2m3 (T =g™)(1 —qm)(1—qm) '
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e To simplify fél) we use the following decomposition formula,

1
qm1+m2_q7n3+m4 — +Z Z(1—|—qm1+m2)(1—0(jm3)<1+0'qm4)
o=%1
Y Ue o) (B12)
o=%1

Symmetry of the sum in fél) under permutations m; <> my and mg <> my, as well as under
complex conjugation combined with the reversal of signs of all m,., implies that all four terms
above produce equal contributions to fél). As a result, the simplified f5(1) is given as follows,

!/

1 — 1 mi1+ma 1 ~mM3
5(1):_2 3577170( 5m1+m2,0) Re <( ( +4q )( +4q ) > <B13)

- 2mymomsmy(my + mo) L—qgm)(1—qgm)(1—qms)

Further simplification is achieved by using the following decomposition,

S+ a™)(1 +q™) (.14

S= ™)1 =) +

2

as a result of which we obtain,

1+ qm1+m2 —

/

(1) £(1) 3 6m,0(1 — 5m1+m2,0> R 1+ qmg B
— — 15
f5 f5 mz 4m1m2m3m4(m1 + mg) ¢ 1-— qms ( )
PO _z': 30m0(L = Omyma0) ((1+qm1)(1+qm2)(1+f¥m3))
’ dmymamama(my + mo) (L=gm)(1—gm)(1—qm)

Note that the second term of the first of these equations is harmonic.

e To simplify féQ), we use the following decomposition formula,

1
qm1 - Cij—i—mg—i—’m4 —— Z (1 + O_qm1)(1 o O_qm2+m3+m4) (B16)
2
o=%1
The contribution from the ¢ = —1 term above is harmonic, while the contribution from the

o = +1 term may be further simplified by using the following decomposition formula,

1
L—grtmtm =2 % (L+ag™)(1+0'g™)(1 -0’ q™) (B.17)
o,0'=%1

Hence we find the simplified formula,

1 + qm2+m3+m4
[ oy Re ( _ i _
° Z m1m2m3m4 (1—qgm2)(1—qms)(1—qm)
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14 g™
-3 ke
4m Tmomsmy 1—qm
/

_ Ly 3 6m0 Re((1+gm1>(1+qm2)<1+qm3)> (B.18)

- 4m1m2m§m4 - ml)(l - qm2)(1 - qmg)

where in writing f5(2) we have taken the liberty of permuting the indices m; and ms and
taking the complex conjugate of the expression under the reality sign, for later convenience.
Note that the second and third terms of the first of these equations are harmonic.

e To combine fél) and fEEQ) we make use of the following identity,

N 35m,0(1 - 5m1+m2,0) _ 35m,0 (1 - 5m1+m2,0) _ 35m,0(1 - 5m1+m2,0>
dmymaomazmy(my + my) 4mymam3my 4mymaom3(my + ms)

(B.19)

We may carry out the sum over my explicitly, and express the result in the following form,

{2 (14+q¢™)*(1+q™)
U+ 2 = 9+ Z 4m1 (<1_q

mi1,m3
!
£(3) 30m.0 ((1+qm1)(1—{—qm2)(1+qm3))
- 3 Re B.20
= LG i) B2

In expressing fég) on the second line above, we have carried out the sum over my4 to eliminate
Om,0, which imposes the condition m; + mg + mg # 0 on the remaining sum.

e It is clear by inspection that f; O 15 i3 = 0. The remaining contributions to /5 which
are not yet manifestly harmonic arise from the first, fifth, seventh, and eighth terms in (B.8)
(the sixth and ninth terms cancel one another, as shown earlier), as well as from the second
term on the right side of the first equation in (B.20). Assembling those contributions gives,

3 (1+¢™)2(1+ ™)
2 G R ((1 —gm)2(1 —qm))

mi,m2
! /
—_ ¢ (L4 ™) ) 3 (1-g"q")
- fe ) T2 s (B2l
3 e (mrir) S ae g ®

it is easy to see that the sum is in fact harmonic as well.

