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Spin-dependent two-body interactions from gravitational self-force computations
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We analytically compute, through the eight-and-a-half post-Newtonian order and the fourth-order
in spin, the gravitational self-force correction to Detweiler’s gauge invariant redshift function for a
small mass in circular orbit around a Kerr black hole. Using the first law of mechanics for black hole
binaries with spin [L. Blanchet, A. Buonanno and A. Le Tiec, Phys. Rev. D 87, 024030 (2013)] we
transcribe our results into a knowledge of various spin-dependent couplings, as encoded within the
spinning effective-one-body model of T. Damour and A. Nagar [Phys. Rev. D 90, 044018 (2014)].
We also compare our analytical results to the (corrected) numerical self-force results of A. G. Shah,
J. L. Friedman and T. S. Keidl [Phys. Rev. D 86, 084059 (2012)], from which we show how to
directly extract physically relevant spin-dependent couplings.

I. INTRODUCTION

The imminent prospect of detecting gravitational-wave
signals emitted by inspiralling and coalescing binary sys-
tems gives a strong motivation for improving our analyti-
cal knowledge of the general relativistic dynamics of two-
body systems. The effective one-body (EOB) formal-
ism [1H4] has established itself as the most accurate way
of analytically describing the inspiral and coalescence of
compact binary systems. Recent years have witnessed a
useful synergy between EOB theory and various other
analytical-relativity approaches to the two-body prob-
lem, notably post-Newtonian (PN) theory [5, 6] and grav-
itational self-force (GSF) theory [7, 8]. Several different
flavors of GSF theory have been useful in this respect:
numerical GSF computations, analytical GSF compu-
tations and, more recently, mixed numerical-analytical
GSF computations [9-29] In addition, numerical relativ-
ity simulations have also been of crucial importance for
completing the current analytical knowledge in EOB the-
ory [30-317).

The aim of the present work is to extract new infor-
mation about spin-dependent two—body interactions (as
encoded in the EOB Hamiltonian) from both analyti-
cal and numerical GSF computations of Detweiler’s per-
turbed redshift function dU(m2$2, Gz2) |9] around a spin-
ning (Kerr) black hole of mass mg and Kerr parameter
as = My dg.

A formalism for computing the O(m;) GSF correction
to the redshift, §U (maf2, a2) (where Q denotes the orbital
frequency of the small mass m; in circular orbit around
a Kerr black hole of mass my and spin Sz = mZ as) has
been set up in Refs. |19, 20]. Our high PN order ana-
lytical calculations of U, whose results we shall present

I We denote the masses and the spins of the two-body system as
mi, me, S1 = mia; = m%dl and So = moas = m%dz (using
units where G = ¢ = 1). We follow here the convention mi < ma
sothat X; = —™ _ = 11 - /I—d), Xo = -2 =

mi1+mo 2 mi+mao

%(1 + /1 = 4v) where v = mima/(m1 +m2)2.

below, have been based on the formalism of [19, 20] to-
gether with an extension of the techniques we have re-
cently developed [21,122] for efficiently computing the PN
expansion of various gauge invariant GSF functions in
the case where the small mass m; orbits a non-spinning
black hole. While we were deriving our results we were
informed by A. Shah |38] of the existence of parallel work
by him and his collaborators leading also to high PN or-
der computations of 6U. Some of their results have been
recently presented in various conferences |39, |40] while
we were finalizing our calculations. There is a complete
agreement between their current results and the more
accurate (in PN order) and more complete (in order of
expansion in ds) ones that we present below. Moreover,
Ref. [20] has published numerical GSF data on the func-
tion U (mef2, Go) especially in the strong field domain.
[Actually, the published data were marred by a minor
technical error, but A. Shah kindly provided us with a
corrected version of table III in [20]]. We will show be-
low how these numerical data can be used to complement
the weak-field knowledge given by the PN expansion of
U (maf, a2) (to be discussed next) by giving access to
some strong-field information.

A central tool allowing one to relate Detweiler’s red-
shift function to the Hamiltonian of a two-body system
is the so-called “first law of binary black hole mechan-
ics” [41H43]. We shall show below how to use the first
law of spinning binaries [42] to transcribe the informa-
tion contained in the function 6U (m2f2, dz2) into a knowl-
edge of the spin-dependent couplings as encoded within
the spinning EOB formalism of Ref. [37]. More pre-
cisely, we shall show (generalizing Ref. [15]) how to alge-
braically extract from dU the first order GSF corrections
to two EOB potentials: (i) the radial equatorial potential
A(r,m1,ma,S1,52); and (ii) the main (“S-type”) spin-
orbit coupling potential Gg(r, m1,ma,S1,52). [The first-
order GSF correction to the second (“S.-type”) spin-
orbit coupling Gg, (r,m1,ma, S1,S2) has been recently
extracted from other GSF computations in Refs. [24].]
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II. CONNECTION BETWEEN THE GSF
CORRECTION TO THE REDSHIFT AND THE
O(m?) CORRECTION TO THE TWO-BODY
HAMILTONIAN

The first law of binary black hole mechanics [41H43]
allows one to relate Detweiler’s redshift function to the
Hamiltonian of a two-body system. In the circular case
(to which we shall restrict ourselves here), the latter first
law equates (to linear order in S) the redshift of particle

L
oL (ds
Yo \at ),

to the partial derivative of the total (two-body) Hamil-
tonian (including the contribution of the rest masses,
my + mg) with respect to (wrt) my:

(2.1)

1 OH
—=2z1= —(T,P¢7mlum2751752) +O(512)

i oy (2.2)

Note that the dynamical variables [d r, Py, S1,52 are
kept fixed when differentiating wrt m;. [Here P, =
(P, Py, Py) denote the canonical momenta of the rela-
tive position vector in the center of mass frame, so that
P, is the total orbital angular momentum of the system.]

