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Spin-dependent two-body interactions from gravitational self-force computations
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We analytically compute, through the eight-and-a-half post-Newtonian order and the fourth-order
in spin, the gravitational self-force correction to Detweiler’s gauge invariant redshift function for a
small mass in circular orbit around a Kerr black hole. Using the first law of mechanics for black hole
binaries with spin [L. Blanchet, A. Buonanno and A. Le Tiec, Phys. Rev. D 87, 024030 (2013)] we
transcribe our results into a knowledge of various spin-dependent couplings, as encoded within the
spinning effective-one-body model of T. Damour and A. Nagar [Phys. Rev. D 90, 044018 (2014)].
We also compare our analytical results to the (corrected) numerical self-force results of A. G. Shah,
J. L. Friedman and T. S. Keidl [Phys. Rev. D 86, 084059 (2012)], from which we show how to
directly extract physically relevant spin-dependent couplings.

I. INTRODUCTION

The imminent prospect of detecting gravitational-wave
signals emitted by inspiralling and coalescing binary sys-
tems gives a strong motivation for improving our analyti-
cal knowledge of the general relativistic dynamics of two-
body systems. The effective one-body (EOB) formal-
ism [1–4] has established itself as the most accurate way
of analytically describing the inspiral and coalescence of
compact binary systems. Recent years have witnessed a
useful synergy between EOB theory and various other
analytical-relativity approaches to the two-body prob-
lem, notably post-Newtonian (PN) theory [5, 6] and grav-
itational self-force (GSF) theory [7, 8]. Several different
flavors of GSF theory have been useful in this respect:
numerical GSF computations, analytical GSF compu-
tations and, more recently, mixed numerical-analytical
GSF computations [9–29] In addition, numerical relativ-
ity simulations have also been of crucial importance for
completing the current analytical knowledge in EOB the-
ory [30–37].
The aim of the present work is to extract new infor-

mation about spin-dependent two-body 1 interactions (as
encoded in the EOB Hamiltonian) from both analyti-
cal and numerical GSF computations of Detweiler’s per-
turbed redshift function δU(m2Ω, â2) [9] around a spin-
ning (Kerr) black hole of mass m2 and Kerr parameter
a2 = m2 â2.
A formalism for computing the O(m1) GSF correction

to the redshift, δU(m2Ω, â2) (where Ω denotes the orbital
frequency of the small mass m1 in circular orbit around
a Kerr black hole of mass m2 and spin S2 = m 2

2 â2) has
been set up in Refs. [19, 20]. Our high PN order ana-
lytical calculations of δU , whose results we shall present

1 We denote the masses and the spins of the two-body system as
m1, m2, S1 = m1a1 = m2

1â1 and S2 = m2a2 = m2
2â2 (using

units where G = c = 1). We follow here the convention m1 ≤ m2

so that X1 = m1
m1+m2

= 1
2
(1 −

√
1− 4ν), X2 = m2

m1+m2
=

1
2
(1 +

√
1− 4ν) where ν = m1m2/(m1 +m2)2.

below, have been based on the formalism of [19, 20] to-
gether with an extension of the techniques we have re-
cently developed [21, 22] for efficiently computing the PN
expansion of various gauge invariant GSF functions in
the case where the small mass m1 orbits a non-spinning
black hole. While we were deriving our results we were
informed by A. Shah [38] of the existence of parallel work
by him and his collaborators leading also to high PN or-
der computations of δU . Some of their results have been
recently presented in various conferences [39, 40] while
we were finalizing our calculations. There is a complete
agreement between their current results and the more
accurate (in PN order) and more complete (in order of
expansion in â2) ones that we present below. Moreover,
Ref. [20] has published numerical GSF data on the func-
tion δU(m2Ω, â2) especially in the strong field domain.
[Actually, the published data were marred by a minor
technical error, but A. Shah kindly provided us with a
corrected version of table III in [20]]. We will show be-
low how these numerical data can be used to complement
the weak-field knowledge given by the PN expansion of
δU(m2Ω, â2) (to be discussed next) by giving access to
some strong-field information.

A central tool allowing one to relate Detweiler’s red-
shift function to the Hamiltonian of a two-body system
is the so-called “first law of binary black hole mechan-
ics” [41–43]. We shall show below how to use the first
law of spinning binaries [42] to transcribe the informa-
tion contained in the function δU(m2Ω, â2) into a knowl-
edge of the spin-dependent couplings as encoded within
the spinning EOB formalism of Ref. [37]. More pre-
cisely, we shall show (generalizing Ref. [15]) how to alge-
braically extract from δU the first order GSF corrections
to two EOB potentials: (i) the radial equatorial potential
A(r,m1,m2, S1, S2); and (ii) the main (“S-type”) spin-
orbit coupling potential GS(r,m1,m2, S1, S2). [The first-
order GSF correction to the second (“S∗-type”) spin-
orbit coupling GS∗

(r,m1,m2, S1, S2) has been recently
extracted from other GSF computations in Refs. [24].]

http://arxiv.org/abs/1510.06230v1
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II. CONNECTION BETWEEN THE GSF

CORRECTION TO THE REDSHIFT AND THE

O(m 2
1 ) CORRECTION TO THE TWO-BODY

HAMILTONIAN

The first law of binary black hole mechanics [41–43]
allows one to relate Detweiler’s redshift function to the
Hamiltonian of a two-body system. In the circular case
(to which we shall restrict ourselves here), the latter first
law equates (to linear order in S1) the redshift of particle
1,

z1 =
1

U
=

(
ds

dt

)

1

(2.1)

to the partial derivative of the total (two-body) Hamil-
tonian (including the contribution of the rest masses,
m1 +m2) with respect to (wrt) m1:

