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SU(N) TRANSITIONS IN M-THEORY ON CALABI–YAU FOURFOLDS
AND BACKGROUND FLUXES

HANS JOCKERS, SHELDON KATZ, DAVID R. MORRISON, AND M. RONEN PLESSER

Abstract. We study M-theory on a Calabi–Yau fourfold with a smooth surface S of AN−1

singularities. The resulting three-dimensional theory has a N = 2 SU(N) gauge theory sector,
which we obtain from a twisted dimensional reduction of a seven-dimensional N = 1 SU(N)
gauge theory on the surface S. A variant of the Vafa–Witten equations governs the moduli
space of the gauge theory, which — for a trivial SU(N) principal bundle over S — admits
a Coulomb and a Higgs branch. In M-theory these two gauge theory branches arise from
a resolution and a deformation to smooth Calabi–Yau fourfolds, respectively. We find that
the deformed Calabi–Yau fourfold associated to the Higgs branch requires for consistency a
non-trivial four-form background flux in M-theory. The flat directions of the flux-induced
superpotential are in agreement with the gauge theory prediction for the moduli space of the
Higgs branch. We illustrate our findings with explicit examples that realize the Coulomb
and Higgs phase transition in Calabi–Yau fourfolds embedded in weighted projective spaces.
We generalize and enlarge this class of examples to Calabi–Yau fourfolds embedded in toric
varieties with an AN−1 singularity in codimension two.

Introduction

The construction of gauge theories via dimensional reduction on Calabi–Yau varieties with
singularities has become a powerful approach to study both supersymmetric gauge theories and
moduli spaces of Calabi–Yau varieties in the vicinity of singularities. For gauge theories with
eight supercharges — such as N = 2 theories in four spacetime dimensions or N = 1 theories
in five spacetime dimensions — the interplay between Higgs and Coulomb branches of the
gauge theory and the geometric phases of singular Calabi–Yau threefolds has led to important
insights into strongly coupled supersymmetric gauge theories and their moduli spaces [1–8].

While holomorphy strongly constrains supersymmetric theories with eight supercharges
[9–13], it is a less powerful tool for supersymmetric theories with four supercharges [14–16],
e.g., N = 1 theories in four spacetime dimensions and N = 2 theories in three spacetime
dimensions. As a consequence the analysis of the gauge theory branches becomes more chal-
lenging but also richer. (For a proposal of a transition in a system with only two supercharges
see ref. [17].)

In this work gauge theories with four supercharges are constructed from M-theory on a
Calabi–Yau fourfold. That is to say we want to make predictions regarding the relevant mod-
uli spaces of the low-energy physics governing degrees of freedom localized near a (complex)
codimension two singularity, which gives rise to a three-dimensional N = 2 gauge theory,
studied for instance in refs. [18–27]. This should be contrasted with results obtained from
codimension two singularities in type II string theories for theories with eight supercharges
studied in refs. [3, 4]. In both scenarios the essential idea is that such codimension two singu-
larities are associated to non-Abelian enhanced gauge symmetry. This is understood from the
duality between M-theory compactified on K3 to the heterotic string compactified on T 3 [28].
The charged degrees of freedom represent M2-branes wrapping the two-cycles whose volume
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vanishes in the singular limit. In the limit in which the K3 volume is large, bulk modes de-
couple from the low-energy dynamics of the seven-dimensional modes localized at the singular
locus. The resulting gauge theory is described by a non-Abelian gauge theory with sixteen su-
percharges. Compactifying further on a circle shows that IIA theory near an ADE singularity
exhibits enhanced gauge symmetry in six dimensions. Now the charged modes are associated
to wrapped D2-branes.

In a Calabi–Yau n-fold — n = 4 for the M-theory compactifications to three dimensions or
n = 3 for the IIA compactification to four dimensions — a codimension two singularity can
be thought of as a face of suitable codimension in the Kähler cone, in which some number of
divisors shrink to a (n−2)-dimensional locus S along which we find an ADE singularity. Deep in
the interior of this face, the volume of S and those of any relevant submanifolds are large, which
means we can study the low-energy dynamics by a suitably twisted dimensional reduction along
S of the gauge theory from seven (respectively six) dimensions down to three (respectively
four) dimensions. This will lead to a prediction for an N = 2 gauge theory describing the
low-energy dynamics near the singular locus. Kähler deformations away from the singularity
will describe the Coulomb branch of this theory, while its Higgs branch, when present, will
lead to a prediction for the complex structure moduli space of the related compactification on
the Calabi–Yau space obtained via an extremal transition.

Compared to gauge theories with eight supercharges from singular Calabi–Yau threefolds [3,
4], constructing theories with four supercharges from Calabi–Yau fourfolds requires additional
geometric data [26, 29, 30]. Namely, in order to entirely describe the geometrically engineered
gauge theory, it is necessary to specify the M-theory compactification on the Calabi–Yau
fourfold together with a suitable four-form background flux. That is to say, the branches
of the gauge theory are geometrically realized only if the four-form flux in the Calabi–Yau
fourfold phases are specified correctly. For Calabi–Yau fourfolds with conifold singularities
in codimension three — describing three-dimensional N = 2 Abelian gauge theories at low
energies — the role of background fluxes in the corresponding Calabi–Yau fourfold phases has
been studied in detail in ref. [26]. Here we analyze the phase structure of SU(N) gauge theories
arising from AN−1 surface singularities in a Calabi–Yau fourfold. To obtain the anticipated
branches of the three-dimensional N = 2 SU(N) gauge theory, we find that it is again essential
to determine the correct four-form fluxes in the associated Calabi–Yau fourfold phases. In this
work the focus is on SU(N) gauge theories obtained from a twisted dimensional reduction on
the surface S with a trivial prinicpal SU(N) bundle. Then the Coulomb branch of the gauge
theory arises from the resolved Calabi–Yau fourfold phase in the absence of background flux,
while the Higgs branch requires a specific non-trivial four-form flux.

In order to explicitly check the anticipated interplay between phase transitions among gauge
theory branches and their realizations as Calabi–Yau fourfolds, it is necessary to establish
geometric tools to efficiently study the extremal transitions among the relevant Calabi–Yau
geometries. The work of Mavlyutov [31, 32] provides a mathematical framework to describe
explicit examples, in which both the resolved and deformed Calabi–Yau fourfold phases are
constructed as hypersurfaces and complete intersections in toric varieties, respectively. Ana-
lyzing this large class of examples, we demonstrate the anticipated agreement with the gauge
theory predictions.

The organization of this work is as follows. In Section 1 we review the role of four-form
background fluxes for M-theory compactified on Calabi–Yau fourfolds. In Section 2 we perform
the twisted dimensional reduction of the N = 1 seven-dimensional SU(N) gauge theory on
the surface S with trivial SU(N)-principal bundle. For the resulting three-dimensional N = 2
gauge theory, we deduce the spectrum and predict the geometry of the Coulumb and Higgs
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branch moduli spaces. In Section 3 the analysis of the gauge theory of the previous section
is continued, emphasizing the M-theory compactification point of view and deducing some
general geometric properties of the resolved and deformed Calabi–Yau fourfold phases. In
Section 4 we construct two explicit examples based upon Calabi–Yau fourfold hypersurfaces
with AN−1 surface singularities in weighted projective spaces. We construct both the resolved
and the deformed Calabi–Yau fourfold phases in detail and verify the gauge theory predictions.
In Section 5 we generalize these examples to hypersufaces with AN−1 surface singularities
embedded in toric varieties. For this large class of examples, we again find agreement with the
gauge theory predictions. In Section 6 we present our conclusions.

1. M-theory and G-flux

The eleven-dimensional N = 1 gravity multiplet in the supergravity limit of M-theory con-
sists of the graviton and the anti-symmetric three-form tensor field as its bosonic degrees of
freedom. The expectation value of the field strength of the three-form tensor field is known
as the four-form flux G. On a topologically non-trivial eleven-dimensional Lorentzian mani-
fold M11 a consistently quantized four-form flux G fulfills the quantization condition [33]

(1.1)
G

2π
+
p1(M11)

4
= H4(M11,Z) ,

where p1(M11) is the first Pontryagin class of the manifold M11.
1 In this note we focus on M-

theory compactifications on a compact Calabi–Yau fourfoldX to three-dimensional Minkowski
space M1,2. Then the quantization condition reduces to2

(1.2)
G

2π
−
c2(X)

2
∈ H4(X,Z) .

As a consequence, when the second Chern class c2(X) of the Calabi–Yau fourfold X is not
divisible by 2, a consistent M-theory realization on the Calabi–Yau X requires a non-zero and
half-integral background flux G. Furthermore, due to the compactness of X the Gauss law for
the flux G demands the tadpole cancellation condition [30, 33]

(1.3) M =
χ(X)

24
−

1

2

∫

X

G

2π
∧
G

2π
,

in terms of the Euler characteristic χ(X) of the fourfold X and an integerM which enumerates
the net number of space-time filling (anti-)M2-branes. Note that the quantization condition
(1.2) ensures that the right hand side of the tadpole condition is always integral [33]. In
particular, a Calabi–Yau fourfold with an even second Chern class c2(X) admits an M-theory
background with vanishing four-form flux G, because the evenness of c2(X) geometrically
implies that the Euler characteristic χ(X) of such a Calabi–Yau fourfold X is divisible by 24,
c.f., ref. [33].

In this note we analyze the phase structure of M-theory arising from extremal transitions of
Calabi–Yau fourfolds along AN−1 surface singularities. That is, we consider a singular Calabi–
Yau fourfold X0 with an AN−1 singularity along a smooth surface S, and we assume that
X0 admits a geometric transition to both a deformed Calabi–Yau fourfold X♭ and a resolved
Calabi–Yau fourfold X♯.

1For ease of notation we use the letter G for both the four-form flux and its cohomological representative.
2For complex manifolds X the first Pontryagin class is given by p1(X) = −c2(TX ⊗ C) in terms of the

complexified tangent bundle TX ⊗C = T 1,0X ⊕ T 1,0X so that p1(X) = c1(X)2 − 2c2(X) (with c1(X) = 0 for
Calabi–Yau fourfolds X).
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In the context of M-theory compactifications extremal transitions among Calabi–Yau four-
folds are not automatically in accord with both the tadpole and the quantization condition [26].
Thus for a M-theory transition between X♭ and X♯ we must specify the number of space-time
filling M2-branesM ♯ andM ♭ and the background four-form fluxes G♯ and G♭ in the respective
Calabi–Yau fourfold phases. As in ref. [26], we consider phase transitions with a constant
number of space-time filling M2-branes, i.e.,

(1.4) M ♯ = M ♭ ,

which we assume are located far from the transition. With this assumption the physics of
the transition is governed by the degrees of freedom arising in the vicinity of the surface
singularity of the Calabi–Yau fourfold X0, and the tadpole cancellation condition yields the
transition condition

(1.5)
χ(X♭)

24
−
χ(X♯)

24
=

1

2

∫

X♭

G♭

2π
∧
G♭

2π
−

1

2

∫

X♯

G♯

2π
∧
G♯

2π
,

where the left-hand side is solely determined by the topological change between between the
transition fourfolds X♭ and X♯.

Choosing the right-hand side of (1.5) — combined with the quantization condition (1.2)
— ensures that a M-theory phase transition is in accord with known anomaly cancellation
conditions. It, however, does not guarantee that a transition can actually occurs dynamically.
As the M-theory background fluxes generate a flux-induced superpotentialW and/or a twisted

superpotentials W̃

(1.6) W =

∫

X

Ω ∧
G

2π
, W̃ =

∫

X

J ∧ J ∧
G

2π
,

an unobstructed extremal transition in M-theory is only realized along a flat direction of the
flux-induced scalar potential V , which is a function of these flux-induced superpotentials. Here
Ω is the holomorphic four form and J is the Kähler form of the Calabi–Yau fourfold X .

