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We consider Detweiler’s redshift variable z for a nonspinning mass m;j in circular motion
(with orbital frequency ) around a nonspinning mass ms. We show how the combination of
effective-one-body (EOB) theory with the first law of binary dynamics allows one to derive a simple,
exact expression for the functional dependence of z on the (gauge-invariant) EOB gravitational
potential u = (m1 + mz2)/R. We then use the recently obtained high-post-Newtonian(PN)-order
knowledge of the main EOB radial potential A(u;v) [where v = mima/(m1 + m2)?] to decompose
the second-self-force-order contribution to the function z(m2Q,m1/ms2) into a known part (which
goes beyond the 4PN level in including the 5PN logarithmic term, and the 5.5PN contribution),
and an unknown one [depending on the yet unknown, 5PN, 6PN, ..., contributions to the O(V2)
contribution to the EOB radial potential A(u;v)]. We indicate the expected singular behaviors,
near the lightring, of the second-self-force-order contributions to both the redshift and the EOB A
potential. Our results should help both in extracting information of direct dynamical significance
from ongoing second-self-force-order computations, and in parametrizing their global strong-field
behaviors. We also advocate computing second-self-force-order conservative quantities by iterating

the time-symmetric Green-function in the background spacetime.

Dedicated to Steven Detweiler, in memoriam

PACS numbers: 04.20.Cv, 04.30.-w, 04.25.Nx

I. INTRODUCTION

In recent years, a useful synergy has developed be-
tween various approaches to the general relativistic two-
body problem. The effective one-body (EOB) formalism
[1-H4] has played a special role within this synergy be-
cause it can incorporate information coming from very
different ways of tackling the two-body problem, such as
post-Newtonian (PN) theory, self-force (SF) theory, and
numerical relativity.

The aim of the present work is to give explicit formulas
exhibiting the connection between Detweiler’s [5] redshift
function (along circular orbits)

d reg
2 (men L) = (& , (1.1)
mo dt L1
or its inverse

dt\ "¢ 1
U <m29;@> - (-) -
ma dr ). » (mQQ; %)

and the basic radial potential describing the dynamics of
circular orbits in EOB theory:

Alu;v) = —gSH (R, m1,ma) . (1.3)

Our notation here is as follows. The two masses of
the considered (non-spinning) binary system are m; and
ma, with the convention m; < ms (and m; < m2 in SF
calculations). We consider a circular motion of orbital
frequency Q. In Eqgs. (), (I2), dr refers to the proper

time along the world line £; of mj, as measured in the
regular, conservative part of the perturbed metric. In Eq.
([@3) g5k is the time-time component of the effective EOB
metric, which depends on the (Schwarzschild-like) radial
coordinate R, while v = M/R (in the units G = ¢ =1
we use). We follow the standard EOB notation
M =mi+mo, ILLEM,
mi + mo
1% mimso
VE — = ——— . 1.4
M (m1 =+ m2)2 ( )
Note that while EOB theory works with symmetric
functions of my and mo, SF theory considers functions
of Mo, expanded in powers of my/ms. Let us also in-
troduce the notation

r = [(m1 + m2)9]2/3 ) Y= (m29)2/3 ;
_m
q = e . (1.5)

In terms of this notation, we can formulate the aim of
the present work as follows. We wish to connect the v-
expansion of the EOB A-potential

A(u;v) =1 = 2u + vay (u) + v2as(u) + O¥?)  (1.6)

to the g-expansion (or SF-expansion) of the redshift func-

tions, Eqs. (LI), (L2),
2(y;9) = /1 = 3y + qz157(y) + ¢* 2257 (y) + O(¢°)

Ult0) = g + rsr(9) + ¢*Uasel) + O(a’).
(1.7)
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The tools we shall use to connect the expansions (L6
and (L) are, on the one hand, the basic EOB results
about the energetics of circular orbits [6], and, on the
other hand, the first law of binary dynamics |7]. The use
of these tools at the first SF (1SF) order has led to a
simple relation between the O(v) contribution, aq(u), to
the EOB A potential, Eq. ([L6]), and the 1SF (i.e., O(q))
contribution, z15r(y), to the redshift, namely []]

z1s7(y) = \/% y(ll_—34yy) (1.8)

Note in passing that the first derivation of Eq. (L)
proceeded via the functional link E(z) between the en-
ergy of the binary system and the frequency parame-
ter z = [(my 4+ m2)Q?/3, and, in view of the results
of Ref. [9], had to solve a first-order differential equa-
tion in zigr to get the simple link (8]). A direct proof
that the link between z15r and a; is algebraic, and does
not involve any differentiation, has been recently given
in Eq. (2.9) of Ref. [10], using general properties of Leg-
endre transforms. The link (L8] relates the two func-
tions z1sr(+) * y — z1sr(y) and ai(-) : u — a1(u), as
defined by the expansions (7)) and (L6). Beware, in
particular, that when performing SF expansions in pow-
ers of ¢ = my/ma, we keep both my and 2 (and there-
fore y = (m20)?/?) fixed. In some papers (and, notably,
in Refs. [8,19]), one expands z in powers of v, keeping
x = [(m1 +m2)Q]?/? fixed. This changes the meaning of
the expansion coefficients in

z(z,v) = V1 - 3x+l/z(1§’)F(x)+1/22(2§’)F(:v)+0(1/3) . (1.9)
For instance, in view of the (exact) relations

q

= (1 2/3
r=(1+q)""y, ek

(1.10)

z(lg)F(:v) differs from z15r(z) already at first SF order:

T

V1=3z"
1SF

[Here, as elsewhere, 2(;) (¢) and z1sr(2) denote the val-

ues of the functions z(lmS)F() and zgp(-) at the same,

z(lms)F(x) = z157(x) + (1.11)

generic, argument, denoted x.]

The 1SF-order link (I8) has been quite useful for
translating 1SF results on the redshift into dynamical
information of relevance for binary systems [&; |9, [11H17].