In the following, we shall restrict ourselves to the case
S1 =0. Eq. ([Z2) then yields z; (or, equivalently, U =

OH

ﬁ(eT,Q,ml, ...):= |H(r,Py,mq,...) — P¢W(T, Py,mq,...) —r——(r, Pg,mq,..
[

Let us apply this Legendre transform to a two-body
Hamiltonian of the form

H(r,Pg,my,...) =mg+m H™) (rps...)  (2.7)
+miH"D (1, py, ...) + O(m})

where we introduced the following rescaled (and dimen-
sionless) angular momentum

Py

mimsa '

Py = (2.8)
It is then easily found that, along circular orbits (i.e.,
for e, = 0), and for a given value of the dimensionless
frequency parameter (2.3]), we have the simple link

1 2
5621 (y7 e ) = mlH(ml)(r7 Dy, - - ) ZHD (rpy,.. =0,
%H(ml)(r,p@..,):mﬂl
(2.9)

2 For the considered circular, equatorial, parallel-spin case, where
Pr=0,0=7%, Pp=0.

1/z1) as a function of dynamical variables: z1(r, Py). By
contrast, GSF computations give access to the self-force
correction dz1 to 21 (or, equivalently, 6U = —dz1/23),
considered as a function of the dimensionless frequency
parameter

y = (Mo (2.3)

(and of the dimensionless spin parameter do = Sa/m3).
As Q is the partial derivative of H wrt orbital angular
momentum

OH
Q= —(Tv P¢7am17m25‘92)7

5%, (2.4)

the passage from the variable P, to the variable £ or,
more completely, from the pair of variables (r, Py) to the
pair of variables (e, 2), where

er = —(r, Py, m1,m2,52) (2.5)

or

denotes the radial equation of motion (namely, e, = 0
along circular orbits), is conveniently associated with the
following Legendre transform of the Hamiltonian (where
the ellipsis denote mo and Ss, or, equivalently, mo and

as)

on (2.6)

) Py=Py(2er) *

or r=r(Q,e,)

In other words, the first-order GSF correction (as func-
tion of m2€)

521 (yu ma, 52) = _ZféU(y7 ma, 52)

_ 5U(y7 ma, 52)

Uz
is simply numerically equal (along circular orbits) to
(twice) the value of the O(m?) contribution to the two-
body Hamiltonian (as a function of the variables r, pg,
ms and S). This simple algebraic link (which does not
involve any differentiation of H (m?)) generalizes to the
spinning case the algebraic link between dz; and the O(v)
contribution to the EOB radial potential found in Ref.

[15].

In view of the usefulness of the EOB formalism for
describing the interaction of two-body systems, we shall

(2.10)

3 For the redshift, z; or its inverse U = 1/z1, considered as
functions of m2(), we denote the O(m;) GSF correction (in-
cluding its factor m1) by a §, so that, e.g., z1(m2Q,m1) =
z1(m2Q,0) + 521 (m2Q) + O(m?2).



transcribe the simple link (Z9) in terms of the building
blocks of the EOB Hamiltonian. We recall that the EOB

Hamiltonian is first written as (with M = mj +ma, p =
myima/M, v = p/M)

H
H(T’PT’P¢7m17m2751752):M\/1+2I/< . _1>7
1

(2.11)
where the effective Hamiltonian Heg has the general form
(here considered for the equatorial circular dynamics of
parallel-spin binary systems) [37, 144]

Hegr(r, L, ma,ma, S1,S2) = G&™°LS + GE™* LS.

+4/A (;ﬂ + f—j) . (212)

Here L = Py is the total orbital angular momentum of
the system, S and S, are the following symmetric com-
binations of the two spins

S = Sl + SQ =mia1 + Mmaasg

2 2.
=mia; +msas,

m m
S, = 28 + — 85 = moay +mias
my 2
= mlmg(dl + dg) , (2.13)
72 is the following (squared) “centrifugal radius”
2M
r2=r?4+ad (1 + —) (2.14)
r
with
apg = ax + ag = mldl + deg 5 (215)
and where Gghys(r, m1,ma,S1, Sa),

Ggﬁ’ys(r,ml,mg,Sl,Sg) are two spin-orbit coupling
functions.

The structure of the effective Hamiltonian, Eq.
@I2), shows that the energetics of circular orbits
can be encoded in three separate functions: two
spin-orbit coupling functions, Gghys(r, m1,ma, S1, Sa),
Ggﬁ’ys(r,ml,mg,Sl,Sg) and one radial potential
A(r,mq, ma,S1,S52). All these functions a priori depend
on the two spins S; and S;. In addition, the spins
enter the centrifugal term L?/r? via the definition
ZI4) of r2. [Following [45] we have taken as effective
Kerr parameter in 7‘(2: the combination ag = a1 + as
which encodes the leading-order (LO) spin-spin coupling
[4].] While the EOB radial potential is dimensionless,
the spin-orbit coupling functions Gghys, Gg}:ys have
dimension [length] = or [mass] =3 (in the units G = c =1
that we use). It will be convenient in the following to
work with the following dimensionless versions of these
functions

Gs(r,m1,ms,51,52) = M?’Gl;hys,

Gs, (r,mi,ma, S1,S2) = M3GS™,  (2.16)

where M = mq + ms.

In the following, we shall restrict ourselves to the case
where the spin S; vanishes. In that case, the dimen-
sionless, u-rescaled effective Hamiltonian Heg = Heg /1t
reads

Heg (1, pg,m1, ma, S2) = GsppXoas + Gg, ppras

+ /A + p2u?), (2.17)

where

M\? u?
2 _
=(=) = 2.18
Ye (r> 1+ a2u2(1 + 2u) (2.18)
with
M . a N

u=-—, Go= MO = Xoas (2.19)

In view of the form (ZII)) of the EOB Hamiltonian, the
link, Eq. (29), between the first-order GSF contribution
0z to the redshift and the m;-expansion of the Hamilto-
nian, shows that dz; only depends on the first-order GSF
contribution to Heg, and therefore on the first-order con-
tributions to A and Gg. We parametrize the latter by
decomposing A and Gg as

A(r,m1,ma, Sz) = AR (r, M, ag) + 6A + O(v?),
Gs(r,mi,ma, S2) = G5 (r, M, ap) + 6Gs + O(v?),

where the consideration of the Hamiltonian of a non-
spinning test-particle in a Kerr background (here con-
ventionally taken of mass M = mj; + mg, and Kerr pa-
rameter ap = a; + ag = ag) determines the zeroth-order
GSF potentials as (see Appendix)

AR (1 M ag) = 1 — 2u + 4adu’u?