In summary, we have shown that F5 is purely harmonic.
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B.4 Calculation and properties of ¢5(q)

Collecting all harmonic contributions to 5 is most easily done by regrouping the terms that
constitute ¢5(q), and we find,

/

5777, 0 1+ qm2+m3+m4
¥s5\q) = ’ ’
o mlymzz;ns,m4 2mimamgmy (1 —q™2)(1 — q™)(1 = ¢™)

oy USmitDmady gn(4g™) g 0 gt

mi1,m2,ms3 m?mgm% (1 - qml)2(1 - me) m1 m? (1 - qml)S
/
3 (1+ CI"” 1 + qml

a Z 2m3m? (1— )(1 — gm2) Z¢ — (B.22)

mi,m2 17772 C] q

The coefficient ¢(m;) in the last term is given by the followmg multiple sums,

/ !/ /

—3 3 3 5m,0 3 5m70
¢(m1) - Zm? + mZQ Sm?mg - m;n3 8m?m2m3 + m;3 4m1m2m§
! ’
Sy ey B0l )
m2,m3,mq 8m%m2m3m4 ma,m3,ma 8mimamamy (m3 + m4) '

It may be readily verified, by inspection of (B.22), that ¢5(q) obeys the conjugation properties
of (1.10) for k£ = 5. In particular, its Taylor series in powers of ¢ has only real coefficients.

B.5 Vanishing of non-harmonic terms in Fg

We begin by collecting all contributions to 4 which are not manifestly harmonic, and denote
the result by F2P. Tts expression may be organized as follows,

/

33 1+qmq™
J—_~nh —
R

30m0 gritme — gms
: R
+; 2mimymy ((1 — ™) (1 —gm)(1—qm)
~ 3 (L+q™)(1+7™)
- Z 53 Re -
gmyms; (1 —gm™)(1—qm)
/
3 ¢+ g )
- —=— Re _
2 2miim; ((1 —qm)(1—qm)

N Z 3m2) Re ((1+qm1)(1+c7'"2>> (B.24)

m1+ma#0 2m m2 (1 - qml)(l - qm2>
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The first line arises from combining the contributions from 6D§f), —48C? | and —24C™; the
second line arises from 4DW | the third from —3€2; the fourth from the fourth line in —24C®;
and the fifth from the last two lines in —24C® (which contribute equally).
e The sums in the second and fourth lines may be simplified by using the following
identities for their numerator,
1

U g = 2 3 oo g™ (400 ) (1= o ™)
o,0'=+1
1 1
¢" g™ = S+ +q™) -5 (- g™ - ™) (B.25)

The contribution with ¢’ = +1 in the first line is harmonic, as is the contribution from the
second term in the second line above. The remaining not-manifestly-harmonic contributions
are as follows,

/

3 9 (LrgM)(1+q") N~ _3 o ((+g™)(+q™)
8f6 %;8771‘5 (1—(]771)(1_(‘7m)+ Z 8m?m§R << —y m)) (B.26)

where we have introduced the notation,

N Gmo (@04 TY) N~ Gmo (L") ™)
- 7 ) B.27
f6 mzrmlQOé (1 — qml)(l — q—ms) Zmlmﬂné (1 _ qmg)(l _ qm1) ( )

In the second sum, we relabel the indices by permuting m, and mg, which makes the depen-
dence on ¢ and ¢ the same in both terms, and gives,

my

!/

5’",0 5m,0 (1 +qg™) (14 g™
fim 3 (e pme Y UEEHOLTD) .
mi,ma,ms3 mymaimm; mqimaomms ( —dq )( —dq )
We now use the following rearrangement formula,
5m 0 5m 0 5m 0 9 )
’ s mdmd T B.29
mimamy - mimams mim3 (mi —mims +ms) ( )

As a result, fg becomes,

fo = i ( 5’;"’3 - 2?”"1) Re ((qul)(H?ms)) (B.30)

mims  Mmiymg (1 —gm)(1—qms)

Using (B.2) in the sum for the last term in the parentheses, we obtain,

f— Z L o (<1+qm1>(1+c7”3)) _ii(wqm)(lﬂ?”) (B.31)

mi,m2,m3

(1 =gm)(1 —=qm) mf (1 —q¢m)(1—qm)

The expression (B.26) is seen to vanish by substituting the expression for fg derived in
(B.31).
This concludes the proof that Fg is purely harmonic.
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B.6 Calculation and properties of yg(q)

Collecting all harmonic contributions to Fg is most easily done by regrouping the terms that
constitute yg(q), and we find,

my +m2750

(B.32)

!/ /

_ 9 (I+4m) 3 (L4+g™)(1+g™)
e ; 16m® (1—qm)? mlz;m 16mim3 (1 —qm™)(1 —qm)
+ Z (L+q™)(1+q™)
8m1m2 my +mg)? (1 —gm™)(1—q™)

)
)

3 14 q¢™)(1
+ Z 16m1m2(m1 + mg) E]_ Zml E]_ — ng)
m1+ma7#£0
It may be readily verified, by inspection of (B.32), that ¢4(q) obeys the conjugation properties
of (1.10) for k = 6. In particular, its Taylor series in powers of ¢ has only real coefficients.