Note, in particular, that the recent derivation of the
4PN dynamics [18-20] (see also [21]) has made a crucial
use of the 1SF results of Ref. [14]. Similar links have ex-
tracted useful dynamical information about more compli-
cated binary configurations (eccentric, spinning, tidally
interacting) from corresponding 1SF results [d, [10, 22—
33].

In this work, we shall consider the simplest (circular,
nonspinning) binary configuration, but we shall general-
ize the first SF-order link (L8] to the second SF-order.

Indeed, after preparatory theoretical works on second-
order SF (2SF) theory [34-37)], there now seems to ex-
ist practical means of concretely computing 2SF effects.
In particular, Ref. [38] has shown how to implement,
and compute, Detweiler’s redshift functions (1)), (L2
at the 2SF level, so as to provide a 2SF gauge-invariant
measure of the conservative effects on (quasi-)circular or-
bits. Note that there are subtleties in the definition of
the conservative dynamics at the 2SF order, which are
linked to delicate infrared effects [39]. Some of these
subtleties have been recently addressed, within the post-
Minkowskian theory of Fokker actions |40], in the discus-
sion of the nonlocal 4PN action [20]. We shall comment
again on these subtleties in our Conclusions. Separately
from these, our text will show how to transcribe a conser-
vative 2SF redshift into a corresponding 2SF contribution
to the conservative EOB Hamiltonian.

II. THE REDSHIFT IN THE EOB FORMALISM

Let us first show how one can derive an eract expres-
sion for the redshift [ z; = z, Eq. (TI) of the parti-
cle m; as a function of the EOB gravitational potential
u = M/R. We recall that Ref. [7] (see also [41]) has
shown that z; and zo (along circular orbits) are related
to the Hamiltonian of the binary system by

o circ
21 = [8—mlH(R’ PR7 P¢77m1; m2):|
0

— HCirC P
8m1 ( fop) my, mQ)

[8
zZ9 =

3m2

) .
= a—mHCIrC(Pd,, ml,mg) .

circ
H(Ru PR7 P(i)amlu m?):|

(2.1)

Here Py is the total angular momentum of the system,
which must be kept fixed during the differentiation with
respect to (wrt) the masses. The superscript “cire” indi-
cates that one works along the sequence of circular orbits,
submitted to the constraints

0
—H(R,PR,P¢,m1,m2) =0.

Pr=0
R ) 9R

(2.2)

Because of the latter constraint [and of the O(P3) depen-
dence of H], one can also (as indicated above) evaluate
z1 by first imposing the constraints ([2:2)) to express H as
a function of Py and the masses, and then differentiating
the resulting function H*(P,, m1, m2) wrt m; (keeping
P, and my fixed).

1 In this section, we reinstate a label 1 on the redshift z; = 1/Uy
associated with the world line £1 of m1 (and a label 2 on the
corresponding quantities associated with the mass m2).



EOB theory expresses the Hamiltonian of the binary
system in the form

H,
H(R,PR,P¢,m1,m2)_M\/1+2V( H—1> (2.3)
I

where the effective Hamiltonian H.g reads

M
Heg(R, Pr, Pp,mi,ma) = | A (E;V> <N2

Here, B and @ are EOB potentials associated with the
description of eccentric orbits. [We use the Damour-
Jaranowski-Schifer gauge [3] in which Q = O(Pg)]
When considering the energetics (and the redshift) along
circular orbits one can set Pr = 0 from the beginning
so that the extra EOB potentials B and @) disappear,
and all results will only depend on the main EOB radial
potential A(u;v). More precisely, the effective potential
determining the sequence of circular orbits can be taken
as being

12 = Aw;v) (1 + piu?) (2.5)
where
. Heg M P,
Hoyg = . u=—, =—2 2.6
f=— U= Pe= g (2.6)

The condition (0H/OR)p, = 0 is equivalent to the con-
dition (OH2;/0u), , = 0 and yields the circular condition

circ Oy A OuA
2 = = 2.
(p¢) O (U2 A) Sud’ (2.7)
where we have defined (following [42])
A(u;v) = A(u; v) + %u@uA(u; V). (2.8)

On the other hand, before inserting the circular solution
(27, the partial derivative of (23] wrt Py yields the
orbital frequency

0 MAP,
Q= —— H(R, Pg, Py, m1,ms) = i

=% (2
op, Py Y

In EOB (and PN) theory it is convenient to work with

the dimensionless variables M, u, ps, Heg and

H Hcﬁ"
h=—=4/1+2 —1]. 2.10
M \/ i ( I ) (210
In terms of these, Eq. (29) reads
A 2
Mo = 24P (2.11)

hﬁcﬁ' .

P? P2
+2+ b

R?  B(M/R;v) (24)

+ Q(R, Pr, M, u)) .

The use of the circular condition (27) allows one to ex-
press all physical quantities, along the sequence of cir-
cular orbits, as explicit functions of . In particular, we
have

. A . A
cie — pe = 142 | —=—1] (212)
eff = =
VA <\/Z )
and
e = 2 [ 1s 4
- hcirc _5 u
_lauA
=’/ - (2.13)

A

1+2v ( N 1)

We can also straightforwardly evaluate z; and z3 from
Egs. (ZI). In doing so, we must remember that Py =
mimgps must be kept fixed during the differentiation
wrt the masses. Alternatively, we can compute the total
derivative of H along the sequence of circular motions
(parametrized, say, by u, m; and mg) using the identity

[

After some simplifications, one finds that z; and 2o can
be expressed by compact, explicit functions of u, namely

= o, A
21(u,v) = oo | X X0V A+ gxzleﬁ](zm)
= d,A
2o(u,v) = et X2+X1\/Z+gX1X12\/—~ ;
A

(2.16)

where X1 = ml/M, X2 = mg/M, X12 = X1 — X2 =
—Xo1, and where all other variables are considered as
functions of v and v (with 9,4 = 0A(u;v)/0v). Note
that X; + X9 = 1, v = X1 X5 and that, under the con-
vention my < me, one has
(1-VI—h).