A simple solution for a dynamical M-theory transition is realized by a vanishing flux G♯ and
a non-vanishing primitive flux G♭, i.e.,

(1.7) G♭ 6= 0 with G♭ ∧ J = 0 , G♯ = 0 ,

provided that the quantization condition (1.2) for both X♯ and X♭ as well as the tadpole
relation (1.5) are met. This solution is of particular importance to us, as it geometrically
realizes the Coulomb–Higgs gauge theory transitions that we focus on in this work. On the
one hand — due to G♯ = 0 — none of the geometric M-theory moduli are obstructed in the
resolved Calabi–Yau fourfold X♯. On the other hand, there is a flux-induced superpotential

(1.8) W ♭ =

∫

X♭

Ω ∧
G♭

2π
,

which generates a potential for some of the complex structure moduli fields in the deformed
Calabi–Yau fourfold X♭. At low energies the massive modes of the obstructed complex
structure moduli are integrated out and a flux-restricted complex structure moduli space
M♭

cs(G
♭) ⊂ M♭

cs remains. Geometrically, we can think of the unobstructed complex structure
moduli as those complex structure deformation, under which the flux G♭ remains of Hodge
type (2, 2), whereas the Hodge structure of G♭ varies with respect to the obstructed complex
structure moduli. Therefore, it is the flux-restricted moduli space M♭

cs(G
♭) that yields the flat

directions of the superpotential W ♭ and should thus be compared to the moduli space in the
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effective gauge theory description at low energies. Note that the Kähler moduli of the Calabi–
Yau fourfold X♭ nevertheless remain unobstructed because by the primitivity assumption of
the flux G♭ no twisted superptoential is generated.

2. Field theory analysis

In this section we discuss the predictions one obtains regarding the relevant moduli spaces
from our understanding of the low-energy physics governing degrees of freedom localized near
a (complex) codimension two singularity in M-theory. We start with a brief review of the
results of refs. [3, 4] on codimension two singularities in type II string theory, and proceed to
contrast this with the situation in M-theory.

2.1. Type IIA string theory on a Calabi–Yau threefold. The moduli space of type II
compactifications on X♯ is identified with the moduli space of Calabi–Yau metrics and closed
antisymmetric tensor fields on X♯. Following ref. [3] we discuss the IIA string in the vicinity
of a face of the Kähler cone at which divisors are contracted to a smooth curve C of AN−1

singularities of genus g; the superconformal field theory will be singular for suitably tuned
B-field.

The transverse AN−1 singularity is resolved by blowing up along C. The vanishing cycles
are described by a chain of N − 1 two-spheres Γi in this space, with their intersection matrix
corresponding to the Dynkin diagram of AN−1. As we move about C these spheres sweep out
N−1 divisors Ei on M . In homology there are then (N−1) shrinking two-cycles Γi, and N−1
shrinking four-cycles Ei. The light soliton states are given by D2-branes wrapping chains of
the form Γi ∪ Γi+1 ∪ · · · ∪ Γj (with both orientations) and under the Ramond–Ramond gauge
symmetry associated to Ei their charges fill out the roots of AN−1.

In the limit in which C is large (deep in the associated face) we can approximately think
of the low-energy theory as a twisted compactification on C of the six-dimensional theory
obtained by including the massless solitons.

In flat space the six-dimensional theory contains a vector VM , two complex scalars φ, and
two fermions, all in the adjoint representation of SU(N). The charged components are the
soliton states; the neutral components are supplied by the moduli of the ALE space. The
fields transform under a global SU(2)× SU(2) R-symmetry. The compactification breaks the
local Lorentz group as SO(6) → SO(4) × U(1) ∼ SU(2) × SU(2) × U(1), and the requisite
spin was determined in ref. [3] to be the identification of

J ′ = JL − J
(1)
3 − J

(2)
3 ,(2.1)

as the generator of rotations in tangent space TC, where JL is the “standard” Lorentz gen-
erator, and the other two correspond to the Cartan elements of the SU(2) factors. In four
dimensions this leads to a theory with N = 2 supersymmetry, SU(N) gauge symmetry, and
g massless hypermultiplets in the adjoint representation of the gauge group. For g > 1 the
theory is IR free and a classical description is reliable in the vicinity of the singular locus; for
a discussion of the special cases g ≤ 1, c.f., ref. [3].

The local structure of the moduli space near the singularity is modeled — deep in the cone
— by the structure of the space of vacua of this gauge theory, which leads to the following
predictions:
Kähler deformations away from the singular locus (and the associated B-fields) parameterize
the Coulomb branch of the theory, along which the scalar φ in the vector multiplet acquires an
expectation value, constrained by the potential to be diagonalizable by a gauge transformation.
The eigenvalues of φ, subject to the tracelessness condition, form coordinates on a SN cover of
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the Coulomb branch, on which the Weyl groupW(SU(N)) ≃ SN acts via theN−1 dimensional
representation. At generic points — corresponding to smooth X♯ — the unbroken gauge
symmetry is U(1)N−1, and the massless matter comprises g(N − 1) neutral hypermultiplets.
The Weyl group acts on these as well via g copies of the same representation, so locally the
moduli space of X♯ is a quotient of a product of special Kähler manifolds.

In addition, the gauge theory has a Higgs branch in which the hypermultiplets acquire
nonzero expectation values. In terms of the compactification on X♯ this is the condensation
of solitonic states [2]. This describes the deformations of X♭ smoothing the singularity. At
generic points on this branch the gauge group is completely broken and the (quaternionic)
dimension of the Higgs branch is

dimHH = (g − 1)(N2 − 1) .(2.2)

The Hodge numbers of the two spaces are thus related by

h1,1(X♭) = h1,1(X♯)− (N − 1) , h2,1(X♭) = h2,1(X♯) + (g − 1)(N2 − 1)− g(N − 1) ,(2.3)

where g(N − 1) is substracted in the last line of (2.3) since these moduli already appear on
the Coulomb branch, as we recall below.

We can somewhat refine this prediction. There are special submanifolds on the Coulomb
branch (meeting at the origin) along which non-Abelian subgroups of SU(N) are unbroken.
These correspond exactly to fixed point sets of the SN action, where eigenvalues of φ coincide.
In general an unbroken symmetry

SU(k1)× · · · × SU(kp)× U(1)p−1(2.4)

where
∑
ki = N, ki ≥ 1 (and factors of SU(1) are simply to be ignored) will occur in codimen-

sion N − p, and there will be g massless hypermultiplets in the adjoint representation of the
unbroken group. We can allow these to acquire expectation values, breaking the non-Abelian
part completely and leading to a mixed branch H(k1,...,kp) with the Higgs component having
dimension

dimHH(k1,...,kp) = (g − 1)

p∑

i=1

(k2i − 1) + g(p− 1) .(2.5)

We can also see the transition to the Higgs branch along a different path which will prove
more transparent in the geometrical analysis. At a generic point on the Coulomb branch, we
can turn on expectation values for the g(N − 1) neutral hypermultiplet scalars.3 Then, as we
tune φ to zero, the non-Abelian symmetry is not restored, and the gauge symmetry remains
U(1)N−1. The theory is still IR free and we can use classical analysis. The hypermultiplet
expectation values lead to masses for the off-diagonal components of rank N(N − 1). Thus
there are at the singular point an additional (g−1)N(N − 1) charged hypermultiplets with
the U(1) charges of g − 1 adjoints. When these acquire generic expectation values the gauge
symmetry is Higgsed leading back to the Higgs branch dimension in eq. (2.2). In other words,
we can rewrite the second equation in (2.3) as

(2.6) h2,1(X♭) = h2,1(X♯) + (g − 1)(N2 −N)− (N − 1) ,

understanding the additional moduli as arising from Higgsing the U(1)N−1 under which the
(g−1)N(N − 1) hypermultiplets are charged.

3These are the moduli that we alluded to immediately after eq. (2.3).
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2.2. M-theory on a Calabi–Yau fourfold. The discrete choices determining a compactifi-
cation of M-theory to three dimensions include, as discussed above, a choice of a topological
type for the Calabi–Yau fourfold X as well as a choice of the four-form flux G and the number
M of M2-branes, satisfying the conditions (1.3) and (1.2). Given such a choice, the moduli
space is determined by the subspace of the space of Calabi–Yau metrics on X for which the
chosen four-form flux G is of Hodge type (2, 2) as well as primitive. There are additional
moduli associated to periods of the three-form A3 — i.e., h2,1(X) of these — as well as to the
positions of the M2-branes.

As above we wish to consider a face of the Kähler cone of a Calabi–Yau fourfold X♯ at which
a divisor contracts to a smooth surface S of transverse AN−1 singularities. As above, this is
resolved by blowing up N − 1 times along S producing N − 1 exceptional divisors Ei and the
vanishing cycles are the Ei as well as N − 1 two-cycles Γi. We will assume here that we can
make a choice of flux on X♯ such that generic points in the vicinity of this face correspond
to Kähler classes for which the flux is primitive. This means that there are M-theory vacua
associated to a smooth X♯ in which the singularities have been resolved. This implies that the
flux, if nonzero, is primitive for smooth X♯, meaning that — if J i are the (1,1) cohomology
classes dual to Ei — then G♯ ∧ J i = 0 for all i. In the cases we consider here this very
restrictive condition will be met by setting G♯ = 0. Further, we assume that the positions of
the M2-branes are all far from the contracting divisors, so that the worldvolume degrees of
freedom decouple from the low-energy theory of the modes at the singularity.

In this situation, we can perform a calculation of the low-energy theory in the vicinity of the
singular locus along similar lines to those followed above. In a suitable region (near a point
deep in the face of the Kähler cone) bulk modes decuple from the dynamics near the singular
locus and the low-energy dynamics is given by a N = 1 seven-dimensional supersymmetric
Yang–Mills theory on M1,2 × R4, in which the charged modes are excitations of membranes
wrapping vanishing cycles and the neutral modes describe the moduli. We then want to
perform a suitably twisted dimensional reduction of this seven-dimensional theory, in which
we replace R4 by a compact Kähler manifold S, such that we obtain an N = 2 theory in three
dimensions.

The seven-dimensional supersymmetric Yang-Mills theory is obtained by dimensional reduc-
tion from ten dimensions and is given in ref. [34]. It has a global SU(2)R R-symmetry, and
the fields are a gauge field AM , a triplet Si of scalars, and a doublet Ψα of gaugini satisfying
the symplectic Majorana condition

(2.7) Ψα = ǫαβBΨβ∗ ,

where the complex conjugation matrix B satisfies

(2.8) B−1ΓMB = ΓM ∗ BB∗ = −id .

All the fields transform in the adjoint representation of the gauge group.
As noted above, the charged fields correspond to excitations of M2-branes wrapping the

collapsing cycles, while the Cartan elements are associated to moduli of the compactification
on X♯. The gauge field A is associated to periods of the three-form field A3 along the vanishing
cycles; the scalars Si are moduli of the metric resolving the singularity.

The supersymmetry variations are parameterized by a symplectic Majorana spinor doublet ǫI
and the relevant one for us is [34]

(2.9) δΨα = −
1

4
FMNΓ

MNǫα +
i

2
ΓMDM

(
Siσ

i
)
α
βǫβ +

1

4
ǫijk[Si, Sj](σk)α

βǫβ .
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2.2.1. Twisted dimensional reduction. When we dimensionally reduce, the Lorentz group is
reduced SO(1, 6)× SU(2)R → SO(1, 2)× SO(4)× SU(2)R with the SO(4) eventually broken
by the curvature of S. The representations in which the fields transform reduce as

A : (7, 1) → (3, 1, 1)⊕ (1, 4v, 1) ,

S : (1, 3) → (1, 1, 3) ,(2.10)

Ψ : (8, 2) → (2, 4s, 2) .