C Detalils of the analysis of K(7,y)

In this Appendix,® we shall show that K (7,y), which has been defined in (4.11) and is of the
form (4.13) with Ky(7), K5(7), K¢(7) holomorphic in 7, and which is purely imaginary for
all 7 and y, must be of the form given in (4.14), with K4, K5, K polynomials in 7 of degree
one, two, and three respectively. This is a crucial auxiliary result, which is used in section 4
to prove the Theorem of this paper.

Note that K(7,y) must vanish along the imaginary axis, as on the one hand it must be
purely imaginary, yet on the other hand, its building blocks H and H* are real there. If
K (7,y) had been a holomorphic function, then its vanishing along the imaginary axis would
have implied its vanishing everywhere. However, K (7,y) is only almost holomorphic, so the
situation is more subtle, as we will see.

We will Taylor expand y?K (7, y) around an arbitrary point on the imaginary axis in the
upper half 7-plane. It will be convenient to choose that point to be 7 = 4, and to expand in
the variable 7 (or in the variables Z,7), defined by,

T=1+T7 T=24+1y, T,9€R (C.1)

The expansion of the holomorphic functions ¢ (7) around 7 = i is best organized in terms
of their expansion in terms of (positive powers of) ¢, and we have,

)= dyy ™7 (C.2)
n=0

®The analysis in this appendix was suggested by Stephen Miller.
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where the coefficients dy,, are real. (Displacing the expansion point to another point on the
imaginary axis will maintain reality of the coefficients dj,,, but change their values.)

We will now use the fact that the S transformation 7 — —1/7 leaves the point 7 = i
invariant, and takes the following form on 7,

1 . (o]
R ey (C.3)

14+ T 1 -7

VE(Ty) =Y ) 0 enpi™ (& + )" (C.4)

where the coefficients ¢, , are again real constants. Expanding the n-th power gives,

o0 n

PRy =Y 3 e () (F0 T a g (C.5)

r=0 n=0 [=0

settingn =a+[0>0and [ =b—1r > 0 we have

oo 2 oo
2 o a+b—r b—r :a ~a ~b
y K(7,y) —ZZZCQ%_M ( - ) (=) "i%zy (C.6)

Since K(7,y) must be imaginary for all & and g, we conclude that all contributions with
even index a must vanish identically as a function of §. The terms with b = 0 and b = 1
are special in that they receive contributions only from r = 0 and r = 0, 1 respectively. The
conditions for b = 0, 1, and all even a, are as follows,

Ca0 =0 Cag = (@ +1)cat10 (C.7)

The conditions for b > 2, and all even a, are as follows,

a+b a+b—1 a+b—2
Ca+b,0( b >—Ca+b1,1( b1 >+Ca+b2,2< b_9 >=0 (C.8)

The equations for 0 < b < 5 may be readily solved: they set all coefficients ¢, , to zero,
except for the following set,

C10 3,0 C11 €21 = 3C30 Clp = 2C3 (C.9)

whose values are left undetermined by the equations. The equations for b > 6 do not impose
any further conditions on the coefficients ¢, ,. So we find that consistency with modular
invariance places a very restrictive condition on K (7,y).
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Substituting this result into the expansion (C.6) shows that K (7,y) is given in terms of
a very small number of terms with odd powers of 7,

Y K(r,y) = ii (Cl,o + 11§+ cso (2 + 3}2)> (C.10)

Since the expression only has a finite number of powers of & 4+ iy = 7 we can return to the
original 7 coordinate by replacing 7 — 7 — ¢, ¥ — y — 1, which results in

K(7,v) :A+2iBT+1(C+iAT—SB7'2)+%(iC’T—iB7'3) (C.11)
Y )

where the coefficients A = ¢11 + 2 ¢30, B = ¢39, C = 10 — 1,1 — c3 are all real.
Finally, the conjugation property 1(—7) = (=) (7) of (3.30) implies that K is an

even function of its arguments, K(—7, —y) = K(7,y). Imposing this further condition on K

implies that B = C' = 0, so that we are left with,

x

; (C.12)

K(T,y)zA—i-iAT:iA
Y

which is manifestly imaginary, since A is real.
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