1
X1: X2:§(1+\/1—4I/).

(2.17)

N | =



In order to compare the result (ZI0]) to SF calculations,
in which z = z; is considered as a function of €2, see Eq.
([T), we need to invert the function v — Q defined by
Eq. I3). This is straightforward to do, if one expands
in powers of v or ¢q. Indeed, as A(u;v) = 1—2u+0(v), we
see that Eq. (ZI3) is of the form MQ = u?/2(1 + O(v)).
When v — 0 (i.e., ¢ = m1/mz — 0) we recover Kepler’s
law (in a Schwarzschild spacetime).

When working with the dimensionless frequency pa-
rameter x = (MQ)?/3, Eq. [ZI3) reads

1/3
~19,A

T+2v (4 —1
i (\/Z )
Inserting in Eq. (2ZI8) the v-expansion of A, Eq. (L6,

we can straightforwardly compute the v-expansion of x =
u(1+ O(v)) as a function of u, namely

r=u (2.18)

x =u+vU;(u;ay(u))
+ v Us(u; a1 (u), d (u), d(u)) + O(?), (2.19)

where
1 1-—2u
Uy = —~ula)(u)—4(1 - ——22
! GU{%(U) ( \/1—3u>}

1 (1 —4u) L, Lold (w2
Uz = ~5 1 —gayn® (v) ~ el — gguleh )

u(l—2u)(2—-3u) 1 ,
+ ( 18(1—3up/z §“> a ()

Inverting this functional link then yields

u =z —vU(z;d}(x))
+v2Va(z a1 (2), ) (2), ay () + O(v?), (2.21)

where

Vo= U(ai; ) (Ui (o) )

—Us(z;a1(x),a)(z),as(x)) . (2.22)

Inserting this expansion in Eq.

@I3) yields the v-

— _ 2
— ;(6;(_13@2112 8u(29(1 7_u;;)4u ) (2.20)  expansion of the function z(,) : © — 2, namely
|
21 (u(z,v),v) = 2 (2, v) = V1 =3z + Vz(lf)F(:v) + 1/22(2§)F(:v) +0@?), (2.23)
with
1 1—-4zx
1SF
= — 1 _—
ssp, @[3 18— 2342 + 43207 | 12(2 — 13z + 242?) 3 w o
o) @) = 33 [ (1= 32)5/2 (1—32)2 T neWt s =)
3 9 x 2 1-2x /
S a2 10— (3 N 33:) @ ()
3(1—2x)(1—4x) 1-—2zx
—|= . 2.24
{2 (1— 32)2 13292 1@ (224)

Similarly, inserting the v-expansion of the function u ) :
z — u, Eq. ([@22I), in the expression of the EOB
Hamiltonian in terms of u, Eqs. (I0), (ZI2), yields
the v-expansion of the fractional binding energy, E =
(H — M)/, expressed as a function of the frequency pa-
rameter x. Its structure is more complicated than that

of the function z(,) because it involves a derivative of ay
already at the O(v) order |8, 16]. At the O(v?) order it
is quadratic in a; and its first and second derivatives. It
reads

E(x;v) = eo(x) + vei(x) + vPea(z) + O2),  (2.25)



with

1—2z

GO(I) = ﬁ 5 (226)

I8, 116])
1 T 1 1—-4x
el(x)i 3\/@ ( )+_(1—3.’L')3/2a1(x)
—eo(w) %eo(:v) + %% (2.27)

The expression for the O(v?) contribution es(x) is much
more involved and can be decomposed as

ea(r) = eg(0)(T) + e2(a,) (T) + €2(a0) (),  (2.28)
and the O(v) contribution given by (consistently with — with eyq,)(z) = €2(a,)2(2) + €2(ay)1 (7) and
|
(1-2y1=3z)(v/1-3z—1)3 9
ea0) (@) = 603577 [3(7 — 2)(182 — 7)V/1 — 3z — 54922 + 285z — 39)] (2.29)
z(1 — 6x) / 2 o a1 L ’ (1—6z) 2
=_— - -z SRS 2.30
62(a1)2 (1’) 72(1 317)3/2 [a’l (‘T)] + GM (1 _ 356) 3&1 (1’) al( ) 8(1 _ 317)5/2 [al (:E)] ( )
z(1—+v1-32) 222
82(a1)1( z)=— 27(1 3:10)2 [(7 — 302)V1 — 3z — 5 + 24z]a) (z) — m(l — V1 —-3z)(1 —2V1 - 3x)ay
-1 1-2y1-3
_a 32)( ) lo — 142+ 3627 — (1 — 62)v/T = 3a)ar (x) (2.31)
18(1 —32)
1 -4z x ,
62(02)(x) - 2(1 _ 317)3/2 ag(l') - 3ma2(‘r) : (232)
[
As alast step, to be closer to what is actually computed of the type
in SF theory, we must replace by (1 + q)2/3y and v by 9
q/(14¢)?* in order to derive the g-expansion of z(y, q), Eq. A+ 93y = fy) + =yaf' () (2.33)
(). In doing this transformation we need expansions 1 3
+guad” [ (v) + 2" ()] + O(¢”).
Our final result for the coefficients in the SF-expansion
(T0) read
a(y) | y(l—4y)
asel) = =gt gy
3wy 1y e y(1=2y) 3 [aa(y)?
ZQSF(y) 21— 3y 8 m[ 1( )] + (1 _3y) al(y) ) (1 — 3y>3/2
3(1—2y)(1 —4y) 3 1 y(1—2y) 2
—=(2-13 244°) . 2.34
( 1_31/ m al(y) 2(1_3)5/2( Y+ y) ( )

As the function a; (u) is accurately known (numerically
[16] and analytically [15, [16, |43]), Eq. (234) shows that
one can algebraically compute the function agz(u) from
the knowledge of zogw(y).