1

U
= z1 =

∂H

∂m1
(r, Pφ,m1,m2, S1, S2) +O(S2

1 ) . (2.2)

Note that the dynamical variables 2 r, Pφ, S1, S2 are
kept fixed when differentiating wrt m1. [Here Pi =
(Pr, Pθ, Pφ) denote the canonical momenta of the rela-
tive position vector in the center of mass frame, so that
Pφ is the total orbital angular momentum of the system.]
In the following, we shall restrict ourselves to the case

S1 = 0. Eq. (2.2) then yields z1 (or, equivalently, U =

1/z1) as a function of dynamical variables: z1(r, Pφ). By
contrast, GSF computations give access to the self-force
correction δz1 to z1 (or, equivalently, δU = −δz1/z

2
1),

considered as a function of the dimensionless frequency
parameter

y = (m2Ω)
2/3 (2.3)

(and of the dimensionless spin parameter â2 = S2/m
2
2).

As Ω is the partial derivative of H wrt orbital angular
momentum

Ω =
∂H

∂Pφ
(r, Pφ,m1,m2, S2) , (2.4)

the passage from the variable Pφ to the variable Ω or,
more completely, from the pair of variables (r, Pφ) to the
pair of variables (er,Ω), where

er ≡ ∂H

∂r
(r, Pφ,m1,m2, S2) (2.5)

denotes the radial equation of motion (namely, er = 0
along circular orbits), is conveniently associated with the
following Legendre transform of the Hamiltonian (where
the ellipsis denote m2 and S2, or, equivalently, m2 and
â2)

H̃(er,Ω,m1, . . .) :=

[
H(r, Pφ,m1, . . .)− Pφ

∂H

∂Pφ
(r, Pφ,m1, . . .)− r

∂H

∂r
(r, Pφ,m1, . . .)

]
Pφ=Pφ(Ω,er)

r=r(Ω,er)

. (2.6)

Let us apply this Legendre transform to a two-body
Hamiltonian of the form

H(r, Pφ,m1, . . .) = m2 +m1H
(m1)(r, pφ, . . .) (2.7)

+ m2
1H

(m2
1)(r, pφ, . . .) +O(m3

1) ,

where we introduced the following rescaled (and dimen-
sionless) angular momentum

pφ =
Pφ

m1m2
. (2.8)

It is then easily found that, along circular orbits (i.e.,
for er = 0), and for a given value of the dimensionless
frequency parameter (2.3), we have the simple link

1

2
δz1(y, . . .) = m1H

(m2
1)(r, pφ, . . .)

∣∣∣∣ ∂
∂r

H(m1)(r,pφ,...)=0,

∂
∂pφ

H(m1)(r,pφ,...)=m2Ω

.

(2.9)

2 For the considered circular, equatorial, parallel-spin case, where
Pr = 0, θ = π

2
, Pθ = 0.

In other words, the first-order GSF correction 3 (as func-
tion of m2Ω)

δz1(y,m2, S2) ≡ −z21δU(y,m2, S2)

= −δU(y,m2, S2)

U2
(2.10)

is simply numerically equal (along circular orbits) to
(twice) the value of the O(m2

1) contribution to the two-
body Hamiltonian (as a function of the variables r, pφ,
m2 and S2). This simple algebraic link (which does not

involve any differentiation of H(m2
1)) generalizes to the

spinning case the algebraic link between δz1 and the O(ν)
contribution to the EOB radial potential found in Ref.
[15].
In view of the usefulness of the EOB formalism for

describing the interaction of two-body systems, we shall

3 For the redshift, z1 or its inverse U = 1/z1, considered as
functions of m2Ω, we denote the O(m1) GSF correction (in-
cluding its factor m1) by a δ, so that, e.g., z1(m2Ω,m1) =
z1(m2Ω, 0) + δz1(m2Ω) + O(m2

1).
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transcribe the simple link (2.9) in terms of the building
blocks of the EOB Hamiltonian. We recall that the EOB
Hamiltonian is first written as (with M = m1 +m2, µ =
m1m2/M , ν = µ/M)

H(r, Pr , Pφ,m1,m2, S1, S2) = M

√

1 + 2ν

(
Heff

µ
− 1

)
,

(2.11)
where the effective HamiltonianHeff has the general form
(here considered for the equatorial circular dynamics of
parallel-spin binary systems) [37, 44]

Heff(r, L,m1,m2, S1, S2) = Gphys
S LS +Gphys

S∗

LS∗

+

√

A

(
µ2 +

L2

r2c

)
. (2.12)

Here L = Pφ is the total orbital angular momentum of
the system, S and S∗ are the following symmetric com-
binations of the two spins

S ≡ S1 + S2 = m1a1 +m2a2

= m2
1â1 +m2

2â2 ,

S∗ ≡ m2

m1
S1 +

m1

m2
S2 = m2a1 +m1a2

= m1m2(â1 + â2) , (2.13)

r2c is the following (squared) “centrifugal radius”

r2c ≡ r2 + a20

(
1 +

2M

r

)
(2.14)

with

a0 = a1 + a2 = m1â1 +m2â2 , (2.15)

and where Gphys
S (r,m1,m2, S1, S2),

Gphys
S∗

(r,m1,m2, S1, S2) are two spin-orbit coupling
functions.
The structure of the effective Hamiltonian, Eq.

