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Continuing our analytic computation of the first-order self-force contribution to the “geodetic”
spin precession frequency of a small spinning body orbiting a large (non-spinning) body we provide
the exact expressions of the tenth and tenth-and-a-half post-Newtonian terms. We also introduce a
new approach to the analytic computation of self-force regularization parameters based on a WKB
analysis of the radial and angular equations satisfied by the metric perturbations.

I. INTRODUCTION

The impending prospect of detecting gravitational-
wave signals from coalescing compact binary systems mo-
tivates renewed studies of the general relativistic dynam-
ics of binary systems made of spinning bodies. It has
been emphasized in Ref. [1] that a simple way of com-
puting (to linear order in each spin) the spin-dependent
interaction terms Hi,y, = Q%O Sy +Q§O -So in the Hamil-
tonian of a binary system was to compute (when consid-
ering, say, the term linear in S;) the spin precession an-
gular velocity of S; in the gravitational field generated by
the two masses mq, ms, and, eventually, the spin S,. In-
deed, this spin precession angular velocity (which can be
obtained by writing that S; is parallely propagated along
the world line of m1) is simply equal to the coefficient
Q%O of S1 in Hiyt. On the other hand, it was recently re-
marked [2,13] that, in the simple case of a binary moving
on circular orbits, the (z-component of the) spin preces-
sion, Q79 could be expressed in terms of the norm |Vk|
of the covariant derivative of the helical Killing vector
k = 0; + Q04 characteristic of circular motions, namely

0° = Q — |VK|, (1.1)

where Q denotes the orbital frequency. [The gauge-
invariant quantity |VEk| can be viewed as a first-
derivative-level generalization of Detweiler’s redshift in-
variant [4], which is expressible in terms of the norm |k
of the Killing vector k.]

The gauge-invariant functional relation between Q$©,
or equivalently |Vk|, and the orbital frequency ) has
been recently studied (both numerically and analytically)
in Refs. |2, 13]. In particular, we have derived (as part
of a sequence of analytical gravitational self-force stud-
ies) in |3] the first-order self-force contribution (linear in
the mass ratio ¢ = my/mg < 1) to the “geodetic” spin
precession frequency Q3° to the eight-and-a-half post-
Newtonian (PN) order, i.e. up to terms of order y5°

included, where
GmaQ\*/?
Y= 3

is a convenient dimensionless frequency parameter of or-
der O(1/c?). [We henceforth use, for simplicity, units

(1.2)

where G = ¢ = 1.] As in [3] we restrict ourselves here to
the case of a small spinning body m1, S, orbiting a large
non-spinning body ma, So = 0.

The aim of the present note is to report on an ex-
tension of our previous analytical computation of spin
precession to the 10.5PN level, i.e. up to terms of order
y'%% included. This extension was motivated by private
communications from Dolan et al. [5] who pointed out
apparent discrepancies (starting at level O(y7)) between
some of their high-accuracy numerical results (see Table
IIT in Ref. [6]) and our published 8.5PN analytical re-
sults. These discrepancies led us to carefully re-examine
our previous computations, and to push them to higher
PN orders. We so discovered that, though all our ba-
sic analytical building blocks were correct, their manip-
ulation by an algebraic software led to some instabili-
ties (due to the length of the analytical expressions at
high PN orders), that had led to a few errors in our fi-
nal results. More precisely, the rational term, among the
seven (transcendental) contributions to the coefficient of
y”, was incorrectly obtained, and, in the coefficient of
y® (which contains fifteen different contributions), both
the rational term and the coefficient of 72 were incor-
rectly obtained. Correspondingly, there were errors in
the (rational) coefficients of y” and y® in the subtraction
term B(y). [See detailed results below.] After having
found these errors, corrected them, and communicated
the corrections to Dolan et al., the latter authors con-
firmed that our O(y®) corrected results were now in satis-
factory agreement with their high-accuracy numerical re-
sults. [More recently, Shah [7] independently pointed out
to us the three discrepant coefficients mentioned above,
which we had already analytically derived, and which he
and his collaborators had independently derived by using
the numerical-analytical method of Ref. [§].]

II. TECHNICAL REMINDERS

Let us recall the notation and main technical results of
Ref. [3] that we shall need to express our new results. We
consider a two-body system of masses mi; and ms, mov-
ing along circular orbits, in the limit m; < mq. Here we
only endow the small mass m; with spin S7, keeping the
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large mass mo non-spinning. This means that one is deal-
ing with linear perturbations h,, (z*) of a Schwarzschild
background of mass mo by a small mass mj, moving on
a circular orbit of radius rg. As emphasized by Detweiler
[4], the perturbed metric admits the helical Killing vector
k = 0y + Q0y, i.e., the metric perturbation depends only
ong=a¢—Qt r and 0, b (6,7,0).