Since S is Kähler, the structure group is in fact U(2) ∼ SU(2)L × U(1)I , under which

4v → 21 ⊕ 2−1 , 4s → 20 ⊕ 11 ⊕ 1−1 .(2.11)

In a twisted reduction, we will replace U(1)I generated by JI with U(1)′ generated by the
linear combination J ′ = JI +2J3

R. The curvature of S will then couple to the twisted U(2) and
the unbroken global symmetry will be U(1)R generated by 2J3

I . Under SO(1, 2)× SU(2)L ×
U(1)′ × U(1)R we have the decompositions

(7, 1) → (3, 1)0,0 ⊕ (1, 2)1,1 ⊕ (1, 2)−1,−1 ,

(1, 3) → (1, 1)2,2 ⊕ (1, 1)−2,−2 ⊕ (1, 1)0,0 ,(2.12)

(8, 2) → (2, 2)1,1 ⊕ (2, 2)−1,−1 ⊕ (2, 1)2,1 ⊕ (2, 1)0,−1 ⊕ (2, 1)0,1 ⊕ (2, 1)−2,−1 .

We identify the corresponding modes of the fields by their transformation under SU(2)L×U(1)′

as

AM → Aµ, Am, Am , Si → q, q , Ψ → ψm, ψm, χ, λ−, λ+, χ .(2.13)

Our model for the local moduli space will be the space of supersymmetric vacua of this
theory. Following ref. [35], we will construct this by evaluating the supersymmetry variation
of Ψ+ under the two unbroken supersymmetries. Setting this to zero yields a slight modification
of the Vafa–Witten equations [36]

(2.14)
F (2,0) = 0 , J ∧ F (1,1) + [q, q] = 0 , [q,Φ] = 0 ,

DΦ = DΦ = 0 , Dq = 0 ;

setting the variation of Ψ− to zero yields the complex conjugate equations by the symplectic
Majorana condition.

2.2.2. Predictions for the moduli space. Solutions to these equations provide our predictions
for the local structure of the moduli space. Clearly the space of solutions breaks up into disjoint
components labeled by the Chern classes of the flux F . In the situation we are describing,
in which the generic point in the space of compactifications on X♯ near the singular locus
is smooth, the bundle we obtain will be flat. The charged components of the curvature are
certainly zero away from the singular locus since they are carried by wrapped branes which
become massive; the neutral components can be described as the integrals of G♯ over the fibers
Γi, which we are assuming vanish.

Three dimensional N = 2 gauge theories contain additional discrete parameters, super-
symmetric Chern–Simons couplings for the gauge fields. In general, the effective gauge theory
describing the low-energy physics near a singularity will have nonzero Chern–Simons couplings
and these can have different values between the Coulomb and Higgs vacua [26]. In the cases we
discuss here, these couplings vanish on the Coulomb branch and the fact that all of the chiral
multiplets are in real representations means this will also be the case on the Higgs branch.

Linearizing about a trivial SU(N) principal bundle, the modes of (Aµ, λ±,Φ) form vector
multiplets with masses associated to eigenvalues of the Laplacian on S. The modes of (Am, ψm)
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form chiral multiplets with masses associated to eigenvalues of the Laplacian on (0, 1)-forms
on S. The modes of (q, χ) form chiral multiplets with masses associated to eigenvalues of the
Laplacian on (2, 0)-forms on S. The massless modes will thus be h0(S) = 1 vector multiplet
and h0,1(S)+h2,0(S) chiral multiplets, all in the adjoint representation of the gauge group. For
the multiplicities of the chiral multiplets, we will also use the irregularity q and the geometric
genus pg, which are respectively the conventional birational invariants for the dimensions
h1,0(S) = h0,1(S) and h2,0(S) = h0(KS) of the algebraic surface S.

We can then write the low-lying excitations in terms of a basis ei for H
0,1(S), a basis EA

for H0(KS) and the dual basis EB for H0(KS), i.e.,

(2.15) Φ = φ , Am =
∑

i

aiei , q =
∑

A

q
AEA , q =

∑

B

qBE
B
,

with the three-dimensional fields, φ, ai, qA, q
B, taking values in the Lie algebra and φ is real.

In terms of these the conditions for unbroken supersymmetry reduce to

(2.16)

[ai, φ] = 0 ,
∑

j,A

CijA[a
j , qA] = 0 , [qA, φ] = 0 ,

[qB, φ] = 0 ,
∑

A

[qA, qA] = 0 ,

where

CijA =

∫

S

ei ∧ ej ∧ E.(2.17)

The superpotential that leads to these equations has the form

W =
∑

i,j,A

CijATr
(
[ai, aj ]qA

)
.(2.18)

In the following we restrict our analysis to surfaces S with q = 0 and pg ≥ 1. As we will
see in the following, this assumption ensures that there are no non-perturbative corrections to
the Coulomb branch of the gauge theory.

The model then has a Coulomb branch along which the real scalar φ acquires an expectation
value. By a gauge transformation this can be taken to lie in the Cartan algebra. As in the
previous subsection we can use the first N − 1 eigenvalues as coordinates, and the Weyl
group W(SU(N)) ≃ SN acts on these. At generic points the gauge symmetry is U(1)N−1. In
fact [27] the Coulomb branch is complex Kähler. The periods of the dual six-form A6 along
Ei are neutral scalars dual to the neutral gauge bosons, and they combine with φi to form
holomorphic coordinates. At a generic point the massless modes of qA are those commuting
with φ so we have pg(N −1) neutral massless chiral mutiplets. Again, the Weyl group SN acts
on these and the moduli space is a quotient.

There is another branch of the moduli space, along which q
A acquires a nonzero expectation

value, completely breaking the gauge group and accordingly φ becomes massive. The last
equation of eqs. (2.14) is the moment map for the adjoint action of the gauge group leading
as usual to a Higgs branch of complex dimension

dimC H = (pg − 1)(N2 − 1) .(2.19)

This (Higgs) branch is interpreted as a local model for the moduli space of the compactification
on X♭, but we will in general find nonzero flux. Thus (2.19) does not lead directly to a
prediction for the deformation space of the moduli of X♭.
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As above, we have the more refined picture of the way these branches intersect at singular
loci. At the codimension N − p locus in the Coulomb branch along which the unbroken
gauge group is given by eq. (2.4) we will have pg massless chiral multiplets in the adjoint
representation. Turning on generic expectation values for q

A breaks the non-Abelian part
completely and leads to a mixed branch H(k1,...,kp) with the Higgs component having dimension

dimC H(k1,...,kp) = (pg − 1)

p∑

i=1

(k2i − 1) + pg(p− 1) .(2.20)

As in the previous subsection, there is another path in moduli space implementing the
transition from the Coulomb branch to the Higgs branch. At a generic point on the Coulomb
branch we can turn on expectation values for the pg(N − 1) neutral chiral fields. Then, as we
tune φ to zero the gauge symmetry remains U(1)N−1. The D-term condition — implementing
the third equation of eqs. (2.14) — then leads to a mass term for the charged chiral fields
leaving (pg − 1)N(N − 1) charged fields with the charges of pg − 1 adjoints, leading as was
found in ref. [26] to a Higgs branch along which the gauge symmetry is completely broken and
whose dimension agrees with our calculation above.

2.2.3. Quantum corrections and region of validity. Our discussion above has been entirely
classical, and we need to address the degree to which quantum corrections might invalidate our
conclusions. We are using the effective three dimensional field theory to make predictions about
the moduli space of M-theory compactifications, and relating this to the moduli space of Kähler
and complex structure deformations of the Calabi–Yau fourfolds X♯ and X♭, respectively. We
thus need to check separately the degree to which our description of the space of vacua is
subject to corrections from non-trivial low-energy dynamics in the three-dimensional gauge
theory, and the degree to which the geometric moduli space agrees with the space of M-theory
compactifications. In the examples of Section 2.1 the four dimensional gauge theory was (for
g > 1) IR free and semiclassical considerations provided an accurate description of the moduli
space near the origin. The Coulomb branch suffered no string corrections, and α′ corrections to
the metric were computable using mirror symmetry or by taking advantage of special geometry
to relate them to the holomorphic prepotential; the relevant parts of this, deep in the singular
cone, were explicitly computed in ref. [3]. On the Higgs branch, α′ corrections were absent
and non-perturbative string effects were suppressed deep in the cone.

In the case at hand, the first new phenomenon is that the encountered three-dimensional
gauge theories are strongly coupled at low energy. The low-energy dynamics of N = 2 gauge
theories in three dimensions has been studied, for example in refs. [18–27]. At the origin, we
find non-trivial interacting superconformal field theories for pg > 1. For pg = 1 the low-energy
supersymmetry is enhanced to N = 4. The metric on the Coulomb branch is subject to both
perturbative and non-perturbative corrections. For pg ≥ 1 the singularity at the origin of
the Coulomb branch is unchanged by these, and the Higgs branch has the predicted singular
structure [20].

The moduli space of M-theory compactifications onX is the space of Calabi–Yau metrics and
A3 periods subject to the conditions imposed by G-flux. The metric is subject to corrections
but the superpotential is corrected only by five-brane instantons [37]. Deep in the cone we
expect the contributions of these to be suppressed, with the exception of the contributions of
five-branes wrapping the vanishing divisors Ei in the case of the Calabi–Yau fourfoldX♯. In the
absence of background flux G♯, these can contribute to the superpotential only if χ(Ei,OEi

) =
1. But in the case at hand, the divisors Ei are P1-fibrations over the surface S, and therefore
we find χ(Ei,OEi

) = pg − q + 1. In the cases studied here, where q = 0 and pg > 0, these
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instantons cannot contribute to the superpotential. Therefore, the classical description of the
moduli space remains valid. The absence of a non-perturbative superpotential can be taken
as another confirmed prediction of our identification of the gauge theory at the singularity.4

3. General features of SU(N) models

In this section we describe some general geometric properties of the SU(N) gauge theories
studied in the previous section. In particular, we establish how M-theory compactified on
Calabi–Yau fourfolds realizes the phase structure of the SU(N) gauge theory.

3.1. Gauge theories from surface singularities in Calabi–Yau fourfolds. To realize
geometrically the twisted dimensional reduction along the surface S, let us consider a Calabi–
Yau fourfold X0 with a smooth surface S of AN−1 singularities. We assume for simplicity of
exposition that a tubular neighborhood of the surface S in X0 is given by the hypersurface
equation

(3.1) xy = zN ,

in the total space of the bundle L1 ⊕ L2 ⊕ KS with x, y and z sections of the bundles L1,
L2 and the canonical line bundle KS, respectively. We further assume that the canonical line
bundle KS is sufficiently ample.

M-theory compactified on the singular Calabi–Yau fourfold X0 yields the twisted dimen-
sional reduction along S studied in Section 2.2.1. That is to say that the eleven-dimensional
supercharge Q11 dimensionally reduces on the surface S to the seven-dimensional supercharge
Q7, which — due to the origin of S as a subvariety in the ambient space X0 with trivial canon-
ical class — becomes a section of the canonical spinc bundle Sc

S. This canonical spin
c bundle

arises from a spinc structure on S associated to a spin structure on TS ⊕ KS. Therefore —
assuming first that the surface S has a spin structure — the twisted dimensional reduction

along S amounts to tensoring the spin bundle SS of the surface S with K
1/2
S , namely

(3.2) SS

⊗K
1/2
S−−−−→

twist
SS ⊗K

1/2
S = Sc

S .

But even if the surface S is not spin — i.e., both the spin bundle SS and the square root

of K
1/2
S are simultaneously ill-defined — we can still formally perform the twist by tensoring

with K
1/2
S , because there exists always a canonical spinc structure on S such that the resulting

spinc bundle Sc
S is well-defined.5

Since the twist acts on the supercharges, which generate the resulting spectrum of three-

dimensional N = 2 supermultiplets, tensoring with K
1/2
S realizes the twist of JI as in Sec-

tion 2.2.1. This yields geometrically the previously determined three-dimensional N = 2
supersymmetric Yang–Mills spectrum of a single vector multiplet and pg + q chiral matter
multiplets in the adjoint representation of SU(N).