GEer (r, M, ag) = 2uu?. (2.20)

On the other hand, the presence of a factor v in the
Gg, contribution to Heg, Eq. (@2I7), implies that §z;
only depends on the zeroth-order GSF contribution to
Gg,. The latter is determined (as emphasized in [46])
by the spin-orbit coupling of a spinning test-particle in
a Kerr background. Following Refs. [44], the latter is
most simply determined by computing the geodetic spin-
precession rate. When considering, as we do here, equa-
torial circular orbits the spin-precession only depends
on the equatorial restriction (§ = 7/2) of the metric,
say ds, = —Aeqdt? 4+ 12(dp — Weqdl)® + Beqdr®. Sep-
arating the spin-orbit contribution linked to the metric
functions Aeq, 72 and Bey from the spin-spin interaction
linked to weq (i-€., calculating simply the spin precession
with weq = 0), yields

2
Gtcstfparticlc o M
S -\

Tc

reVy/Aeq
1+VQ

T (1- V"”c)\/A_cq
V@

+0(v), (2.21)




where V = (Boq)~'/2d/dr is a proper radial gradient
and Q = 1+ P} /(pre)®. [Here, we are in the small mass-
ratio limit and we denoted, for simplicity, the large mass
by M and the small one by u. One could equivalently
replace M by mg and pu by my.] The explicit, relevant
. test—particle
expression of Gg

in the Appendix.

in a Kerr background is given

Using the above results, and notations, we derive the
following explicit algebraic link between the GSF correc-
tion dz1 to the redshift and the GSF corrections 6 A, G g
to the two relevant EOB potentials:

1 _ [0A(u,a) ) .
5521 (y,a) = o + ppadGs(u, a)
FrK(u, @)], () - (2.22)

In this result, which is valid only to order O(v), z; and py
can be replaced by their (circular) test-mass limits (com-
puted in a Kerr background). The explicit expressions
of 2K and pfge” (as functions of v and @) are given by

(see Appendix A)
pierr _ 1 — 2a0u®/? + a3u?
* T a1 3u+ 2a0u3?
V1 = 3u+ 2a9u3/2

R e 7 (2.23)

Kerr
<1

To simplify the notation, we have denoted the dimen-
sionless spin parameter entering the O(v) corrections of
Eq. @222), as a [It is equal to a2 = lim, 0 ag, the di-
mensionless Kerr parameter of the large mass.] In ad-
dition, the extra contribution vK(u,a) in Eq. (222)
gathers the analytically known contributions to %5z1
coming from various O(m?) terms entering Eq. (Z.II)
[coming from various occurrences of M = mj + mg or
Xo =1 —my/(m1 + ma), and from the square-root na-
ture of H as a function of 1 + 2v(Heg — 1)]. The latter
known contribution is explicitly given by

2
1 1—4u(1-tavu) X
K(u,a) = T 30 20 + K(u,a) ,(2.24)

where
and
a=zu*(l—¢),
B=alGs, +2uul(l—29)],
y=—(1-29)%, (2.26)
Z1
with
¢ = a*uu?. (2.27)

The (dimensionless) first-order GSF contributions § A
and dGg are, modulo a prefactor v, functions of me/r

and dz. As dA and 6Gg are O(v) corrections, one can
denote their arguments (as we did for vK) simply as u
and a.

The last step which is needed for computing the func-
tion 6z1(y,a) in terms of the functions §A(u,a) and
dGs(u,a) is to express the dimensionless gravitational
potential u = mga/r + O(v) as a function of the dimen-
sionless parameter y, Eq. (23). At the zeroth-order in
v where this transformation is needed, this follows from
the known Kepler law around a Kerr black -hole (of mass
mg and spin Ss), which is (see also the Appendix)

u™ = y'(y, a) (2.28)
where the function y'(y, a) is defined as
FiAN Y
y'(y,a) = A= ay? 2 (2.29)

Eq. ([Z22]) is one of the main tools of the present paper.
We will show in the following how to use it to extract
both dA(u,a) and 0Gs(u,a) from the GSF calculation
of 6z1(y, a), thereby furthering our current knowledge of
spin-dependent interactions in binary systems.

III. ANALYTICAL COMPUTATION OF THE
SELF-FORCE CORRECTION TO THE
REDSHIFT FUNCTION AROUND A KERR
BLACK HOLE

Detweiler |9] has pointed out the potential importance
of computing the (gauge-invariant) first-order GSF cor-
rection dU () to the redshift function (%)1 = U(Q),
associated with the sequence of circular orbits of an ex-
treme mass-ratio binary system m; < mo. He pio-
neered the computation (both numerical and analytical)
of U () in the case where the large-mass body is a
Schwarzschild black hole. Many works have extended
his results to higher accuracy, and have generalized the
redshift function to other gauge-invariant functions [10-
29].

The generalization of the redshift function to the case
where the large mass is a Kerr black hole poses signif-
icant technical challenges, which have been tackled in
Refs. [19, 120] by using a radiation gauge together with
a Hertz potential approach. Here we apply to the ap-
proach of Refs. [19,120] the analytical techniques we have
recently developed to compute the PN expansion of §U
in the Schwarzschild case |21, 122]. The generalization of
our analytical approach to the Kerr case is conceptually
straightforward (in view of the work of Refs. [47,48]) but
has necessitated quite a few new technical developments.
We shall leave to future work a detailed explanation of
the latter technical tools, and recall here only the ba-
sic conceptual aspects of our analytical approach, before
giving our final results.