Let us complete these results by giving the corre-
sponding SF-expansions of the inverse redshift U(y, ¢) =

1/2(y, q), as well as the SF expansions of the ratios

i) 2(Y;q)
Y9 = =
Uly;q) = V1 -3y Ul(y;q) ! (2.35)



They read

1
Uly) = =

2(y;q) = 1+ qZ1sr(y) + ¢°Zasr (y) + O(¢°)

+ qUisr(y) + ¢*Ussr (y) + O(¢*)

Uly;q) =1+ qﬁlSF(y) + QQﬁst(y) + O(qg) , (2.36)
where
Ussr(y) = - jlsf%)
_ zsE(Y) (2157 (y)]?
Vasr W) = 0 gy T = sy7
Siar(y) = 2187 (Y)
1SF(Y 7@
ZasF(y) = Zsely)
VI=3y
~ _ zisr(y)
Uisr(y) = /T3y
ﬁQSF( ) _ ZQSF(y) [ZlSF(y)] (237)

III. PN EXPANSION OF THE SECOND-ORDER
REDSHIFT

The PN-expansion of the Hamiltonian of a binary
system is currently fully known through the 4PN level

/ "2 n
+(ea+ e +efr? +efv +e

the EOB potential A stays linear in v through the 3PN
level 3], and features (only) a O(v?) nonlinearity at the
APN level [14]

A(u;v) = 1= 2u+ 2vu® + vagu* + (vag + v2al)u® + . .. .
(3.3)
In view of Eq. (Z34)), this immediately indicates that
the first new information contained in the 2SF redshift
zosr(y) will start with the nonlogarithmic 5PN contri-
bution, i.e., 28F(y) o y°® (see below for its explicit
parametrization). [We do not discuss here the PN expan-
sion of the first-order SF terms aj(u) or zi;gp(y) which
are analytically known to high PN orders |15, [43], and
numerically known up to u = 3 [16]; see Eq. ([B.8) below,
and Appendix A.]

2 We recall that the nPN level in A(u) corresponds to a term o
untl,

[18-20]. In addition, some higher PN contributions are
known. This is the case for the logarithmic contributions
at the 5PN level, see [13] (with corrections given in [7]),
[44] (whose derivation was given in [19]), and [&]. In par-
ticular the 4PN and 5PN logarithmic contributions to the
EOB A potential are (see, e.g., Eq. (9.14a) of Ref. [19])

I, oy 64 o 7004 144 5\ ¢
A" (uyv) = VU 1nu—|—( T uwlnu.
(3.1)
As we see, while the 4PN-level logarithmic contribu-
tion to A is linear in v, the 5PN-level logarithmic con-
tribution is quadratic in v. Let us recall in this re-
spect that remarkable cancellations take place in the v-
dependence of the EOB A potential. Indeed, while, for
instance, the PN expansion of the fractional binding en-
ergy, B = (H — M)/, expressed as a function of the
frequency parameter x, has a nonlinear dependence on v
which starts already at the 2PN level, say (without indi-
cating the logarithmic running of the 4PN terms) [1§]

", 2

1
E(z;v) = —5% [1+ (e1 + elv)a + (e2 + ehv + e5°)a” + (es + v + ehv® + e 1v°)a®

ZNV4)ZE4 +.. } ,

(3.2)

Let us also mention that Ref. [17] has argued that the
first PN contribution to A(u;v) that is cubic in v will
start at the 6PN order, i.e. that ag(u) = O(u7), and that
the first PN contribution that is quartic in v will start
at the 8PN order, etc. This indicates that the knowledge
of the 2SF redshift (which gives, in principle, access to
the function az(u)) gives also access to many low-order
contributions in the v expansion of the function E(x;v).

Some information is known about the 2SF contribu-
tions to the half-integer 5.5PN level. Indeed, while
the 1SF derivations of the 5.5PN-level contribution to
the redshift [17, 45] do not give any information about
the 2SF level, the corresponding PN-based derivations
[19, 46], especially that of the latter reference which di-
rectly computed the 5.5PN-level contribution to the A
potential (see Eq. (9.32) in [19]), show that it is linear
in v, namely

13696
= —7TVU13/2 .

55PN, .
A (u;v) EoF

(3.4)



On the other hand, it is not clear to us whether the
PN derivation of the 6.5PN nearzone metric, and associ-
ated redshift, in Ref. [47] was limited to the contribution
that is linear in v, or whether it kept the terms of order
O(v?). Tt would be useful that the authors of Ref. [47]
re-examine their proof and state their result in terms of
the 6.5PN contribution to the EOB A potential to know
what is the value of the coefficient a’ 5 of v? in

512501
ASOPN (42 p) = (—Wﬂ'u + al7v5u2) w2 (3.5)

Starting from the known terms in the PN expansion of
the EOB A potential, i.e. the 4PN [1&,[19], 5PN logs, Eq.
@), 5.5PN [19, 146], together with all the terms that are
known to first order in v [14, 15, [17, |45, |47-49], and
parametrizing the O(v?) terms that are still unknown,

(see Appendix A for additional terms) and

221 41 144
as(u) = (—7 + §ﬁ2> u® + <—? In(z) + alﬁ) ub

+0u'®? 4+ (at"™ Inwu + ab)u” +ab u™® 4 ...