(2.12), shows that the energetics of circular orbits
can be encoded in three separate functions: two

spin-orbit coupling functions, Gphys
S (r,m1,m2, S1, S2),

Gphys
S∗

(r,m1,m2, S1, S2) and one radial potential
A(r,m1,m2, S1, S2). All these functions a priori depend
on the two spins S1 and S2. In addition, the spins
enter the centrifugal term L2/r2c via the definition
(2.14) of r2c . [Following [45] we have taken as effective
Kerr parameter in r2c the combination a0 = a1 + a2
which encodes the leading-order (LO) spin-spin coupling
[4].] While the EOB radial potential is dimensionless,

the spin-orbit coupling functions Gphys
S , Gphys

S∗

have

dimension [length]−3 or [mass]−3 (in the units G = c = 1
that we use). It will be convenient in the following to
work with the following dimensionless versions of these
functions

GS(r,m1,m2, S1, S2) ≡ M3Gphys
S ,

GS∗
(r,m1,m2, S1, S2) ≡ M3Gphys

S∗

, (2.16)

where M = m1 +m2.
In the following, we shall restrict ourselves to the case

where the spin S1 vanishes. In that case, the dimen-
sionless, µ-rescaled effective Hamiltonian Ĥeff ≡ Heff/µ
reads

Ĥeff(r, pφ,m1,m2, S2) = GSpφX2â2 +GS∗
pφνâ2

+
√
A(1 + p2φu

2
c) , (2.17)

where

u2
c ≡

(
M

rc

)2

≡ u2

1 + â20u
2(1 + 2u)

, (2.18)

with

u ≡ M

r
, â0 ≡ a0

M
= X2â2 . (2.19)

In view of the form (2.11) of the EOB Hamiltonian, the
link, Eq. (2.9), between the first-order GSF contribution
δz1 to the redshift and the m1-expansion of the Hamilto-
nian, shows that δz1 only depends on the first-order GSF
contribution to Ĥeff , and therefore on the first-order con-
tributions to A and GS . We parametrize the latter by
decomposing A and GS as

A(r,m1,m2, S2) = AKerr(r,M, a0) + δA+O(ν2) ,

GS(r,m1,m2, S2) = GKerr
S (r,M, a0) + δGS +O(ν2) ,

where the consideration of the Hamiltonian of a non-
spinning test-particle in a Kerr background (here con-
ventionally taken of mass M = m1 + m2, and Kerr pa-
rameter a0 = a1 + a2 = a2) determines the zeroth-order
GSF potentials as (see Appendix)

AKerr(r,M, a0) = 1− 2u+ 4â20u
2u2

c ,

GKerr
S (r,M, a0) = 2uu2

c . (2.20)

On the other hand, the presence of a factor ν in the
GS∗

contribution to Ĥeff , Eq. (2.17), implies that δz1
only depends on the zeroth-order GSF contribution to
GS∗

. The latter is determined (as emphasized in [46])
by the spin-orbit coupling of a spinning test-particle in
a Kerr background. Following Refs. [44], the latter is
most simply determined by computing the geodetic spin-
precession rate. When considering, as we do here, equa-
torial circular orbits the spin-precession only depends
on the equatorial restriction (θ = π/2) of the metric,
say ds2eq = −Aeqdt

2 + r2c (dφ − ωeqdt)
2 + Beqdr

2. Sep-
arating the spin-orbit contribution linked to the metric
functions Aeq, r

2
c and Beq from the spin-spin interaction

linked to ωeq (i.e., calculating simply the spin precession
with ωeq = 0), yields

Gtest−particle
S∗

=

(
M

rc

)2
[
rc∇

√
Aeq

1 +
√
Q

+
(1−∇rc)

√
Aeq√

Q

]
+O(ν) , (2.21)
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where ∇ ≡ (Beq)
−1/2d/dr is a proper radial gradient

and Q ≡ 1+P 2
φ/(µrc)

2. [Here, we are in the small mass-
ratio limit and we denoted, for simplicity, the large mass
by M and the small one by µ. One could equivalently
replace M by m2 and µ by m1.] The explicit, relevant

expression of Gtest−particle
S∗

in a Kerr background is given
in the Appendix.

Using the above results, and notations, we derive the
following explicit algebraic link between the GSF correc-
tion δz1 to the redshift and the GSF corrections δA, δGS

to the two relevant EOB potentials:

1

2
δz1(y, â) =

[
δA(u, â)

2z1
+ pφâδGS(u, â)

+νK(u, â)]u=y′(y) . (2.22)

In this result, which is valid only to order O(ν), z1 and pφ
can be replaced by their (circular) test-mass limits (com-
puted in a Kerr background). The explicit expressions
of zKerr

1 and pKerr
φ (as functions of u and â) are given by

(see Appendix A)

pKerr
φ =

1− 2â2u
3/2 + â22u

2

√
u
√
1− 3u+ 2â2u3/2

,

zKerr
1 =

√
1− 3u+ 2â2u3/2

1 + â2u3/2
. (2.23)

To simplify the notation, we have denoted the dimen-
sionless spin parameter entering the O(ν) corrections of
Eq. (2.22), as â [It is equal to â2 = limν→0 â0, the di-
mensionless Kerr parameter of the large mass.] In ad-
dition, the extra contribution νK(u, â) in Eq. (2.22)
gathers the analytically known contributions to 1

2δz1
coming from various O(m 2

1 ) terms entering Eq. (2.11)
[coming from various occurrences of M = m1 + m2 or
X2 = 1 − m1/(m1 +m2), and from the square-root na-

ture of H as a function of 1 + 2ν(Ĥeff − 1)]. The latter
known contribution is explicitly given by

K(u, â) =
1

2
u
1− 4u

(
1− 1

2 â
√
u
)2

1− 3u+ 2âu3/2
+K(u, â) ,(2.24)

where

K(u, â) = αp2φ + βpφ + γ , (2.25)

and

α = z1u
2
c(1− φ) ,

β = â
[
GS∗

+ 2uu2
c(1− 2φ)