The four- Velomty of my, normalized with respect to
the metric g (2*) = 99 + qhf, + O(q?), (here ¢ =
mq/mo < 1 and the superscript R indicates the regular
part [9] of Ay, (z}) around the world line of m4), can be

written as
k+ 1
Ut = =Tk*, T=_, (2.1)
[%] k|
where (to linear order in q)
2m2
k| = \/[=gf krE Ty 1— —=— Q% — qhyx

2meo 1 hkk
1—=_Q022 (1 -g——— "¢
) TO( 2q1 — 022 )

(2.2)

with hgp = [}, (2)k"k"]y.  Writing that m; moves
along an equatorial circular geodesic yields the conditions
dugf. = 0, which lead to 4]

2
ma A R
% (1-eponin) . ey

Q:

(2.4)

Eq. (@23) allows one to trade the gauge-dependent ra-
dius rg for the gauge-invariant dimensionless frequency

parameter y, Eq. (L2), using

ro=——-— qﬁ_yg[aThkk]l )
ma m2 R
22—y (1+ apzio i) (25)

The geodetic spin-orbit precession frequency along the
world line of m; has, as only nonvanishing component,
059 = Q59 given by Eq. (LI above. In this equation,
the norm |Vk| of the covariant derivative of the helical
Killing vector k = 0; + Q0 is defined as

1 v
VA = S(V,h ) (V4R (26)
where all tensorial operations are done with the metric
g5k, (). The explicit expression of [Vk| can be written as

[VE| = VK[ (1+q3(y) + O(¢%)), (2.7)
where
|VE|© = Q./1 =3y, (2.8)

is the well-known result for gyroscopic precession (with
respect to a rotating, polar-coordinate frame) in a
Schwarzschild background [10], and where

1 y*(1—y)
5(3/) - 2(1 2y)hrr 2m§(1 _ Zy) h¢¢
3/2
Yy Yy
— hie — h
ma(1—2y) " 20— 2y)(1 —3y) ™"

1
—2—\@(3(;5}%1@ — Orhgr) . (2.9)
In Eq. (29) all quantities are to be regularized and eval-
uated for 0 = /2.

The quantity (y), which measures the fractional first
order self-force (1SF) correction to |Vk|, is equivalent to
the quantity d¢(y) which measures the 1SF contribution

to the dimensionless ratio 2|

050 VEk
vy = - = —|Q—| = 1-/1 - 3y[1+q3(y)+0(¢*)] -
(2.10)
Explicitly, we have
—v/1—=3yd(y) (2.11)

Following the methodology explained in Refs. [11-15],
and extending the results of Ref. |[3] to higher post-
Newtonian orders (by using radiative solutions, X (in)>
Xup), up to [ = 7), we have computed J(y) up to or-
der y10.5'

III. NEW HIGHER POST-NEWTONIAN
TERMS IN 6(y) AND 6v(y)

Before listing the complete expressions of §(y) and
51 (y) to order y%® let us indicate that our previous
O(y®5)—accurate results missed one term at level y” and
two terms at level 48, while the y7-®> and y®° terms were
complete.

More precisely, the correct O(y® ) accurate expres—
sion of §(y) is obtained by adding Ac$ y” + Acg y® to Eq.

(4.33) in [3], where
s 1485630311863
Adhy=—————
45831035250
2 24
Acg _ 8 o2 537769708 69367. (3.1)
8505 262980313505910

Equivalently, the correct O(y®®)—accurate expression of
81 (y) is obtained by adding Ac7wy7+Ac‘w 8toEq. (5.4)

in [3], where A2Y = —A¢f and Ac)¥ = —Ac] + 3 A,
ie.,
A _ 1485630311863
’ 45831035250
8 629539392522290711
Ayl =~ 2 . (32
‘8 $505" T 13149015675295500 1 )



The full O(y'%-%)—accurate expressions of §(y) and d¢(y) read
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Note that, in the above expressions, we used the
computer-algebra-related notation In(a)™ to denote
In" (a) and Oy, (y'!) to denote a term of order y*! In" y for
some n. The corresponding Oy, (u'!)—accurate expan-
sion of the effective gyrogravitomagnetic ration géSF(u)

is given in the Appendix.