(3.7)

Inserting these expressions in Eqgs. (Z34) and [235) we
get the following PN-expanded expressions for the vari-
ous ways of defining the 2SF redshift contribution:

wedcan(w;ri‘.ce téle PN expansion of the contributions a; (u) Zhon(y) = 2580V () + “2—‘1“1‘“0‘”“ (y)
anda az(u) 1m Lq. ],H as nown ~a unknown
’ Zar(y) = 2582 (y) + Z2§F « Y)
ar(u) = 27 + <93_4_%W) u UEN (y) = U™ () + U ™o (y)
known 77as—unknown
= + U538 , 3.8
4237 2275 , 128 2561 @ 2SF(y) Usse " (y) 2SF () (3.8)
G0 2" 5 T
64 5 6
—i—?ln(u) u’ 4+ O(u®), (3.6)  namely
|
en 29 74 41 64 128 4899 , 32 75107
) = vt - 2+ (<5 e ) v (S e+ T+ ) - ) 4
6556 14972 729 232221 958 66534539
e In(3 2P0 (y) — 2222007 6
+ ( 35 1 a5 @+ @)+ Saem - ) - =5 )
27392 13
T 525 ™
351398 3312926 n(2) 21627 In(3) + 3018779419 , 12283021 ,
- - ™
2835 7 2835 28 3538944 524288
_8009 In(y) — 50685282659\
2835 " T 14515200
1345759
_ FERLYE
3675
a2 —unknown 3 9 3 3 n 3
2530 K (y) = iagyﬁ + <4a6 + 2a7 + 2a71 In(y )) Y’ + Ea’7V5y15/2, (3.9)



Aknown 1 2_2 3 < 211 41 2) 4+< 1803 5883 2 64

) =~y -5y - 5 10 T2a" T

128 32
+Tl n(2) + gln(y)> yP

2766097 5884 13628 125673 , 4454 729 ]
(_ 2100 35 0 a5 M@t app T 351Mw+'mlw&>y
27392 14
525
1046211847 369606TLAT , | 12283021 , _ 528758
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181440 3538044 524288 2835 W
248396 322684 4860
1n(2) — v 2 03) ) o7
05 PO (3)> Y
1
1058143 15
3675
. 3 9, 3, 3 3
235 y) = S+ (ai+ ok + ot ) ) o7 + Skt (3.10)
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Usge ™) = = Sa® + (- 5ah - St = S ) ) o7 - S, (3.11)
3, 13 223 41 7169 8507 , 64 128 32
Uknown _ 2,2 -3 ___2 4 ___2 N~ —1n | 5
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525
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Here we decomposed the 2SF contributions into their ically known part of as(u), and the last, explicit, term in
analytically known parts (coming from a;(y), the analyt-



Eq. [234)), and the parts coming from the analytically
unknown part of as(u).
We have checked that the 4PN contribution to

253n known () written above (as well as the full 4PN con-

tribution to z(,(x) defined by Eqs. (223)), [2.24]) above)
is consistent with the 4PN expansion of z(,)(x) derived
in Ref. [33] from the 4PN results of |14, 50].

IV. EXPECTED LIGHTRING BEHAVIOUR AT
THE 2SF LEVEL

Ref. [16] discovered that, at the 1SF level, several func-
tions of dynamical significance had a singular behaviour
at the lightring (LR), i.e., when v — 1/3 or y — 1/3.

In particular, the ratios ﬁlSF(y) = /1 -3y Ussr(y) and
Z1sr(y) = 2157 (y)/+/T — 3y behave as

> ~ 1 re.
Ursr(y) = —Z1sr(y) = =hey' ™8 o« E3(y),

where h13F = hllf,Fu“u” (ut = da*/dr), and, where we
introduced the notation

1—-2y
VI=3y

for the 1SF specific energy of a test particle in a

Schwarzschild spacetime. Near the LR, i.e., as y — %7,
E(y) — +o00. As explained in [16], this result is (essen-
tially) deriving from the fact that the 1SF metric pertur-
bation qhtﬁF(:zr) (at a generic field point) is sourced not
only by the mass mj, but, more precisely, by the energy
m1E of the particle 1. Then, the fact that u® = —¢°°F

explains why h,, utu” blows up like the cube of BE.

E(y) = (4.2)

Pound [38] has derived several expressions for U (y) at
the 2SF accuracy. It seems that his Eq. (101) is the most
relevant here. It reads (using his notation)

2
73 1AR1 1AR2 3 1AR1
U(y) =1+ §huoug + §huoug + g §huouo

2
v, 9%
ubug (Tahfl}) ] . (4.3)

Here, Eﬁl} and ?Lfff are (respectively) precisely defined
versions of the regularized 1SF and 2SF metric pertur-

To — 3m2
24m2

3 In this asymptotic estimate, and the ones below, we could every-
where replace E(y) by its LR-singular factor 1/4/1 — 3y.

4 Here, “known” and “unknown” have different meanings than

bations (for use in a specific 2SF scheme). We therefore
expect that A/t} will be proportional to ¢E(y) and h/f?
(whose source is quadratic in ?Lﬁl}) to qE*(y). We then
expect that the four metric-dependent contributions on

the rhs of Eq. (@3] will essentially behave (near the LR)
as

U(y) ~ 1+qE* () + B () +* E° () + B (y) , (4.4)
so that the dominant behavior near the LR will be

Uly) ~ 1+ qE%(y) + ¢*ES(y) , (4.5)

as well as

2(y) ~ 1+ qB°(y) + ¢ E°(y). (4.6)
Let us note in passing that the LR behaviors (@3] and
(#8) are consistent with the conclusion of Section VII B
of Ref. |16] that the condition for the numerical validity
of the SF expansion as one approaches the LR is ¢E3 <« 1
(see Eq. (112) in Ref. [16]). It would be interesting to
probe the LR behavior of Usgr(y) and Zasr(y) and con-
firm the expected behavior Ussp (y) ~ Zasr (y) ~ ES(y).