]
,

γ = − u

z1
(1 − 2φ)2 , (2.26)

with

φ = â2uu2
c . (2.27)

The (dimensionless) first-order GSF contributions δA
and δGS are, modulo a prefactor ν, functions of m2/r

and â2. As δA and δGS are O(ν) corrections, one can
denote their arguments (as we did for νK) simply as u
and â.
The last step which is needed for computing the func-

tion δz1(y, â) in terms of the functions δA(u, â) and
δGS(u, â) is to express the dimensionless gravitational
potential u = m2/r + O(ν) as a function of the dimen-
sionless parameter y, Eq. (2.3). At the zeroth-order in
ν where this transformation is needed, this follows from
the known Kepler law around a Kerr black -hole (of mass
m2 and spin S2), which is (see also the Appendix)

ucirc = y′(y, â) (2.28)

where the function y′(y, â) is defined as

y′(y, â) ≡ y

(1− ây3/2)2/3
. (2.29)

Eq. (2.22) is one of the main tools of the present paper.
We will show in the following how to use it to extract
both δA(u, â) and δGS(u, â) from the GSF calculation
of δz1(y, â), thereby furthering our current knowledge of
spin-dependent interactions in binary systems.

III. ANALYTICAL COMPUTATION OF THE

SELF-FORCE CORRECTION TO THE

REDSHIFT FUNCTION AROUND A KERR

BLACK HOLE

Detweiler [9] has pointed out the potential importance
of computing the (gauge-invariant) first-order GSF cor-
rection δU(Ω) to the redshift function

(
dt
ds

)
1
= U(Ω),

associated with the sequence of circular orbits of an ex-
treme mass-ratio binary system m1 ≪ m2. He pio-
neered the computation (both numerical and analytical)
of δU(Ω) in the case where the large-mass body is a
Schwarzschild black hole. Many works have extended
his results to higher accuracy, and have generalized the
redshift function to other gauge-invariant functions [10–
29].
The generalization of the redshift function to the case

where the large mass is a Kerr black hole poses signif-
icant technical challenges, which have been tackled in
Refs. [19, 20] by using a radiation gauge together with
a Hertz potential approach. Here we apply to the ap-
proach of Refs. [19, 20] the analytical techniques we have
recently developed to compute the PN expansion of δU
in the Schwarzschild case [21, 22]. The generalization of
our analytical approach to the Kerr case is conceptually
straightforward (in view of the work of Refs. [47, 48]) but
has necessitated quite a few new technical developments.
We shall leave to future work a detailed explanation of
the latter technical tools, and recall here only the ba-
sic conceptual aspects of our analytical approach, before
giving our final results.
Computing the first-order GSF correction δU(m2Ω, â2)

to the redshift function
(
dt
ds

)
1
= U(m2Ω, â2) (or, equiva-

lently, the correction δz1(m2Ω, â2) to z1 =
(
ds
dt

)
1
= 1/U)



5

is equivalent to computing the regularized value, along
the world line yµ1 of the small mass m1, of the double
contraction of the O(m1) metric perturbation hµν

gµν(x;m1,m2, â2) = g(0)µν (x;m2, â2) + hµν(x) +O(m2
1) ,
(3.1)

[where g
(0)
µν (x;m2, â2) is a Kerr metric of mass m2 and

spin S2 ≡ m2
2â2] with the helical Killing vector kµ∂µ =

∂t + Ω∂φ [such that uµ
1 ≡ dyµ

1

ds = Ukµ]. More precisely,
the function

hkk(m2Ω, â2) ≡ Regx→y1
[hµν(x)k

µkν ] (3.2)

(computed in the mostly-plus signature) determines both

δU(m2Ω, â2) = +
1

2

hkk

z31
(3.3)

and

δz1(m2Ω, â2) = −1

2

hkk

z1
. (3.4)

On the right-hand side (rhs) of these expressions z1 de-
notes the zeroth-order redshift (computed for a test par-
ticle in Kerr), as given by the second Eq. (2.23).

In addition, the dimensionless gravitational potential
u = m2/r0 +O(ν) (where r0 is the orbital radius) enter-
ing the latter expression must be expressed as a function
of the dimensionless orbital frequency m2Ω by means of
Eqs. (2.28), (2.29).

The regularization of hkk is effected by: (i) de-
composing the PN-expanded hkk in its various (spin-
2) spheroidal harmonics contributions ∝ 2Slmω; (ii)
transforming (spin-2) spheroidal harmonics into (spin-2)
spherical harmonics 2Ylm (as an expansion in powers of
âω = mâΩ); (iii) summing over the “magnetic” num-
ber m; and, finally, (iv) subtracting the l → ∞ limit
of each (PN-expanded) multipolar contribution hl

kk =∑l
m=−l h

(lm)
kk . We have checked that the regularized

value of hkk(r0) is independent of whether r → r+0 or
r → r−0 .
Our analytical results are obtained as a double expan-

sion in powers of y (or, alternatively, of u = y′(y, â))
and in powers of â ≡ â2. We have pushed the calcu-
lation up to y9.5 included and â4 included. [Note that
y9.5 ∼ u9.5 ∼ 1

c19 correspond to the 8.5 PN level.] When
expressing it in terms of u = y′(y, â) (with Eq. (2.29)),
our result for hkk reads

m2

m1
hkk(u, â) = hSchw

kk (u) + âh
(1)
kk (u) + â2h

(2)
kk (u)

+ â3h
(3)
kk (u) + â4h

(4)
kk (u) +O(â5) , (3.5)

where4

−hSchw
kk (u) = +2u−5u2−5

4
u3−

(
−1261

24
+

41

16
π2

)
u4+. . .