4See ref. [21], for a calculation of the non-perturbative superpotential in a situation where it is nonzero.
5A non-vanishing second Stiefel–Whitney class w2(S) ∈ H2(S,Z2) is the obstruction to the existence of a

spin structure on S. As w2(S) = w2(KS), it is also the obstruction to the existence of a square root of the
canonical line bundle. Therefore, we have w2(TS ⊕KS) = w2(S) + w2(KS) = 0, which implies the existence
of a canonical spinc structure on S.
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3.2. The change in topology for the Coulomb–Higgs phase transition. In the M-
theory compactification the Coulomb branch of the gauge theory realizes a crepant resolution
of the singular Calabi–Yau fourfold X0 to the resolved Calabi–Yau fourfold X♯. This amounts
to replacing the AN−1 surface singularity along S in X0 by a chain of N P1-bundles over S.

The Higgs branch of the gauge theory describes deformations of the singular Calabi–Yau
fourfoldX0 to the Calabi–Yau fourfoldX♭, locally given by the deformed hypersurface equation

(3.3) xy = zN +
N∑

j=0

ωN−jz
j .

Here ωj are sections of the pluri-canonical line bundles jKS.
To determine the change in Euler characteristic for the transition, we compare the smooth

Calabi–Yau fourfold X♯ to the smooth Calabi–Yau fourfold X♭. Let us specialize to the
fourfold X♭ arising from ωj = 0 for j < N but with a generic section ωN of N KS, such
that the equation (3.3) becomes xy = zN + ωN . Then the AN−1 surface singularity in X♭ is
replaced by a bundle of a bouquet S2 ∨ . . .∨S2 of N − 1 two-spheres collapsing over the curve
C ⊂ S, where C is the vanishing locus of ωN . We assume that for the generic choice of ωN

the curve C is smooth.6 Thus, as both smooth Calabi–Yau fourfold phases X♯ and X♭ arise
from topological fibrations of a bouquet of N − 1 two-spheres over S \ C, the change in Euler
characteristic between X♯ and X♭ is determined by the difference in Euler characteristic of
the fibrations along the curve C. The Euler characteristic of the bouquet of N two-spheres
fibered over C in X♯ becomes N · χ(C) and compares to the Euler characteristic 1 · χ(C) of the
collapsed fibers over C in X♭, so that

(3.4) χ(X♯)− χ(X♭) = (N − 1)χ(C) .

The Euler characteristic χ(C) in turn is minus the degree of the canonical bundleKC of C, which
by the adjunction formula is computed to be KC = (N + 1)KS|C. Therefore, the canonical
bundle KC has degree (N + 1)N K2

S, and we arrive with eq. (3.4) at

(3.5) χ(X♭)− χ(X♯) = N(N − 1)(N + 1)K2
S .

This argument generalizes from the AN−1 case to Calabi–Yau fourfolds X0 with a smooth
surface S of ADE singularities. Then the curve C ⊂ S becomes the vanishing locus of a
section of the line bundle hGKS in terms of the dual Coxeter number hG of the ADE group
G, and we obtain

(3.6) χ(X♭)− χ(X♯) = rGhG(hG + 1)K2
S ,

where rG is the rank of the group G.

3.3. The gauge theory and geometric moduli space. Before we study explicit examples
in the next section, we make some further general remarks about the relationship between the
gauge theory and the geometric moduli spaces.

In the Coulomb branch of the gauge theory the adjoint-valued scalar field φ of the vector
multiplet acquires an expectation value in the Cartan subalgebra

(3.7) 〈φ〉 = Diag (φ1, . . . , φN) , φ1 + . . .+ φN = 0 ,

which generically breaks the gauge group SU(N) to its maximal Abelian subgroup U(1)N−1.
The Weyl groupW(SU(N)) ≃ SN of SU(N) permutes the expectation values φj , j = 1, . . . , N .
Hence, we can view the expectation values φj as coordinates on the SN -covering space of the

6If the generic curve C is not smooth, additional massless matter fields are present in the gauge theory
spectrum.
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N − 1-dimensional moduli space of the Coulomb branch. To describe the Coulomb moduli
space itself — and not its N !-fold cover — we pick in the Weyl orbit of diagonal expectation
values (3.7) a representative obeying

(3.8) φ1 ≥ φ2 ≥ . . . ≥ φN .

In the Calabi–Yau fourfold X♯ the non-negative differences J j = φj − φj+1, j = 1, . . . , N − 1,
become Kähler coordinates for the N−1 exceptional divisors in the chain of N−1 P1 fibrations
over the surface S. If any two expectation values in 〈φ〉 coincide, the representative (3.8) of
the Weyl orbit ceases to be unique and the gauge group is not entirely broken to the maximal
Abelian subgroup. Geometrically, some of the Kähler moduli J j vanish, and hence we are on
the boundary of the Kähler cone. This means that the AN−1 surface singularity is not entirely
resolved in the Calabi–Yau fourfold X0, which geometrically reflects that the gauge group is
only partially broken to a group properly containing its maximal Abelian subgroup.

In the Higgs branch of the gauge theory it is the adjoint-valued matter fields q that acquire
an expectation value. The expectation values of the matter fields q are adjoint-valued sections
of H0(S,KS) and deform the ADE surface singularity (3.1). The deformations are governed
by invariant theory of the SU(N) gauge group and take the form

(3.9) xy = det (z · IN +M) .

HereM is a traceless N×N matrix whose entries are sections of the canonical line bundle KS.
The deformed hypersurface equation (3.9) is manifestly Weyl invariant, as the Weyl group SN

acts on q by conjugation with permutation matrices

(3.10) σ ∈ SN : q 7→ P †
σqPσ .

We observe that — in agreement with the gauge theory prediction for the Higgs branch in
Section 2.2.2 — the invariant deformations (3.9) parametrize a (N2− 1) · (pg − 1)-dimensional
subspace in the space of all hypersurface deformation (3.3). In the M-theory compactifica-
tion on the Calabi–Yau fourfold X♭, the gauge invariant deformations (3.9) become the flat
directions of the superpotential (1.8) arising from a suitable four-form flux G♭. The flux G♭ is
required to be primitive, to fulfill the quantization condition (1.2), and to accommodate for
the tadpole cancellation condition (1.5), which implies together with eq. (3.5) that

(3.11)
1

2

∫

X♭

G♭

2π
∧
G♭

2π
=

1

24
N(N − 1)(N + 1)K2

S .

We now claim that in the neighborhood where the Calabi–Yau fourfold X♭ is described in
terms of the hypersurface equation (3.9) the flux G♭ is locally given by

(3.12)
G♭

2π
=

N − 1

2
R − T .

Here R is the two-dimensional algebraic cycle arising from the intersection

(3.13) R : x = z = 0 ,

while T is the two-dimensional algebraic cycle given by

(3.14) T : x = 0 , rankS ≤ N − 2 ,

in terms of the N × (N −1) submatrix S of the N ×N matrix z · IN +M obtained by deleting
the last column. Note that the construction of the submatrix S is not gauge invariant, as gauge
transformations act upon the matrix z · In +M by conjugation. As a matter of fact there is
a whole Weyl orbit of algebraic cycles R obtained form conjugation by permutation matrices
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according to eq. (3.10), which give rise to equivalent flux-restricted moduli space M♭
cs(G

♭) in
agreement with the Higgs branch moduli space (2.19).

The detailed local analysis of Calabi–Yau fourfolds with AN−1 singularities in codimension
two together with the structure of local background fluxes is presented elsewhere [38]. Here
we justify our proposal in the context of extremal transitions in global Calabi–Yau fourfolds.
Namely, for a rather large class of toric example to be studied in the next two sections, we
explicitly spell out a consistent background flux G♭, which in the vicinity of the deformed
AN−1 surface singularity agrees with our local proposal (3.12) for the four-form flux G♭.

We observe that the Weyl group W(SU(N)) ≃ SN acts on the matrix M according to
eq. (3.10), and hence induces a non-trivial action on the submatrix S of the flux component
T , generating the Weyl orbit of fluxes G♭. While non-trivially acting on the flux G♭, the
Weyl group SN does not change any complex structure moduli because det (z · IN +M) re-
mains invariant with respect to conjugation by permutation matrices. Therefore, the Weyl
group action realizes a monodromy in the M-theory moduli space, which is fibered over the
complex structure moduli space of X♭. Nevertheless, the restricted complex structure moduli
space M♭

cs(G
♭) — identified with the Higgs branch of the gauge theory — remains invariant

under the monodromy action upon the flux G♭. It is rather surprising that we find a rem-
nant of the Weyl group in the M-theory moduli space of the Calabi–Yau phase associated to
the gauge theory Higgs branch. It would interesting to further study the implications of this
observation. We will give an explicit example of this phenomenon in Section 4.1.

4. Examples in weighted projective spaces

In this section we provide two examples of hypersurfaces in weighted projective space to
help fix ideas in a global setting: an SU(2) example, and an SU(6) example.

4.1. Calabi–Yau fourfolds from P(1,1,2,2,2,2). We consider a generic weighted hypersurface
X0 of weight 10 in P(1,1,2,2,2,2) defined by a weight 10 polynomial f10(x1, . . . , x6), its desingu-
larization X♯, and its smoothing X♭.

4.1.1. Geometric data. Since P(1,1,2,2,2,2) is the quotient of P5 by the Z2-action given by mul-
tiplication of the coordinates (x1, . . . , x6) by (−1,−1, 1, 1, 1, 1), the codimension two locus Y
defined by x1 = x2 = 0 has a transverse A1 singularity. Then Y ≃ P3, with (x3, x4, x5, x6)
serving as homogeneous coordinates. We can resolve the singularity of P(1,1,2,2,2,2) by blowing
up Y to get a smooth variety P̃. Then the proper transform X♯ of X0 in P̃ is smooth.

Furthermore, X0 is singular along S = X0 ∩ Y , which has equation f10(0, 0, x3, x4, x5, x6)
in the homogeneous coordinates of Y ≃ P3. Since x3, . . . , x6 each have weight 2, then the
weighted polynomial f = f10(0, 0, x3, x4, x5, x6) has degree 5 as an ordinary polynomial, and
we have identified S as a quintic hypersurface in P3, i.e. a quintic surface. By the Lefschetz
hyperplane theorem, we have q = h1,0(S) = 0.

By the adjunction formula, we have

(4.1) KS = OS(−4 + 5) = OS(1) .

The number of adjoint chiral multiplets is then pg = h0(KS) = h0(OS(1)). We compute this
space of sections using the exact sequence

(4.2) 0 → OP3(−4)
α

−−→ OP3(1)
r

−→ OS(1) → 0 ,
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where α is multiplication by f and r is restriction to S. Taking cohomology of (4.2) and using
H0(OP3(−4)) = H1(OP3(−4)) = 0, we get

(4.3) pg = h0(OS(1)) = h0(OP3(1)) = 4 .

Thus we have 4 adjoint chiral multiplets in our SU(2) gauge theory.

To describe X♭, we first embed P(1,1,2,2,2,2) as a singular quadric hypersurface in P6 by

(4.4) P
(1,1,2,2,2,2) → P

6 , (x1, . . . , x6) 7→ (x21, x
2
2, x1x2, x3, x4, x5, x6) .

Letting (y0, . . . , y6) be homogeneous coordinates on P6, we see that (4.4) embeds P(1,1,2,2,2,2)

isomorphically onto the singular quadric hypersurface with equation q0(y) = y0y1 − y22 = 0.
Furthermore, after the substitution y0 = x21, y1 = x22, y2 = x1x2, and yi = xi for 3 ≤ i ≤ 6
described by (4.4), we can find a homogenous degree five polynomial g(y) with g(y) = f10(x),
and g(y) is unique up to multiples of q0(y). We conclude that X0 is isomorphic to the complete
intersection of q0(y) and g(y), a (singular) complete intersection Calabi–Yau fourfold P6[2, 5].