Assuming this LR behavior, let us now turn to our
EOB expressions for UQSF and Zasr in terms of the EOB
potentials a; (u) and as(u). We first recall that [16] found
the LR behavior

ay(u) ~ E(u), (4.7)
consistently with Zigp ~ E? and the link
y(1—4y)
=./1—-3 _ye =)
al(y> Yz1SF (y) m
~ 1-4
(11— 3y)5er — U — Y) (4.8)

=

We can correspondingly rewrite the second equation

234) in the form

a2(y) _ algnown(y) + agnknown(y) (49)

where ﬁ

above.
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_ ai 2
() =~ gpula ) - 5 )+ T
- (2 L 120~ 4y) a%é(;);/f ) ) a1(y) + %7@(’1(1__332) (2 — 13y + 24y°)
agmmonn(y) = 2(1 ~ 3y)se(y). (4.10)

3

If we insert in Eq. (£I0) the estimates Zasp ~ E°,
1 —3y ~ E~2, we find that the unknown, Zpsp-related,
contribution to as is expected to behave as E* near the
LR. By contrast, using also the estimates a1(y) ~ E(y)
and a}(y) ~ E3(y), we see that the various contributions
to ak"°""(y) (rhs of Eq. (&I0)) respectively behave, near
the LR, as E%, E*, E*, E* and E*. We therefore conclude
that, near the LR (as E — oo) we have

1

ar(y) = —zy(@)* + O(EY).  (411)

In particular, as the LR behavior of a4 (y) is [16]

¢ 1
S — 4.12
al(y) 4 m ) ( )
where the numerical value of ¢ is |16, 126]

¢ ~ 1.0055(5), (4.13)

we conclude that the leading-order singularity of az(y) at
the LR is

¢ 1

AT (4.14)

as(y) =~

Note that Eq. ([@I4]) predicts that as(y) will tend to —co
as y — (1/3)7. [A similar prediction was made at the
end of Section VII in [16], with, however, an expected
milder LR singularity o< (1 — 3y)~2.]

On the other hand, the lowest-order PN contribution
to az(y) (which comes from the 4PN level) is also nega-
tive, namely

a7 = afy, (4.15)
with
221 41
ay=——+ — 7% = —24.1879026944 . (4.16)

6 32

We then expect as(u) to monotonically decrease towards
—o0 as u varies between 0 and 1/3. One can heuristically
try to guess the way as(u) will interpolate between the
leading-order PN behavior (@I5) and the LR behavior
(#I4)) by considering the doubly rescaled function

(1-3y)°

bQ(y) = y5

as(y) - (4.17)

As y varies between 0 and %, the function by(y) varies be-
tween by(0) = af ~ —24.1879 and ba(3) = —(?3%/256 ~

—0.9597. If we assume (as is the case for the corre-
sponding doubly-rescaled 1SF function b(y) = (1 —
3y)zai(y)/y?, see Ref. [16]) that by(y) varies (modulo
its known ~ ylny piece) roughly linearly in the inter-
val [0,4], ie. ba(y) ~ af + y(c2 — 22 1n(3y)), we can
estimate its (logarithmically-corrected) slope ¢y as being
o ~ ¢§, with ¢§ = 3(ba(%) — ab) ~ 69.7. In other words,
a guesstimate of the global strong-field behavior of a2 (y)
is

y° (ab +y [c§ — 13 In(3y)])

() = 4.18
az(y) (1 —3y)° (4.18)
The PN expansion of this guesstimate, namely
144
a3(y) = agy’ + <9 a5+ — — m(?’y)) vt
(4.19)

suggests that the numerical value of the first unknown
coefficient of as(y), i.e., ag, might be of order ag’ = 9 a5+
5 — %4 In3 ~ —179.6. This result is not to be taken as
a firm numerical estimate, but only as an indication that
the value of ag can be reasonably expected to be of order

—200.

V. CONCLUSIONS

Let us summarize our main results.

We have shown how EOB theory (together with the
first law of binary dynamics) yields a simple, exact ex-
pression for the dependence of the redshift z = z; of a
(nonspinning) mass my, in circular orbit around a non-
spinning mass me, on the EOB gravitational potential
u = (m1+ms2)/R, in terms of the main radial EOB func-
tion A(u;v), see Eq. (ZI5). Using the latter expression,
together with standard results of EOB theory, we derived
in Eq. (234) the explicit relation between the second-
order redshift function zogr(y) (defined by Eq. (I1)) and
the O(v?) contribution az(u) to the EOB A(u; ) poten-
tial (Eq. (L4)). Eq. (@234) shows how to algebraically
compute the function as(-) from zaosr(y) (and a knowl-
edge of a;(u)). For the convenience of the self-force com-
munity, we have also given the explicit relations Eetween
the various avatars [zasr(y), Z2sr(v), Uzsr(y), Ussr(y)]
of the second-order redshift, see Eqgs. (237,

After recalling the remarkable cancellations taking
place in the v-dependence of A(u;v) (which starts being
nonlinear in v only at the 4PN level), we have considered



the PN expansion of the second-order redshift and sepa-
rated it into known and unknown parts. We emphasized
that the known part (written in Eq. ([3.9])) goes even be-
yond the 4PN level, as it includes the 5PN logarithm and
the 5.5PN contribution. We expect that the known part
Zsmown (y) Eq. ([33), will give a good fit of the data over a
large range of frequency parameter y. We suggest to then
interpret the upcoming 2SF data in terms of the differ-
ence zpumerical(y) _ known 4y (or some of its avatars) so
as to directly extract the unknown parameters ag, af, and
a5 entering 2520 """V (y), Eq. (B3). Indeed, the pa-
rameters ag, a; and a% 5 (and their higher-order analogs)
are those of most direct dynamical relevance because they
directly parametrize the PN expansion of the O(v?) con-
tribution, as(u), to the EOB radial A potential.

When going beyond the PN regime and exploring the
strong field behavior of zegr(y) one will need, according
to Eq. ([234), to use an accurate global analytic repre-
sentation of the function a;(-) in order to compute and
subtract the a;-dependent contributions to zegr(y). We
recall in this respect that such accurate global analytic
representations were given in Section II B of Ref. [16]
(notably model 14 there).