(3.6)
is the Schwarzschild (non-spinning) result (which is
known both numerically [16] and to a very high PN or-
der [26, 29]), and where the spin-dependent contributions
read

4 We introduce explicit minus signs on hkk and δU because, in view
of the mostly-minus signature used in [19, 20] that we followed,
we actually computed them within the latter signature, while we

defined, as most of the literature, including our previous work,
hkk and δU ≡ 1

2
hkk/z

3
1 in the mostly-plus signature.
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− h
(1)
kk = −6u5/2 + 9u7/2 − 93

4
u9/2 +

(
−14207

72
+

241

48
π2

)
u11/2

+

(
62041

384
π2 − 20465009

14400
− 4672

15
γ − 2336

15
ln(u)− 1856

3
ln(2)

)
u13/2

+

(
−59993729681

1411200
+

2185415

512
π2 +

61424

21
ln(2) +

12248

21
ln(u) +

125168

105
γ − 3888

7
ln(3)

)
u15/2

− 686176

1575
πu8

+

(
−47144359183457

457228800
+

6988832

2835
γ − 605312

567
ln(2) +

3403696

2835
ln(u) +

33534

7
ln(3)

−8776579

16384
π4 +

6377586259

442368
π2

)
u17/2

+
9093107

4725
πu9

+

[
−753250402733

27286875
ln(u) +

43808

45
ln(u)2 − 20172577040770254267692552768469719

414017146902475537131110400000
+

175232

45
γ ln(u)

+
12252544

1575
ln(2) ln(u) +

7009035336469

176947200
π2 − 75337409381

25165824
π4 − 1494313707466

27286875
γ − 19712

3
ζ(3)

−873002447302

9095625
ln(2) +

175232

45
γ2 +

24491392

1575
ln(2)2 +

24505088

1575
γ ln(2)

−4330561563

385000
ln(3)− 1953125

792
ln(5)

]
u19/2 +O(u10 lnu) , (3.7)

− h
(2)
kk = 2u3 +

17

4
u5 + 16u4 +

(
2345

12
− 593

256
π2

)
u6

+

(
9345583

14400
− 4493

384
π2 +

528

5
γ +

264

5
lnu+ 208 ln2

)
u7

+

(
202703165

49152
π2 − 2030429057

50400
+

90088

105
γ +

155752

105
ln(2) +

45044

105
ln(u) +

1458

7
ln(3)

)
u8

+
11128

105
πu17/2

+

[
44891965652561

619315200
π2 − 36383648176111

50803200
− 9894998

2835
γ − 19929878

2835
ln(2)− 3919339

2835
ln(u0) +

1536

5
ζ(3)

+
6318

7
ln(3) +

417436343

8388608
π4

]
u9

+
60058814

33075
πu19/2 +O(u10 lnu) ,

−h
(3)
kk = −6u9/2 − 40u11/2 − 335

4
u13/2 +

(
−634003

900
+

115

48
π2 − 192

5
ln(2)− 256

5
ζ(3)− 192

5
ln(u)

)
u15/2

+

(
−178438613

14400
+

3154577

3072
π2 − 3920

3
ln(2)− 5552

15
ln(u)− 448

5
ζ(3)− 9664

15
γ

)
u17/2

+

(
9800497

128
π2 − 89327249449

117600
− 370736

105
ln(2)− 26688

35
ζ(3)− 250928

105
γ − 178712

105
ln(u)− 11664

7
ln(3)

)
u19/2

+O(u10 lnu) ,

−h
(4)
kk = 13u6 +

381

4
u7 +

(
2203

6
+

69

128
π2

)
u8

+

(
22286713

10080
+

95884607

3686400
π2 − 2048ζ(5) +

1032

5
ln(u)− 54784

23625
π4 +

272

5
γ +

34816

15
ζ(3) +

1424

5
ln(2)

)
u9

+O(u10 lnu) . (3.8)
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Beware that Eq. (3.5) (with Eqs. (3.6) and (3.7)) yield
the functional dependence of hkk on m2Ω and â2 through
the auxiliary function u(m2Ω, â2) = y′(y, â). Because of
the spin-dependence of the relation y′(y, â), the double
expansion of hkk(y, â) in powers of y and â would modify
the expressions of the coefficients of the various powers
of â in Eq. (3.7).

While we were finalizing our calculations, Shah pre-
sented, in various conferences [39, 40], some analytical
results on the PN expansion of the function δU(y, â).
To ease the comparison between ours and his results, let
us also present the form that our results take when ex-

pressed in terms of the functional dependence of δU =
hkk/(2z

3
1) on y (rather than u = y′(y, â)) and â. Namely,

m2

m1
δU(y, â) = δUSchw(y) + âδU (1)(y) + â2δU (2)(y)

+ â3δU (3)(y) + â4δU(y) +O(â5) , (3.9)

where

δUSchw(y) = −y − 2y2 − 5y3 +

(
−121

3
+

41

32
π2

)
y4 + . . .