Computing the ﬁrst—ordgr GSF correction 0U (maf2, a2)

¢

to the redshift function (£)1 = U(m2€, a2) (or, equiva-

lently, the correction §z1(maf2, az2) to 21 = (%)1 =1/U)



is equivalent to computing the regularized value, along
the world line y}* of the small mass m4, of the double
contraction of the O(m;) metric perturbation h,,

G (3 m1,ma, 2) = gO) (w302, G2) + by () + O(m3)

(3.1)
[where gfg,) (x;ma,d2) is a Kerr metric of mass my and
spin So = m3as] with the helical Killing vector k9, =
Ot + Q0 [such that uf = Wi k).

e More precisely,
the function

Pk (M2, a2) = Reg, ., [P (2)k" ] (3.2)

(computed in the mostly-plus signature) determines both

1h
SU (M2, dig) = +5 — (3.3)
2 2y
and
o Lhgg
621(77129,(12) = B o . (34)

On the right-hand side (rhs) of these expressions z; de-
notes the zeroth-order redshift (computed for a test par-
ticle in Kerr), as given by the second Eq. [223)).

In addition, the dimensionless gravitational potential
u=mz/ro+ O(v) (where rq is the orbital radius) enter-
ing the latter expression must be expressed as a function
of the dimensionless orbital frequency m2£2 by means of

Egs. 2.28), @29).

4 We introduce explicit minus signs on hy, and U because, in view
of the mostly-minus signature used in |19, 20] that we followed,
we actually computed them within the latter signature, while we

The regularization of hy; is effected by: (i) de-
composing the PN-expanded hgy in its various (spin-
2) spheroidal harmonics contributions o« 9Spn,; (i)
transforming (spin-2) spheroidal harmonics into (spin-2)
spherical harmonics 2Y},, (as an expansion in powers of
aw = maf); (iil) summing over the “magnetic” num-
ber m; and, finally, (iv) subtracting the | — oo limit
of each (PN-expanded) multipolar contribution hl, =

Zin:_l h;ﬂl;" ). We have checked that the regularized

value of hy(ro) is independent of whether r — T(J)r or

=Ty .

Our analytical results are obtained as a double expan-
sion in powers of y (or, alternatively, of u = /(y,a))
and in powers of @ = Go. We have pushed the calcu-
lation up to y?% included and a* included. [Note that
y?® ~ u® ~ 5 correspond to the 8.5 PN level.] When
expressing it in terms of v = y'(y,a) (with Eq. (229)),
our result for hyy reads

o o, @) = A () - ) () + 2 hiG) (u)
1
+ a®h{3 (u) + a*hl) (u) + 0(a), (3.5)
wherd]
5 1261 41
— RV () = +2u—5u2—1u3— (——24 + EW2 utt.
(3.6)

is the Schwarzschild (non-spinning) result (which is
known both numerically [16] and to a very high PN or-
der |26,[29]), and where the spin-dependent contributions
read

defined, as most of the literature, including our previous work,
hir and 6U = %hkk/zf in the mostly-plus signature.
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Beware that Eq. (B3] (with Egs. (8:6]) and (371)) yield
the functional dependence of hyx on mof) and as through

the auxiliary function u(m2€,a2) = y'(y, a). Because of
the spin-dependence of the relation y'(y,d), the double
expansion of hy(y, @) in powers of y and @ would modify
the expressions of the coefficients of the various powers

of @ in Eq. (B1).

While we were finalizing our calculations, Shah pre-
sented, in various conferences |39, |40], some analytical
results on the PN expansion of the function §U (y,a).
To ease the comparison between ours and his results, let
us also present the form that our results take when ex-

pressed in terms of the functional dependence of U =
hix/(223) on y (rather than u = y/(y,a)) and . Namely,

%W (y,a) = SUSMY (y) + asU D (y) + a26U P (y)
1

+ 35U (y) + a*oU (y) + 0@°), (3.9)
where
121 41
SUSMY(y) = —y — 2% — 55 + (—— + —7r2> vt
3 32
(3.10)

is the Schwarzschild result (i.e., A" (u)/(2(1 — 3y)3/?)
and where
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all computed up to O(u'®Inw).

The analytical results recently presented by Shah are
less accurate than ours (they stop at order G132, a%yS,
a*y'3/? and a*y®, respectively), but agree with ours.

Several features of our results are to be noted:

1. The expansion of hgx or 6U in spin has the struc-

ture

hie ~u(l+u+u?+..) +blu+u®+...)
+ A +ut+u+. )+ +utu+..)
+ 01 +utu?+..) (3.12)

where b = au®/? (and where we omitted numerical
coefficients in the various PN-correcting parenthe-
ses p(u) =1+u+u?+...)



2. The normal structure of PN expansions [proceeding
by successive integer powers of u = O(1/c?) in the
various correcting parentheses p(u) = 1 +u +u? +

. entering Eq. (I2) above] breaks down at the
fractional 5.5 PN order i.e., in a term oc u''/? in &

o(u) = co + cru + cou® + csu® + cqut + csu®

+ es5uM? 4 cqul + cosut? 4 (3.13)
[For recent discussions of the similar 5.5PN
breakdown of the normal PN expansion in a
Schwarzschild background see Refs. 22, |49]]

3. It was pointed out in 25, 50] that the first logarith-
mic terms in PN expansion (which are linked to the
near-zone effect of tails [11, [12, [51]) come accom-
panied by an Euler constant v in the combination
v+ 1In(Qrg/c). This “Eulerlog” rule is first violated
at the 8PN level in nonspinning systems [23, |52].
By contrast, Eq. (BI1)) shows that, in presence of
spin, the Eulerlog rule is violated at the (earlier)
6.5PN level (i.e., in a term o Gu'®/?). We shall
discuss in future work that the origin of this be-
havior is linked to the boundary condition at (and
the energy flux down) the horizon.