We finally speculated on the LR singular behavior of
both the various redshift functions and of ag(u). [We
leave to future work the 2SF generalization of the study
of Ref. [16], namely the construction of a non-Damour-
Jaranowski-Schifer-gauge version of the EOB Hamilto-
nian that is explicitly regular at u = %] We expect Eqgs.
(#3) and (#6) to hold for the fractional redshift func-
tions and Eqs. (4I0) and ({.14) to hold for the 2SF
contribution as(u) to the EOB A potential. We also ex-
pect as(u) to monotonically decrease from 0 to —oo as u
increases from 0 to %, roughly as the guesstimate af(y),
Eq. (418), and with a 5PN coefficient ag ~ —200.

Let us finally mention that while the relations linking
2(y;q) to A(u;v) we derived above should have a gen-
eral validity, their application to the real conservative
dynamics of binary systems depends on the precise def-
inition that will be made in the second-order self-force
computations. As explained, e.g., in [40], and recently,
in the Appendix of [20], we personally favor the usual
Fokker-like definition of conservative dynamics based on
the iterative use of a time-symmetric Green-function. We
therefore recommend that, when computing the redshift,

both the 1SF metric perturbation 25", and the 2SF one

11

hff,F, be computed by using the time-symmetric Green-

function Geym (in the background spacetime). [As indi-
cated in the Appendix of |20], this choice might avoid
infrared problems; though this issue clearly deserves a
study of its own.] It is not clear to us that the prescrip-
tions stated in |38] coincide with this iterated-Ggsym one,
nor it is clear that they will define, in general, a Hamil-
tonian evolution.
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Appendix A: Higher-order PN terms in the O(v)
correction to the EOB main radial potential

We explicitly give here the coeflicients of the beginning
of the PN expansion of the O(v) EOB radial potential
a1(u). They were obtained through the 9.5 PN level (i.e.
through «!%-%) in Ref. [15]. Soon after, Ref. [43] com-
puted the PN expansion of the related quantity Uisr(y)
through the 22.5PN level, i.e. through 4?35 . Below, we
reproduce the analytical results of Ref. [15], and com-
plete them (analytically for the u!'! term, and numerically
beyond that) by transcribing the results of Ref. [43] in
terms of a; (u). Up to order O(u'l) we list the analytical
values of the coefficients a,, of a1(u) =3, <5 an(lnu)u”
(appropriately decomposed into powers of In u, according
to a,(Inu) = a& + al® In(u) + ag’Q In?(u) + - -+ ). Beyond
that order, we give the1r numerical values.

ar(u) = azu® + agu* + (af + a In(u))u®
+(a + a In 13/2
+(a$ + ai* In(u))u” + a7.su
+(ag + af In(u) + af” In*(u))u®
t+agsu'T?. ., (A1)

(u))u + ag.su
15/2

where (v denoting Euler’s constant)



a3:2
94 41 ,
Q4 = — — —=T
3 32
g 4237 128 2275 , 256
7760 5 B2 5
a5 —E
. 1066621 14008 246367 , 31736 243
ag = - vy - In24+ —1In3
1575 105 3072 105 7
n 7004
ag = ———
105
L 13696
65~ 525
. 1360201207 5044 608698367 , 2800873 , 206740 4617
a; = — — ¥ T — m In2— In3
907200 405 1769472 262144 567 14
g _ 2522
T 405
512501
95T T 3675
o 187619320956191 14667859963 109568 , 1836927775597 , 830502449
- _ — T
8 12224520000 5457375 525 2477260800 16777216
19361011651 438272 | 438272 o, 3572343 . 1953125 . 2048C(3)
5457375 525 | 525 3520 19008 5

_ 14667859963 109568 219136

12

In
_ In2
a8 10914750 525 525
e 27392
8 7 525
L T0898413
85 = 6548850
o 3121123440003307043 _ 1198510638937 10894496 , 53276112149251 , 23033337928085 ,
9 = T 8899450560000 198648450 11025 92484403200 6442450944
11647126988311 17379776 322400, 325284577623 37908
- In2+ In“2+ — vIn3
993242250 3675 63 71344000 19
37908 18954 ,. 2283203125 152128
2 o — 2223 Inb — 3
19 e 19 1482624 105 @)
L 1193425238617 10894496 8689888 18954
ag = — In2— —In3
397296900 11025 3675 19
L2 2723624
Qa. =
9 11025
Lo _ 3008330528127363 _ 23447552 219136 , 46805104
= mw — v mw = i
95 = T1048863816000 55125 1575 55125
" 11723776
(95 = ~"Frior

55125



C

ap; =

In

ap =

In?

ap = —

In®

ap =

13

. 75437014370623318623299  21339873214728097 200706848 ,  11980569677139 ,

%10 = TT18690753201120000 1011404394000 ' 280665 ! 2306867200
24229836023352153 , 27101981341  18605478842060273 60648244288
_ - - _ 60648244288
549755313388 100663296 7079830753000 9823275 !
121494074752, . 6236861670873, . 360126 ., 860126
9823275 125565440 19 ! 19
180063, 1115360140625 96889010407 _ 1619008 .
19 124540416 277992000 105
Jn _21275143333512007 | 200706343 830324122144 180063
10 = 7 75022808788000 280665 | 9823275 19
e SO1T6712
107 980665
. 185665618769828101 2414166668 5846788 , 377443508 246402
afos = — T+ T — 4+ ———nmln2 - ——7In3
24473489040000 1157625 11025 77175

o 1207083334
10.5 1157625

281895583614608101484671915254799  730364677485317711340883 1114681526261048

9261923135147127244800000 + 6023874000444300000 | 49165491375
187580416 5  9456705011234922635335117 , 46895104 ,  403529198843481822483991 ,