(3.10)
is the Schwarzschild result (i.e., hSchw

kk (u)/(2(1 − 3y)3/2)
and where
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− δU (1) = −
7

3
y5/2 −

46

3
y7/2 − 77y9/2 −

(

974

3
+

29

32
π2

)

y11/2

−

(

176

5
ln y +

348047

150
+

352

5
γ −

6349

64
π2 +

416

3
ln 2

)

y13/2

−

(

734961481

22050
−

8911441

3072
π2 + 408γ +

1052

5
ln(y) +

4744

7
ln(2) +

972

7
ln(3)

)

y15/2

−
33008

315
πy8

−

(

700704798839

3572100
−

27925459441

1327104
π2 +

716672

8505
γ +

147872

1701
ln(y) +

4440032

8505
ln(2)−

162

7
ln(3) +

124925059

393216
π4

)

y17/2

−
24020077

66150
πy9

+

[

−
703707055195958487688955590939498199

828034293804951074262220800000
+

780002666754601

7431782400
π2 −

473122406942

81860625
ln(y)

−
898494341884

81860625
γ −

335483098372

11694375
ln(2)−

43593199495

16777216
π4 +

1320686937

770000
ln(3) +

2620096

1575
ln(2) ln(y)

+
437824

525
γ ln(y) +

5240192

1575
γ ln(2)−

5504

5
ζ(3)−

9765625

14256
ln(5) +

109456

525
ln(y)2 +

437824

525
γ2 +

1744448

525
ln(2)2

]

y19/2 ,

−δU (2) = y3 +
86

9
y4 +

577

9
y5 +

(

1147

3
−

593

512
π2

)

y6

+

(

1288408

675
−

92557

9216
π2 +

264

5
γ + 104 ln(2) +

132

5
ln(y)

)

y7

+

(

710125279

294912
π2 −

14713942

945
+

33868

315
ln(y) +

6632

21
ln(2) +

67736

315
γ +

729

7
ln(3)

)

y8

+
5564

105
πy17/2

+

(

597328

567
γ +

7102544

2835
ln(2)−

53568695707

99225
−

486

7
ln(3) +

383336

567
ln(y) +

71983730742461

1238630400
π2 +

768

5
ζ(3)

+
417436343

16777216
π4

)

y9

+
10755481

33075
πy19/2 ,

−δU (3) = −y9/2 −
1526

81
y11/2 −

13625

81
y13/2 −

(

242891

225
+

1319

384
π2 +

96

5
ln 2 +

128

5
ζ(3) +

96

5
ln y

)

y15/2

−

(

13829101

1215
−

80954347

165888
π2 +

1272

5
ln 2 + 160ζ(3) +

2224

15
ln y +

1136

15
γ

)

y17/2

−

(

164644545466

297675
−

17476082953

331776
π2 +

7481392

2835
ln(2) +

3234848

2835
γ +

3560992

2835
ln(y) +

7104

7
ζ(3) +

1944

7
ln(3)

)

y19/2 ,

−δU (4) = 2y6 +
8120

243
y7 +

(

85420

243
+

69

256
π2

)

y8

+

(

884633

315
+

50786207

7372800
π2 +

232

5
ln(2) +

36

5
ln(y) +

15488

15
ζ(3) − 1024ζ(5) −

27392

23625
π4 +

136

5
γ

)

y9 , (3.11)

all computed up to O(u10 ln u).

The analytical results recently presented by Shah are
less accurate than ours (they stop at order ŷ13/2, â2y6,
â3y13/2 and â4y6, respectively), but agree with ours.

Several features of our results are to be noted:

1. The expansion of hkk or δU in spin has the struc-

ture

hkk ∼ u(1 + u+ u2 + . . .) + b(u+ u2 + . . .)

+ b2(1 + u+ u2 + . . .) + b3(1 + u+ u2 + . . .)

+ b4(1 + u+ u2 + . . .) (3.12)

where b = âu3/2 (and where we omitted numerical
coefficients in the various PN-correcting parenthe-
ses ϕ(u) = 1 + u+ u2 + . . .)
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2. The normal structure of PN expansions [proceeding
by successive integer powers of u = O(1/c2) in the
various correcting parentheses ϕ(u) = 1+ u+ u2 +
. . . entering Eq. (3.12) above] breaks down at the
fractional 5.5 PN order i.e., in a term ∝ u11/2 in 5

ϕ(u) = c0 + c1u+ c2u
2 + c3u

3 + c4u
4 + c5u

5

+ c5.5u
11/2 + c6u

6 + c6.5u
13/2 + . . . (3.13)

[For recent discussions of the similar 5.5PN
breakdown of the normal PN expansion in a
Schwarzschild background see Refs. [22, 49]]

3. It was pointed out in [25, 50] that the first logarith-
mic terms in PN expansion (which are linked to the
near-zone effect of tails [11, 12, 51]) come accom-
panied by an Euler constant γ in the combination
γ+ln(Ωr0/c). This “Eulerlog” rule is first violated
at the 8PN level in nonspinning systems [23, 52].
By contrast, Eq. (3.11) shows that, in presence of
spin, the Eulerlog rule is violated at the (earlier)
6.5PN level (i.e., in a term ∝ âu15/2). We shall
discuss in future work that the origin of this be-
havior is linked to the boundary condition at (and
the energy flux down) the horizon.

IV. ANALYTICAL COMPUTATION OF THE

SELF-FORCE CORRECTIONS TO THE EOB

SPIN-DEPENDENT POTENTIALS

In Eq. (2.22) we have exhibited the connection between
δz1 ≡ −z21δU and the GSF corrections δA, δGS to two of
the EOB coupling functions. In order to extract from the
single function of two variables δz1(y, â) the two separate
functions of two variables δA(u, â), δGS(u, â), we need
to normalize the latter functions by restricting their spin
dependence. In the present paper, we use the Damour-
Jaranowski-Schäfer gauge [53] where the circular limits of
δA and δGS are similar to their (zeroth GSF order) Kerr
counterparts in that they depend on u but not on pφ. As

it is clear from Eq. (2.20), AKerr(u, â) and GKerr
S (u, â) are

even functions of â. It is then natural, and convention-
ally possible, to restrict the â-dependence of δA(u, â) and
δGS(u, â) by requiring that they are both even functions
of â. It is also convenient to: (i) decompose δA(u, â) in

its spin-independent piece A
(0)
1SF(u) and a spin-dependent

contribution â2fA(u, â
2); and (ii) introduce some rescaled

versions of fA and δGS .