IV. ANALYTIC EXPRESSION OF THE
SUBTRACTION TERM

Prompted by Dolan et al. [5], who pointed out dis-
crepancies at order y” and y® between our Eq. (4.30)
in 3] and their (unpublished) corresponding expression
for the subtraction term B(y), we have found a way to
derive an exact analytic expression for B(y) within our
formalism, which is based on Regge-Wheeler-Zerilli-type
tensorial multipolar expansions. As we shall now ex-
plain, our derivation is a novel approach grounded on
a Wentzel-Kramers-Brillouin (WKB) analysis of the ho-
mogeneous radial (Regge-Wheeler, RW) equation satis-
fied by the fundamental building blocks, Xj, and Xy, of
our formalism. This WKB approach (which we explain
in detail below) is quite different from the approach tra-
ditionally used in gravitational self-force theory, which is
based on local, Hadamard-type expansions of the metric
h,., in Lorenz-gauge, near the world line of my (see e.g.,
19, 16, [17]). In addition, our approach defines the sub-
traction terms by considering the limit [ — oo where [
denotes the degree in a temsorial multipolar expansion,
while the usual self-force calculations define subtraction
terms by considering a limit Iy — oo, where [; denotes
the order in a scalar multipolar expansion. One can show
that, for the quantities we shall consider, the two differ-
ent limiting procedures should give the same subtraction
terms at leading order. [However, at higher orders in lo-
cal singularity expansions, the extension ambiguities of
such expansions do not imply anymore their equivalence.]

Let us start by recalling the form of the WKB approxi-
mation of the solutions of a one-dimensional Schrodinger
equation, say

d Q(x)

The WKB solutions of Eq. (@) are written in the form

(4.1)

U(z) = e R HSFOMN) (4.2)
As indicated here, it will be sufficient for our purpose to
keep only the leading and next-to-leading terms in the
WKB expansion. At this order of approximation, the
two independent solutions of Eq. ([@I]) read

et J p(z)dx
Vi(r) =Co———, pla)=VQ(), (43)
p(z)
corresponding to
So 1
> = :l:/p(x)dw, S = ~3 Inp(x). (4.4)

The choice C+ = 1/4/2 would imply that the Wronskian
of these solutions is 1:

W=0_ ¥ -0 0 =1, (4.5)

Note that we will use the WKB approximation in the
classically forbidden domain, where Q(z) is positive so
that the solutions Wy are exponentially growing or de-
caying.

We first apply this approximation to the (homoge-
neous) radial RW equation

& [f(r) (1(1+1) ~ 6]\43772

dr,? r2 r

) _ nmg] X.
(4.6)

Here, n = 1/c¢, m is the spherical harmonics order,
denotes the orbital frequency, and

dr _ _2M172
oy T

The spatial variable (denoted z in Eq.[])) in this one-
dimensional Schrodinger equation is 7., while we shall
take as small expansion parameter i the quantity

dr, = (4.7)

h= — 4.8
L Y ( )
where we introduced the convenient notation
1
L=1+ R (4.9)

Note indeed that the coefficient /(I + 1) in the centrifugal
potential can be written as

I(1+1)=1L%— i : (4.10)

and is of order ~ %

In order to capture the near-world-line singularity ex-
pansion within our tensorial multipolar expansion, we
need to consider a limit where both I ~ L and m tend
to infinity with the ratio w = m/L being kept fixed. In

this limit the two dominant terms (of order 1/A?) in Eq.

1) are

R EYCR

m2

I+1)

QQ] +O(L°)

=17 [%f(r) - 772”2—2292} +0(L°)
yx [ Lty - anQQQ] +Lo(1Y).

= (4.11)
Correspondingly to the accuracy used in Eq. (@2), we
can neglect the terms of order O(LP) in the above equa-
tion, which notably means neglecting the term 6 /r® in
Eq. ([@4). At this stage no expansion is performed in the
PN-parameter n = 1/c.

Introducing the notation

2Mn?

Alr)y=1- — n*w?Q*r?, (4.12)



we have
2 A(r)
r2

so that the building blocks of the WKB solution (Z3)
read

&Z:I:/p*dr*::t p*f—:I:L/° dr,

Q*:pi:L

s

h fry r
(4.14)
and
1
S1 = —3 Inp,. (4.15)
More explicitly
A1/4
VP = VL 7 (4.16)
so that
Co _a, VT (4.17)
\/p—* Al/4

where we have re-absorbed the factor V'L in the constant
Cy [Cy = Cy/VI.

