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We study the quantum fermionic billiard defined by the dynamics of a quantized supersymmetric
squashed three-sphere (Bianchi IX cosmological model within D = 4 simple supergravity). The
quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space.
We focus on the 15- and 20-dimensional subspaces (with fermion numbers NF = 2 and NF =
3) where there exist propagating solutions of the supersymmetry constraints that carry (in the
small-wavelength limit) a chaotic spinorial dynamics generalizing the Belinskii-Khalatnikov-Lifshitz
classical “oscillatory" dynamics. By exactly solving the supersymmetry constraints near each one of
the three dominant potential walls underlying the latter chaotic billiard dynamics, we compute the
three operators that describe the corresponding three potential-wall reflections of the spinorial state
describing, in supergravity, the quantum evolution of the universe. It is remarkably found that the
latter, purely dynamically-defined, reflection operators satisfy generalized Coxeter relations which
define a type of spinorial extension of the Weyl group of the rank-3 hyperbolic Kac-Moody algebra
AE3.

I. INTRODUCTION

One of the challenges of gravitational physics is to describe the fate of spacetime at spacelike
singularities (such as the cosmological big bang, or big crunches within black holes). A new
avenue for attacking this problem has been suggested a few years ago via a conjectured corre-
spondence between various supergravity theories and the dynamics of a spinning massless particle
on an infinite-dimensional Kac-Moody coset space [1–4]. Evidence for such a supergravity/Kac-
Moody link emerged through the study à la Belinskii-Khalatnikov-Lifshitz (BKL) [5] of the
structure of cosmological singularities in string theory and supergravity, in spacetime dimensions
4 ≤ D ≤ 11 [6–8]. [For a different approach to such a conjectured supergravity/Kac-Moody link
see [9, 10].] For instance, the well-known BKL oscillatory behavior [5] of the diagonal components
of a generic, inhomogeneous Einsteinian metric in D = 4 was found to be equivalent to a billiard
motion within the Weyl chamber of the rank-3 hyperbolic Kac-Moody algebra AE3 [7]. Similarly,
the generic BKL-like dynamics of the bosonic sector of maximal supergravity (considered either
in D = 11, or, after dimensional reduction, in 4 ≤ D ≤ 10) leads to a chaotic billiard motion
within the Weyl chamber of the rank-10 hyperbolic Kac-Moody algebra E10 [6]. The hidden
rôle of E10 in the dynamics of maximal supergravity was confirmed to higher-approximations
(up to the third level) in the gradient expansion ∂x � ∂T of its bosonic sector [1]. In addi-
tion, the study of the fermionic sector of supergravity theories has exhibited a related rôle of
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Kac-Moody algebras. At leading order in the gradient expansion of the gravitino field ψµ, the
dynamics of ψµ at each spatial point was found to be given by parallel transport with respect to
a (bosonic-induced) connection Q taking values within the “compact” sub-algebra of the corre-
sponding bosonic Kac-Moody algebra: say K(AE3) for D = 4 simple supergravity and K(E10)
for maximal supergravity [2–4]. This led to the study of fermionic cosmological billiards [11, 12].
[For definitions, and basic mathematical results on Kac-Moody algebras see Ref. [13]; see also
Ref. [14] for a detailed study of the specific hyperbolic Kac-Moody algebra AE3 ≡ F that enters
4-dimensional gravity and supergravity.]

The works cited above considered only the terms linear in the gravitino, and, moreover, treated
ψµ as a “classical” (i.e. Grassman-valued) fermionic field. It is only recently [15, 16] that the full
quantum supergravity dynamics of simple cosmological models has been tackled in a way which
displayed their hidden Kac-Moody structures. [For previous work on supersymmetric quantum
cosmology, see Refs. [17–24], as well as the books [25, 26].]

The work [15, 16] studied the quantum supersymmetric Bianchi IX cosmological model. This
model is obtained by the (consistent) dimensional reduction of the simple N = 1, D = 4 super-
gravity to one (timelike) dimension on a triaxially-squashed (SU(2)-homogeneous) three-sphere.
This work allowed to decipher the quantum dynamics of this supersymmetric (mini-superspace)
model. The quantum state |Ψ(β)〉 of this model depends (after a symmetry reduction) on three
continuous bosonic parameters βa, a = 1, 2, 3 (measuring the triaxial squashing of the three-
sphere), and on sixty-four spinor indices (which describe the representation space of the anti-
commutation relations of the gravitino field displayed below). It was shown that the structure
of the solutions of the supersymmetry (susy) constraints depended very much on the eigenvalue
NF (going from 0 to 6) of the fermion-number operator:

N̂F = 3 +
1

2
Gab Φ̂

a

γ1̂2̂3̂ Φ̂b (1.1)

Here, Φ̂aA (with a spatial vector index a = 1, 2, 3, and with a Majorana spinor index A = 1, 2, 3, 4
that we generally suppress) denote the twelve, quantized homogeneous modes of the spatial
components of the gravitino field ψµ (written in a special way that makes more manifest some
of their Kac-Moody properties). They satisfy the anticommutation relations

Φ̂aA Φ̂bB + Φ̂bB Φ̂aA = GabδAB (1.2)

where

Gab =
1

2

 1 −1 −1
−1 1 −1
−1 −1 1

 . (1.3)

defines a contravariant, Lorentzian-signature [(−,+,+)] metric in the three-dimensional space
spanned by the bosonic variables βa. [See Ref. [16] for more details on our notation.]

The quantum state |Ψ(β)〉 must be annihilated by the susy constraints, i.e.

Ŝ(0)A |Ψ(β)〉 = 0 , (1.4)

where the structure of the susy constraints is

Ŝ(0)A =
i

2
Φ̂aA∂βa + V̂A(β, Φ̂) . (1.5)

Here the potential-like term V̂A(β, Φ̂) is a complicated operator which is cubic in the gravitino
operators Φ̂aA, and involves various potential walls that will be discussed below.
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Figure 1: Sketchy representation of the propagation in 3-dimensional, Lorentzian β space of the cos-
mological quantum supergravity wave function |Ψ(β)〉. When considered within our canonical chamber
β1 < β2 < β3, this wave function undergoes successive reflections on the three potential walls that
are present in the supersymmetry constraints (1.4). Two of the potential walls are singular on the hy-
perplanes α12(β) = 0 and α23(β) = 0, while the third potential wall grows exponentially when α11(β)
becomes negative.

As the twelve Φ̂aA’s satisfy the Clifford-algebra anticommutation law (1.2), and as the Φ̂aA’s enter
the first term of Ŝ(0)A , Eq. (1.5), as coefficients of the partial derivatives ∂βa , we can view, for each
given value of the index A, the susy constraint (1.4) as being a Diraclike [iγµ∂xµψ(x) = V̂ (x)ψ(x)]
equation for the propagation of the wavefunction |Ψ(β)〉 in the 3-dimensional Lorentzian β space.
However, as the Majorana-spinor index A in Eqs. (1.4), takes four values, we see that the state
must simultaneously solve four different Diraclike equations. This represents a huge constraint
on possible solutions.

The structure of the solution space of these susy constraints has been thoroughly analyzed in
[16]. It was found that the structure and generality of the solutions drastically depend on the
fermionic level NF , Eq. (1.1). Here, we shall study the cosmological dynamics of the solutions
at levels1 NF = 2 and NF = 3 that contain two arbitrary real functions of two variables as free
Cauchy data, i.e. that have as much freedom as the solutions of the usual, purely bosonic Bianchi
IX mini-superspace Wheeler-DeWitt equation. More precisely, we are interested in quantum
solutions which, in the WKB approximation, can be viewed as describing the chaotic billiard
motion of the cosmological squashing parameters β1, β2, β3 near a big-crunch-type singularity.
[This chaotic behavior is a quantum, and spinorial, generalization of the classic BKL oscillatory
behavior of the three Bianchi IX scale factors, a = e−β

1

, b = e−β
2

, c == e−β
3

. The quantum
(scalar) version of the Bianchi IX chaos was first studied in Ref. [27].] The type of solution we
have in mind, and will study in detail below, is illustrated in Fig. 1.

As illustrated on Fig. 1, we can view these solutions as wave packets bouncing between
potential walls. In Fig. 1, these potential walls are drawn as sharp walls located on some
(timelike) hyperplanes in β-space. [Note, however, that our analysis will not make any sharp-
wall approximation, as was made, e.g., in Ref. [12]. We will compute the reflection of the wave
function against each exact potential wall; see below.] In particular, we highlighted the three

1 There are similar solutions at level NF = 4, and in the mirror part of the NF = 2 level that we shall not
consider, which can be obtained by a simple involution acting on fermionic generators.
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wall hyperplanes defined by the equations

α11(β) = 0 , α12(β) = 0 , α23(β) = 0, (1.6)

corresponding to the following three linear forms in the β’s:

α11(β) ≡ 2β1 ; α12(β) ≡ β2 − β1 ; α23(β) ≡ β3 − β2 . (1.7)

The three hyperplane equations (1.6) constitute a conventional way of describing the fact that
the basic equations of the supersymmetric Bianchi IX model, i.e. the susy constraints (1.4),
contain operatorial, spin-dependent and β-dependent potentiallike terms that grow when the β’s
approach these hyperplanes. More precisely, as can be seen on the explicit expressions given in
Eqs. (6.1)–(6.4) of [16], the potential-like contribution V̂A(β, Φ̂) to the susy constraints operators,
Eq. (1.5), contains the following terms

V̂ gA =
1

2

∑
a

e−2β
a
(
γ5 Φ̂a

)
A

, (1.8)

and

V̂ sym
A = −1

8
coth[β1 − β2]

[
Ŝ12

(
γ1̂2̂

(
Φ̂1 − Φ̂2

))
A

+
(
γ1̂2̂

(
Φ̂1 − Φ̂2

))
A
Ŝ12

]
+ cyclic123 (1.9)

where

Ŝ12 =
1

2

(
Φ̂

3

γ0̂1̂2̂(Φ̂1 + Φ̂2) + Φ̂
1

γ0̂1̂2̂ Φ̂1 + Φ̂
2

γ0̂1̂2̂ Φ̂2 − Φ̂
1

γ0̂1̂2̂ Φ̂2

)
. (1.10)

The operator Ŝ12, together with similarly defined operators Ŝ23, Ŝ31, are spin-like operators
satisfying the usual su(2) commutation relations : [Ŝ23, Ŝ31] = +i Ŝ12, etc .

The “gravitational-wall" potential term (1.8) is exponentially small when β1, β2, and β3, are
largish and positive. It starts becoming exponentially large (and confining) when, on the contrary,
either β1, β2, or β3, become negative. It is in that sense that the three gravitational-wall hyper-
planes α11(β) = 0, α22(β) = 0 and α33(β) = 0 (where α22 ≡ 2β2 and α33 ≡ 2β3) define (softly
confining) potential walls. The “symmetry-wall" potential (1.9) is similarly made of three differ-
ent terms (differing by a (123) cyclic permutation). For instance, the term explicitly displayed
in Eq. (1.9), which involves coth[β1 − β2], is singular on the symmetry hyperplane α12(β) = 0,
and tends towards a β-independent contribution far from it. [The various β-independent con-
tributions coming from the asymptotic ±1 values of the various cothαab’s combine with other
β-independent, Φ̂a-cubic terms to define an effective mass term in the above Diraclike equations.
The effect of these mass-like, Φ̂a-cubic terms will be fully taken into account in our discussion
below.]

It has been shown in [16] that it is enough to consider the evolution of the universe wave
function |Ψ(β)〉 within only one of the six different chambers defined by considering the two
possible sides associated with the three symmetry-wall one forms α12(β), α23(β), α31(β) (i.e.
the two possible signs for, e.g., β2 − β1). Each such chamber corresponds to some ordering of
the three β’s. Here, we shall work within the canonical chamber

β1 < β2 < β3 . (1.11)

The gravitational wall belonging to this chamber [namely the term e−2β
1
(
γ5 Φ̂1

)
A

in (1.8)]
further confines the evolution of the wave packet to stay essentially on the positive side of
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α11 = 2β1, so that we can think of the wave function |Ψ(β)〉 as evolving in the (approximate)
billiard chamber

0 . β1 < β2 < β3 . (1.12)

It is this (approximate) billiard chamber, within which α11(β) ≥ 0 , α12(β) ≥ 0 , α23(β) ≥ 0,
which is represented in Fig. 1.

In the present work, we shall complete the results of Refs. [15, 16] by studying the quantum
reflection operators of the universe wave function |Ψ(β)〉 on the three potential walls (1.6) con-
straining its propagation (see Fig. 1). Our present study will thereby represent the quantum
generalization of Ref. [11], which studied similar reflection operators when treating the gravitino
as a classical, i.e. Grassmann variable. We will study, in turn, the evolution of |Ψ(β)〉 at the
fermionic level NF = 2 (Sec. II) and at the fermionic level NF = 3 (Sec. III). After the com-
pletion of this purely dynamical problem, we shall show (in Sec. IV) that our results provide a
new evidence for the hidden role of the hyperbolic Kac-Moody algebra AE3 (and of its compact
subalgebra K[AE3]) in supergravity.