Namely, we write

δA(u, â) = A
(0)
1SF(u) + â2fA(u, â

2)

= A
(0)
1SF(u) + 3u4â2f resc

A (u, â2) ,

δGS(u, â) = −5

8
u4δGresc

S (u, â2) , (4.1)
with the additional decomposition

f resc
A (u, â2) = f

(0)resc
A (u) + â2f

(2)resc
A (u)

+â4f
(4)resc
A (u) ,

δGresc
S (u, â2) = δG

(0)resc
S (u) + â2δG

(2)resc
S (u)

+â4δG
(4)resc
S (u) . (4.2)

The rescaling factors 3u4 and − 5
8u

4 in Eqs. (4.1) are
the leading-order (LO) PN contributions so that the PN
expansions of both f resc

A and δGresc
S start as 1 +O(u).

We have truncated the latter decompositions in powers
of â2 to the O(â4) level because we shall see below that
the truncated expansions (4.2) allow one to parametrize
the numerically known spin dependence of δU(y, â) even
for large spins |â| ≤ 0.9. Evidently, the exact functions
f resc
A (u, â2) and δGresc

S (u, â2) involve higher powers of â2.
On the other hand, our present limited analytical knowl-
edge of δU(y, â) allows one to have information about
f resc
A (u, â2) and δGresc

S (u, â2) only through the â2 terms.

Identifying the various powers of u and â on both sides
of Eq. (2.22) allows one to convert our analytical results
(3.10)–(3.11) into an analytical knowledge of the PN ex-

pansions of f
(n)resc
A (u) and δG

(n)resc
S (u) (with n = 0, 2),

with the following results:

5 Note that c0 = 0 in the term linear in b.
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ν−1δG
(0)resc
S (u) = 1 +

102

5
u+

(

80399

720
−

241

120
π2

)

u2

+

(

12015517

18000
−

62041

960
π2 +

3712

15
ln(2) +

9344

75
γ +

4672

75
ln u

)

u3

+

(

−
437083

256
π2 −

122848

105
ln(2) +

122119110037

7056000
+

7776

35
ln(3) −

250336

525
γ

−
24496

105
ln(u)

)

u4

+
1372352

7875
πu9/2

+

(

753139951463

17860500
−

6377586259

1105920
π2 +

1210624

2835
ln(2) −

67068

35
ln(3)−

13977664

14175
γ

+
8776579

40960
π4 −

6807392

14175
ln(u)

)

u5

−
18186214

23625
πu11/2

+

[

−
350464

225
γ2 +

75337409381

62914560
π4 +

1847725444

111375
γ −

49010176

7875
ln(2)γ +

34368219

7700
ln(3)

+
556745811545134537

18441561600000
−

7009035336469

442368000
π2 +

204853984012

9095625
ln(2) +

390625

396
ln(5) +

39424

15
ζ(3)

−
48982784

7875
ln(2)2 +

(

6536679614

779625
−

24505088

7875
ln(2)−

350464

225
γ

)

ln(u)−
87616

225
ln(u)2

]

u6

−
33472011779

49116375
πu13/2 +O(u7 ln u) , (4.3)

ν−1δG
(2)resc
S (u) =

16

5
u+

13

5
u2 +

181

5
u3

+

(

1653383

6000
+

21

20
π2 +

384

25
ln(2) +

512

25
ζ(3) +

384

25
ln(u)

)

u4

+

(

3328

25
γ −

870659

2560
π2 +

1376

5
ln(2) +

896

25
ζ(3) +

28533659

6000
+

2144

25
ln(u)

)

u5

+

(

79424

75
γ −

36768409

1280
π2 +

321984

175
ln(2) +

15552

35
ln(3) +

53376

175
ζ(3) +

2032059026897

7056000
+

127264

175
ln(u)

)

u6

+ O(u7 ln u) ,

ν−1f
(0)resc
A (u) = 1 +

11

4
u+

(

1769

72
−

593

1536
π2

)

u2 +

(

1291

2304
π2 +

1752929

43200
+

104

3
ln 2 +

88

5
γ +

44

5
ln u

)

u3

+

(

−
4401727153

604800
+

226526909

294912
π2 −

19564

315
ln(2)−

4012

315
γ +

243

7
ln(3)−

2006

315
ln(u)

)

u4

+
5564

315
πu9/2

+

[

24361

1701
γ +

52822399604561

3715891200
π2 +

2473421

8505
ln(2)−

891

7
ln(3) +

417436343

50331648
π4 +

256

5
ζ(3)

−
21340366131467

152409600
+

1041101

17010
ln(u)

]

u5

+
8414863

99225
πu11/2 +O(u6 ln u) ,

ν−1f
(2)resc
A (u) = u2 −

1

6
u3 +

(

4037

72
+

23

256
π2

)

u4

+

(

136

15
γ +

85363007

22118400
π2 +

424

15
ln(2)−

27392

70875
π4 +

16256

45
ζ(3) +

1447357

6300
−

1024

3
ζ(5) +

76

5
ln(u)

)

u5

+ O(u6 ln u) . (4.4)

The only terms among the above, high-accuracy, PN expansions that were known from standard PN compu-
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tations were the next-to-leading-order (NLO) corrections

to δG
(0)resc
S (i.e., 1+ 102

5 u) [54, 55] and to f
(0)resc
A (u) (i.e.,

1 + 11
4 u) [56].