IV. ANALYTICAL COMPUTATION OF THE
SELF-FORCE CORRECTIONS TO THE EOB
SPIN-DEPENDENT POTENTIALS

In Eq. (222) we have exhibited the connection between
821 = —226U and the GSF corrections 64, 6G's to two of
the EOB coupling functions. In order to extract from the
single function of two variables dz1(y, G) the two separate
functions of two variables 0A(u, a), dGs(u,a), we need
to normalize the latter functions by restricting their spin
dependence. In the present paper, we use the Damour-
Jaranowski-Schéfer gauge [53] where the circular limits of
JA and 0Gg are similar to their (zeroth GSF order) Kerr
counterparts in that they depend on u but not on pys. As

5 Note that co = 0 in the term linear in b.

it is clear from Eq. (Z20), AX* (u, ) and GE°" (u,a) are
even functions of a. It is then natural, and convention-
ally possible, to restrict the d-dependence of § A(u, @) and
dGs(u,a) by requiring that they are both even functions
of a. Tt is also convenient to: (i) decompose §A(u,d) in
its spin-independent piece Ag%)F(u) and a spin-dependent
contribution a2 f4(u,a?); and (ii) introduce some rescaled
versions of f4 and §Gg.

Namely, we write
JA(u,a) = AlQp (u) + @ fa(u, )
— A () + Buta> fC (u,62)

0Gs(u,a) = —§u46G?SC(u,d2), (4.1)
with the additional de%omposition
fgesc(u, d2) _ I(LxO)resc(u) + &2f1(42)resc(u)
]
3G (u,6%) = 6GY" (u) + a20GE (u)
+atoG ) (u) . (4.2)

The rescaling factors 3u® and —3u? in Eqs. @) are
the leading-order (LO) PN contributions so that the PN
expansions of both f1° and 6G'$*° start as 1 + O(u).

We have truncated the latter decompositions in powers
of @ to the O(a*) level because we shall see below that
the truncated expansions ([{.2)) allow one to parametrize
the numerically known spin dependence of 6U(y, a) even
for large spins |a| < 0.9. Evidently, the exact functions
155¢(u, a?) and 6G$*°(u, a?) involve higher powers of a2.
On the other hand, our present limited analytical knowl-
edge of dU(y,a) allows one to have information about
1155¢(u, a?) and §G'5¢(u, a?) only through the a* terms.

Identifying the various powers of v and @ on both sides
of Eq. (2:22) allows one to convert our analytical results
BI0)-EII) into an analytical knowledge of the PN ex-
pansions of f{""**(u) and 5G(Sn)resc(u) (with n = 0,2),
with the following results:
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expansions that were known from standard PN compu-



tations were the next-to-leading-order (NLO) corrections
to 6G(é9)msc (i.e., 1+12u) [54,155] and to f{go)msc(u) (ie.,
1+ lu) [56).

V. NUMERICAL COMPUTATION OF THE
SELF-FORCE CORRECTIONS TO THE EOB
SPIN-DEPENDENT POTENTIALS

Shah, Friedman and Keidl [20] have numerically com-
puted the values of the function §U(y’,a) for a sample
of radii 7o = ro/M = 1/y’' = 1/u (between 4 and 100)
and of dimensionless spin parameters a (namely =+ 0.9,
+0.7, £0.5, 0.0). [Actually, the data published in [20]
were marred by a technical error, but A. Shah kindly
provided us with a corrected version of Table IIT in [20].]
For a sub-sample of the latter data, Shah et al. com-
puted dU (y’,a) for various values of @ but for the same
value of the inverse radiudl. In view of the (assumed)
even spin dependence of A and 0Gg in Eq. [2.22), we
can then extract the numerical values of § A(u, |a|) and
dGs(u, |d|) by suitably projecting both sides of Eq. (2:22)
(after multiplying them by appropriate, known Kerr fac-
tors). Explicitly we find

1 [ (36 - 1)

0Gs (u, ) = — pEaRe (5.1)
{;;}; (%621 . IC):|eVeI]

5A(u,a) = 22 (5.2)

:| even

[Pﬁfz{‘

Here, both sides are to be evaluated at the same value
of u = y' = u(y), the superscripts K denote taking
a Kerr (-circular) value, and the superscripts “odd” or
“even” denote the operation of taking, respectively, the
odd or even part of a function of @, namely

1
[F(u, a)]" = 5 (F(u, @) + F(u, ~a))
1
[F(u, @) = 5 (F(w,6) = Flu,-a)).  (5.3)
The numerical values of the rescaled functions

0G$%(u,lal) and fi°°(u,|a|) we found by applying
the above projection formulas to the corrected data
communicated by Shah are listed in Tables I and II
below.

6 Note that Ref. [20] parametrizes the circular orbits by the Boyer-
Lindquist radius 79, which corresponds to fixing the modified fre-
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In these Tables the digits within parentheses indicate
a rough estimate of the numerical uncertainty on the last
digit of the corresponding numerical values of G and

TABLE I. Numerical values for G5 (u, |al).

u 0G5(u, 0.5) 0GS(u,0.7) 0G%(u,0.9)
1/100 1.221(5) 1.229(4) 1.239(3)
1/70 1.322(2) 1.333(1) 1.3478(8)
1/50  1.4614287(1)  1.47711466(7)  1.49802501(5)
1/30  1.81295880(4)  1.83965095(4)  1.87522164(2)
1/20  2.30788136(4)  2.34941806(1)  2.40474331(2)
1/15 2.8736(2) 2.93195(2) 3.009697(3)
1/10  4.27400044(4)  4.37851888(3)  4.51778792(8)

1/8  5.64616283(1) . .
TABLE II. Numerical values for f7°°°(u, |al).

u 15%¢(u, 0.5) Fi%(u, 0.7) Fi%(u, 0.9)
1/100 1.0(5) 1.0(2) 1.0(1)
1/70 1.04(9) 1.04(5) 1.04(3)
1/50 1.063828(5) 1.063926(2) 1.064057(2)
1/30 1.1173441(9)  1.1176295(8)  1.1180100(3)
1/20 1.1993228(7)  1.2000319(4)  1.2009773(4)
1/15 1.302(3) 1.3037(2) 1.30564(2)
1/10 1.5991204(3)  1.6042429(2)  1.6110832(4)

1/8 1.9497140(1) - -

fi5¢. These error estimates were obtained from the error
estimates on 06U (y', @) kindly communicated by A. Shah.