This description makes it clear how to smooth X0 to obtain X♭: simply smooth the singular
quadric q0(y) to a quadric q♭(y) to obtain a more general complete intersection Calabi–Yau
P6[2, 5]. The generic q♭ = 0 will intersect g = 0 transversely, so the resulting Calabi–Yau
fourfold will be smooth. In fact, we can still get a smooth complete intersection Calabi–Yau
if q♭ = 0 has an isolated singularity at which g does not vanish. Such a q♭ is a rank 6 quadric.

To count moduli for these deformations of q0(y), the space of first order deformations of q0
is given by the degree 2 part of C[y0, . . . , y6]/J(q0). Since the partial derivatives of q0 are just
y0, y1, y2 up to multiple, the space of first order deformations is identified with homogeneous
degree 2 polynomials in y3, y4, y5, y6, a ten-dimensional space.

We make contact with the discussion in Section 3, where the deformation was described
by (3.3), with ω2 ∈ H0(S, 2KS). For the quintic surface, we have that H0(S, 2KS) =
H0(S,OS(2)). Tensoring (4.2) with O(1) and using the vanishing of the cohomologies of
OP3(−3), we conclude that H0(S, 2KS) is identified with the space of degree 2 homogeneous
polynomials in P3. So the space of smoothings which we described explicitly above is canoni-
cally identified with H0(S, 2KS).

4.1.2. Adding G-flux. Letting L ∈ H2(X♯) be the proper transform of the divisor (x1 = 0) ⊂
X0 and M ∈ H2(X♯) be the proper transform of the divisor (x3 = 0) ⊂ X0, explicit computa-
tion gives7

(4.5) c2(X
♯) = 2LM + 10M2,

which is visibly an even class. Therefore G♯ = 0 satisfies the quantization condition.
We now exhibit explicit smoothings X♭ which satisfy a G-flux constraint. In the example

under investigation, S is a quintic surface and KS = OS(1) so we have that K2
S = 5. It follows

according to eq. (3.4) that the Euler characteristic changes by 30 = (N +1)N(N − 1)K2
S with

N = 2.

Starting the transition with G♯ = 0 as above, then for G♭ we require 1
2

(
G♭

2π

)2
= 30

24
= 5

2
. We

also require G♭ to satisfy the quantization condition (1.2) that c2(X
♭)− 2 · G♭

2π
is even.

We can find a suitable G♭ after constraining q♭ to be a rank 6 quadric (whose singular point
p is not contained in the quintic hypersurface g = 0). We have seen that we can parametrize

7Since this is a standard computation, we will content ourselves with explaining how to perform an equivalent
computation in a more general context in Section 5.
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the moduli of q♭ as

(4.6) q♭ = y0y1 − y22 + q̂(y3, y4, y5, y6).

In this parametrization, q♭ has rank 6 if and only if q̂ has rank 3. Writing

(4.7) q̂ =t(y3, . . . , y6)Q(y3, . . . , y6)

in terms of a 4× 4 symmetric matrix Q, the condition for q̂ to have rank 3 is that detQ = 0,
a codimension one condition. This gives a 10 − 1 = 9 dimensional moduli space, which we
will identify with the Higgs branch of the gauge theory after exhibiting G♭. As a check, the
dimension of the Higgs branch of an SU(2) gauge theory with 4 adjoints is 3 · 4− 3 = 9.

If q̂ has rank 3, then it can be put in the form q̂ = y23 + y4y5 after a change of coordinates,
leading to

(4.8) q♭ = y0y1 − y22 + y23 + y4y5.

This equation can be compared with (3.9) by rewriting it as

(4.9) y0y1 = det

(
y2I2 +

(
y3 y4
y5 −y3

))

Then the quadric q♭ = 0 contains the 3-planes P1 and P2 defined by y0 = y3 − y2 = y4 = 0
and y0 = y3 − y2 = y5 = 0 as codimension two subvarieties. The 3-planes described explicitly
above are in different rulings. However, nonsingular (rank 7) quadrics have only one ruling.

We wish to emphasize this point, which encodes the key geometric property of our choice
of flux. A homogeneous quadric of rank r in P

r−1 contains an irreducible family of linear
subspaces when r is odd, but contains two distinct families of linear subspaces when r is
even.8 This statement about linear subspaces depends only on the rank, not on the dimension
in which the quadric has been embedded. Thus, a quadric in P2k of rank 2k has a unique
singular point and two families of linear subspaces, but when we smooth this quadric to one
of rank 2k + 1 (the generic case) there is only one family of linear subspaces. In particular,
the difference P1 − P2 of spaces from the two families exists as a cycle on the rank 2k quadric
which cannot be extended to a cycle on the nonsingular quadric of rank 2k + 1.

Restricting to X♭ by intersection with g = 0, these Pi yield codimension two subvarieties of
X♭ with cohomology classes T1, T2 ∈ H4(X♭,Z). Since on q♭ we have that y0 = y3 − y2 = 0
is P1 ∪ P2, we have in cohomology that H2 = T1 + T2, where H is the hyperplane class of P6

restricted to X♭. We then take

(4.10)
G♭

2π
=

1

2
(T1 − T2) .

Since the cycles T1 and T2 have the same degrees, and H6(X♭) = 0 by Lefschetz, we see that
H · G♭ = 0 and G♭ is primitive. Furthermore, G♭ is of Hodge type (2, 2), as it is an algebraic
cohomology class. Thus all of the directions in moduli corresponding to rank 6 q♭ are flat
directions relative to the superpotential generated by G♭.

However, if we try to deform further to a rank 7 (nonsingular) quadric q♭, then there is only
one ruling on q♭ so we do not have cycles T1 and T2 in that case. In the absence of cycles T1
and T2, there is no reason for G♭ to remain of type (2, 2) and we expect that it is not of type
(2, 2). It would be interesting to verify this expectation.

8This is closely related to the familiar fact that an orthogonal group in a space of odd dimension has a
single irreducible spinor representation, but an orthogonal group in a space of even dimension has two distinct
spinor representation.
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Returning to the situation where q♭ has rank 6, since each Ti ⊂ P6 is a complete intersection
of three linear forms and a quintic, we compute the Chern class of its normal bundle in X♭ as

(4.11) c
(
NTi,X♭

)
=

(1 +H)3 (1 + 5H)

(1 + 2H) (1 + 5H)
.

Expanding (4.11), we get c2(NTi,X♭) = H2, which is numerically 5, as Ti has degree 5, owing
to the intersection with g = 0. Thus

(4.12) T 2
1 = T 2

2 = 5.

We then compute T1 · T2 = T1 · (H2 − T1) = 5− 5 = 0. Thus
(

G♭

2π

)2
= 5

2
as required.

For the quantization condition, explicit computation gives c2(X
♭) = 11H2. Since we only

need to compute mod 2, we can replace 2 · G♭

2π
= T1 − T2 by T1 + T2 = H2. We learn that

c2(X
♭) − 2 · G♭

2π
is congruent mod 2 to 10H2, which is even. So the quantization condition is

satisfied.

Looking at eq. (4.9), the action of the Weyl group W(SU(2)) ≃ Z2 is realized by interchang-
ing rows and columns, i.e.

(4.13)

(
y3 y4
y5 −y3

)
7→

(
−y3 y5
y4 y3

)
,

which has the effect of switching T1 and T2. So the Weyl group sends G♭ to −G♭.
Recall that G♭ is determined by a choice of ruling of a quadric, or equivalently, by a choice

of a matrix in the representation (4.9) of one of the equations for X♭. Then the Weyl group
action can be explicitly realized as a monodromy in the M-theory moduli space over the
complex structure moduli space. We realize this monodromy as follows. Consider the space
M of 2 × 2 matrices of linear forms in y3, y4, y5 whose determinant is a rank 3 quadric. We
choose a path in M which starts at the matrix on the left of (4.13) and ends at the matrix on
the right of (4.13). Explicitly, we can take

(4.14) M(θ) =

(
eiθy3

y4(1+eiθ)+y5(1−eiθ)
2

y5(1+eiθ)+y4(1−eiθ)
2

−eiθy3

)
, 0 ≤ θ ≤ π ,

so that θ parametrizes a path in the unobstructed complex structure moduli space M♭
cs(G

♭).
For θ = 0 we get G♭ as in eq. (4.10), while for θ = π we get −G♭.

4.2. Calabi–Yau fourfolds from P(1,5,6,6,6,6). We consider a generic weighted hypersurface
X0 of weight 30 in P

(1,5,6,6,6,6) defined by a weight 30 polynomial f30(x1, . . . , x6), its desingu-
larization X♯, and its smoothing X♭.

4.2.1. Geometric data. Since P
(1,5,6,6,6,6) is the quotient of P5 by the Z6-action given by mul-

tiplication of the coordinates (x1, . . . , x6) by (ω, ω5, 1, 1, 1, 1) with ω6 = 1 and an additional
Z5-action, the codimension two locus Y defined by x1 = x2 = 0 has a transverse A5 singu-
larity, at least away from the point p = (0, 1, 0, 0, 0, 0) which is the isolated fixed point of the
additional Z5. Then Y ≃ P3, with (x3, x4, x5, x6) serving as homogeneous coordinates. We can
resolve the singularity of P(1,5,6,6,6,6) (away from p) by blowing up Y to get a smooth variety

P̃. Since a generic f30 does not vanish at p, it follows that the proper transform X♯ of X0 in
P̃ is smooth.
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Furthermore, X0 is singular along S = X0 ∩ Y , which has equation f30(0, 0, x3, x4, x5, x6)
in the homogeneous coordinates of Y ≃ P3. Since x3, . . . , x6 each have weight 6, then the
weighted polynomial f = f10(0, 0, x3, x4, x5, x6) has degree 5 as an ordinary polynomial, and
we have identified S as a quintic hypersurface in P3, i.e., a quintic surface. So again we have
q = h1,0(S) = 0, K2

S = 5 and there are 4 adjoints in our SU(6) gauge theory.

To describe X♭, we first embed P
(1,5,6,6,6,6) as a singular weighted hypersurface in P

(1,5,1,1,1,1,1)

by

(4.15) P
(1,5,6,6,6,6) → P

(1,5,1,1,1,1,1), (x1, . . . , x6) 7→ (x61, x
6
2, x1x2, x3, x4, x5, x6).

Letting (y0, . . . , y6) be homogeneous coordinates on P(1,5,1,1,1,1,1), we see that (4.15) embeds
P(1,5,6,6,6,6) isomorphically onto the weight 6 hypersurface with equation q0(y) = y0y1− y62 = 0.
Furthermore, after the substitution y0 = x61, y1 = x62, y2 = x1x2, and yi = xi for 3 ≤ i ≤ 6
described by (4.15), we can find a homogenous degree five polynomial g(y) with g(y) = f30(x).
Note that g does not vanish at the unique singular point p = (0, 1, 0, 0, 0, 0, 0) of P(1,5,1,1,1,1,1).
We conclude that X0 is isomorphic to the complete intersection of q0(y) and g(y), a (singular)
complete intersection Calabi–Yau fourfold P(1,5,1,1,1,1,1)[6, 5].

This description makes it clear how to smooth X0 to obtain X♭: simply smooth the q0(y) to
a general weight 6 hypersurface q♭(y) to obtain a more general complete intersection Calabi–
Yau P

(1,5,1,1,1,1,1)[6, 5]. The generic q♭ = 0 will intersect g = 0 transversely, so the resulting
complete intersection Calabi–Yau will be smooth.

To count moduli for these deformations of q0(y), the space of first order deformations of q0
modulo g is given by the degree 6 part of C[y0, . . . , y6]/(J(q0), g).

9 Since the partial derivatives
of q0 are just y0, y1, y

5
2 up to multiple, the space of first order deformations is identified with

homogeneous degree 6 polynomials in y2, y3, y4, y5, y6 modulo g, where y2 occurs with degree
at most 4.

Write these deforming polynomials as

(4.16)

4∑

j=0

h6−j(y3, y4, y5, y6)y
j
2.