II. QUANTUM FERMIONIC BILLIARD AT LEVEL NF = 2

The susy constraints, Eqs. (1.4), admit solutions depending on arbitrary functions at level
NF = 2 only in a 6-dimensional subspace of the total 15-dimensional NF = 2 space, namely
(with p, q = 1, 2, 3):

|Ψ〉6,NF=2 = kpq(β)b̃
(p
+ b̃

q)
− |0〉− . (2.1)

Here, the amplitude kpq(β) parametrizing these solutions is symmetric in the two indices p, q =

1, 2, 3, and the two triplets of operators b̃a± = (ba±)† denote the Hermitian conjugates of the
following combinations of the basic (Hermitian) gravitino operators Φ̂aA

ba+ = Φ̂a1 + iΦ̂a2 ; ba− = Φ̂a3 − iΦ̂a4 . (2.2)

The vacuum state |0〉− is the unique state annihilated by the six fermionic annihilation operators
ba±. The total 15-dimensional NF = 2 space is generated by acting on |0〉− with two among the
six (anticommuting) creation operators b̃a±. The generic propagating state (2.1) lives in the
6-dimensional subspace H(1,1)S spanned by the symmetrized products b̃(p+ b̃

q)
− |0〉−.

In this Section we shall discuss the reflection law of the NF = 2 spinorial solutions (2.1)
against the three different potential walls bounding the chamber within which these solutions
propagate. We are interested in an asymptotic regime (large β’s, and small wavelengths) where
the quantum solutions can be approximated (away from the turning points, i.e. sufficiently away
from the potential walls) by quasi-classical WKB solutions (see Fig. 1). Like in the usual WKB
approximation, we will obtain the reflection laws against the potential walls by matching the
WKB form (away from the walls) to (exact) solutions valid near the walls.

Far from all the walls (in our canonical Weyl chamber 0 . β1 ≤ β2 ≤ β3), the effect of the
β-dependent potential terms is negligible, so that the amplitude kpq(β) of the general WKB-like
NF = 2 spinorial solution can be written as superposition of (rescaled) plane waves:

kfar−wall
pq (β) = F (β)

∑
Kpq e

iπ′aβ
a

. (2.3)

Here, the rescaling factor F (β) is generally defined (see Eq. (8.4) in Ref. [16], here modified by
the numerical factor 8−1/8) as

F (β) = e
3
4 β

0

(8| sinhβ12 sinhβ23 sinhβ31|)−1/8 , (2.4)
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where we introduced the convenient short-hands

β0 ≡ β1 + β2 + β3 , β12 ≡ β1 − β2 , etc . (2.5)

Far from all the walls of the canonical chamber, the rescaling factor F (β) is a (real) exponential
of the β’s, namely

F (β) ≈ e 3
4 β

0

e−
1
8 (|β12|+|β23|+|β31|) = eβ

1+ 3
4β

2+ 1
2β

3

. (2.6)

As explained in Refs. [15, 16], the rescaling factor F (β) is such that the mass-shell condition for
the plane wave factor eiπ

′
aβ
a

takes the simple, special-relativistic-like, form π′2 = −µ2, namely

Gabπ′aπ
′
b = −µ2

NF=2 = +
3

8
, (2.7)

where Gab denotes the Lorentzian-signature (inverse) metric in β-space. Note that the NF = 2
mass-shell is tachyonic (µ2

NF=2 = − 3
8 , i.e. π

′
a is a spacelike momentum). As was discussed in

Ref. [16], this tachyonic character (which holds for all fermionic levels, except NF = 3) suggests
the possibility of a cosmological bounce. In the present study, we are, however, focussing on
an intermediate asymptotic regime where the wavepacket is centered, most of the time, around
coordinates βa that are large compared to 1, so that many wavelengths separate the successive
wall reflections.

The amplitude Kpq (a “tensor" in β-space) of each plane wave in Eq. (2.3) was found in Ref.
[16] to have (for a given momentum vector π′a) only one (complex) degree of freedom, contained
in an overall factor, say CNF=2, i.e. to be of the form

Kpq = CNF=2

(
π′p π

′
q + Lkpq π

′
k +mpq

)
, (2.8)

where Lkpq and mpq are some fixed numerical coefficients (see Eqs. (19.17) and (19.18) in [16],
which are reproduced in Appendix A for the reader’s convenience).

A first way of describing the law of reflection of a plane wave (2.3) on a potential wall is
to compute the transformation between the incident values of the overall amplitude and of the
momentum, say C in

NF=2, π
′in
a , and their reflected (or outgoing) values, say Cout

NF=2, π
′out
a . In

order to derive the scattering map C in
NF=2 → Cout

NF=2, π
′in
a → π′

out
a we need to go beyond the

far-wall approximation, and study the behaviour of a generic wave packet (2.3) near each type
of potential wall.

Anticipating on the results of the computations given in the following subsections, let us already
exhibit the simple structure of the scattering maps. The transformation of the momentum π′a
upon reflection on a potential wall associated with a root α(β) is simply given (as expected from
the classical billiard approximation) by specular reflection (with respect to the β-space geometry
defined by the (contravariant) metric Gab), i.e. by

π′
out
a = π′

in
a − 2

π′in · α
α · α

αa . (2.9)

Here, the scalar product between two covariant vectors is defined by π′ · α ≡ Gabπ′aαb. [αa is
the covariant normal to the considered potential wall, which is “located" on the hypersurface
0 = α(β) ≡ αaβa.]

As for the transformation of the overall scalar amplitude CNF=2, it will be found to be encoded
in a global phase, δglobalα (which will depend on the considered type of potential wall):

Cout
NF=2 = eiδ

global
α C in

NF=2 . (2.10)
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A second way of describing the law of reflection of a plane wave (2.3) on a potential wall α is to
compute the “reflection operator" Rα, acting on the Hilbert space where the considered quantum
spinorial state lives, and transforming the incident state |Ψ〉in into the corresponding reflected
state |Ψ〉out. In the present case, the considered Hilbert space is the 6-dimensional subspace
H(1,1)S of the 15-dimensional NF = 2 level, and the incident state is the ingoing part of (2.1), i.e.
a plane-wave state of the type F (β)Kpq e

iπ′ina β
a

b̃
(p
+ b̃

q)
− |0〉−. The corresponding reflection operator

then acts on H(1,1)S and is such that

|Ψ〉out6,NF=2 = R6,NF=2
α |Ψ〉in6,NF=2 . (2.11)

[When considering the action of Rα we strip |Ψ〉in and |Ψ〉out of their corresponding phase
factors eiπ

′in/out
a βa .] As the fundamental billiard chamber of the supersymmetric Bianchi IX

model is bounded by three walls, described by three linear forms in β-space, namely α12(β) =
β2 − β1, α23(β) = β3 − β2 and α11(β) = 2β1, the quantum supersymmetric Bianchi IX billiard
will define (at each fermionic level where there exists propagating states) three different reflection
operators. For instance, at the NF = 2 level, supergravity will define three spinorial reflection
operators

R6,NF=2
α12

,R6,NF=2
α23

,R6,NF=2
α11

, (2.12)

all acting in the same 6-dimensional space H(1,1)S . We shall compute these (dynamically defined)
operators below, and find that they have a remarkable Kac-Moody meaning.

In order to derive the reflection laws (2.9), (2.10), (2.11), and, in particular, to compute the
values of the global phases δglobalα , and of the reflection operators, (2.12), we will use a “one-wall"
approximation, i.e. we shall separately solve the problems where an asymptotically planar wave
F (β)Kpq e

iπ′aβ
a

impinges on one of the three possible walls of our canonical chamber, 0 . β1 ≤
β2 ≤ β3, i.e. either on one of the two symmetry walls α12(β) = β2−β1, or α23(β) = β3−β2; or on
the gravitational wall α11(β) = 2β1. In this one-wall approximation, the spinorial wavefunction
kpq(β) in (2.1) will essentially depend only on one variable (measuring the orthogonal distance
to the wall), which will make the problem of exactly solving the complicated supersymmetry
constraints (1.4) tractable.

A. Scattering on the symmetry wall α23(β) = β3 − β2.

In this subsection we study (in the one-wall approximation) the reflection of the NF = 2
spinorial state (2.1) on the symmetry wall α23(β) = β3 − β2. This study is simplified by using
an adapted basis in β-space. In doing so, we shall treat the building blocks entering (2.1) as
tensors, with the indicated variance, in β-space. Namely, each creation operator b̃p± is considered
as a (contravariant) vector, while the amplitude kpq is viewed as a (symmetric) covariant 2-
tensor. Given a basis of 1-forms (i.e. a set of three independent linear forms in β-space), say
α1̂(β) = α1̂

p β
p, α2̂(β) = α2̂

p β
p, α3̂(β) = α3̂

p β
p, we shall then work with the corresponding basis

(or dual basis) components b̃â± ≡ αâp b̃
p
± and kâb̂ ≡ α

p
â α

q

b̂
kpq, where we defined αpâα

b̂
p ≡ δb̂â.

It is very useful to use a basis of the type{
α⊥, αu, αv

}
≡ {α(β), u(β), v(β)} , (2.13)

where α(β) is the reflecting wall form we are considering, i.e., in the present subsection

α(β) ≡ α⊥(β) ≡ α23(β) = β3 − β2, (2.14)
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while u(β), v(β) are two one-forms whose corresponding contravariant vectors2 (with u] p ≡
Gpqu]q), are parallel to the wall hyperplane α(β) = 0, i.e. α⊥(u]) = 0 = α⊥(v]). Geometrically,
the (contravariant) vector α] is perpendicular to the wall hyperplane α(β) = 0, while the nu-
merical function β → α(β) measures (modulo a factor

√
2) the orthogonal distance away from

the wall hyperplane. [The squared norms of the wall forms we shall consider here are all equal
to 2: α · α = Gpqαpαq = 2. This normalization is adapted to the Kac-Moody interpretation of
the (dominant) wall forms as simple roots of a Kac-Moody Lie algebra.]

It was further found to be convenient to align the two basis elements which are parallel to the
wall to the two (intrinsically defined) null directions tangent to the wall. [The wall hyperplane is
spacelike in Lorentzian β-space, so that it intersects the lightcone Gpqβpβq = 0 along two lines.]
Specifically, we use

u(β) ≡ −(2β1 +
1

2
β2 +

1

2
β3) , (2.15)

v(β) ≡ β2 + β3 . (2.16)

The only nonzero scalar products among the three basis one-forms
{
α⊥, αu, αv

}
≡

{α(β), u(β), v(β)} are α · α = 2 and u · v = 2, so that the only nonzero components of the
inverse metric Gâ b̂ are

G⊥⊥ = Guv = Gvu = 2 . (2.17)

Equivalently, the dual (vectorial) basis {α⊥, αu, αv} =
{
αp⊥

∂
∂βp , α

p
u

∂
∂βp , α

p
v
∂
∂βp

}
of
{
α⊥, αu, αv

}
is equal to {α⊥, αu, αv} =

{
1
2α

], 12v
], 12u

]
}
, and the nonzero basis components of the covariant

metric Gâ b̂ are

G⊥⊥ = Guv = Gvu =
1

2
. (2.18)

When considering the one-wall approximation, the potential terms V̂A(β,Φ) entering the susy
constraints (1.5), (1.4), are easily seen to depend on the β’s only through the single combination
α(β). This immediately implies that the two wall-parallel components πu = −i ∂∂u , πv = −i ∂∂v of
the momentum are conserved. Actually, it is better to consider the parallel components of the
shifted momentum operator, i.e. the differentiation operator acting on the rescaled wave function
F (β)−1|Ψ〉, i.e. π′a = πa+ i∂lnF/∂βa. When considered possibly near the wall α23, but far from
the two other walls, the scale factor F (β), (2.4), reads (as a function of α ≡ α23, u, v)

F (α, u, v) ≈ e− 1
2u+

3
8v(2| sinhα|)−1/8 . (2.19)

Hence, the part of lnF (α, u, v) that depends on u and v is − 1
2u+ 3

8v, and shifts the conserved
parallel momenta according to: π′u = πu− 1

2 i, π
′
v = πv + 3

8 i. In keeping with the type of wavelike
solutions (bouncing between potential walls) we are interested in, we shall henceforth consider
wave packets having real values of the shifted conserved momenta π′u, π′v (and therefore complex
values of πu, and πv).