The final result of this WKB analysis is that two inde-
pendent solutions of the RW equation (6]) are

\/_ ﬂ:LJ \/_ d7
A/i€ :
We checked that the PN expanded solutions of the RW
equation that we constructed in our formalism [11-15]

agree with those WKB solutions, with the following cor-
respondence

X, =Cy

(4.18)

T LfY2ar
INZS
VT LB
NS :
Note for instance that, when expanding in powers of n
the right-hand-side (rhs) of X i), as given in Eq. {@.I9),
its leading order is y/re’™” = ri*1 in agreement with
the normalization of our PN solution which was chosen
as

X(in) =

X(up) ~ (4.19)

Xéi;’])(r) = pitl (1 + Al“’(r)) ,

with A (r) = O(n?).
Inserting the above WKB solutions for X ;) and X )
+(odd/even)

(4.20)

in the analytical expressions for §; given in Ref.
[3] [see Egs. (4.10) and (4.12) together with Eqgs. (4.11),
(4.13) and (4.23) there] yields expressions for §;(y) =

5li,cvcn(y) +0;7°%4(y) of the form of Eq. (4.28) there, i.e.,

= 36t~ £L AW + B +0 ()

(4.21)

At this stage the subtraction term B(y) is given by a sum
over m of the form

1 ()it +o ()52

where Y;,,(0,¢) and its f—derivative are both evalu-
ated at § = 7/2 (and ¢ = 0). Such a sum can be
asymptotically evaluated, in the limit L — oo with m/L
fixed, in terms of an integral, between —1 and 1, over
the variable w = m/L. In order to do so one needs

(4.22)

asymptotic estimates for |Y,,|? and ‘%‘2 as functions
of w in the large L limit. Such asymptotic estimates
can be derived by a WKB analysis of the 6 differen-
tial equation satisfied by ©;,,(0) (defined by factoring
Yim (0, ¢) = ©1:,(0)e?™?). Indeed, Oy, () satisfies a one-
d1mens1onal Schrodinger equation of the type (4.1]), when
using the variable A = fw /2 df/ sin 6, namely

d2

- — 2
e Oim P*(N)Oum , (4.23)
with
P2(\) = 1(1 4 1)sin® O(\) —m?. (4.24)
This leads to WKB solutions of the type
sz(A)dA e—i [ P(\)dA
O () = (4.25)

NV RV
for appropriate choices of the constants C'y determined
by regularity conditions at A = —oo (corresponding to
6 = 0) and A = oo (corresponding to § = 7). When
evaluating ©;,,,(\) and d%@;,n()\) = sin@d%Glm at 0 =
/2 (i.e., A = 0) one finds the following WKB estimates

m 1 1
Yim(=,0)]? ~ — oy, 4.26
| l (2 )| 7_‘_2\/1_—1 ( )
and
L2
|amm —,0)| \/ w2694 (4.27)

Here ;¥ (6loffn) is equal to 1 when [ — m is even (odd)
and to 0 otherwise. The above estimates are not a priori
uniformly valid in the full range —! < m <[ because our
WKB analysis requires L? —m? > 1. However, they can
correctly evaluate the asymptotic values of the integrals
that we shall be interested in below (which have only a
relatively small contribution from the neighborhoods of
the boundary points w = £1). We have checked the esti-
mates [L26) and (L27) by using the explicit expressions
of Y1, (%,0) and 9pYi,n (%, 0) given in Eqgs. (32) and (33)
of |18]. A consequence of Eqs. (28] and ([#27) is that

Z:2z+1 ( )|f

Z 4 |89lem(§7
— 20+1 L2

/m”

)'2@)% [

—wig(w)

(4.28)



As an example of the application of these asymptotic es-
timates we have computed the analytic expression of the
L — oo limit of the first-order self-force redshift quantity

hik. Starting from Eqgs. (29) and (30) of Ref. [11] one

finds that By,, = limlﬁoo(h,(:kv?;) + h,i%dfn)l) is given by

B, :2y1—3y3/2 / dw
e V1—2y V(1 —w?)(1 - k2w?)