Since h6−j is to be taken modulo g, we view the coefficients of yd2 as h6−d ∈ H0(S,OS(6−j)). So
we see that the space of smoothings is identified with ⊕6

j=2H
0(S, jKS), in complete agreement

with (3.3).

4.2.2. Adding G-flux. Resolving the A5 singularity introduces five exceptional divisors, which
we denote by E1, . . . , E5. Letting L ∈ H2(X♯) be the proper transform of the divisor (x1 =
0) ⊂ X0, M ∈ H2(X♯) be the proper transform of the divisor (x2 = 0) ⊂ X0, and N ∈ H2(X♯)
be the proper transform of the divisor (x3 = 0) ⊂ X0, explicit computation gives10

(4.17) c2(X
♯) = (2E3 + 6E2 + 12E1 + 20L+ 2M + 10N)N,

which is visibly an even class. Therefore G♯ = 0 satisfies the quantization condition.
We now exhibit explicit smoothings X♭ which satisfy a G-flux constraint. In the example

under investigation, S is a quintic surface and KS = OS(1) so we have that K2
S = 5. It follows

that the Euler characteristic changes by 1050 = N(N − 1)(N + 1)K2
S with N = 6 according

to eq. (3.5).

9In the case of P(1,1,2,2,2,2)[10], we did not have to consider the deforming polynomials modulo g since the
degree of q0 was less than the degree of g.

10Since this is a standard computation, we again content ourselves with explaining how to perform an
equivalent computation in a more general context in Section 5.
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Starting the transition with G♯ = 0 as above, then for G♭ we require 1
2

(
G♭

2π

)2
= 1050

24
, or

(
G♭

2π

)2
= 175

2
. We also require G♭ to satisfy the quantization condition (1.2) that c2(X

♭)−2 · G
♭

2π

is even.
We can find a suitable G♭ after constraining q♭ to be of the form

(4.18) y0y1 = det (y2I6 +M(y)) ,

where M(y) is a traceless 6× 6 matrix of linear forms in y3, . . . , y6 and I6 is the 6× 6 identity
matrix. There are 35 × 4 moduli for the entries of M(y), which must be reduced by 35 since
conjugation by an SU(6) matrix does not alter q♭. These 35×4−35 moduli precisely match the
moduli of the Higgs branch of an SU(6) theory with 4 adjoints. Note thatM ≡ 0 corresponds
to q♭ = q0.

Let S(y) be the 6 × 5 submatrix of y2I6 +M(y) obtained by deleting its last column. Let
R ⊂ X♭ be the 4-cycle defined by y0 = y2 = 0 and let T ⊂ X♭ be the 4-cycle defined by

(4.19) T =
{
y ∈ X♭ | y0 = 0 , rankS(y) ≤ 4

}
.

We put

(4.20)
G♭

2π
=

5

2
R− T ∈ H4(X♭) ,

which is of Hodge type (2, 2) since it is an algebraic cohomology class.
We check that G♭ is primitive by computing that its image in the cohomology of the fivefold

F defined by g = 0 vanishes.
Let H be the restriction to F of hyperplane class of P(1,5,1,1,1,1,1). Since F has weight 5 and

the weighted projective space has a Z5 quotient, we have
∫
F
H5 = 5/5 = 1.

Since R is defined in F by q♭ = y0 = y2 = 0, its image in F is 6H3. By Porteous’s formula,
T has image 15H3 in F . Thus the image of the class of (5/2)R−T in F vanishes and we have
verified primitivity.

We compute
(

G♭

2π

)2
by computing the intersections R2, RT , and T 2 in X♭. Since X♭ is a

(6, 5) complete intersection in P(1,5,1,1,1,1,1) and R is a complete intersection of two linear forms,
we have

(4.21) R2 =
6 · 5 · 14

5
= 6,

where the denominator of 5 arises from the Z5 quotient in the weighted projective space.
For RT , we can replace R by the algebraically equivalent cycle y2 = y3 = 0. Computing RT

inside F we get

(4.22) RT =

∫

F

15H3 ·H2 = 15.

Finally, we compute T 2 as the degree of the second Chern class of the normal bundle NT,X♭ of

T in X♭. First we define

(4.23) T̃ =
{
(y, z) ∈ X♭ × P

4 | S(y)z = 0
}
.

The projection π : X♭×P4 → X♭ maps T̃ to T . This projection fails to be an isomorphism only
over points of T at which S(y) has rank 3 or less. Since the rank 3 condition is codimension 6
in X♭, we see that T̃ → T is an isomorphism.
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We have

(4.24) c(NT,X♭) =
c(X♭)

c(T )
,

where we omit restrictions to T for brevity. Similarly,

(4.25) c(NT̃ ,F×P4) =
c(F × P4)

c(T̃ )
=
c(F )c(P4)

c(T̃ )

with omitted restrictions to T̃ .
Letting η be the hyperplane class P4, we have

(4.26) c(NT̃ ,F×P4) = (1 +H)(1 +H + η)6,

since the six components of S(y)z are bilinear and together with y0 = 0 define T̃ as a complete
intersection. Since X♭ is the hypersurface in F defined by q♭ = 0, we have

(4.27) c(F )|X♭ = c(X♭)(1 + 6H).

Identifying T̃ with T via π, we get from (4.24)–(4.27)

(4.28) c(NT,X♭) =
(1 +H + η)6(1 +H)

(1 + η)5(1 + 6H)

which gives

(4.29) c2(NT,X♭) = 15H2 − 5Hη,

identified as a class on T̃ . We can easily push (4.29) to F×P4 since T̃ is a complete intersection
of 6 divisors in the class H + η and the divisor y0 = 0 of class H :

(4.30) c2(NT,X♭) = (15H2 − 5Hη)H(H + η)6 ∈ H18(F × P
4)

We project (4.30) to F by extracting the coefficient of η4, which is 125H5 ∈ H10(F ), which
evaluates to 125. So finally

(4.31) T 2 = 125.

Putting (4.21), (4.22), and (4.31) together, we get

(4.32)

(
G♭

2π

)2

=
25

4
R2 − 5RT + T 2 =

75

2
− 75 + 125 =

175

2

as required.

For the quantization condition, explicit computation gives c2(X
♭) = 15H2. Since we only

need to compute mod 2, we can replace 2 · G
♭

2π
= 5R−2T by 5R = 5H2 because R is a complete

intersection of two linear equations in X♭. We learn that c2(X
♭)− 2 · G♭

2π
is congruent mod 2

to 10H2, which is even. So the quantization condition is satisfied.

Looking at (4.18), the action of the Weyl group W(SU(6)) ≃ S6 is realized by permuting
the rows and columns of M(y). As we did at the end of Section 4.1, we can realize this Weyl
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group action as a monodromy. We rewrite the submatrix S(y) of y2I6 +M(y) as

(4.33) S(y) =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




(y2I6 +M(y)) .

The projection matrix P appearing in (4.33) has columns e1, . . . , e5 chosen from the standard
basis of C6. Choose a permutation σ in the Weyl group. We can then choose a path in the
space of 6 × 5 matrices of maximal rank starting from P and ending at the matrix whose
columns are eσ(1), . . . , eσ(5) to realize the Weyl action as a monodromy.

5. Toric geometry and further examples

We begin by reviewing the setup for investigating Calabi–Yau hypersurfaces and complete
intersections in toric varieties, specialized to Calabi–Yau fourfolds. See [39, 40].

Let N andM be a pair of dual lattices of rank 5. We consider a pair (∆,∆◦) of 5-dimensional
reflexive polytopes, with ∆ ⊂MR spanned by vertices inM , and ∆◦ ⊂ NR spanned by vertices
in N . The origin is the unique interior point of ∆ ∩M and of ∆◦ ∩ N . The polytopes are
related by

(5.1) ∆◦ = {n ∈ NR | 〈m,n〉 ≥ 1 for all m ∈ ∆} .

The toric variety P∆ can also be described as the toric variety associated to fan obtained by
taking the cones over the faces of ∆◦. Since this toric variety is typically highly singular, we
choose a maximal projective crepant subdivision of that fan to obtain a toric variety with
controllable singularities. The fan Σ♯ of this toric variety satisfies

(i) Σ♯(1) = ∆◦ ∩N − {0}
(ii) XΣ♯ is projective and simplicial

We let X♯ ⊂ XΣ♯ be a general anticanonical hypersurface, so that X♯ is a Calabi–Yau fourfold.

5.1. Gauge group SU(N). To achieve the situation of AN−1 singularities, we assume:

(5.2) ∆◦ has a one-dimensional edge Γ containing N − 1 interior lattice points

Let v1 and v2 be the endpoints of Γ. We can choose an mΓ ∈ M so that 〈mΓ, v1〉 = N − 1
and 〈mΓ, v2〉 = −1.

If we remove the cones containing the interior lattice points of Γ from the fan Σ♯, we obtain
a fan Σ0. The natural map π : XΣ♯ → XΣ0

blows down a divisor to a threefold with transverse
AN−1 singularities. After intersecting with an anticanonical hypersurface in XΣ♯, we get a map
X♯ → X0 of Calabi–Yau fourfolds, contracting a divisor to a surface S of AN−1 singularities.

To begin to understand S, we consider the dual face Γ◦ ⊂ ∆ defined by

(5.3) Γ◦ = {m ∈MR | 〈m, v1〉 = −1, 〈m, v2〉 = −1} .

Then Γ◦ is a 3-dimensional polytope. We have for the geometric genus of S

(5.4) pg = |int (Γ◦) ∩M | ,

as we will check later.
We denote the primitive integral generators of the other one-dimensional cones in Σ0 by

v3, . . . , vk. We also denote by Di ⊂ XΣ0
the toric divisor associated with the edge vi, 1 ≤ i ≤ k.
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Similarly, we denote by D♯
i ⊂ XΣ♯ the toric divisor associated with the edge vi. For D♯

i , we
can have 1 ≤ i ≤ k as above, or vi can denote one of the n− 1 interior lattice points of Γ.

We form a new simplicial fan Σ♭ in (N ⊕Z)R with 1-dimensional cones w0, . . . , wn given by
by the vertices

(5.5)

w0 = (v1−v2
N

,−(N − 1)) ,

w1 = (0, 1) ,

w2 = (v2, 0) ,

wi = (vi,−N〈mΓ, vi〉) , i ≥ 3 .

The six-dimensional cones Σ♭(6) of Σ♭ can be described as follows. Let σ ∈ Σ0(5) be a 5-
dimensional (simplicial) cone of Σ0. We partition the edges σ(1) of σ into the set σ(1)1 of
edges spanned by v1 or v2, and the set σ(1)2 of edges spanned by vi with i ≥ 3. We have
abused notation slightly by labeling the edges by their primitive integral generators vi.

Then we form Σ♭(6) as follows: for each σ ∈ Σ(5) we form one or more 6-dimensional
simplicial cones as the span of the vectors wi−1 for each vi ∈ σ(1)1, together with the vectors
wi for each vi ∈ σ(1)2, and exactly one more vector from among {w0, w1, w2}. A distinct cone
is included in Σ♭(6) for each choice of this additional vector w0, w1 or w2. The fan Σ♭ is a the
fan whose cones are the faces of one of the top-dimensional cones just described.

Using the fact that Σ0 is a fan, it is straightforward to check that the intersection of any
two cones of Σ♭ is a face of each, so that Σ♭ is indeed a fan. Furthermore, it is straightforward
to check that Σ♭ is complete since Σ0 is. We let D♭

i ⊂ XΣ♭ be the toric divisor associated with
the edge wi.

Example. Let Σ0 be a fan for P(1,1,2,2,2,2). A convenient choice is to take the complete simplicial
fan with edges spanned by the rows of

(5.6)




−1 −2 −2 −2 −2
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




We label the rows as v1, . . . , v6 in order. The edge Γ joining v1 and v2 has one interior lattice
point v0 = (0,−1,−1,−1,−1) and we have an SU(2) example. The fan for Σ♯ is obtained
from the fan for Σ by replacing each cone containing both v1 and v2 by two cones: one cone
in which v1 and v2 are replaced by v1 and v0, and other cone in which v1 and v2 are replaced
by v0 and v2.