Putting together the ingredients we just discussed (adapted coordinates, adapted basis, con-
served shifted parallel momenta), we finally look for solutions of the susy constraints (1.5), in
the one-wall approximation, of the form

|Ψ〉6,NF=2 = e(iπ
′
u− 1

2 )u+(iπ′v+
3
8 )v|F(α)〉6,NF=2 , (2.20)

2 The triplet of contravariant vectors
{
α], u], v]

}
should not be confused with the vectorial basis that is dual to

the basis of one-forms (2.13). As we shall see below the dual basis {α⊥, αu, αv} is
{

1
2
α], 1

2
v], 1

2
u]
}
.
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where

|F(α)〉6,NF=2 = Kâ b̂(α)b̃
(â
+ b̃

b̂)
− |0〉− . (2.21)

Inserting this expression in the (one-wall-approximated) susy constraints (1.5), (1.4) leads to
constraints on |F(α)〉6,NF=2 of the form (with πu = π′u + i

2 , πv = π′v − 3i
8 )

i

2
Φ̂⊥A ∂α |F(α)〉+

(
−1

2
πuΦ̂uA −

1

2
πvΦ̂

v
A + V̂A(α,Φ)

)
|F(α)〉 = 0 . (2.22)

We recall that the spinor index A takes four values. For each value of A = 1, 2, 3, 4, Eq. (2.22) is
a Diraclike equation for the quantum spinor state |F(α)〉, with Φ⊥A playing the role of a gamma
matrix controlling the evolution with respect to α. The anticommutation law (1.2) implies

Φ̂⊥AΦ̂⊥B + Φ̂⊥BΦ̂⊥A = δAB G
⊥⊥ Id = 2 δAB Id , (2.23)

so that we see that each matrix Φ̂⊥A is invertible (with itself as inverse). Multiplying each
one of the four equations (2.22) by 2

i Φ̂
⊥
A yields an overdetermined system of ordinary (matrix)

differential equations in α of the form

∂α |F(α)〉 = Σ̃A |F(α)〉 (A = 1, . . . , 4) . (2.24)

The unknowns of this system are the six components Kâ b̂(α) parametrizing the state (2.20),
(2.21). Considering the differences between the equations (2.24), we see that the six components
Kâ b̂(α) are subject to the following system of linear equations(

Σ̃1 − Σ̃A

)
|F〉 = 0 (A = 2, 3, 4) . (2.25)

We found that the rank of this linear system3 is equal to 2. In other words, the six components
Kâ b̂ can be expressed as linear combinations of two of them, chosen for instance as K⊥⊥ and
K⊥v. It is then useful to parametrize the α dependence of K⊥⊥ and K⊥v in terms of two other
functions F (α), G(α), as follows (we henceforth work on the half-line α > 0)

K⊥⊥(α) = CF sinh3/8(α)F (α) ,

K⊥v(α) = CG sinh3/8(α)G(α). (2.26)

By appropriately choosing the ratio CF /CG between the proportionality constants, we obtain a
linear system for the two functions F and G which reads

∂α F = G , (2.27)

[∂α + coth(α)] G = −(
1

4
+ π′2⊥)F . (2.28)

3 Eq. (2.24) also leads to six more algebraic constraints, because the operators Σ̃A map the |F〉–components
partially outside the subspace to which they belongs. However these extra conditions are found to be conse-
quences of Eqs (2.25); similar dependences also occur when the same analysis is performed at level NF = 3, as
well as in the other one-gravitational-wall approximations, at levels NF = 2, or 3.
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Here, π′2⊥ denotes the function of π′u, π′v defined by the far-wall NF = 2 mass-shell constraint

Gâb̂π′âπ
′
b̂

= 2π′ 2⊥ + 4π′u π
′
v =

3

8
. (2.29)

The general solution of the differential system (2.27), (2.28), contains two arbitrary constants,
say CP and CQ. The solution parametrized by CQ involves Q-type Legendre functions, and
is singular (in a non square-integrable way) on the considered symmetry wall α = 0. [E.g.,
K⊥v(α) ∝ CQ sinh3/8(α) Q1

ν [cosh(α)] blows up like O[α−5/8] when α→ 0.] In keeping with the
general aim of our work, we shall only consider here the solution parametrized by CP which
involves P -type Legendre functions, which vanish on the symmetry wall.

Here we use Legendre functions defined on the complex plane cut between z = −1 and z = 1
by analytically continuing the expression

Pµν [z] =
1

Γ(1− µ)

(
z + 1

z − 1

)µ/2
2F1

[
−ν, 1 + ν; 1− µ;

1− z
2

]
. (2.30)

F and G involve Legendre functions of order µ = 0 or µ = 1, and degree ν = − 1
2 + i π′⊥. Here,

we conventionally define π′⊥ as the positive solution of the far-wall mass-shell condition (2.29).
More precisely

F = CP P
0
− 1

2+i π
′
⊥

[cosh(α)] , (2.31)

G = CP P
1
− 1

2+i π
′
⊥

[cosh(α)] . (2.32)

Note that while the definition (2.30) can be used as is when µ = 0, the case µ = 1 involves a
“regularized" hypergeometric function (where the vanishing pre-factor 1/Γ(1 − µ) is needed to
regularize the singular coefficients 1/(1− µ) entering the hypergeometric series).

Finally, the general (square-integrable) solution of the NF = 2 susy constraints is of the form
(2.20), (2.21), with adapted-basis components Kâ b̂(α) given by (with ν = − 1

2 + i π′⊥)

K⊥⊥(α) = CP K
0
⊥⊥[π′u, π

′
v] sinh3/8(α)P 0

ν [cosh(α)] , (2.33)

KUV (α) = CP K
0
UV [π′u, π

′
v] sinh3/8(α)P 0

ν [cosh(α)] , (2.34)

K⊥U (α) = CP K
0
⊥U [π′u, π

′
v] sinh3/8(α)P 1

ν [cosh(α)] . (2.35)

Here, the indices U, V run over the two values u, v parametrizing the parallel components of
the wave function, and the π′U -dependent (but α-independent) polarization tensors K0

â b̂
(π′U ) are

given by

K0
⊥⊥[π′u, π

′
v] = (π′u +

i

4
)(π′v −

i

8
) , (2.36){

K0
UV [π′u, π

′
v]
}
UV=uu,uv,vv

=

{
−1

2
π′2v + i

7

16
π′v + i

3

32
π′v −

3

128
, −π′uπ′v +

i

2
(π′u − π′v))−

11

32
,

−1

2
π′2u + i

(
1

4
π′v −

7

8
π′u

)
+

13

32

}
, (2.37)

{
K0
⊥U [π′u, π

′
v]
}
U=u,v

=

{
(i π′v +

1

8
), (i π′u −

3

4
)

}
. (2.38)

We have checked that the values of the various π′U -dependent coefficients K0
â b̂

(π′U ) are in agree-
ment with the general, far-wall plane-wave solution (2.8). To perform this check, and to finally
obtain the scattering laws (2.9), (2.10), (2.11), we will need to use the far-wall (α → +∞)
asymptotic expression of the Legendre functions, namely:

Pµν [cosh(α)]≈ 1√
π

(
Γ( 1

2 + ν)

Γ(1− µ+ ν)
eν α +

Γ(− 1
2 − ν)

Γ(−µ− ν)
e−(ν+1)α

)
, α→ +∞ . (2.39)
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B. Reflection laws on the symmetry wall α23(β) = β3 − β2.

Let us now extract from the explicit structure of the one-wall solution (2.33), (2.34), (2.35)
the reflection laws (2.9), (2.10), (2.11). In the following, we shall conventionally assume that
the wavepackets we are considering are “future-directed" in the sense that the (shifted, far-wall)
contravariant momentum vector π′] is directed towards increasing values of the timelike variable
β0 = β1+β2+β3. [Physically, as β0 = − ln(abc), this means that we are considering a contracting
universe, going towards a Big-Crunch-like singularity where the volume abc → 0.] With this
convention, and given the fact that the wavepacket evolves in the half-space α = α23 > 0,
the ingoing piece of the asymptotic solution is characterized by having a complex phase factor
∝ e−i π

′
⊥ α, while its reflected piece should have a phase factor ∝ e+i π

′
⊥ α. Here, as above, π′⊥ is

defined as being the positive root of the mass-shell condition (2.29).
In the case of the α23 symmetry wall that interest us here, we should insert ν = − 1

2 + i π′⊥ in
the asymptotic expression (2.39). This yields

P 0
− 1

2+i π
′
⊥
' e−

1
2α

√
π

(
Γ(−i π′⊥)

Γ( 1
2 − i π

′
⊥)

e−i π
′
⊥ α +

Γ(+i π′⊥)

Γ( 1
2 + i π′⊥)

e+i π
′
⊥ α

)
, (2.40)

P 1
− 1

2+i π
′
⊥
' e−

1
2α

√
π

(
Γ(−i π′⊥)

Γ(− 1
2 − i π

′
⊥)

e−i π
′
⊥ α +

Γ(+i π′⊥)

Γ(− 1
2 + i π′⊥)

e+i π
′
⊥ α

)
. (2.41)

Let us first note that the combination of the exponentially decaying prefactor e−
1
2 α with the

overall factor sinh3/8(α) in Eqs. (2.33), (2.34), (2.35), and with the real exponential factor
linked to the imaginary additions to π′u, π

′
v in Eq. (2.20), reproduces (in the limit α � 1)

the real exponential factor eβ
1+ 3

4β
2+ 1

2β
3

= e−
1
8α−

1
2u+

3
8v present in the general far-wall solution

(2.8). Then, the presence of the two complex-conjugated phase factors e±i π
′
⊥ α (in addition to

the conserved phase factors ei (π
′
uu+π

′
vv)) shows that the reflection law for the shifted momentum

reads

π′inâ = (−π′⊥, π′u, π′v) → π′outâ = (+π′⊥, π
′
u, π
′
v) . (2.42)

The rewriting of this adapted-basis reflection law, precisely yields the specular reflection law
(2.9).

In order to extract the global reflection phase-factor eiδ
global
α , Eq. (2.10), connecting the incident

far-wall amplitude to the reflected one, one needs to compare both the incident and the reflected
pieces of the solution Eqs. (2.33), (2.34), (2.35) to the generic far-wall solution (2.8). When
doing so, one can first factor out the amplitude of, say, the incident P 0

− 1
2+i π

′
⊥
-type modes (in

K⊥⊥ and KUV ). This yields a π′⊥-dependent factor in the corresponding incident P 1
− 1

2+i π
′
⊥
-type

modes (in K⊥U ) given by

Γ( 1
2 − i π

′
⊥)

Γ(− 1
2 − i π

′
⊥)

= −1

2
− i π′⊥ , (2.43)

where we used the basic identity Γ(z + 1) = z Γ(z). Combining this additional π′⊥-linear factor
(2.43) in K⊥U with the π′U -linear factors displayed in Eq. (2.38), we found that all the Kâb̂
incident amplitudes of Eqs. (2.33), (2.34), (2.35) nicely agree with the π′a-quadratic dependence
of the generic far-wall amplitude (2.8) derived in our previous work [16], and recalled in Appendix
A. [The same check holds for the reflected amplitude.]

As additional result of this asymptotic analysis, one gets the relation between the overall
scalar amplitude CNF=2 of a far-wall wave packet and the overall coefficient CP parametrizing
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the amplitude of the P -type solution, namely

C±NF=2 = − CP√
π2

11
8

Γ(±i π′⊥)

Γ( 1
2 ± i π

′
⊥)

. (2.44)

where the upper sign on CNF=2 refers to the outgoing wave (having α23 ·π′ > 0), while the lower
sign refers to the ingoing wave. Taking the ratio between C+

NF=2 and C−NF=2 yields the global
phase factor

eiδ
global
α23 =

C+
NF=2

C−NF=2

=
Γ[+iπ′⊥] Γ[12 − i π

′
⊥]

Γ[−iπ′⊥] Γ[12 + i π′⊥]
. (2.45)

In the small wavelength (WKB) limit (large values for the components π′a), this yields, using

Γ(z + a)

Γ(z + b)
≈ za−b as z →∞ , (2.46)

eiδ
global,WKB
α23 ≈ e−iπ2 . (2.47)

The latter asymptotic value of the global phase is also easily obtained by considering the K⊥⊥
component of the NF = 2 solution (which is given, for large values of π′a, by K⊥⊥ ≈ CNF=2π

′
⊥π
′
⊥

where the factor π′⊥
2 does not change sign upon reflection).

Finally, let us extract from our results above the reflection operator (in Hilbert space) R6,NF=2
α

mapping the incident state |Ψ〉in6,NF=2 to the reflected one. We can compute this operator by

relating the various basis spinor states b̃(â+ b̃
b̂)
− |0〉− making up the one-wall solution (2.21) to eigen-

states of various operators defined in terms of the basic gravitino operators Φ̂aA. Let us recall that
our previous work had emphasized that the building blocks of the susy Hamiltonian operator
were some operators quadratic in the Φ̂aA’s that generated a representation of the compact subal-
gebra K[AE3] of AE3. There were two types of such operators: the three spin operators Ŝ12, Ŝ23,
Ŝ31, associated with symmetry walls, and three operators Ĵ11, Ĵ22, Ĵ33, associated with the three
dominant gravitational walls α11 = 2β1, α22 = 2β2, α33 = 2β3. [See Eq. (8.10) in Ref. [16].]
Here, we are considering the reflection by the symmetry wall α23, so that one might expect that
the corresponding reflection operator R6,NF=2

α might be directly related to the corresponding
spin operator Ŝ23. There is, however, a subtlety. Indeed, while the considered dynamical states
|Ψ〉6,NF=2 live in a 6-dimensional subspace H(1,1)S of the 15-dimensional NF = 2 level (so that
R6,NF=2
α is an endomorphism of H(1,1)S ), the spin operator Ŝ23 happens not to leave invariant

H(1,1)S , but to map it to other sectors within the 15-dimensional NF = 2 state space. How-
ever, if one considers, instead of Ŝ23, its square, namely Ŝ2

23, one checks that the latter operator
leaves invariant (and thereby defines an endomorphism of) H(1,1)S . [We recall that it is indeed
the squared spin operator which enters each symmetry wall αab in the Hamiltonian operator,
as per ∼ (Ŝ2

ab − Id)/(4 sinh2(αab)).] In addition, we have shown that the basis of spinor states

b̃
(â
+ b̃

b̂)
− |0〉− entering (2.21), and which were crucial for finding and simplifying the solution of the

susy constraints happen to be eigenstates of Ŝ2
23. More precisely, we have shown that four of our

basis states are eigenstates of Ŝ2
23 with zero eigenvalues,

Ŝ2
23 b̃
⊥
+b̃
⊥
− |0〉− = 0 ; Ŝ2

23 b̃
(U
+ b̃

V )
− |0〉− = 0 , (2.48)

while the other two basis states are eigenstates of Ŝ2
23 with eigenvalue equal to 4:

Ŝ2
23 b̃

(⊥
+ b̃

U)
− |0〉− = 4 b̃

(⊥
+ b̃

U)
− |0〉− . (2.49)
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We then note that these eigenvalues of Ŝ2
23 are correlated to the Legendre order µ of the corre-

sponding wavefunction Kâ b̂(α) by the simple rule

µ =
1

2
|Ŝ23|6,NF=2 , (2.50)

where we introduced the operator |Ŝ23|6,NF=2 defined as being the (unique) positive square root4

of Ŝ2
23, considered as an endomorphism of H(1,1)S .