By looking at the a-dependence of 6G'$*° and f1%° (for

a fixed value of u = y) in Tables I and II one sees imme-
diately that it is rather mild. We found that it is numeri-
cally accurate to use the truncated expansions ({.2)) to fit
the numerical data. [Note that these expansions include
one more power of @2 than the ones we could extract from
our analytical results.] For each function dG'§™ or fi,
and for each value of w in Tables I and II, we can use
the three numerical results for a? = (0.5)%, a? = (0.7)2
and a? = (0.9)? to extract (by solving a linear system
of three equations in three unknowns) the corresponding
numerical values of the coeflicient functions 6G(S")msc(u),
Xl)resc(u) (with n = 0,2 and 4). The numerical values
we found for these coefficient functions are listed in Ta-
bles IIT and IV below. We did not propagate the numeri-
cal errors affecting 0G'g™¢ and f}**° to their corresponding

coefficient functions 6G(Sn)msc(u)a ,(an)msc(“)'

quency parameter y’, Eq. (2:29)), such that u = 1/79 = y/(y, a).
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TABLE III. Numerical values for 6G(Sn)msc (w).

u 6Ggo)res0(u) 5G(Sz)resc(u) 5G(S4)reso ()
1/100 1.21297347 0.32298056 x10~! -0.23967471 x107°
1/70 1.31023001 0.46361889 x 107! -0.88948253 x107°
1/50 1.44508613 0.65376139 x10~* -0.24062736 x10~*
1/30 1.78514161 0.11129505 -0.10509689 x10~3
1/20 2.26457500 0.17330498 -0.31813647 x1073
1/15 2.81269577 0.24365352 -0.54588538 x10~3
1/10 4.16506631 0.43586052 -0.49597783 x 1073

TABLE IV. Numerical values for fxl)resc (u).

u X))rcsc () éQ)rcsc () X;)msc (u)
1/100 1.03848559 -0.19044446 x10~! 0.12349670 x10~*
1/70 1.04376926 -0.24085514 x10~* 0.14850697 x 1073
1/50 1.06372483 0.41107182 x103 -0.14807331 x10~°
1/30 1.11704682 0.11890403 x10~2 8.51657317 x1078
1/20 1.19858425 0.29543259 x 1072 1.22022631 x10~7
1/15 1.30055059 0.66125741 x102 -0.40611727 x10~3
1/10 1.59379299 0.21293650 x107* 0.64609073 x10™*

TABLE V. Numerical vs theoretical values for 6U(u,a = 0.5).

u SU™™ (u,a = 0.5) (Shah [38]) SUFN-theor jspyoum _ SUEOB-theor /gprmum _
1/100 -0.0101896245(5) -0.00000001(5) -0.00000001(5)
1/70 -0.0146705787(5) -0.00000000(3) -0.00000000(3)
1/50 -0.02075117876615(8) -0.000000000006(4) -0.00000000053(4)
1/30 -0.0354163457476(3) -0.000000000941(4) -0.00000000203(4)
1/20 -0.054722233077(1) -0.0000000327(2) -0.00000002109 (2)
1/15 -0.07519039(3) -0.0000004(4) -0.0000002(4)
1/10 -0.12016503504(2) -0.0000123021(2) -0.00000724874(2)

1/8 -0.15830027075(1) -0.00008135993(6) -0.00005156354(6)
1/7 -0.18858304135(2) -0.0002521042(1) -0.0001621950(1)
1/6 -0.2342693592(1) -0.0009347921(5) -0.0005626589(4)
1/5 -0.3135069374(1) -0.0044620321(3) -0.0016218169(3)

VI. COMPARISON BETWEEN ANALYTICAL
AND NUMERICAL RESULTS

In Figs. I and 2] we compare our current analytical

expressions of the various EOB potentials 6G(Sn)resc(u),

I(L‘")msc(u) to their numerical counterparts, extracted

from the strong-field data computed by Shah et al. As
we see, there is an excellent visual agreement between
the numerical results (indicated by discrete dots) and

the analytical ones (continuous curves) for 5Gg))msc(u),
§G592)YCSC (u) and fio)rcsc(u). The only function for which

there are noticeable differences is ff)rcsc(u). It is then

possible to improve the numerical/analytical agreement

by adding some (effective) higher-order contributions to

1(42)resc(u)’ say fx(L‘Q)resC,ﬁt(u) x(f)resC,PN(u) + (Cl +

ca2In(u))ub. By fitting the numerical-minus-analytical
difference we found the following estimate of the higher-
order coefficients: ¢; = —24303.04 and co = —11754.74.
We have instead no analytical prediction for both
5G(S4)YCSC and fz(f)msc, which would need an analytical
knowledge of dU at higher orders in a. On the other
hand, we found that the data points for the rescaled

quantity u_3§Gg4)mSC can be easily fitted. For exam-



ple, a quadratic fit of the form 262.1643u? + 0.2878u —
3.1256 shows a reasonable agreement with the exist-
ing data points. We refrained from similarly fitting

for higher-order corrections to (5G(b9)r°sc, (56'(52)mC and

1(40)resc, except for 5Gg0)resc for which we found a good
O)rescfit

fit (within 5.6 x 107%) of numerical data to 5G(S
5GOre PN L (983.354-3330.99 In(u))u”. The data points

for ff)rcsc are affected by large errors and a fit in this
case does not seem meaningful.

Because of the need to have in hands numerical data
with the same value of u and several pairs of opposite
values of @, the numerical values of the various extracted
EOB potentials in Tables III and IV were limited to
the semi-strong-field region 0 < v < 0.1. In order to
gauge the validity of our analytical results for larger val-
ues of u, we compared the values of the redshift correction
0U (u, @) predicted by inserting in the rhs of Eq. (2.22]) our
analytical PN-expanded results (3I]) to the (corrected)
numerical data of Ref. [20] (using §z0™ = — 235U ™).