Choosing mΓ = (−1, 0, 0, 0, 0) ∈M we have

(5.7) 〈mΓ, v1〉 = 1, 〈mΓ, v2〉 = −1, 〈mΓ, vi〉 = 0 for i ≥ 3.

Then (5.5) gives the edges of the fan Σ♭ as the rows of

(5.8)




−1 −1 −1 −1 −1 −1
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



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with the labeling w0, . . . , w6. The cones of Σ♭ are immediately seen to consist of all cones
spanned by any proper subset of {w0, . . . , w6}. We therefore obtain the fan for P6, the space
that we embedded P(1,1,2,2,2,2) into in Section 4.1.1.

Example. Let Σ0 be a fan for P(1,5,6,6,6,6). A convenient choice is to take the complete simplicial
fan with edges spanned by the rows of

(5.9)




−5 −6 −6 −6 −6
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




We label the rows as v1, . . . , v6 in order. The edge Γ joining v1 and v2 has 5 interior lattice
points and we have an SU(6) example. The interior lattice points are

(5.10)
v0 = (0,−1,−1,−1,−1) , v−1 = (−1,−2,−2,−2,−2) , v−2 = (−2,−3,−3,−3,−3) ,

v−3 = (−3,−4,−4,−4,−4) , v−4 = (−4,−5,−5,−5,−5,−5) .

Choosing mΓ = (−1, 0, 0, 0, 0) ∈M we have

(5.11) 〈mΓ, v1〉 = 5, 〈mΓ, v2〉 = −1, 〈mΓ, vi〉 = 0 for i ≥ 3.

Then (5.5) gives the edges of the fan Σ♭ as the rows of

(5.12)




−1 −1 −1 −1 −1 −5
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




with the labeling w0, . . . , w6. The cones of Σ♭ are immediately seen to consist of all cones
spanned by any proper subset of {w0, . . . , w6}. We therefore obtain the fan for P

(1,1,1,1,1,1,5),
the space that we embedded P(1,5,6,6,6,6) into in Section 4.2.1.11

Consider the map ι : XΣ0
→ XΣ♭ given by

(5.13) (y0, y1, y2, y3, . . .) = (xN1 , x
N
2 , x1x2, x3 . . .),

where (y0, . . . , yk) are the homogeneous coordinates of XΣ♭ . We check that the map is well-

defined. If g = (tj) ∈ G(Σ0), then
∏
t
〈m,vj〉
j = 1 for all m ∈M . Then g · x maps to

(5.14) (tN1 x
N
1 , t

N
2 x

N
2 , t1t2x1x2, t3x3 . . .),

which we have to show is equivalent to (xN1 , x
N
2 , x1x2, . . .) up to an element of G(Σ♭). In other

words, we have to check that for all (m,n) ∈M ⊕ Z we have

(5.15) (tN1 )
〈(m,n),w0〉(tN2 )

〈(m,n),w1〉(t1t2)
〈(m,n),w2〉

k∏

j=3

(tj)
〈(m,n),wj〉 = 1.

11The general toric procedure requires us to add more edges from additional points of ∆◦ ∩ N . However,
for simplicity we can safely exclude them from discussion since the weighted hypersurface f considered in
Section 4.2.1 does not contain the fixed point of the P5 action.
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But the left hand side of (5.15) simplifies to

(5.16) t
〈m,v1〉−N(N−1)n
1 t

〈m,v2〉+Nn
2

k∏

j=3

(tj)
〈(m−NnmΓ,vj〉 =

k∏

j=1

(tj)
〈(m−NnmΓ ,vj〉,

which is 1 because m−NnmΓ ∈M and g ∈ G(Γ).
It is straightforward to check that the image of ι in coordinates lands in Ck+1 − Z(Σ♭) and

is an embedding after modding out by G(Σ0) and G(Σ
♭).

Example. For P(1,1,2,2,2,2) the embedding into P
6 is

(5.17) (y1, . . . , y6) 7→ (y21, y
2
2, y1y2, y3, . . . , y6)

in complete agreement with Section 4.1.1.

Example. For P(1,5,6,6,6,6) the embedding into P
(1,5,1,1,1,1,1) is

(5.18) (y1, . . . , y6) 7→ (y61, y
6
2, y1y2, y3, . . . , y6)

in complete agreement with Section 4.2.1.
Clearly, ι(XΣ0

) is contained in the hypersurface q0(y) = y0y1 − yN2 = 0. The linear equiva-
lence D♭

0 +D♭
1 ∼ ND♭

2 is realized by (NmΓ, 1) ∈M ⊕ Z.
Since ι∗(OX

Σ♭
(D♭

2)) ≃ OXΣ0
(D0 +D1) and ι

∗(OX
Σ♭
(D♭

j)) ≃ OXΣ0
(Dj) for j ≥ 3, we see that

(5.19) ι∗(OX
Σ♭
(

k∑

j=2

D♭
j)) ≃ OXΣ0

(
k∑

j=1

Dj) = OXΣ0
(−KXΣ

),

and it is easy to see that X0 pulls back from a section of OX
Σ♭
(
∑k

j=2D
♭
j) =: OX

Σ♭
(D′) which

we denote by f(y). Thus X0 is identified with a complete intersection of q0(y) and f(y) in
XΣ♭ . The singular locus S is defined by y0 = y1 = y2 = f(y) = 0. Adjunction again says that
the canonical bundle of S is the restriction of D♭

2.
We can describe this complete intersection using a nef partition [40] if desired, partitioning

the edges ρj spanned by the wj into two sets:

(5.20) {ρ0, ρ1}, {ρ2, ρ3, . . . , ρk}

and we are led to view q0(y) as a section of OX
Σ♭
(D0 +D1).

We can identify a basis of sections of OX
Σ♭
(D♭

2) with monomials χ(m,n), (m,n) ∈ M ⊕ Z,
satisfying

(5.21)

〈(m,n), w0〉 = 〈m, v1−v2
2

〉 − n ≥ 0
〈(m,n), w1〉 = n ≥ 0
〈(m,n), w2〉 = 〈m, v2〉 ≥ −1
〈(m,n), wj〉 = 〈m, vj〉 ≥ 0 (j ≥ 3)

via the correspondence

(5.22) χ(m,n) ↔ z(m,n) := y2

k∏

j=0

y
〈(m,n),wk〉
j

If m ∈ int(Γ◦)∩M , (5.21) is satisfied for (m, 0) ∈M⊕Z, since m ∈ int(Γ◦)∩M is equivalent
to

(5.23) 〈m, v1〉 = −1, 〈m, v2〉 = −1, 〈m, vj〉 ≥ 0 (j ≥ 3).

Thus y0y1, y
N
2 , and y

r
2

∏N−r
j=1 z

(mij
,0) (mij ∈ int(Γ◦)∩M) are identified with sections ofOX

Σ♭
(ND♭

2).
By the now-familiar argument, we will only need to consider r ≤ N − 2.
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We change notation and rewrite the pg sections z
(mi,0), mi ∈ int(Γ◦)∩M as z1, . . . , zpg . Then

(5.24) q♭(y) = y0y1 + yN2 +
N−2∑

r=0

yr2
∑

J⊂{1,...,pg}

|J |=N−r

aj1...jN−r

∏
zji

is a deformation of q0(y).

Suppose that c2(X
♯) is the restriction of an even toric class in H4(XΣ♯,Z), which implies that

G♯ = 0 satisfies quantization. Then we will exhibit explicit smoothings X♭ which satisfy a
G-flux constraint.

The strengthened hypothesis on the evenness of c2(X
♯) is needed so that the exhibited G♭

satisfies the quantization condition. The examples from Section 4 both satisfy this hypothesis.
The tadpole condition is always satisfied, as we will see.

We can find a suitable G♭ after constraining q♭ to be of the form

(5.25) y0y1 = det (y2IN +M(y)) ,

where M(y) is a traceless N ×N matrix of linear forms in y3, . . . , ypg+2 and IN is the N ×N
identity matrix. There are pg(N

2 − 1) moduli for the entries of M(y), which must be reduced
by N2 − 1 since conjugation by an SU(N) matrix does not alter q♭. These (pg − 1)(N2 − 1)
moduli precisely match the moduli of the Higgs branch of an SU(N) theory with pg adjoints.
Note that M ≡ 0 corresponds to q♭ = q0.

Let S(y) be the N × (N − 1) submatrix of y2IN +M obtained by deleting its last column.
Let R ⊂ X♭ be the 4-cycle defined by y0 = y2 = 0 and let T ⊂ X♭ be the 4-cycle defined by

(5.26) T =
{
y ∈ X♭ | y0 = 0 , rankS(y) ≤ N − 2

}
.

We put

(5.27)
G♭

2π
=

N − 1

2
R − T ∈ H4(X♭) ,

which is of type (2, 2) since it is an algebraic cohomology class.
We check that G♭ is primitive by computing that its image in the cohomology of the fivefold

F defined by g = 0 vanishes.
Since R is defined in F by q♭ = y0 = y2 = 0, its class in F is ND♭

0(D
♭
2)

2. By Porteous’s

formula, T has class N(N−1)
2

D♭
0(D

♭
2)

2. Thus the class of N−1
2
R − T vanishes in F and we have

verified primitivity.

We compute
(

G♭

2π

)2
by computing R2, RT , and T 2. Since X♭ is a complete intersection of

divisors in the classes ND♭
2 and D′, R is a complete intersection of y0 and y2, we have

(5.28) R2 = N(D♭
0)

2(D♭
2)

3D′ ∈ H12(XΣ♭).

Computing RT inside F we get

(5.29) RT =
N(N − 1)

2
(D♭

0)
2(D♭

2)
3D′ ∈ H10(F ).

Finally, we compute T 2 as the degree of the second Chern class of the normal bundle NT,X♭ of

T in X♭. First we define

(5.30) T̃ =
{
(y, z) ∈ X♭ × P

N−2 | S(y)z = 0
}
.
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The projection π : X♭ ×PN−2 → X♭ maps T̃ to T . This projection fails to be an isomorphism
only over points of T at which S(y) has rank N − 3 or less. Since the rank 3 condition is

codimension 6 in X♭, we see that T̃ → T is an isomorphism.
We have

(5.31) c(NT,X♭) =
c(X♭)

c(T )
,

where we omit restrictions to T for brevity. Also,

(5.32) c(NT̃ ,F×PN−2) =
c(F × PN−2)

c(T̃ )
=
c(F )c(PN−2)

c(T̃ )
=
c(X♭)(1 +ND♭

2)c(P
N−2)

c(T̃ )
.

We get

(5.33) c(NT̃ ,F×PN−2) = (1 +D♭
0)(1 +D♭

2 + η)N ,

since the N components of S(y)z are bilinear in PN−2 and sections of O(D♭
2), which define T̃

as a complete intersection together with y0. Identifying T̃ with T via π, we get

(5.34) c(NT,X♭) =
(1 +D♭

2 + η)N(1 +D♭
0)

(1 +ND♭
2)(1 + η)N−1

which gives

(5.35) c2(NT,X♭) = (D♭
0 −ND♭

1)η +
N(N − 1)

2
(D♭

2)
2 = −D♭

1η +
N(N − 1)

2
(D♭

2)
2,

where we have used D♭
0 +D♭

1 ∼ ND♭
2. Computing the intersection on F × PN−2, this is just

(5.36) (−D♭
1η +

N(N − 1)

2
(D♭

2)
2)D♭

0(D
♭
2 + η)N ∈ H2N+6(F × P

N−2).

We project down to T by extracting the coefficient of ηN−2, which is

(5.37)

(
N

2

)2

D♭
0(D

♭
2)

4 −

(
N

3

)
D♭

0D
♭
1(D

♭
2)

3 ∈ H10(F ).