When comparing the phases of the incident and reflected pieces in the one-wall solution above,
one easily sees that they only differ by a phase factor, and that the latter phase factor, say eiδµ
only depends on the value of the Legendre order µ, and can be written as

ei δµ =
Γ( 1

2 − µ− i π
′
⊥) Γ(i π′⊥)

Γ( 1
2 − µ+ i π′⊥) Γ(−i π′⊥)

. (2.51)

In view of the strict correlation (2.50), we conclude that the reflection operator R6,NF=2
α23

is an
operatorial function of |Ŝ23|6,NF=2, which is given by

R6,NF=2
α23

=
Γ[+iπ′⊥] Γ[12 − i π

′
⊥ − 1

2 |Ŝ23|6,NF=2]

Γ[−iπ′⊥] Γ[12 + i π′⊥ −
1
2 |Ŝ23|6,NF=2]

. (2.52)

In the small wavelength (or WKB) limit (π′⊥ � 1), we have[
ei δµ

]
WKB

= eiπ(µ−
1
2 ) , (2.53)

so that the reflection operator depends only on the spin operator, namely

R6,NF=2,WKB
α23

= e+
iπ
2 (|Ŝ23|6,NF=2−1) = eiδ

global
α23 e+

iπ
2 |Ŝ23|6,NF=2 . (2.54)

In the second form, we have factored out the (WKB limit of the) global phase factor (2.47)
(which corresponds to the Ŝ2

23 = 0 eigenvalues). Note that this result can also be written as

R6,NF=2,WKB
α23

= e−
iπ
2 e−

iπ
2 |Ŝ23|6,NF=2 , (2.55)

because the eigenvalues of |Ŝ23|6,NF=2 are 0 and 2.

C. Scattering and reflection laws on the symmetry wall α12(β) = β2 − β1.

We shall be briefer in our discussion of the scattering of a NF = 2 wave packet (2.1) on the
other symmetry wall of our canonical chamber, i.e. the wall form α12(β) = β2 − β1. Though
there are some differences in intermediate expressions (because of the dissymetric role of the two
symmetry walls bounding one given billiard chamber) the final results are obtained by applying
the cyclic permutation (231) → (123) to the previous final results concerning the scattering on
the α23(β) = β3 − β2 wall.

4 By definition, we require this square root to have the same eigenstates as Ŝ2
236,NF=2.
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Again, the crucial tool is to work within a basis of one forms adapted to the considered wall.
The previous basis (2.13), with (2.14), (2.15) is now replaced by{

α̃⊥, α̃u, α̃v
}
≡ {α̃(β), ũ(β), ṽ(β)} , (2.56)

with

α̃(β) = β2 − β1 , ũ(β) ≡ −(2β3 +
1

2
β1 +

1

2
β2) , ṽ(β) ≡ (β1 + β2) . (2.57)

The metric components in this adapted basis are the same as the previous ones, Eq. (2.17), so
that the far-wall mass-shell condition reads as before, namely

Gâb̂π′âπ
′
b̂

= 2π′ 2⊥ + 4π′ũ π
′
ṽ =

3

8
. (2.58)

(2.59)

The state reflecting on the α12 wall is looked for in the form

|Ψ〉6,NF=2 = e(iπ
′
ũ− 1

4 )ũ+(iπ′ṽ+
3
4 )ṽ|F̃(α)〉6,NF=2 , (2.60)

where the real-exponential contributions are slightly modified (because of the non cylic invariance
of the original scale factor F (β), Eq. (2.4)), and where

|F̃(α)〉6,NF=2 = Kâ b̂(α)b̃
(â
+ b̃

b̂)
− |0〉− . (2.61)

Here it is now understood that the basis indices â = (⊥, u, v) must be replaced by their tilded
avatars, corresponding to the new basis (2.56), (2.57).

As above, we find Qµν -type and Pµν -type Legendre solutions, with the order µ related to Ŝ2
12

via

µ =
1

2
|Ŝ12|6,NF=2 , (2.62)

so that µ = 0 or 1. The degree ν is again given by ν = − 1
2 + i π′⊥. The Q-type solutions are

singular and we discard them. On the other hand, the P -type solutions are regular and are
expressed by formulas similar to Eqs. (2.33), (2.34), (2.35), when using projections on the tilded
basis (2.56).

The final reflection laws are the same, mutatis mutandis, as before. Namely, the standard
specular reflection law (2.9) (on the new wall α12), and (defining as before π′⊥ as the positive
root of the mass-shell condition (2.58))

eiδ
global
α12 =

Γ[+iπ′⊥] Γ[12 − i π
′
⊥]

Γ[−iπ′⊥] Γ[12 + i π′⊥]
≈ e− iπ2 (2.63)

(where the last approximation corresponds to the WKB limit) and the (23) → (12) version of
the reflection operator (2.52), which yields, in the WKB limit

R6,NF=2,WKB
α12

= e−
iπ
2 e±

iπ
2 |Ŝ12|6,NF=2 . (2.64)

As before, we can indifferently choose here the ± sign because the eigenvalues of |Ŝ12|6,NF=2 are,
as before, 0 and 2.
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D. Scattering on the gravitational wall α11(β) = 2β1.

We shall also be brief in discussing the scattering of a NF = 2 wave packet (2.1) on a gravita-
tional wall. Gravitational walls correspond to terms in the Hamiltonian that are proportional to
e−α11 = e−2β

1

, e−α22 = e−2β
2

, or e−α33 = e−2β
3

. The main differences between a gravitational
wall and a symmetry wall are that: (i) a gravitational wall is softer than a symmetry wall in
that it does not become singular on the corresponding wall hyperplane αaa = 0; and (ii) the
operator Ĵ11 coupled (in the Hamiltonian) to the wall factor e−α11 is quadratic in the gravitino
operators Φ̂aA, while we had quartic-in-fermions operators, such as Ŝ2

23, for symmetry walls (see
Eq. (8.11) in Ref. [16]). Similarly to the (sharper) symmetry wall case, we shall impose the
boundary condition that the wave function exponentially decreases as one penetrates within the
considered gravitational wall (i.e. when, say, α11(β) = 2β1 becomes negative).

As in the symmetry-wall case, we shall solve the susy constraints in the one-wall approximation.
It is again very useful to introduce an adapted basis of one-forms, namely gα

â = ( gα
⊥, gα

u, gα
v)

with

gα
⊥(β) = 2β1 ; gα

u(β) = gu = β1 + β3 ; gα
v(β) = gv = β1 + β2 (2.65)

[Below, we simplify the notation by deleting the pre-subscript g.] Again, we have chosen a direc-
tion normal to the considered wall, and two null directions parallel to the wall. The normalization
of this co-frame is now slightly different from before, with

G⊥⊥ = 2 ; Guv = Gvu = −1 , (2.66)

so that the far-wall mass-shell condition reads

2π′2⊥ − 2π′u π
′
v =

3

8
. (2.67)

In the following, we shall define π′⊥ as the positive root of the latter mass-shell condition, i.e.

π′⊥ =
√
π′u π

′
v − 1

2µ
2, where µ2 = − 3

8 is the squared mass at level NF = 2. The dual (vectorial)
basis is equal to {α⊥, αu, αv} =

{
1
2α

],−v],−u]
}
.

Let us introduce the shorthand notation (here generalized, in anticipation of the corresponding
NF = 3 discussion, to a mass-shell condition involving a different squared mass µ2)

Uµ2(β; j) ≡ e(
3
4β

2+ 1
2β

3) eiπ
′
u (β1+β3)+iπ′v (β1+β2) e2 β

1

W− 1
2 j, i π

′
⊥

[e−2β
1

] , (2.68)

where Wκ,µ(z) denotes the standard Whittaker function.
The solution of the susy constraints near a gravitational wall (and decaying under the wall) is

then of the usual form (see (2.1))

|Ψ〉6,NF=2 = kâb̂(β)b̃
(â
+ b̃

b̂)
− |0〉− , (2.69)

where the frame indices now refer to the gravitational basis (2.65), and where the components
of the state are given by
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kuu(β) = CJ
(

5

4
+ i(π′u + 2π′v)− π′2v

)
U− 3

8
[β,−3

2
] , (2.70)

kuv(β) = CJ
1

4
(1 + 2 i π′u)(1 + 2 i π′v)U− 3

8
[β,−3

2
] , (2.71)

kvv(β) = CJ
1

4
(1 + 2 i π′u)2 U− 3

8
[β,−3

2
] , (2.72)

k⊥u(β) = −CJ 1

4
(3 + 2 i π′v)(1 + 4π′u π

′
v)U− 3

8
[β,

1

2
] , (2.73)

k⊥v(β) = −CJ 1

4
(1 + 2 i π′u)(1 + 4π′u π

′
v)U− 3

8
[β,

1

2
] , (2.74)

k⊥⊥(β) = −CJ (1 + 4π′u π
′
v)

(
1

2
U− 3

8
[β,−3

2
]−
(

1

2
e−2 β

1

+
1

4

)
U− 3

8
[β,

1

2
]

)
. (2.75)

The last component can be rewritten as

k⊥⊥(β) = CJ
1

8
(1 + 4π′u π

′
v)(3 + 4π′u π

′
v)U− 3

8
[β,

5

2
] . (2.76)

The latter form displays the role of the value j = 5
2 in the second argument of the function

Uµ2(β; j) describing the behavior of the basis state b̃⊥+b̃⊥−|0〉− (in correspondence with the fact
that the latter state is an eigenstate of the operator Ĵ11 with the eigenvalue j = 5

2 ).
The behaviour of the Whittaker function near the origin e−2β

1 → 0 yields the far-wall limit of
the wave function:

Uµ2 [β, j] ∼
β1→∞

e(β
1+ 3

4β
2+ 1

2β
3)ei(π

′
v(β

1+β2)+π′u(β
1+β3))

×

 Γ [−i 2π′⊥]

Γ
[
(1+j)

2 − i π′⊥
]e−i 2π′⊥ β1

+
Γ [i 2π′⊥]

Γ
[
(1+j)

2 + i π′⊥

]ei 2π′⊥ β1

 . (2.77)

We have checked that the π′⊥-dependence of the successive ratios between the incident and
reflected amplitudes exhibited in (2.77), which follow from the Euler-gamma function identity

Γ

[
(1 + j + 2)

2
− i π′⊥

]
=

(
(1 + j)

2
− i π′⊥

)
Γ

[
(1 + j)

2
− i π′⊥

]
, (2.78)

agree with the general far-wall solution (2.8), obtained in Ref. [16].
From Eq. (2.77), we also immediately get the phase shifts, for each component of the wave

function, between the incident (∝ e−i 2π
′
⊥ β

1

) and reflected (∝ e+i 2π
′
⊥ β

1

) amplitudes, upon
scattering on the α11 = 2β1 gravitational wall:

eiδα11
(j;π′⊥) =

Γ
[
1+j
2 − i π

′
⊥
]

Γ [i 2π′⊥]

Γ
[
1+j
2 + i π′⊥

]
Γ [−i 2π′⊥]

. (2.79)

In the cases of the reflections upon symmetry walls discussed above, the global phase fac-
tor, entering Eq. (2.10), could be read off from the reflection behavior of the perpendicular-
perpendicular amplitude, k⊥⊥(β). The reason for this fact was that, in those cases, the
perpendicular-perpendicular projection of the farwall amplitude (2.8), i.e. the quantityK⊥⊥(π′a),
happened to be independent of the sign of the (corresponding) perpendicular component π′⊥ of
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π′a (which is the only adapted-basis component of π′a which changes upon reflection). [The first
contribution ∝ π′

2
⊥ in K⊥⊥(π′a) is always invariant under the sign flip π′⊥ → −π′⊥, but we are

talking also here about the second contribution ∝ Lk⊥⊥π
′
k, which is linear in π′⊥ and could, a

priori, change under reflection. It does not in the case of symmetry-wall reflections because L⊥⊥⊥
happens to vanish.] By contrast, in the case of reflection upon the gravitational wall α11, we
found that the corresponding coefficient L⊥⊥⊥ does not vanish, so that the (linear in π′a) contribu-
tion ∝ Lk⊥⊥π′k changes upon reflection. On the other hand, we found that all the parallel-parallel
coefficients L⊥UV measuring the dependence on ±π′⊥ vanish in the case of the gravitational wall
α11. As a consequence, in that case, the global phase can be read off from the reflection behavior
of the parallel-parallel amplitudes, kUV (β). The latter amplitudes correspond to the eigenvalue
j = − 3

2 , so that

eiδ
global
α11 =

Γ
[
− 1

4 − i π
′
⊥
]

Γ [i 2π′⊥]

Γ
[
− 1

4 + i π′⊥
]

Γ [−i 2π′⊥]
. (2.80)

Contrary to the symmetry-wall cases, the dependence of the global reflection phase δglobalα11
on π′⊥

does not admit a limit when π′⊥ → +∞, rather one has δglobalα11
∼ π′⊥ lnπ′⊥. This divergence is eas-

ily understood classically: because of the energy conservation law π′⊥
2

+ k e−2β
1

= π′⊥
2
far−wall, a

relativistic particle impinging on a gravitational wall with incident normal momentum π′⊥far−wall

will penetrate within the wall up to the turning point π′⊥ = 0, i.e. up to the energy-
dependent position 2β1

turning = − ln(π′⊥
2
far−wall/k). The shift β1

turning in the effective location
of the wall then leads to an additional (energy-dependent) phase shift ∼ −2π′⊥far−wallβ

1
turning ∼

2π′⊥far−wall lnπ′⊥far−wall.
Of more importance for our purpose is the dependence of the phase factors (2.79) on the second

argument j of the mode function Uµ2(β; j), Eq. (2.68). Indeed, we have shown that our adapted

basis was such that each corresponding spinor state b̃(â+ b̃
b̂)
− |0〉− was an eigenspinor of the operator

Ĵ11 associated with the α11 gravitational wall. More precisely, the perpendicular-perpendicular,
⊥⊥, state has eigenvalue j = 5

2 , the two perpendicular-parallel states, ⊥ u, ⊥ v have eigenvalues
j = 1

2 , and the three parallel-parallel states uu, uv, vv have eigenvalues − 3
2 . Note that these

values are precisely the j-values entering the corresponding mode functions (2.68). We can
therefore re-express the result above by saying that the reflection operator, in Hilbert space,
against the α11 gravitational wall is given by the following operatorial expression

R6,NF=2
α11

=
Γ
[
1+Ĵ11

2 − i π′⊥
]

Γ [i 2π′⊥]

Γ
[
1+Ĵ11

2 + i π′⊥

]
Γ [−i 2π′⊥]

. (2.81)

In the large momentum (WKB) limit, this yields

R6,NF=2
α11

≈ eiδ0(π
′
⊥)e−i

π
2 e−i

π
2 Ĵ11 , (2.82)

where we defined δ0(π′⊥) ≡ 2π′⊥ ln(4π′⊥/e).

