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Continuing our analytic computation of the first-order self-force contribution to Detweiler’s red-
shift variable we provide the exact expressions of the ninth and ninth-and-a-half post-Newtonian

terms.

I. INTRODUCTION

The prospect of soon detecting the gravitational-wave
signals emitted by coalescing compact binaries motivates
a renewed study of the general relativistic two-body prob-
lem. One of the useful lines of attack on this problem
is the gravitational self-force program, which considers
large-mass-ratio binary systems (m; < ms), and uses an
expansion in powers of the mass ratio ¢ = m/ma < 1.
Within this program, Detweiler [1] has emphasized the
importance of focussing on the computation of gauge-
invariant quantities, and he gave (for the case of circu-
lar motions) the example of the function relating the
redshift U' = dt/ds along the worldline of the small
mass my to the orbital frequency Q. To first order in
q this gives rise to the gauge-invariant function Uf(y),
where Ut(y) = (1 —3y)~ /2 + qUi(y) + O(¢?) and where
y = (GmaQ/c?)?/3 denotes a dimensionless parameter re-
lated to the orbital frequency. Note that y can be consid-
ered as measuring (in a gauge-invariant way) the dimen-
sionless gravitational potential Gma/(c?Rq), with Rq
denoting the invariant radius canonically associated with
Q via Kepler’s law around the large mass: Gma = Q?R},.
In the following, we shall denote the mathematical ar-
gument of the first-order self-force function U{(.) by u
(evoking a gravitational potential) rather than y. [This
notation is purely a matter of choice.] We henceforth also
often set G =c = 1.

Detweiler [1] has shown that Uf(u) could be com-
puted in terms of the first-order metric perturbation
of a Schwarzschild metric of mass ma, say dgu., =
G (@M1, ma) — g™ (a*ma) = q by (a) + O(¢°) as

1

Uilw) = 2(1 — 3u)3/2

hl?k (u) ’

(1.1)

where

hE (1) = [hy (2] k4R (1.2)
Here k* denotes the Killing vector k = 9; +Q0,,, and the
superscript R denotes the regularized value of h,,, (z*) on
the world line of the small mass m. [When evaluating
the first-order quantity hkRk along a circular orbit of (co-

ordinate) radius Ry it is enough to use the approximation
RQ ~ RQ = mg/u]

The beginning of the post-Newtonian (PN) expansion
of the (first-order) self-force contribution U} (u) was an-
alytically derived in Ref. 1], namely :

Ub(u) = —u — 2u? — 5u® — - - (1.3)

Here, the first term (—u) is of Newtonian order, so that
the second (—2u?) and third (—5u®) respectively repre-
sent 1PN and 2PN contributions. More generally, a term
o u™*! corresponds to the nPN level in U (u).

The 3PN term was analytically derived (using full
PN theory) by Blanchet et al. [2]. In 2013, we [3]
showed how to analytically compute the 4PN term by
a combined use of Regge-Wheeler-Zerilli (RWZ) formal-
ism for the Schwarzschild perturbations together with
the hypergeometric-expansion analytical solutions of the
RWZ radial equation obtained by Mano, Suzuki and
Takasugi [4] (MST). We then progressively extended the
analytical knowledge of the PN expansion of Y up to
the 8.5 PN level [5,16]. [See the latter works for references
to other related analytical studies.]

Parallely to these analytical studies, Detweiler’s red-
shift variable was numerically computed in Refs. [1,12, 7],
and these numerical data were used to extract numerical
estimates of several higher-order (then unknown) PN ex-
pansion coefficients [1,12]. A breakthrough in this extrac-
tion of PN coefficients from numerical self-force calcula-
tions was accomplished by Shah, Friedman and Whiting
[8] who numerically evaluated the MST hypergeometric-
expansion of Uf(u) to one part in 10??® for orbital radii
extending up to 103°Gmy/c® . This extremely high nu-
merical accuracy on Uf(u) for extremely small values of
the argument v allowed them to numerically extract PN
coefficients up to the 10.5 PN level, and also to provide
educated guesses for the exact analytical form of several
high-order PN coefficients.

We have shown in [, 6] that the results of Shah, Fried-
man and Whiting [8] agreed with our (fully) analytical
ones up to the highest PN level we had then computed,
namely the 8.5PN level. The aim of the present short
note is to report on an extension of our analytical compu-
tation to the 9.5 PN level (using the techniques explained
in our previous papers), and on its comparison with the
results of Shah et al.
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II. NEW TERMS IN THE PN EXPANSION OF

U{(u) AT THE 9 AND 9.5 PN LEVELS

Following the notation of Eq. (21) in Ref. [8], we write

Uf(u) = Ul (u)|s.spn + (9 — Bo Inu + 79 In® u)u'®
+(ag5 — Bo.s Inu)u'/?, (2.1)
where Uf(u)|s.spn is known from [6]. Here (v, B9, o),
and (ag.5, B9.5) are the coeflicients of, respectively, the
9PN (u'%) and 9.5PN (u?/2) terms, which we have now

analytically derived. Our results for these coefficients
are:
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Our analytically derived results for 9 and 9 5 agree with
the numerical-based analytical expressions previously ob-
tained for these two particular coefficients by Shah et al.
[8]. Concerning the other (newly analytically computed)
coefficients, namely ag, B9, and ag 5 we have indicated
by boxes in the above equations the extent to which our
results agree with the numerical estimates given by Shah
et al. [8]. More precisely, the boxes above include one
more digit than those given in Table I of |§]. In all cases,
the agreement is perfect modulo possible rounding effects
on the last digit quoted in [§].

III. CONCLUDING REMARKS

The analytic computation of the post-Newtonian ex-
pansion of the first-order self-force contribution U?(u) to
Detweiler’s redshift function U?(Q2) has been raised here
to the nine and nine-and-a-half PN level, thereby provid-
ing the exact analytical expressions of terms which were
previously obtained only numerically by Shah et al. [g].

Let us finally note that, using the results of Refs.
[9, [10], our results can be translated into the computa-
tion of the nine and nine-and-a-half PN contributions to
the linear-in-mass-ratio piece of the main radial poten-
tial A(u;v) of the effective one-body formalism [11), [12].
Denoting, A(u;v) = 1 — 2u + va(u) + O(v?) (where



v=mima/(m1 +m2)? = q/(1+ q)?), we have
a(u) = agspx(u) + (afy + i Inu + all%z In? u)u'®

21/2
3

+(aSo5 + alh s Inu)u (3.1)

where ag spn(u) was given in [6], and where the newly
derived 9PN and 9.5PN coefficients are:
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The corresponding numerical values are (consistently with, but more accurately than in, Eqgs. (27), (28) in [6])

af, = 4845.870557019444177347393421579822176656222929365 . . .

all’% = —8207.441915171961061495913671985378064622493890134 . ..
all’%2 = 178.777945237204496463755723014982274241533500792.. . .
afy.s = —28324.307465213628065671194515396169336328722651715. ..

al o = 3275.813959067119914181314855451516851587807063565 . . . .
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