Expressing this as a class on the toric variety finally gives

(5.38) T 2 =

((
N

2

)2

D♭
0(D

♭
2)

4 −

(
N

3

)
D♭

0D
♭
1(D

♭
2)

3

)
D′ ∈ H12(XΣ♭).

Finally

(5.39)

(
G♭

2π

)2

=
(N − 1)2

4
R2 − (N − 1)RT + T 2 ,

which evaluates on XΣ♭ to
(5.40)

N(N − 1)2

4
(D♭

0)
2(D♭

2)
3D′−

N(N − 1)2

2
(D♭

0)
2(D♭

2)
3D′+

(
N

2

)2

D♭
0(D

♭
2)

4D′−

(
N

3

)
D♭

0D
♭
1(D

♭
2)

3D′,

which simplifies to

(5.41)

(
G♭

2π

)2

=
(N + 1)N(N − 1)

12
D♭

0D
♭
1(D

♭
2)

3D′ ∈ H12(XΣ♭),

where we have again used D♭
0 +D♭

1 ∼ ND♭
2.
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Since S is a complete intersection of y0, y1, y2, and g, the class of S is D♭
0D

♭
1D

♭
2D

′. By
adjunction, we find

(5.42) KS = −
k∑

i=0

D♭
i +D♭

0 +D♭
1 +D♭

2 +D′ = D♭
2.

Thus we get

(5.43)
1

2

∫

X♭

G♭

2π
∧
G♭

2π
=

(N + 1)N(N − 1)

24
K2

S =
χ(X♭)− χ(X♯)

24
,

as required according to eq. (3.11).

It remains to check the quantization condition. We first recall the computation of the Chern
classes of a toric variety. Let XΣ be a smooth projective toric variety of dimension n with ℓ
edges in the fan Σ. Let D1, . . . , Dℓ ⊂ XΣ be the corresponding toric divisors. Then we have a
short exact sequence [41]

(5.44) 0 → Oℓ−n
XΣ

→
ℓ⊕

i=1

OXΣ
(Di) → TXΣ

→ 0,

which gives

(5.45) c(XΣ) =

ℓ∏

i=1

(1 +Di).

So if X ⊂ XΣ is an anticanonical hypersurface we have

(5.46) c(X) =

∏ℓ
i=1(1 +Di)

1 +
∑ℓ

i=1Di

,

which gives

(5.47) c2(X) =
∑

i<j

DiDj .

In particular, for X♯ ⊂ XΣ♯ we have

(5.48) c2(X
♯) =

∑

i<j

D♯
iD

♯
j .

Similarly, for X♭ we get

(5.49) c(X♭) =

∏k
i=0(1 +D♭

i)

(1 +D♭
0 +D♭

1)(1 +
∑k

i=2D
♭
i)
,

which gives

(5.50) c2(X
♭) = D♭

0D
♭
1 +

∑

2≤i<j≤k

D♭
iD

♭
j .

We now let f = ι ◦ π : XΣ♯ → XΣ♭ be the composition. Since (5.48) and (5.50) show
that c2(X

♯) is the restriction of a cohomology class on XΣ♯ and c2(X
♭) is the restriction of a

cohomology class on XΣ♭ , we are able to compare c2 on both sides of the transition using f ∗.
We continue our labeling conventions, so that the vertices in Γ are labeled, in order

(5.51) v1, v0, v−1, . . . , v2−N , v2.
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We compute

(5.52)

f ∗(D♭
0) = ND♯

1 + (N − 1)D♯
0 + . . .+D♯

2−N ,

f ∗(D♭
1) = D♯

0 + . . .+ (N − 1)D♯
2−N +ND♯

2 ,

f ∗(D♭
2) = D♯

1 +D♯
0 + . . .+D♯

2−N +D♯
2 ,

f ∗(D♭
i) = D♯

i , i ≥ 3 .

As a check, note that f ∗(D♭
0 +D♭

1 −ND♭
2) = 0, as it had to be owing to the linear equivalence

D♭
0 +D♭

1 ∼ ND♭
2.

Since (5.52) is a standard toric calculation, we content ourselves with just a few words of
explanation. We have f ∗ = π∗ ◦ ι∗, and ι∗ is calculated below in (5.56). Since π is a blowdown,
all that π∗ can do is introduce the exceptional divisors with multiplicities. It then follows from
the fact that the vertices (5.51) are on the edge Γ, in order, that for a pullback the coefficients

of D♯
1, D

♯
0, . . . , D

♯
2−N , D

♯
2 must be in arithmetic progression. Since the coefficients of D♯

1 and

D♯
2 are fixed by (5.56), these observations are enough to completely determine (5.52).
For the quantization condition, we only need to compute mod 2. Since T is an integral

class, we can replace N−1
2
R−T with N−1

2
R in checking quantization. We see that quantization

follows immediately from two claims:

• f ∗(c2(X
♭)− (N − 1)R) ≡ c2(X

♯) (mod 2)
• f ∗ : H∗(XΣ♭ ,Z2) → H∗(XΣ♯ ,Z2) is injective

The first claim is checked by direct calculation, which can be separated into the cases where
N is odd and N is even.

If N is odd, then (5.52) simplifies to

(5.53)

f ∗(D♭
0) = D♯

1 +D♯
−1 + . . .+D♯

4−N +D♯
2−N ,

f ∗(D♭
1) = D♯

0 +D♯
−2 + . . .+D♯

3−N +D♯
2 ,

f ∗(D♭
2) = D♯

1 +D♯
0 + . . .+D♯

2−N +D♯
2 ,

f ∗(D♭
i) = D♯

i , i ≥ 3 .

Also, since N − 1 is even, we only have to show that f ∗(c2(X
♭)) ≡ c2(X

♯) (mod 2). This
follows immediately from (5.48), (5.50), (5.53), and the Stanley-Reisner vanishings:

(5.54) Di ·Dj = 0 for 2−N ≤ i < j ≤ 2 unless vi, vj are adjacent in the ordering (5.51)

Similarly, if N is even we have

(5.55)

f ∗(D♭
0) = D♯

0 +D♯
−2 + . . .+D♯

2−N ,

f ∗(D♭
1) = D♯

0 +D♯
−2 + . . .+D♯

2−N ,

f ∗(D♭
2) = D♯

1 +D♯
0 + . . .+D♯

2−N +D♯
2 ,

f ∗(D♭
i) = D♯

i , i ≥ 3 .

Then (N − 1)R ≡ R (mod 2). Since R = D♭
0D

♭
2, the claim follows from f ∗(c2(X

♭) +D♭
0D

♭
2) ≡

c2(X
♯) (mod 2), which is again checked by direct calculation as above.

The injectivity of f ∗ can be broken down into the injectivity of ι∗ and π∗ separately. The
injectivity of π∗ follows since π is a blowup. The injectivity of ι∗ follows from the simpler



SU(N) TRANSITIONS IN M-THEORY ON CALABI–YAU FOURFOLDS AND BACKGROUND FLUXES 29

computation analogous to (5.52)

(5.56)

ι∗(D♭
0) = ND1 ,

ι∗(D♭
1) = ND2 ,

ι∗(D♭
2) = D1 +D2 ,

ι∗(D♭
i) = Di , i ≥ 3 ,

which follows immediately from (5.13). The form of the fan Σ♯ shows that all linear equiva-
lences and Stanley-Reisner relations among the Di pull back from from corresponding relations
in the D♭

i . So we only have to look at (5.56) as a linear transformation to deduce that the
kernel of ι∗ is generated by D♭

0 +D♭
1 −ND♭

2, which is zero.

6. Conclusions

In this work we studied the three-dimensional N = 2 low energy theory of M-theory on
Calabi–Yau fourfolds X0 with a smooth surface S of AN−1 singularities. We found that — due
to massless M2-brane degrees of freedom from the AN−1 singularity at codimension two —
the three-dimensional effective theory resulted in a N = 2 SU(N) gauge theory with adjoint
matter multiplets at low energies. Alternatively, we obtained the same gauge theory from a
twisted dimensional reduction of the seven-dimensional N = 1 SU(N) gauge theory on the
surface S.

From the twisted dimensional reduction, we derived for the three-dimensional N = 2 SU(N)
gauge theory its matter spectrum, consisting of adjoint-valued N = 2 chiral multiplets. Fur-
thermore, we established that a variant of the Vafa–Witten equations [36] governed the super-
symmetric ground states of the low energy theory. These equations allowed us to determine the
moduli spaces of the Higgs and Coulomb branches of the gauge theory, where we in particular
focus on the twisted dimensional reduction on S with a trivial SU(N) principal bundle.

From the results of the performed gauge theory analysis, we predicted geometric properties
of the M-theory compactification on the singular Calabi–Yau fourfold X0. First of all, we
matched Coulomb and Higgs branches of the gauge theory with the crepant resolution to
the (smooth) Calabi–Yau fourfolds X♯ and with the deformation to the (smooth) Calabi–Yau
fourfold X♭, respectively. That is to say, a transition from the Coulomb to the Higgs branch
in the gauge theory corresponded to an extremal transition between the resolved Calabi–Yau
fourfold X♯ and the deformed Calabi–Yau fourfold X♭ in M-theory. Furthermore, we argued
that in order to arrive at the anticipated SU(N) gauge theory branches — arising from a
trivial SU(N) principal bundle over S — the Coulomb–Higgs phase transition starting from
a Calabi–Yau fourfold X♯ with no background flux ends at a Calabi–Yau fourfold X♭ with
non-trivial background four-form flux G♭.

The proposed flux G♭ was required for consistency reasons so as to match the tadpole
cancellation condition — due to the change of Euler characteristic along the extremal transition
[26] — and to fulfill the flux quantization condition of M-theory [33]. But maybe even more
importantly, the correct choice of the flux G♭ was essential to be in accord with the moduli
space of the Higgs branch of the SU(N) gauge theory. Namely, we showed that the background
flux G♭ was primitive and generated a non-trivial M-theory superpotential. The flux G♭ was
of Hodge type (2, 2) along the flat directions of the flux-induced superpotential, which in turn
comprised the unobstructed complex structure moduli deformations associated to the Higgs
branch of the described SU(N) gauge theory. Furthermore, we observed that as we moved
about the M-theory moduli space in the Calabi–Yau phase associated to the gauge theory
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Higgs branch, the flux G♭ exhibited non-trivial monodromy behavior given in terms of the
described Weyl group action W(SU(N)) on the flux G♭.

In order to demonstrate our general arguments — inspired by refs. [31, 32] — using the
framework of toric geometry we explicitly gave examples for extremal transitions between the
Calabi–Yau fourfolds X♯ and X♭. Namely, starting from a five-dimensional toric varieties with
AN−1 singularities in codimension two, we realized the Calabi–Yau fourfold X♯ as a hypersur-
face in the resolved toric variety, whereas we constructed the deformed Calabi–Yau fourfold X♭

as a complete intersection in a six-dimensional toric variety. With the toric computational tools
at hand, these examples allowed us to explicitly verify the general predictions concerning the
interplay between the gauge theory moduli spaces and the M-theory background fluxes.

In this work we mainly focused on a particular gauge theory scenario arising from the twisted
dimensional reduction of a trivial SU(N) principal bundle over surface S. Firstly, extending
the analysis to non-trivial SU(N) principal bundles over the surface S would correspond
to extremal transitions in M-theory with non-trivial background fluxes on both Calabi–Yau
fourfolds X♯ and X♭ — in analogy to the findings for M-theory four-form fluxes associated
to phases of three-dimensional N = 2 Abelian gauge theories [26]. Secondly, it would be
interesting to extend the analysis to general ADE or even non-simply laced gauge groups.
Note also that since the obtained results depended only on the local geometry in the vicinity
of a codimension two singularity in the singular Calabi–Yau fourfold X0, the gauge theory
branches are already captured in M-theory in terms of extremal transitions among suitable
local Calabi–Yau fourfolds. Thus the relevant local Calabi–Yau fourfolds deserve further study
as well. We plan to return to these issues in the future [38].
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