_ 2y(1—3y)3/%2

—EllipticK (k& 4.29
m T 1p 1c ( )7 ( )
where
Y
k* = 4.30
et (4:30)

and where EllipticK(k) denotes the complete elliptic in-
|

1—-3y
1-2y

Bwxks(y) = p

Here EllipticE(k) denotes the complete elliptic integral
of the second kind

/2
EllipticE(k) = / da V1 —k2sin® .
0

(4.33)

The expansion in powers of y of Bwgkp reads, up to
the 11 PN level
LT L B B A
“2Y Y T 18 T 1024
126849 6 16567767 7 555080733 8
32768 7 2097152 7 33554432 7
77104836855 9 350273500199 10
2147433648 7 4204967296 7
26812467118879

14 O(y'2).

137438953472 7

In our previous work [3] the subtraction term B was not
derived independently of our computation of 6?;1 but was
obtained from the large ! limit of the PN expanded ver-
sion of cﬁn. The algebraic-manipulation errors mentioned
above induced corresponding errors in our previous eval-
uation of the PN expansion of B (as pointed out to us by
Dolan et al. [5]). More explicitly, the coefficients of y”
and y® in Eq. (4.30) in [3] were in error, and Eq. (£34)
gives instead their correct values.

995, , 63223 5

B
wKB(y) = 327687

(4.34)

V. CONCLUDING REMARKS

The analytic computation of the post-Newtonian ex-
pansion of the first-order self-force contribution to spin
precession has been raised here to the ten and ten-and-
half post-Newtonian level.

[(4 — 9y)EllipticE(k) — 2(2 — 5y)EllipticK (k)] .

tegral of the first kind (with w = sin a):

EllipticK(k / (4.31)

1—k2s1n o

This result agrees with the subtraction term obtained by
the usual self-force Hadamard-type analysis [4, [17], i.e
the term denoted Dy = (1—3y)Do in [11,[12]. [Note that
there is a misprint in the last term of Eq. (56) in [12];
the coefficient of u” should read +4409649/524288].
When applying the above WKB asymptotic estimates
(for both the radial functions Xy (r) and the angular
functions Yy, and 9yYi,) to the I — oo limit of the
quantity 5li (y), (E2T), we obtain the following analytic
expression for the O(L?) subtraction term B(y)

(4.32)

Our analysis has also corrected two terms (at the PN
levels 7 and 8) among our previous 8.5 PN-accurate
calculation of spin-orbit effects [3]. More precisely, we
have shown that Eq. (4.33) in [3] needs to be aug-
mented by the two terms in Eq. (BI). Equivalently,
Eq. (5.4) in 3] needs to be augmented by the two terms
in Eq. (32). These missing terms were caused by al-
gebraic errors in the manipulation of large analytic ex-
pressions. Note that these errors affected only a few
terms among many contributions (essentially only ra-
tional terms). The missing contributions to the coeffi-
cients of y” and y® in & (y) are numerically equal to
Ac¥ = 32.41537757 and Acy = 47.86801827. These val-
ues are rather small compared to the corresponding typ-
ical values of the general PN coefficient ¢¥ ~ —0.12 x 3"
(linked to the pole singularity of 09 (y) at y = %, see Eq.
(5.14) in [3]). The fractional modifications brought to
the coefficients g§ and g5 in Eqs. (6.36), (6.37) and (6.38)
are correspondingly small, dgg/gs ~ —0.02487821950 and
dg7/g7 ~ 0.0001739775786. As a consequence, correcting
these terms does not affect any of the significant con-
clusions we reached in |3] which were mainly aimed at
describing strong field effects. In particular, our fits Egs.
(5.11) and (6.39) did not make any use of the y” and y®
coefficients but only relied on 3PN information and on
the strong field numerical data of [2].

Finally, we have introduced here a new method for an-
alytically computing the subtraction terms of self-force
quantities. Instead of the traditionally used Hadamard-
like near-world-line singularity expansions, our new
method is based on a WKB analysis of both the radial
and angular equations satisfied by the metric, when con-
sidering them in the limit | — oo with the ratio m /I fixed.
We have shown on two examples (hgr and the spin pre-



cession) that our method leads rather simply to closed
form expressions for the subtraction terms.

Appendix A: Higher PN terms in géEF

Combining the O(y1%?)-accurate computation of §(y)
above with our recent O(y!-%)-accurate computation of
the main effective one-body radial potential a(u) [15], we
can raise the PN expansion order of the effective gyro-
magnetic ratio g&*" from the O(u"%) level given in Eq.
(6.37) of 3] to the O(u??) level. We list below the final
result, expressed in the effective one-body radial variable
u.
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[
Here the coefficients of u® and «7 differ from the ones and
given in Ref. |3] because of the corresponding change in
0. More precisely, the terms to be added to Eqgs. (6.36);
and (6.37); in 3] read
. 3.5
At = A¥ (A2) Act™ = Acg” — S Ay (A3)



Let us also point out a misprint in the expression of 917“
given in Eq. (6.37)2 of [3]: the additional term

249952
995 In 2

55 , (A4)

was inadvertently omitted.
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