III. QUANTUM FERMIONIC BILLIARD AT LEVEL NF = 3

The analysis done in the previous section of the various reflection laws at the fermionic level
NF = 2 can also be performed at the fermionic level NF = 3. This level corresponds to a 20-
dimensional subspace of the total spinorial state space. Actually, there is a natural decomposition
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of the NF = 3 space into two 10-dimensional subspaces. The latter two subspaces are mapped
onto each other via the involution ba± → ba∓, b̃a± → b̃a∓, between the basic fermionic annihilation
and creation operators. Here, we shall work in only one of these equivalent 10-dimensional
subspaces.

As found in our previous work the general structure of the propagating solution of the susy
constraints can then be written as

|Ψ〉10,NF=3 = f(β) |η〉+ hpq(β) |Bpq〉, (3.1)

where

|η〉 =
1

3!
ηklm b̃

k
− b̃

l
− b̃

m
− |0〉− ; |Bpq〉 =

1

2

∑
k,l

ηpkl b̃
k
+ b̃

l
+ b̃

q
− |0〉− . (3.2)

Here, ηklm =
√
−Gεklm denotes the Levi-Civita tensor in β-space, and the first index on ηpkl is

moved by the Lorentzian metric Gpq in β-space. The general solution (3.1) is parametrized by
the (pseudo-)scalar f and the (dualized) tensor hpq. The latter tensor is not symmetric in its
two indices and has, in general, nine independent components. With the additional degree of
freedom described by the scalar f , this means that the general NF = 3 solution a priori contains
ten independent components (as befits its belonging to a 10-dimensional subspace of the NF = 3
level).

It was found in Ref. [16] that, far from all the walls, the general propagating solution at level
NF = 3 simplifies because several irreducible components among the ten generic ones either
vanish or become related to each other. Specifically, in our canonical chamber both the scalar
f , and the antisymmetric part of the tensor hpq, vanish far from the walls. In addition, the
remaining components, namely the six components of the symmetric part h(pq) of hpq, can all be
polynomially expressed in terms of the shifted momenta π′a according to a formula of the same
type as for the NF = 2 solution, i.e.

hfar−wall
(pq) = CNF=3e

iπ′aβ
a

e$aβ
a (
π′p π

′
q + Lkpq π

′
k +mpq

)
, (3.3)

where Lkpq and mpq are some fixed numerical coefficients (see Eqs. (19.32) and (19.33) in [16],
which are reproduced in Appendix A for the reader’s convenience). [The coefficients Lkpq and
mpq describing the NF = 3 far-wall solutions are different from their NF = 2 analogs.] Here the
shifted (far-wall) momenta π′a satisfy the (non-tachyonic) mass-shell condition

Gabπ′aπ
′
b = −µ2

NF=3 = −1

2
. (3.4)

The real exponential factor e$aβ
a

= eβ
1+ 3

4β
2+ 1

2β
3

is the far-wall asymptotic form of the rescaling
factor F (β), Eq. (2.4).

We wish to generalize to the NF = 3 level the reflection laws (2.9), (2.10), (2.11), discussed
above for the NF = 2 level. As before, these reflection laws will be obtained by matching
the general far-wall solution (3.3) to three separate approximate susy solutions, obtained by
considering, in turn, the various one-wall cases where the solution propagates near each one of the
three walls of our canonical chamber, i.e., the symmetric walls α23 or α12, and the gravitational
wall α11. We will again find that the first reflection law (2.9) is always satisfied, and we will
compute the values of the other scattering data, namely the NF = 3 global phase factor

Cout
NF=3 = eiδ

global
α C in

NF=3 , (3.5)

and the reflection operator acting in the considered 10-dimensional subspace of the NF = 3 level,
such that

|Ψ〉out10,NF=3 = R10,NF=3
α |Ψ〉in10,NF=3 . (3.6)
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As in the NF = 2 case, we found that it is very useful to use (for each wall) the same wall-
adapted basis as above to be able both to solve the corresponding one-wall susy constraints, and
to compute the scattering data. When working in some basis of one forms, say αâ(β) = αâpβ

p,
we shall write the general solution (3.1) in the form

|Ψ〉10,NF=3 = f(β) |η〉+ hâb̂(β) |αâαb̂〉 , (3.7)

where hâb̂ ≡ αpâα
q

b̂
hpq are the components of the tensor hpq in the dual basis (αpâα

â
q = δpq or,

equivalently αpâα
b̂
p = δb̂â), and where we introduced the short-hand notation

|αâαb̂〉 ≡ αâp αb̂q |Bpq〉 . (3.8)

[One must also tensorially transform the Levi-Civita tensor, and the metric.]
In the following subsections, we shall briefly summarize the main results of our analysis at the

NF = 3 level.

A. NF = 3 reflection on the symmetry wall α23(β) = β3 − β2.

We use the same basis of one forms as above, namely (2.13), with (2.14) and (2.15). One
decomposes the wavefunctions f(β) and hâb̂(β) entering the general NF = 3 solution (3.7) in the
products of the factor

e(iπ
′
u− 1

2 )u+(iπ′v+
3
8 )v , (3.9)

and of functions of α = α23(β). Here, the conserved shifted momenta π′u, π′v (which measure the
momentum parallel to the wall plane) must satisfy (when receding far from the wall) the NF = 3
mass-shell condition (3.4) which explicitly yields

2π′2⊥ + 4π′uπ
′
v = −µ2

NF=3 = −1

2
. (3.10)

One then writes down the NF = 3 analogs of equations (2.22), (2.24) and (2.25) (written in
terms of adapted-basis objects). The rank of the latter linear system is again found to be equal to
2. This means that the ten components of f, hâb̂ can be expressed as linear combinations of only
two of them. One also finds that the three antisymmetric components of hâb̂ must separately
vanish. We could then express the seven remaining components, i.e. f, h(âb̂), in terms of two
functions of α = α23(β) = β3 − β2, say F (α) and G(α). For instance,

h⊥⊥ ∝ sinh
3
8 (α)G(α) , (3.11)

h(⊥u) ∝ sinh
3
8 (α)F (α) . (3.12)

The F and G have to satisfy the differential system

∂αF +
1

4
coth(α)F +G = 0 , (3.13)

∂αG+
3

4
coth(α)G−

(
1

16
+ π′2⊥

)
F = 0 , (3.14)

from which follows

∂2αF + coth(α) ∂αF +

(
1

4
+ π′2⊥ −

1

16 sinh2(α)

)
F = 0 . (3.15)
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The general solution of this system is

F = c+ P
+ 1

4

− 1
2+i π

′
⊥

[cosh(α)] + c− P
− 1

4

− 1
2+i π

′
⊥

[cosh(α)] , (3.16)

G = c+

(
1

16
+ π′2⊥

)
P
− 3

4

− 1
2+i π

′
⊥

[cosh(α)]− c− P
+ 3

4

− 1
2+i π

′
⊥

[cosh(α)] . (3.17)

The solution for f and h(âb̂) also involves the combination G+ 1
2 coth(α)F which can be shown

to be equal to

G+
1

2
coth(α)F = c+ P

+ 5
4

− 1
2+i π

′
⊥

[cosh(α)]− c−
(

9

16
+ π′2⊥

)
P
− 5

4

− 1
2+i π

′
⊥

[cosh(α)] . (3.18)

As we see, there is a two-parameter family of solutions: (i) the c+ family involving P+ 5
4

− 1
2+i π

′
⊥
,

P
+ 1

4

− 1
2+i π

′
⊥
and P−

3
4

− 1
2+i π

′
⊥
; and (ii) the c− family involving P−

5
4

− 1
2+i π

′
⊥
, P−

1
4

− 1
2+i π

′
⊥
and P+ 3

4

− 1
2+i π

′
⊥
. Near

the wall (α→ 0), the Legendre functions behave like (we recall that α > 0) :

Pµν (coshα) ∼ 1

Γ(1− µ)

(α
2

)−µ
. (3.19)

Though the above Legendre functions enter the solution after being multiplied by sinh
3
8 (α), the

c+ family of solutions will be singular at α = 0 in a non square integrable way. We therefore
exclude it, and retain only the c− family of solutions. [This family is mildly singular at α = 0

because of the presence of sinh
3
8 (α)P

+ 3
4

− 1
2+i π

′
⊥

[cosh(α)]. But the latter mode is square integrable.]

Finally, defining (for µ = − 5
4 ,−

1
4 ,+

3
4 ) the mode functions

hµ(β) ≡ e(iπ
′
u− 1

2 )u+(iπ′v+
3
8 )v sinh

3
8 (α)Pµ− 1

2+i π
′
⊥

[cosh(α)] , (3.20)

we have been able to write the only regular solution of the susy constraints near the α23 symmetry
wall as a sum of the type

|Ψ〉10,NF=3 = C3

∑
µ=− 5

4 ,−
1
4 ,+

3
4

N i
µ(π′u, π

′
v)h

µ(β)|µ, i〉 . (3.21)

Here, i is a degeneracy index, which labels, for each value of µ various states associated with the
same value of the order µ of the corresponding Legendre mode hµ(β).

Parallely to the NF = 2 analysis above, there is again a direct link between the various mode
states |µ, i〉 and the spinorial operator Ŝ2

23. Namely, the states |µ, i〉 span, for each value of
µ (when the degeneracy index i varies), the eigenspace of

[
Ŝ2
23

]
10,NF=3

with eigenvalue (2µ)2.

More precisely, we have[
Ŝ2
23

]
10,NF=3

|µ, i〉 = (2µ)2|µ, i〉 for i = 1, . . . g(µ) , (3.22)

where the various degeneracies (which sum, as needed, to ten) are

g

(
−5

4

)
= 1 ; g

(
−1

4

)
= 5 ; g

(
+

3

4

)
= 4 . (3.23)
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Let us briefly indicate the structure of the various eigenstates, and how they are intimately linked
to the basis adapted to the considered wall α⊥ = α23

| − 5

4
〉 = |u v〉+ |v u〉 − | ⊥⊥〉 − |η〉 , (3.24)

| − 1

4
, i〉i=1,...,5 = | ⊥ u〉, |u ⊥〉, | ⊥ v〉, |v ⊥〉, |η〉+ |G〉 , (3.25)

|+ 3

4
, i〉i=1,...,4 = | ⊥⊥〉 − |η〉 , |uu〉, |vv〉, |uv〉 − |vu〉 , (3.26)

where we used the notation (3.8), together with the following shorthand for the trace state
|G〉 ≡ Gpq|Bpq〉 = Gâb̂|α

âαb̂〉 = 1
2 (| ⊥⊥〉+ |uv〉+ |vu〉).

The possibility of expressing the solution of the susy constraints near a symmetry wall αS as
a combination of modes of the type (3.20) (involving Legendre functions Pµν (cosh(α))) can be
directly seen when considering the second-order equation (Hamiltonian constraint) which must
be satisfied as a consequence of the first-order susy constraints. Indeed, the near-wall form of
the Hamiltonian constraint reads (with π̂a = −i∂/∂βa, and |Ψ′(β)〉 = F (β)−1|Ψ(β)〉)(

Gabπ̂aπ̂b + µ2
NF +

1

2

Ŝ2
αS − Id

sinh2(αS)

)
|Ψ′(β)〉 = 0 . (3.27)

Decomposing the solution of this near-symmetry-wall second-order equation in eigenspinors of
the squared spin operator Ŝ2

αS , one finds that the general solution pertaining to an eigenvalue
S2 of Ŝ2

αS is expressible in terms of the Legendre modes (3.20) for

µ = ±|S|
2
. (3.28)

As the eigenvalues S2 (with multiplicities) of the squared spin operators at level NF = 3 are
(for all symmetry walls)

((
5
2

)2 ∣∣
1
,
(
1
2

)2 ∣∣
5
,
(
3
2

)2 ∣∣
4

)
, we recover the fact that the Legendre order µ

can take the values ± 5
4 ,±

1
4 ,±

3
4 . However, such an analysis based on the second-order equation

alone cannot determine which subset of indices µ belong to a given solution of the first-order susy
constraints. Nor can they determine the subset of indices belonging to a square-integrable solu-
tion, by contrast to a non square-integrable one. To determine that the one-parameter family of
square-integrable solutions of the susy constraints were associated with the set µ =

{
− 5

4 ,−
1
4 ,+

3
4

}
of indices we had to go through the more complicated analysis of the susy constraints sketched
above.