We display in Table A% the ratios
sUanalytical /grrnumerical 1 for two different analyt-
ical predictions of 0U: either the straightforward PN
expansion ([B9) or its EOB-theoretical form (222) (in

which we use the PN expansions of the functions 5ng)
and ¢ f&n), Eqs. (@3), and the numerical knowledge

of Ag%)F(u) as given by model 14 in Ref. [16]). For
information, we indicate an estimate of the fractional
numerical uncertainty on U™ ™eral communicated by
Shah. Let us first note that the EOB version of our ana-
lytical estimate is systematically more accurate than the
corresponding PN estimate. The analytical/numerical
agreement is (as expected) excellent in the weak-field
regime |] (u < 1) and stays rather good (especially for
the EOB version) in the strong-field regime (see the
U = % EOB data point which agrees within 1.6 x 1073
with the numerical data).

We leave to future work a study of methods for im-
proving the analytical/numerical agreement. In particu-
lar, we know from the arguments of Ref. [16] that dz; will
blow up proportionally to 1/z7 near the light ring (where
z1 — 0) or, equivalently, that §U will blow up propor-
tionally to U% = 1/z} there. As explained in Ref. [16],
this blow up suggests that one should introduce in the
concerned EOB potentials some pg dependence. How-
ever, the introduction of such a ps dependence will, in
turn, modify the parity of the functional dependence on
a of the concerned EOB potentials. [Indeed, we see on
Eq. (2:23) that the circular value of p, has no well-defined
parity in a.] Let us finally mention that, in order to
achieve a more complete knowledge of f4 and dGg in

7 However, the rather large errors on the data points at 7o = 100
and 70 show that these points do not bring meaningful informa-
tion beyond our analytical results.

13

the strong-field domain, it would be necessary to have
more numerical data on §U, with some suitably chosen
sampling of the (u, a) plane. In particular, data for small
values of a@ would be useful for controlling the strong-field

behavior of 5G§;O) (u) which is of most physical interest
(see end of Conclusions).

VII. CONCLUSIONS

Let us summarize our main results:

We derived the very simple relation Eq. (29) between
the GSF correction dz; to the redshift (considered as a
function of the orbital frequency) and the O(m?) con-
tribution to the two-body Hamiltonian (considered as a
function of phase space variables). The latter relation
then implied the simple relation ([Z22]) between dz; and
the O(v) contributions to the EOB coupling functions A
and Gg.

We analytically computed the PN expansion of §z; (or,
equivalently, U = —§21/23) up to order O(u?-%) included
and O(a*) included. See Eqs. (3.I1). We then converted
the latter expansions (using Eq. (2:22))) into correspond-
ingly accurate PN expansions of the O(v) corrections 0 A,
0Gs to the EOB coupling function A, Gg. The latter re-
sults represent drastic improvements in our knowledge of
the spin-dependent interactions encoded within the EOB
potentials A and Gg.

Going beyond PN expansions (whose validity is a priori
limited to the weak-field domain u < 1), we showed how
to extract the numerical values of A and dGg in the
strong-field domain v = O(1) from the numerical GSF
calculations of §z1 [20]. See Egs. (510), (52) and Tables I
and II. We then compared the latter numerical results
to our high-accuracy PN expansions and found excellent
agreement when u < 1, and a good agreement (~ 1073)
up to u = 0.20 (corresponding to 1o = 5M).

Let us finally discuss what is probably the physically
most important result of the present work. It concerns
the main EOB spin-orbit coupling function Gg. Both
our analytical results and our GSF-extracted numerical
data show that the rescaled GSF correction dG'$%(u, a)
significantly increasedd from its value 1 at large separa-
tions (u — 0) to values of order 5 at separations of order
ro ~ 10M (ie. u ~ 0.1). However, the LO rescaling
factor used for 0Gg is negative, and equal to —gu‘l. This
means that the GSF correction tends to diminish the
value of the total spin-orbit coupling. This confirms what
was found in the previous (less accurate) PN calculations
[53-55]. Let us consider for simplicity the @ — 0 limit of

8 Similarly to a corresponding increase of §A when G = 0 [16], this
increase is linked to the blow up of §Gg at the light-ring.
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FIG. 1. Panel (a): The data points and the theoretical predictions for 6GY " (u). Panel (b): The data points and the
theoretical predictions for 5G(S2)resc(u).
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FIG. 2. Panel (a): The data points and the theoretical predictions for fx(f)msc (u). Panel (b): The data points and the theoretical

predictions for f,(f)resc(u)'

(s and work with the Kerr-rescaled spin-orbit coupling GSF) knowledge of the latter function is

A 5 resc 1
A .. Gg(r,mi,ma,S1,852) Gs(u,1,0,0) =1~ —VU5G(SO) (u) — —v*uPpr (u)
GS(U,V,al,CLQ) - K 16 16
Gscrr(T’ml + ma,a1 + ag) + O(V?’) (7'2)
0Gg
=1 + G?err (71) = (1 + %V’U/éGg))rcsc(u)
41

-1
(taken for S; = 0 = S3). The current (combined PN and +2—56y2u2g02(u) + O(V3)> ,
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FIG. 3. The data points for fﬁf)msc, the theoretical PN predic-

tion (dashed curve) and the fit fﬁf)resc'ﬁt (u) = fﬁeSC’PN (u)+
(c1+ c2 ln(u))u6 where ¢; = —24303.04 and ¢ = —11754.74.
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FIG. 4. The data points for the rescaled quantity
%5Gg)resc(u) for which no theoretical prediction is available.

The solid curve superposed to the points corresponds to a
(quadratic) fit by the function 262.1643u? +0.2878u — 3.1256.

where ¢, (u) = 1+ O(u) denotes a generic PN correction
factor. In the second equation we have used an inverse
resummation of Gg as found useful in recent EOB work.
Damour and Nagar ﬂﬁ] have a provided an effective ex-
pression for 1/Gs(u, v,0,0), parametrized by a constant
c3 as indicated below

[Gs(u,v,0,0)] 1 =1+ 1—561/u (1 + %u)

41
+esvud + %V%ﬁ . (7.3)
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FIG. 5. The quantity és(u, 1,0,0) used in Damour-Nagar
(dashed curve) [31] as well as the present determination (solid
curve) are compared in the case v = 0.25.