165375 | 58656715985387520000 33075 " 1662461581197312000
_ 69677806640785 ;  220067102483775234280400 . 2153202070969072 | 875160832 ,
128849018883 6023874000444300000 19165491375 55125 )
93790208 12035069804168 . 750321664  ,. 1500643328 4
- 7m7"In24+ ——— 24+ ——yIn"2+ ————In” 2
33075 19165491375 55125 165375
24590323035362369781 99500270319 99500270319 99500270319
n3—— 33— ————In2ln3— ——— In“3
167887271552000 4404400 4404400 8308800
1361651238912109375 7548828125 7548828125 7548828125 .
Inb5 — yInb— ———n2ln5— ———1In
139874081098752 2038608 2038608 1077216
5135117551571 228271533856 3506176 7012352 32768
- _ 2R (3) — m2¢(3) — 222%¢(5
797056000 Tt “sammars ) T Ty 1CB) T gy (@) = ——C0)
733055111724601862700883  1114681526261048 93700208 , 23447552
12047748000833600000 19165491375 | 55125 ! 33075
1076646485484536 375160332 375160832 ,. 99500270319
— n2+ ———-yln2+ In”2 —
19165491375 55125 55125 8808300
7548828125 1753088
om0 T B
278670381565262 , 46895104 93790208
49165491375 55125 | ' 55125
93447552
165375 (A2)
aS, = —136026.4054204446524
all = £92069.97011303800064
™’ = 12680.094911141314771
™' = _575.6670078825180866 (A3)

a$y 5 = +411359.19012666159295
al?, . = —89983.79213560018813

. = +2723.4741165892301940 (A4)
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allng = —115325.0931536713629

aly = +37380.38544992471130
al = —958.1805076759092401

a$s 5 = +610918.2394464063138
aly o = +170007.28146400969249

alfg 5 = —11672.693750604578136

a§4 = +1.350385599543487136 x 10°
al’y, = —984953.8855218083405

al = —19619.48449939532511
al = +10567.846716039821126
all' = —288.96957869200590289

a$, 5 = —3.491894369332324840 x 10°
al’y . = +843807.4189216130254

al . = —14756.376627382853115

af5 = +8.453411734068058935 x 10°
a15 = +683868.4007401311506

11“5 = —412898.58847750633693
a11“5 = 42964.26039443923512
a11“5 = 4905.1064154160732068

ais 5 = —6.611739690898423300 x 10°

a11n5 5 = —2.5331466827392461057 x 10°

al . = +364363.73734313256846
. = —7400.932837461527130
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aly = —284536.2707838998270
al = —92972.01464401640953
all = 4+2895.3944298738406392

as5 = 2.0729749508779631714 x 107
al o = —8.154020295913721777 x 10°

lfg 5 = —320537.0424196010014
all . = +25457.964244814043318
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a‘{7 = —8.87075365872505874 x 107
a17 = +6.53467956637541131 x 10°

al = +4.546958839453220304 x 10°
al¥ = —126284.68507716340683
all = —18108.698289996480898
aly = 4+471.15801782925152928

a§7 5 = 1.3328203214222427101 x 10
allt s = +8.00320980641150146 x 10°

alf; 5 = —3.638624210501010330 x 10°
a5 = +62962.90624124632430

afs = —2.515498325513126188 x 10°
alfg = —1.1922894900625442669 x 108

aly = +1.0579211770920948012 x 107
al% = +891056.9812725867700
ali = —33453.12599335842544
aly = —877.4591663348057912

a§8 5 = —1.49229993389840279 x 107
a5 = +1.0826017023366581713 x 10°

all . = +3.111550184556815693 x 10°
alfg 5 = —919803.3548556051975
al . = +15083.805973493017199

a$y = 1.3538994200047574224 x 10°
aly = —2.889719712681862193 x 10°

aly = —4.805576848042135119 x 107
aly = +4.902006395972128981 x 10°
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aly = —5734.729153968339980
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aly = —2.4804841985017927423 x 10°
by = —6.327070486932058680 x 10°
alp = +767650.0821300041884
aly = +16977.498788619257365
all) = —640.17660835212588741

15

(A13)

(A14)

(A15)

(A16)

(A7)

(A18)

(A19)



a5 = —1.554500661703189789 x 10°
a5 = —2.1444618040107173195 x 10°

ag‘g5 +1.6744038651919131540 x 10°
all . = +6.582343452113525271 x 10°
s = —161073.36734648425473

as; = —1.787411730448829770 x 10'°
ab} = +5.800988660688537286 x 10°

aly’ = +4.437300025876944598 x 10°
aly’ = —1.0018051535708298980 x 10°
ali’ = +849802.7174561433836
aly’ = +95720.37725716444938
aly’ = +80.8773788384730796

a$; 5 = +3.6533784749333873098 x 10'°
aly 5 = —7.483988454959527808 x 10°

aly s = —3.967252325467843392 x 10°
al’ . = +2.0664713306648244037 x 107
s = +1.5339413832396392174 x 10
al’ . = —24593.786501542900423

aS, = —6.794231766690240157 x 100
aly = —1.4832318979201238365 x 10'°

aly = +4.853892142268538180 x 10°
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al’ = —2.3298747461553891630 x 107
aly = +439152.9597858148096
ay = +7050.010586529653912
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asy 5 = +3.417761112164835265 x 10'°

a;‘; 5 = —5.217121376529257940 x 10°
a22 5 = +7.87671342117040392 x 10°
a22 5 = +4.246280713165495896 x 10°
aly s = +17232.59503122874741

aS; = +2.0876199827245193609 x 10*
ady = —9.877379696419447709 x 10'°

aly = —2.409824624855166301 x 10°
aly = +1.8428886435419457671 x 10°
ally = —4.962255033001139702 x 107
al¥ = —1.633843349737029919 x 10°
aly = +5490.221511483946715
all = +745.56622686995885663
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(A20)

(A21)

(A22)

(A23)

(A24)

(A25)
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aSs 5 = —4.925626220427599571 x 10
aby 5 = +1.4219755003150905491 x 10!

ally . = +8.109363034798849684 x 10°
aly . = —1.4646378502431013409 x 10°
alty's = +1.098747329777871858 x 107

aly s = +245908.5910071982883
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