Finally, we can extract from our analysis the scattering data for the α23 symmetry-wall re-
flection. The basic fact to be used is the asymptotic decomposition of the Legendre function Pµν
given in Eq. (2.39) above. To determine the global phase relating the incident far-wall amplitude
CNF=3 to the reflected one, it is enough (as in the NF = 2 case) to consider the ⊥⊥ component
of the wave amplitude hpq. [Indeed, we have checked that, for the α23 symmetry-wall reflection,
the NF = 3 coefficient L⊥⊥⊥ measuring the sensitivity of hfarwall

⊥⊥ , Eq. (3.3), to the sign of π′perp
vanishes]. We have exhibited in Eq. (3.11), the fact that h⊥⊥ is proportional to G(α), and
therefore (for the square-integrable solution) to P+ 3

4

− 1
2+i π

′
⊥

[cosh(α)]. This shows that the global

phase factor is the one belonging to the value µ = + 3
4 . Using, the general result (2.51), we then

get

[
ei δglobal

]
α23

=
Γ(− 1

4 − i π
′
⊥) Γ(i π′⊥)

Γ(− 1
4 + i π′⊥) Γ(−i π′⊥)

. (3.29)
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In the WKB limit this yields [
ei δglobal

]WKB

α23
= ei

π
4 . (3.30)

Moreover, the map between the incident spinor state and the reflected one is obtained by the
reflection operator

R10,NF=3
α23

=
Γ[+iπ′⊥] Γ[12 − i π

′
⊥ − 1

2

√
Ŝ2
2310,NF=3

]

Γ[−iπ′⊥] Γ[12 + i π′⊥ −
1
2

√
Ŝ2
2310,NF=3

]
, (3.31)

which yields in the WKB limit

R10,NF=3,WKB
α23

= e−i
π
2 e
iπ2

√
Ŝ2
2310,NF=3 . (3.32)

Here,
√
Ŝ2
2310,NF=3

denotes an operator squareroot of Ŝ2
2310,NF=3 which is not equal to its

positive squareroot, but which is defined as√
Ŝ2
2310,NF=3

≡ 2 µ̂ , (3.33)

by which we mean the following squareroot version of Eq. (3.22)√
Ŝ2
2310,NF=3

|µ, i〉 = 2µ |µ, i〉 for 2µ =

{
−5

2
,−1

2
,+

3

2

}
and i = 1, . . . g(µ) . (3.34)

B. NF = 3 reflection on the symmetry wall α12(β) = β2 − β1.

Concerning the reflection on the second symmetry wall of our canonical chamber, namely
α12(β) = β2 − β1, the needed computations are very similar to the ones above, with, however,
some significant differences. Though one would have expected that a simple cyclic permutation
would suffice to translate the results of the α23 wall into results for the α12 wall, there are some
subtleties in intermediate results, linked to the fact that the explicit form of the susy constraints
is not manifestly cyclically symmetric. However, the end results are correctly obtained from a
permutation (231)→ (123).

We have already introduced above the basis adapted to the α12(β) = β2 − β1 symmetry wall,
namely Eqs. (2.56), (2.57). In terms of the frame components of the state (3.7), there are some
simplifications because we found that the algebraic constraints on the state imply the vanishing
not only (as before) of the antisymmetric components of hâb̂, but also the vanishing of the
scalar f . This leaves us with only six propagating components: h(âb̂). Again the adapted-frame
decomposition of these components is directly linked with eigenstates of the relevant squared spin
operator, namely

[
Ŝ2
12

]
10,NF=3

. The good (square-integrable) modes are again of the form (3.20)

with the corresponding µ-decomposition (3.21) of the solution. However, there is a difference
in the link between each Legendre Pµν mode and eigenspinors of

[
Ŝ2
12

]
10,NF=3

, with eigenvalues

(2µ)2, as in Eq. (3.22) above. We have now, when considering a full basis of the 10-dimensional
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space, even if some coefficient modes vanish5

|µ = −5

4
〉 = | ⊥⊥〉, (3.35)

|µ = −1

4
, i〉i=1,...,5 = |η〉 , |u ⊥〉 , | ⊥ u〉 , |v ⊥〉 , | ⊥ v〉 , (3.36)

|+ 3

4
, i〉i=1,...,4 = |uu〉, |vv〉, |uv〉, |vu〉 . (3.37)

Let us only exhibit here, for illustration, the form of the ⊥⊥ mode:

h⊥⊥ ∝ sinh
3
8 (α)P

− 5
4

− 1
2+i π

′
⊥

[cosh(α)] . (3.38)

Contrary to the NF = 2 case, hfarwall
⊥⊥ is sensitive to the sign of π′⊥ (i.e. the projected coefficient

L⊥⊥⊥ does not vanish). However, the other projections L⊥UV of Lkpq do vanish, so that the farwall
parallel-parallel components of hpq are insensitive to the sign of π′⊥. Finally, the global phase
factor for the NF = 3 reflection on the α12 symmetry wall is given by the behavior of the µ = 3

4
mode, i.e.

[
ei δglobal

]
α12

=
Γ(− 1

4 − i π
′
⊥) Γ(i π′⊥)

Γ(− 1
4 + i π′⊥) Γ(−i π′⊥)

, (3.39)

with WKB limit: [
ei δglobal

]WKB

α12
= ei

π
4 . (3.40)

The corresponding reflection operator reads

R10,NF=3
α12

=
Γ[+iπ′⊥] Γ[12 − i π

′
⊥ − 1

2

√
Ŝ2
1210,NF=3

]

Γ[−iπ′⊥] Γ[12 + i π′⊥ −
1
2

√
Ŝ2
1210,NF=3

]
, (3.41)

(where
√
Ŝ2
1210,NF=3

is again defined as being 2µ̂) which yields in the WKB limit

R10,NF=3,WKB
α12

= e−i
π
2 e
iπ2

√
Ŝ2
1210,NF=3 . (3.42)

C. Reflection at level NF = 3 on the gravitational wall α11(β) = 2β1.

When considering the reflection on the gravitational wall α11(β) = 2β1 of a NF = 3 solution we
use the same adapted basis as in our corresponding NF = 2 analysis, namely (2.65). Instead of
the Legendre-like mode functions (3.20), we will have Whittaker-like mode functions, Uµ2(β; j),
as defined in Eq. (2.68). The only difference is that the squared mass value µ2 labelling these
modes must now be taken to be µ2

NF=3 = + 1
2 (instead of µ2

NF=2 = − 3
8 ). Actually, the value of

5 The vanishing of such or such component depends on the choice of basis. What is important is that we were
able to describe the exact solution of the susy constraints within the ten-dimensional (half) NF = 3 state space.
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µ2 only enters indirectly in the expression of Uµ2(β; j) via a modified link between the shifted

parallel momenta π′u, π′v and π′⊥. In the present case, this explicit link reads: π′⊥ =
√
π′uπ

′
v − 1

4 .
In the case of symmetry walls, we were decomposing the state |Ψ〉10,NF=3 into eigenstates of

the squared spin operator Ŝ2
2310,NF=3(labelled by µ with (2µ)2 = S2 measuring the eigenvalues

of Ŝ2
2310,NF=3), as in Eq. (3.21). Here, we shall decompose |Ψ〉10,NF=3 into eigenstates of the

operator Ĵ11 (with eigenvalues denoted j), according to

|Ψ〉10,NF=3 = C3

∑
j=−2,0,2

N i
j(π
′
u, π
′
v)U 1

2
(β; j)|j, i〉 . (3.43)

At level 3, the eigenvalues j (with their degeneracies labelled above by i) of
[
Ĵ11

]
10,NF=3

are

(+2|2, 0|6, −2|2). More importantly, the eigenspinors corresponding to these eigenvalues are
directly linked with objects naturally constructed within our present adapted basis. Namely, we
have (using the notation (3.8), now applied to our new adapted basis)

|j = 2, i〉i=1,2 = |u ⊥〉, |v ⊥〉 , (3.44)
|j = 0, i〉i=1,...,6 = | ⊥⊥〉, |uu〉, |vv〉, |uv〉, |vu〉, |η〉 , (3.45)
|j = −2, i〉i=1,2 = | ⊥, u〉, | ⊥, v〉 . (3.46)

Let us only cite the form of our final result, namely the expression of all the components hâb̂(β)
(modulo an overall factor that we omit) of the main NF = 3 polarization tensor hpq along our
adapted basis. [The scalar polarization f happens to vanish, as well as huv − hvu.]

hu⊥ = −i π′u U 1
2
(β,+2) ,

hv⊥ = − i π′u π
′
v

(π′u − i/2)
U 1

2
(β,+2) ,

h⊥u =
i

π′v
U 1

2
(β,−2) ,

h⊥v =
i

(π′u − i/2)
U 1

2
(β,−2) ,

h⊥⊥ =
1

2

(2π′u π
′
v − i π′u − 1/2)

π′v(π
′
u − i/2)

U 1
2
(β, 0) ,

huu =
(π′u − i/2)

2π′v
U 1

2
(β, 0) ,

hvv =
π′2v + i (π′u − π′v) + 1/2

2π′v (π′u − i/2)
U 1

2
(β, 0) ,

1

2
(huv + hvu) =

1

2
U 1

2
(β, 0) . (3.47)

Using the asymptotic behaviour of the Whittaker modes [see Eq. (2.77)], we deduce the
reflection laws on the gravitational wall 2β1 = 0. We checked that (because, for the present
case, L⊥⊥⊥ = 0) the global phase is read off the h⊥⊥ expression (involving j = 0) and reads

eiδ
global
α11 =

Γ
[
1
2 − i π

′
⊥
]

Γ [i 2π′⊥]

Γ
[
1
2 + i π′⊥

]
Γ [−i 2π′⊥]

. (3.48)

As before it is energy-dependent, and has no limit as π′⊥ → +∞.
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The reflection operator against the α11 gravitational wall (acting in Hilbert space and trans-
forming the incident state into the reflected one) is given by the following operatorial expression

R10,NF=3
α11

=
Γ
[
1+Ĵ11

2 − i π′⊥
]

Γ [i 2π′⊥]

Γ
[
1+Ĵ11

2 + i π′⊥

]
Γ [−i 2π′⊥]

. (3.49)

In the large momentum (WKB) limit, this yields

R10,NF=3
α11

= eiδ0(π
′
⊥)e−i

π
2 e−i

π
2 Ĵ11 , (3.50)

where δ0(π′⊥) = 2π′⊥ ln(4π′⊥/e). These are formally the same expressions as at level NF = 2,
but, here, Ĵ11 denotes the endomorphism of the 10-dimensional NF = 3 subspace in which we
are working.

Let us note that the solution (3.47) contains more excited components than the previous
symmetry-wall NF = 3 solutions. In particular, the antisymmetric components hu⊥ − h⊥u and
hv⊥ − h⊥v do not vanish, while they vanished before. However, using the asymptotic behavior,
Eq. (2.77), of the relevant functions U 1

2
(β,±2), one finds that their leading-order asymptotic

approximations (as β1 → +∞) are exactly proportional to each other:

Uasympt
1
2

(β,+2) = − 1

π′u π
′
v

Uasympt
1
2

(β,−2) . (3.51)

Inserting this asymptotic relation in Eqs. (3.47) one finds that the antisymmetric components
hu⊥ − h⊥u and hv⊥ − h⊥v vanish far from the gravitational wall (in keeping with the far-wall
analysis of Ref. [16]).

IV. HIDDEN KAC-MOODY STRUCTURE OF THE SPINOR REFLECTION
OPERATORS

Let us consider the WKB limit of the reflection operators Rrep
α that map the incident spinor

states |Ψ〉in to the reflected ones |Ψ〉out. These spinor reflection operators depend both on the
considered reflection wall form α(β) and on the representation space, say Vrep, in which lives
the considered incident and reflected quantum states. More precisely, we derived above two
different triplets of such reflection operators: (i) one triplet associated with the reflection (on
the three potential walls of our canonical billiard chamber) of the propagating quantum susy
states at level NF = 2, which live in a 6-dimensional representation; and (ii) a second triplet
associated with the reflection (on the same three bounding walls) of the propagating quantum
susy states at level NF = 3, which live in a 10-dimensional representation. In the WKB limit
(and after factorization of the classical, energy-dependent part of the gravitational-wall reflection,
δ0(π′⊥) = 2π′⊥ ln(4π′⊥/e)), we found the following operatorial expressions for these two triplets
of reflection operators:

R6,NF=2,WKB
α23

= e−
iπ
2 e±

iπ
2 |Ŝ23|6,NF=2 ,

R6,NF=2,WKB
α12

= e−
iπ
2 e±

iπ
2 |Ŝ12|6,NF=2 ,

R6,NF=2
α11

= e−i
π
2 e−i

π
2 Ĵ11

6,NF=2

, (4.1)

where we recall that |Ŝ23|6,NF=2 and |Ŝ12|6,NF=2 were defined as the positive squareroots of
the corresponding squared spin operators Ŝ2

23, Ŝ2
12, which are both endomorphisms of the 6-

dimensional subspace H(1,1)S of the NF = 2 level. The “gravitational" operator Ĵ11 is also an
endomorphism of H(1,1)S . [See, e.g., the second Table in Appendix B of [16].]
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The corresponding results for the reflection operators in the 10-dimensional subspace of the
NF = 3 level where live the propagating quantum states read:

R10,NF=3,WKB
α23

= e−i
π
2 e
iπ2

√
Ŝ2
2310,NF=3 ,

R10,NF=3,WKB
α12

= e−i
π
2 e
iπ2

√
Ŝ2
1210,NF=3 ,

R10,NF=3
α11

= e−i
π
2 e−i

π
2 Ĵ11

10,NF=3

. (4.2)

Here, there is a crucial difference in the way the squareroots of the squared-spin operators are
defined. We recall that both squared-spin operators have eigenvalues (2µ)2 =

{
( 5
2 )2, ( 1

2 )2, ( 3
2 )2
}
.