Using our result, Eq.(@3)), for 6GgJ)reSC(u) we can define
an effective function of u, ¢§f = c§¥(u), such that the
replacement c3 — 5 (u) in (T3) is consistent with our
full PN-expanded result. The value at u = 0 of this
5 (u) is found to be
off 80399 241 ,
5 (0) = 5304 384" ~ 28.7012.
One finds that after an initial small decrease from
c3(0) = 28.7012 to ¢3(0.0041) = 28.6175, c3(u) then
monotonically increases with u. It reaches the nu-
merically calibrated value of Refs. [37, [57], namely
cgtibrated — 44 786477, at u = 0.1593 and then continues
increasing towards large values (e.g. ¢3(0.5) = 441.3976).
The inverse-resummed function Gs(u, v,0,0) defined by
inserting our result in the second equation (2)) (with
p2(u) = 1 and O(¥?) — 0) is shown in Fig. for
v = 0.25 and is compared to the calibrated result of
[37, [57]. Note that our results predict a faster fall-off of
Gs in the strong-field domain. It will be interesting to
explore the EOB application of this finding.

(7.4)

Appendix A: The Kerr case: an overview

In the test-mass limit (S; = 0 = my), i.e. in the Kerr
case (with mass mo and spin S3), the effective Hamilto-
nian reads

7(0)
Hy =

e Ar(1+ pi“i}() + QUKU§KP¢d2 ) (A1)

where ux = ma/r, G2 = as/ma = Sa/m3 and
2
1 —4uzy,

1 n 2uK N G?(UK,(AI2) = 2UKU3K7

(A2)

Ak (uk,a2) =



with

2
2maas

A N2 2 2
rex (1, ma, G2)° = 1" + a3 +

fmg(

1+ a3us + 2a2uK)
wi
UK
. A3
V1 + a2u? (1 + 2uk) (A%
Note also the expression of Ax in terms of the Boyer-
Lindquist coordinate ux = mso/7:

UcK (qu d2)

4&%1@1{
1+ a3u?-(1+ 2uk)
=1—2ug +4dazujuly (A4)
The redshift 2y = OHoa/0u, as a function of uk (here-

after we simply denote ugx by v and ucx by uc) and pg,
reads

AK(UK) =1-—2ug +

z1(u, pg, 2) = sl Ge) = /5=
\/AK(u,dg)(l +piuc(uad2)2) Qi
(A5)
where
Qx =1+ pluc(u, dz)”. (A6)

The circular value of the (dimensionless) angular momen-
tum is

1 — 2a9u®/? + a3u?

K ~
Py (u,d2) = . (A7)
¢ Va1 — 3u + 2423/
The corresponding energy per unit mass, E= HCH', reads
. 1—-2 ~ 3/2
B, y) = ——— 2 (A8)

V1 = 3u+ 2a9u3/?

Substituting py = pg (u,a2) in the above expression for
2{€ yields the following “on shell” relation

V1 = 3u + 2a9u3/2
1+ agu/?
The circular expression for the angular frequency param-
eter moQK = OH.s/0Opy (as a function of w after using
Py = Pk (u, ag) given in ([AT)) is (Kepler’s law, for a Kerr

black hole)

(A9)

le(u ag) =

ud/?
O (u, 49) = ———7
ma2 (u, 2) 1+ agus/?
-1
(o) @
It is worth to note the following relations
ArpKu?
Mo = a,GE + KPy (A11)
AK(l + p§2u§)
= ayGE + A—KpKu2 (A12)
5 Qk'*°

= a:,GE —i—z{{pgiﬂ =u; (2ua2+zl p¢)
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Defining

Q= 2 mof) = Uil

Tk (A13)

1— angQ

one finds that this modified frequency satisfies the usual
Kepler law

moY = u®/?. (A14)

In other words, the modified dimensionless frequency pa-
rameter

y = (ma)*/?, (A15)
is such that

Cer — y (A16)

The explicit transformation y — 3’ reads

’ Yy
vy = (1 — agy3/2)2/3
2, 5.

=y |1+ gazy?’/z + §a§y3 +0@%?)| . (A17)

The inverse of this transformation is obtained by ex-

changing ' and y and do — —ag, namely
_ Y
y= (1+ agy/3/2)2/3 (A18)
Expressing z1(y’) in terms of y leads to
X - (1_3yl+2d2y/3/2)1/2
2 (y) = 1T ayy/? (exact)
27
= /1-3y+as (2y5/2 + 3y 4 Zy‘“’”
135 1170, 2835 435 15309 45
T 61 7 128 7
+0(y®,a3) . (A19)
Note that the equation
1—3y +2ay"%? =0 (A20)

defines the light-ring for co-rotating circular geodesics.
Table VII lists light-ring values of 3’ for representative
values of as.

Finally, the explicit expression, in a Kerr background,
of the Gg,-type spin-orbit coupling (defined in an arbi-
trary equatorial metric by Eq. (Z21))) reads

2 [1 — VA1 - a%ﬁ)}
ug[(1+ a*u?)? — da*u’]
u(l+VQx)

Note that this quantity differs from the ratio R =
mgﬂé‘fo / pf between the dimensionless spin-orbit preces-
sion angular velocity [5§]

G (u,d) = 2Hu

(A21)

1 — /1 —3u+ 2a9u3/?
dQ + u*3/2

meQs = (A22)



TABLE VI. Light-ring position y’ for fixed values of as.

!

az Yy
-1.0 0.25
-0.9 0.2557369509
-0.7 0.2684314963
-0.5 0.2831185829
0 0.3333333333
0.5 0.4260220478
0.7 0.4966885468
0.9 0.6419084184
1.0 1.0

and the dimensionless angular momentum pg . Indeed,
the structure of the effective Hamiltonian (ZI2]) shows
that Qé(o = limg, ,0 OHegr /051 is (in the test-mass limit
my — 0 with S7/m; fixed) the sum of two contribu-

17

tions: a contribution o< Gg,ps and a contribution com-
ing from the S; derivative of the orbital effective Hamil-
tonian \/A(u? + L2/r2) [the latter being even in spins,
and therefore notably containing relevant terms of the
form ~ S1(Se + S35 + ...)]. In the Schwarzschild limit,
Gg{f“ reduces to

3u
GE™(u) = ——. A23
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