The squareroot operators
√
Ŝ2
ab10,NF=3 are defined as having the eigenvalues 2µ =

{
− 5

2 ,−
1
2 ,+

3
2

}
on the corresponding eigenspaces of Ŝ2

ab10,NF=3. This sign pattern is such that the corresponding,
successive values of the Legendre order µ, namely

{
− 5

4 ,−
1
4 ,+

3
4

}
differ by 1 (so as to correspond

to the regular solution of the first-order susy constraints).
Let us emphasize that the results above for the reflection operators have resulted from a purely

dynamical computation within supergravity. However, a remarkable fact is that the end results
of these supergravity calculations can be expressed in terms of mathematical objects having a
(hyperbolic) Kac-Moody meaning. More precisely, we are going to show that the two triplets
of spinorial reflection operators satisfy some relations that are related to a spin-extension of the
Weyl group of the rank-3 hyperbolic Kac-Moody algebra AE3. The notion of spin-extended
Weyl group was introduced, within the use of specific representations of the maximally compact
subalgebra K[AE3] of AE3 (and K[E10] ⊂ E10), in Ref. [11]. More precisely, Ref. [11] studied
the one-wall reflection laws of the classical, Grassmann-valued gravitino field ψ, in the case where,
near each potential wall (with bosonic potential ∝ e−2α(β)), the coupling of the gravitino is also
Toda-like and ∝ e−α(β), so that the law of evolution of ψ near each separate wall reads

∂tψ ≈ i e−α(β)ΠαJαψ , (4.3)

where Πα is a conserved momentum.
Under these assumptions, Ref. [11] found that the transformation linking the incident value

of the Grassmann-valued ψ to its reflected value was given by a classical, fermionic reflection
operator of the form

Rclassical
α = ei

π
2 εαJα , (4.4)

where εα = ± denotes the sign of the momentum Πα. Here, Jα is a matrix acting on the repre-
sentation space defined by a classical homogeneous gravitino. In the case of Ref. [11], this was
(when considering 4-dimensional supergravity) a 12-dimensional space in which live the twelve
components of a Majorana (spatial) gravitino ψiA, with i = 1, 2, 3 (spatial index) and A = 1, 2, 3, 4
(Majorana spinor index). This 12-dimensional representation is (essentially) equivalent to the
direct sum of the two (complex-conjugated) 6-dimensional complex representations that live at
levels NF = 1 and NF = 5 within our 64-dimensional quantized-gravitino Hilbert space. [In view
of the hidden, but crucial, importance of the existence of such finite-dimensional representations,
we briefly discuss in Appendix B the structure of some of the low-dimensional representations of
K[AE3].]

Motivated by these physical findings, a mathematical definition of spin-extended Weyl groups
(for general Kac-Moody algebras) was then implemented (as part of the definition of spin-covers
of maximal compact Kac-Moody subgroups of the K[AE3] type) and studied in Ref. [29].

Ref. [11] showed that the reflection operators, say rGi = Rclassical
αi , describing the Grassmanian

scattering on the dominant potential walls (labelled by the index i = 1, · · · , rank) of the cosmo-
logical supergravity billiards (both in dimension D = 11 and in D = 4) satisfied some spinorial
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generalization of the usual Coxeter relations 6 satisfied by the corresponding Weyl-group gen-
erators. [We recall that a basic finding of cosmological billiards [8] is that the gravity-defined
billiard chamber coincides with the Weyl chamber of some corresponding Kac-Moody algebra.]
The (Grassman-supergravity-based) spin-extended Weyl group was then defined as the infinite,
discrete matrix group generated by the rGi ’s. [Here, the index i labels the nodes of the Dynkin
diagram, corresponding to the simple roots of a Kac-Moody algebra, and to the dominant walls
of the supergravity dynamics.] The generalized Coxeter relations satisfied by the Grassmanian
reflection operators rGi can be written as7

r8i = 1; (4.5)

rirjri · · · = rjrirj · · · withmij factors on each side . (4.6)

Here, i, and j, with i 6= j (which includes both i < j and i > j), are labels for the nodes of
the Dynkin diagram of the considered Kac-Moody group. The positive integers mij entering the
“braid relations" (4.6) are defined from the corresponding values of the nondiagonal elements of
the Cartan matrix aij (which are supposed to be negative integers, while aii = 2). Namely (see
[28])

mij = {2, 3, 4, 6, 0} if aijaji = {0, 1, 2, 3,≥ 4} (respectively) . (4.7)

In addition to the generalized Coxeter relations, (4.5), (4.6), Ref. [11] had found that the
squared Grassman reflection operators (rGi )2 had simple properties. Namely, they generated a
finite-dimensional, normal subgroup of the corresponding (Grassman-based) spin-extended Weyl
group.

According to the mathematical definition of Ref.[29], the spin-extended Weyl group of a Kac-
Moody algebra with Dynkin diagram Π is a discrete subgroup of a spin cover of the maximally
compact Kac-Moody subgroup K[Π] that is generated by elements of order eight (involving the
polar angle π

4 ). This mathematically-so-defined spin-extended Weyl group can also be chara-
terized by generators and relations. Namely, its (abstract) generators ri satisfy not only the
generalized Coxeter relations above (4.5), (4.6), but also the following ones:

r−1j r2i rj = r2i r
2nij
j , (4.8)

where, as above i 6= j, and where the positive integers nij are defined from the corresponding
values of the nondiagonal elements of the Cartan matrix aij via

nij = 0 (respectively = 1) if aij is even (resp. odd) . (4.9)

The additional (non-Coxeter-like) relations (4.8) are the same as those that enter the Tits-Kac-
Peterson [28] extension of the Weyl group (generated by elements of order four: t4i = 1). Their
origin is not clear to us, and we shall see below that the quantum-motivated reflection operators
that have appeared in our dynamical study above, namely (4.1) and (4.1), satisfy the generalized

6 In the notation of Eqs. (4.5), (4.6) below, the usual Coxeter relations defining the Weyl group, i.e. the group
generated by geometrical reflections in the simple-root hyperplanes in Cartan space are: r2i = 1 and the braid
relations (4.6).

7 Here, following standard mathematical lore [28], we rewrite the relations written in Ref. [11] in a form that
only involves the multiplicative identity, rather than the “minus identity operator" used there when dealing
with concrete, matrix forms of the rGi ’s.
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Coxeter relations (4.5), (4.6), but satisfy a phase-modified form of the (non-Coxeter-like) relations
(4.8).

The Kac-Moody algebra that (in view of previous works) we expect to be relevant to our
present dynamical study is AE3, and its Dynkin diagram is

•
J11

ks +3 •
S12

•
S23

(4.10)

Here, we use the labelling: (1, 2, 3) = (J11, S12, S23). The two arrows and the double line between
nodes 1 and 2 mean that a12 = a21 = −2, while the single line between nodes 2 and 3 mean that
a23 = a32 = −1. Finally, a13 = a31 = 0. As a consequence, the relevant values of the integers
nij and mij to be used in Eqs. (4.5), (4.6), and (4.8), are:

n12 = n21 = 0 ; m12 = m21 = 0 ; n23 = n32 = 1 ; m23 = m32 = 3 ; n13 = n31 = 0 ; m13 = m31 = 2 .
(4.11)

The three relations r8i = 1, Eq. (4.5), are satisfied for each one of our triplets of reflection oper-
ators (4.1), (4.2). [This is clear without calculation because the eigenvalues of all our reflection
operators are eik

π
4 for some integer k.] By explicit (matrix) calculations, we have verified that

the AE3 braid relations (4.6), namely

r2r3r2 = r3r2r3 ; r1r3 = r3r1 (4.12)

(note that m12 = m21 = 0 so that there are no braid relations between the nodes J11 and S12)
are also satisfied by our two triplets of reflection operators (4.1), (4.2).

Concerning the non-Coxeterlike relations (4.8), let us first emphasize that we view them as
expressing constraints on the sub-group generated by the squared operators r2i . As in Ref.
[11], we looked directly at the values taken (within the two matrix representations that we are
considering) by the squares of our two triplets of generators (4.1), (4.2). We found that they
have extremely simple values; namely they only differ from the identity matrix by some simple
phase factors, namely (

R6,NF=2,WKB
α23

)2
= −Id6 = eiπId6 ,(

R6,NF=2,WKB
α12

)2
= −Id6 = eiπId6 ,(

R6,NF=2,WKB
α11

)2
= e−i

π
2 Id6 , (4.13)

and (
R10,NF=3,WKB
α23

)2
= ei

π
2 Id10 ,(

R10,NF=3,WKB
α12

)2
= ei

π
2 Id10 ,(

R10,NF=3,WKB
α11

)2
= −Id10 = eiπId10 . (4.14)

In both cases the subgroup generated by the squared reflection operators is central (i.e. com-
mutes with everything else) and isomorphic to the multiplicative group of order four generated
by ei

π
2 .

Finally, in view of the simple results (4.13), (4.14), it is a simple matter to see whether the
non-Coxeterlike relations (4.8) are satisfied or not. One can easily see that, with the precise
definitions (4.1), (4.1), they are not satisfied as written. However, they are satisfied modulo
the inclusion of additional phase factors in the relations (4.8). The latter phase factors can be
easily reabsorbed in suitable redefinitions of the basic reflection operators. For instance, if we
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had defined, at level NF = 2 (with an arbitrary integer n in the third line)

R6,NF=2,WKB,new
α23

= e±
iπ
2 |Ŝ23|6,NF=2 ,

R6,NF=2,WKB,new
α12

= e±
iπ
2 |Ŝ12|6,NF=2 ,

R6,NF=2,new
α11

= ein
π
4 e−i

π
2 Ĵ11

6,NF=2

, (4.15)

and, at level NF = 3,

R10,NF=3,WKB
α23

= e−3i
π
4 e
iπ2

√
Ŝ2
2310,NF=3 ,

R10,NF=3,WKB
α12

= e−3i
π
4 e
iπ2

√
Ŝ2
1210,NF=3 ,

R10,NF=3
α11

= ein
π
4 e−i

π
2 Ĵ11

10,NF=3

, (4.16)

these two new triplets of operators would satisfy all the relations (4.5), (4.6), and (4.8). In that
case, the corresponding squared operators are simply equal to unity (for an appropriate choice
of n).

Let us also mention in passing that if we define, within the full sixty-four-dimensional spinorial
space which gathers all the fermionic levels (from NF = 0 to NF = 6) the quantum analogs of
the Grassmann-motivated operators defined in Ref. [11], namely

R64
α23

= e−i
π
2 Ŝ

64
23 ,

R64
α12

= e−i
π
2 Ŝ

64
12 ,

R64
α11

= e−i
π
2 Ĵ

64
11 , (4.17)

the latter reflection operators satisfy all the relations (4.5), (4.6), and (4.8).

V. CONCLUSIONS

We solved the susy constraints (1.4) of the supersymmetric Bianchi IX model in the one-wall
approximation, i.e. taking into account one potential wall at a time. This allowed us to derive the
quantum laws of reflection of the wave function of the universe |Ψ(β)〉 during its chaotic evolution
near a big crunch singularity, i.e. in the domain of large (positive) values of the three squashing
parameters β1, β2, β3 (considered in the symmetry chamber β1 < β2 < β3). Our analysis could
limit itself to two subspaces of the total 64-dimensional fermionic state space because we had
shown in previous work that propagating states only exist in subspaces of the fermion levels
NF = 2, NF = 3 and NF = 4. In addition, given the symmetry between the NF = 2 and the
NF = 4 levels, and the self-symmetry of the NF = 3 level, and in view of the special structure
of the propagating states, it was enough to work (separately) in a 6-dimensional subspace of the
NF = 2 level, and in a 10-dimensional half of the NF = 3 level.

Our main results are contained in Eqs. (2.52), (2.81), (3.31), (3.41), (3.49), and are summarized
(in the small-wavelength limit, which allows one to highlight their structure) in the reflection op-
erators (4.1), (4.2). We remarkably found that the latter, purely dynamically-defined, reflection
operators satisfy generalized Coxeter relations which define a type of spinorial extension of the
Weyl group of the rank-3 hyperbolic Kac-Moody algebra AE3. More precisely, we found that
our dynamical reflection operators satisfy the generalized Coxeter relations (4.5) and (4.6) asso-
ciated with the Dynkin diagram (4.10) of AE3, and selected in Ref. [11] (in a slightly different
form) as characteristic of a spin-extension of the Weyl group. We also found that the squares of
our dynamical reflection operators commute with all the reflection operators. In addition, some
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phase-modified versions of the reflection operators, see Eqs. (4.15), (4.16) satisfy the relations
(4.8) that are part of the defining relations of the mathematically-defined spin-extended Weyl
group of Ref. [29]. The fact that our dynamically-defined spinorial reflection operators satisfy
relations that appear as being partly more general than those of Ref. [29] (though only modulo
some extra phase factors, Eqs. (4.15), (4.16)) might suggest the need to define more general spin-
covers than those mathematically constructed in Ref. [29]. Anyway, independently of such an
eventual generalization, let us repeat that our findings provide a new evidence for the existence
of hidden Kac-Moody structures in supergravity. In particular, our results have gone beyond
previous related evidence for Kac-Moody structures in two directions: (i) we quantized the grav-
itino degrees of freedom instead of treating ψµ as a classical, Grassmann-valued object, and (ii)
in our quantum treatment the symmetry walls necessarily involved operators quartic in fermions
(through the squared spin operators Ŝ2

12, Ŝ
2
23), while the previous (Grassmann) treatment of Ref.

[11] had assumed a linear coupling to the quadratic spin operators. Let us also note that the link
between our present dynamical reflection operators, Eqs. (4.15), (4.16), and representations of
K[AE3] is more indirect than what was suggested by the Grassmann-based work of Ref. [11]. In
particular, the 6-dimensional subspace in which live the NF = 2 reflection operators is strictly
smaller than the full 15-dimensional NF = 2 space within which live the operators Ĵ11, Ŝ12, Ŝ23

that carry a representation of K[AE3]. Moreover, the operators that appear in exponentiated
form in Eqs. (4.15), (4.16), do not define a representation of K[AE3].

In view of our results, we can associate with the evolution of the supergravity state of the
universe |Ψ(β)〉 (considered at each fermion level) a word in the group generated by the three
reflection operators Eqs. (4.15), (4.16), i.e. a product of the form · · · rinrin−1

· · · ri2ri1 . The
matrix group generated by such products is infinite. However, we must recall that our study was
assuming a type of intermediate asymptotic behavior with a sparse sequence of wall collisions,
separated by large enough distances in β space to be able to treat each collision of the wave packet
as a separated one-wall reflection. Such an approximation is not expected to maintain itself for an
infinite number of collisions. Indeed, on the one hand, at levelNF = 3 the (shifted) momentum π′a
is timelike (Gabπ′aπ′b = − 1

2 ) so that, after a finite number of reflections, one expects the trajectory
of the wave packet to end up in a direction which does not meet anymore a potential wall. On
the other hand, at level NF = 2 the (shifted) momentum π′a is spacelike (Gabπ′aπ′b = + 3

8 ) so that,
after a finite number of reflections, one expects π′a to tip over, i.e. to migrate from the upper half
[where π′1 + π′2 + π′3 > 0, corresponding to decreasing spatial volume V3 = abc = e−(β

1+β2+β3)]
of its (one-sheeted) hyperboloidal mass-shell , to its lower half (corresponding to increasing
spatial volumes). Such a cosmological bounce (further discussed in Ref. [16]) is then expected
to generate a finite number of reflections during the re-expansion regime, before driving the
wavefunction in the (non-billiard-like) Friedman-type expansion regime. We leave to future work
a discussion of the global evolution of the quantum state of such a universe, which is classically
expected to bounce back and forth, indefinitely, between large volumes and small volumes (see
Fig. 3 in Ref. [16], and discussion in Sec. XX there).
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Appendix A: Asymptotic plane-wave solutions

We display hereafter the explicit values of the numerical constants entering the linear (Lkpq π′k)
and constant (mpq) contributions entering the amplitudes

Kpq ∝ π′p π′q + Lkpq π
′
k +mpq (A1)

of the NF = 2 and NF = 3 asymptotic plane-wave solutions to which we referred in Eqs. (2.3),
(3.3). For each wall form α⊥, with adapted basis αâ =

{
α⊥, αu, αv

}
, the values of the projected

components L⊥
âb̂

that vanish determine the global reflection phase factor (see text).

• Level NF = 2:

Lkpq π
′
k = −i


3π′1 + π′2 + π′3

3
2 (π′1 + π′2) 1

2 (π′1 + 3π′3)

3
2 (π′1 + π′2) 2π′2 + π′3

1
2 (π′2 + π′3)

1
2 (π′1 + 3π′3) 1

2 (π′2 + π′3) π′3

 , mpq = −1

4

13 9 3
9 5 1
3 1 1

 .

(A2)

• Level NF = 3:

Lkpq π
′
k = i


−π′1 + π′2 + π′3 − 1

2 π
′
2 + π′3 − 1

2 (π′1 − π′3)

− 1
2 π
′
2 + π′3 −π′2 + π′3 − 1

2 π
′
2

− 1
2 (π′1 − π′3) − 1

2 π
′
2 −π′3

 , mpq = +
1

4

5 2 1
2 2 0
1 0 −1

 .

(A3)

The above expressions correspond to the canonical billiard chamber β1 < β2 < β3. See Ref. [16]
for a discussion of the other chambers.

Appendix B: On finite-dimensional representations of K[AE3]

The finite-dimensional representations of the “maximally compact” subalgebra K[AE3] that
naturally enter our supergravity study constitute special ones. We have investigated more general
finite-dimensional representations of K[AE3], and briefly report here some of our findings.

The algebra K[AE3] is defined as the subalgebra of the hyperbolic Kac–Moody AE3 algebra
[13, 14] that is fixed by the Chevalley involution ω. We recall that the latter is defined by its
action on the Kac-Moody generators (ei, fi, hi): ω(ei) = −fi, ω(fi) = −ei and ω(hi) = −hi; so
that, for any Kac-Moody algebra A, its maximally compact subalgebra K[A] is generated by
the differences xi ≡ ei − fi. In the case of AE3, with Dynkin diagram (4.10), this yields the
three generators x1, x2, x3, which are respectively equivalent (modulo a factor i) to the three
generators Ĵ11, Ŝ12, and Ŝ23.

Any three generators Ĵ11, Ŝ12, Ŝ23 satisfying the following five relations [30]

ad2
Ŝ23

Ŝ12 = Ŝ12 , ad
2
Ŝ12

Ŝ23 = Ŝ23 , (B1)

ad3
Ŝ12

Ĵ11 = 4 adŜ12
Ĵ11 , ad

3
Ĵ11

Ŝ12 = 4 adĴ11 Ŝ12 , (B2)
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adĴ11 Ŝ23 = 0 , (B3)

define a representation of K[AE3]. As in the text, we use here hermitian-type generators, corre-
sponding to −ix1,−ix2,−ix3 rather than antihermitian-type ones xi = ei− fi, as generally used
in mathematical works.

We are looking for finite-dimensional representations of the three generators Ĵ11, Ŝ12, Ŝ23 (i.e.
three matrices, say J11, S12, S23), with emphasis on finding low-dimensional representations.
[For a related study (oriented, however, towards finding high-dimension representations) in the
case of K[E10] see Ref. [31].] Conditions (B1) show that S12 and S23 may be interpreted as usual
su(2) generators. Note that if, given S12 and S23, a matrix J11 satisfies relations (B2), (B3),
so does the matrix −J11. Moreover, the complex conjugate of any solution triplet of matrices
J11, S12, S23 will also be a solution. In addition, if J11, S12, S23 is a n-dimensional solution, the
triplet J11 + kIdn, S12, S23 is also a solution for an arbitrary value of k.

One can first look for representations that are irreducible with respect to su(2), i.e. with S12

and S23 given, modulo conjugation, by the standard (2j + 1)-dimensional, spin-j matrices, say
(with m,m′ varying by steps of 1 between −j and +j)(

S
(j)
12

)
m,m′

= mδm,m′ ,(
S
(j)
23

)
m,m′

=
1

2

(√
(j −m)(j +m+ 1) δm−1,m′ +

√
(j +m)(j −m+ 1) δm+1,m′

)
. (B4)

The lowest-dimensional case would be the 2-dimensional spin-12 su(2) representation. However,
we found that, in this case, the only possible solutions of Eqs. (B2), (B3) for J11 are J11 ∝ Id2.
In the present study, we consider such solutions as being “trivial"8.

The only su(2)-irreducible [cf. (B4)] representations with non-trivial J11 we found (up to
j = 13/2) correspond to j = 1 and j = 3

2 , i.e. to 3 and 4 dimensional representation spaces. We
conjecture that these are the only such ones.

The lowest-dimensional nontrivial representation of K[AE3] is 3-dimensional. Its generators
are given by (B4) (for j = 1), together with

J
(±1)
11 = ±

k 0 1
0 k + 1 0
1 0 k

 , (B5)

whose eigenvalues are ± (k + 1, k + 1, k − 1). Here, k, which corresponds to the shift kId3
mentioned above, is arbitrary. One can choose k = − 1

3 if one wishes to normalize the trace of
J
(±1)
11 to zero.
There is a similar 4-dimensional representation with generators given by (B4) (for j = 3

2 ),
together with (modulo a kId shift)

J
(±3/2)
11 = ±


1
2 0 −

√
3
2 0

0 − 1
2 0 −

√
3
2

−
√
3
2 0 − 1

2 0

0 −
√
3
2 0 1

2

 , (B6)

8 We note, however, that the (real) 4-dimensional Dirac-spinor-type representation of K[AE3] discussed in Eqs.
(4.14), (4.17) of Ref. [11] is equal to a direct sum of two such (complex-conjugated) 2-dimensional representa-
tions with “trivial" J11’s, and that the tensor product of the “trivial" 2-dimensional representation, and of the
non-trivial 3-dimensional one discussed next, leads to a non-trivial 6-dimensional representation (see below).
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whose eigenvalues are ±(1, 1, −1, −1).
Other kinds of representations exist, in which the spin generators are not irreducible. Actually,

this is the case for the first-found finite-dimensional representation of K[AE3], namely the 6-
dimensional representation defined by the gravitino operators in 3 + 1-dimensional spacetime
[11]. More precisely, Ref. [11] dealt with a real 12-dimensional representation, based on the
transformations of a Majorana gravitino. However, it can easily be decomposed into two complex-
conjugated 6-dimensional representations, each one of which is equivalent (modulo a suitable kId6
shift of J11) to the complex, 6-dimensional representation of K[AE3] appearing at the NF = 1
level of our total quantum, 64-dimensional space. [The 6-dimensional NF = 1 representation
we are talking about is the representation spanned by the six states b̃a±|0〉−.] In the latter
representation, the spin operators are the direct sum of irreducible representations with spins 1

2

and 3
2 [i.e. with eigenvalues of S12 and S23 equal to + 3

2 ,−
3
2 ,
(
+ 1

2

)
2
,
(
− 1

2

)
2
].

Starting from 6-dimensional spin generators given by such a direct sum (j = 1
2 )
⊕

(j = 3
2 ),

we looked for the most general J11 satisfying the additional relations (B2), (B3). We found, in
absence of additional requirements, multi-parameter families of solutions. On the other hand,
we can require that a non-degenerate sesquilinear form H be left invariant by all the generators,
i.e.

J†11H −H J11 = 0 , (B7)

and similar equations with the spin generators. [The relative minus sign in Eq. (B7) comes from
the fact that, in our conventions, the one-dimensional group generated by J11 is eiθ11J11 .] The
invariance of H under the spin generators restricts it (in the basis of Eqs. (B4)) to the form H =
p Id2⊕ q Id4, where (in the nondegenerate case) only the sign of the ratio p/q matters. We then
found that (besides isolated solutions) there exists four different one-parameter families of such
6-dimensional representations. Parametrizing the elements of the 6-dimensional representation
space as vector-spinors9 vAa, with A = 1, 2 and a = 1, 2, 3, the generators S12, S23, J11(w) can
be written in the factorized way10 discussed in Eqs. (3.11) and (4.16) of Ref. [11], namely,

(S12)
Aa
Bb =

1

2
(σ3)

A
B

(
4
αa12 α12 b

α12 · α12
− δab

)
,

(S23)
Aa
Bb =

1

2
(σ1)

A
B

(
4
αa23 α23 b

α23 · α23
− δab

)
,(

JE,L11 (w)
)Aa
Bb

=
1

2
(σ0)

A
B

(
4
αaE,Lw αw b

αE,Lw · αw
− δab

)
. (B8)

Here: σ3 ≡ σz = diag(1,−1) and σ1 ≡ σx are the usual (real) Pauli matrices; σ0 ≡ Id2; α12 a

and α23 a are the same linear forms as in Eq. (1.7); their contravariant versions αa12, αa23 are
defined by raising the index either by means of Gab or, equivalently, by means of δab; while
the third, gravitational-like linear form αw a is the following one-parameter deformation of the
usual gravitational linear form: αw(β) = αw aβ

a = 2β1 + w(β2 + β3). On the other hand, the
third Eq. (B8) involves, depending on the value E (for Euclidean) or L (for Lorentzian) of
the superscript, two different contravariant versions of αw, namely, either αaEw ≡ δabαw b, or,
αaLw ≡ Gabαw b, where Gab is the Lorentzian (contravariant) metric defined in Eq. (1.3). The
parameter w runs over the real line (except, in the Lorentzian case, for the singular value w = 1

2

9 Here, spinors mean two-component su(2) spinors ξA.
10 As in Ref. [11], the presence of vectorial projectors αaαb/α

2 in Eqs. (B8) implies eigenvalues equal to +3 or
−1 times those of the spinor matrices 1

2
σi.
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where the denominator αLw · αw ≡ αaLw αw a = 2 − 4w vanishes). The eigenvalues of JE,L11 (w)
depend neither on w nor on the index E,L, and are equal to

(
+ 3

2

)
2
,
(
− 1

2

)
4
. In addition to

the two one-parameter families of 6-dimensional representations displayed in Eqs. (B8), one
can also define two other families obtained by changing the sign of JE,L11 (w). When w = 0 the
Lorentzian solution Eqs. (B8) is equivalent to the 6-dimensional representation inherited from 4-
dimensional supergravity discussed above (and appearing at NF = 1). On the other hand, when
taking w = 0 in the Euclidean solution Eqs. (B8), one gets (modulo a shift kId6 and a change
in the sign of J11) the 6-dimensional representation obtained by taking the tensor product of the
“trivial" 2-dimensional representation discussed above (with J11 ∝ Id2) with the 3-dimensional
representation (B5) (say with k = − 1

3 ). Finally, the components (with respect to the basis vAa)
of the invariant sesquilinear forms H, Eq. (B7), of the representations (B8) are, respectively,
δABδab for the Euclidean case, and δABGab for the Lorentzian case; Gab denoting the covariant
form (i.e. the matrix inverse) of the contravariant metric (1.3).
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