V. NUMERICAL COMPUTATION OF THE

SELF-FORCE CORRECTIONS TO THE EOB

SPIN-DEPENDENT POTENTIALS

Shah, Friedman and Keidl [20] have numerically com-
puted the values of the function δU(y′, â) for a sample
of radii r̂0 ≡ r0/M ≡ 1/y′ ≡ 1/u (between 4 and 100)
and of dimensionless spin parameters â (namely ± 0.9,
± 0.7, ± 0.5, 0.0). [Actually, the data published in [20]
were marred by a technical error, but A. Shah kindly
provided us with a corrected version of Table III in [20].]
For a sub-sample of the latter data, Shah et al. com-
puted δU(y′, â) for various values of â but for the same
value of the inverse radius6. In view of the (assumed)
even spin dependence of δA and δGS in Eq. (2.22), we
can then extract the numerical values of δA(u, |â|) and
δGS(u, |â|) by suitably projecting both sides of Eq. (2.22)
(after multiplying them by appropriate, known Kerr fac-
tors). Explicitly we find

δGS(u, â) =
1

â

[
zK1

(
1
2δz1 −K

)]odd

[pKφ zK1 ]even
, (5.1)

δA(u, â) = 2

[
zK
1

pK
φ

(
1
2δz1 −K

)]even

[
1

pK
φ
zK
1

]even . (5.2)

Here, both sides are to be evaluated at the same value
of u = y′ = ucirc(y), the superscripts K denote taking
a Kerr (-circular) value, and the superscripts “odd” or
“even” denote the operation of taking, respectively, the
odd or even part of a function of â, namely

[F (u, â)]even ≡ 1

2
(F (u, â) + F (u,−â))

[F (u, â)]odd ≡ 1

2
(F (u, â)− F (u,−â)) . (5.3)

The numerical values of the rescaled functions
δGresc

S (u, |â|) and f resc
A (u, |â|) we found by applying

the above projection formulas to the corrected data
communicated by Shah are listed in Tables I and II
below.

In these Tables the digits within parentheses indicate
a rough estimate of the numerical uncertainty on the last
digit of the corresponding numerical values of δGresc

S and

TABLE I. Numerical values for δGresc
S (u, |â|).

u δGresc
S (u, 0.5) δGresc

S (u, 0.7) δGresc
S (u, 0.9)

1/100 1.221(5) 1.229(4) 1.239(3)

1/70 1.322(2) 1.333(1) 1.3478(8)

1/50 1.4614287(1) 1.47711466(7) 1.49802501(5)

1/30 1.81295880(4) 1.83965095(4) 1.87522164(2)

1/20 2.30788136(4) 2.34941806(1) 2.40474331(2)

1/15 2.8736(2) 2.93195(2) 3.009697(3)

1/10 4.27400044(4) 4.37851888(3) 4.51778792(8)

1/8 5.64616283(1) - -

TABLE II. Numerical values for f resc
A (u, |â|).

u f resc
A (u, 0.5) f resc

A (u, 0.7) f resc
A (u, 0.9)

1/100 1.0(5) 1.0(2) 1.0(1)

1/70 1.04(9) 1.04(5) 1.04(3)

1/50 1.063828(5) 1.063926(2) 1.064057(2)

1/30 1.1173441(9) 1.1176295(8) 1.1180100(3)

1/20 1.1993228(7) 1.2000319(4) 1.2009773(4)

1/15 1.302(3) 1.3037(2) 1.30564(2)

1/10 1.5991204(3) 1.6042429(2) 1.6110832(4)

1/8 1.9497140(1) - -

f resc
A . These error estimates were obtained from the error
estimates on δU(y′, â) kindly communicated by A. Shah.

By looking at the â-dependence of δGresc
S and f resc

A (for
a fixed value of u = y′) in Tables I and II one sees imme-
diately that it is rather mild. We found that it is numeri-
cally accurate to use the truncated expansions (4.2) to fit
the numerical data. [Note that these expansions include
one more power of â2 than the ones we could extract from
our analytical results.] For each function δGresc

S or f resc
A ,

and for each value of u in Tables I and II, we can use
the three numerical results for â2 = (0.5)2, â2 = (0.7)2

and â2 = (0.9)2 to extract (by solving a linear system
of three equations in three unknowns) the corresponding

numerical values of the coefficient functions δG
(n)resc
S (u),

f
(n)resc
A (u) (with n = 0, 2 and 4). The numerical values
we found for these coefficient functions are listed in Ta-
bles III and IV below. We did not propagate the numeri-
cal errors affecting δGresc

S and f resc
A to their corresponding

coefficient functions δG
(n)resc
S (u), f

(n)resc
A (u).

6 Note that Ref. [20] parametrizes the circular orbits by the Boyer-
Lindquist radius r̂0, which corresponds to fixing the modified fre-

quency parameter y′, Eq. (2.29), such that u = 1/r̂0 = y′(y, â).
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TABLE III. Numerical values for δG
(n)resc
S (u).

u δG
(0)resc
S (u) δG

(2)resc
S (u) δG

(4)resc
S (u)

1/100 1.21297347 0.32298056 ×10−1 -0.23967471 ×10−5

1/70 1.31023001 0.46361889 ×10−1 -0.88948253 ×10−5

1/50 1.44508613 0.65376139 ×10−1 -0.24062736 ×10−4

1/30 1.78514161 0.11129505 -0.10509689 ×10−3

1/20 2.26457500 0.17330498 -0.31813647 ×10−3

1/15 2.81269577 0.24365352 -0.54588538 ×10−3

1/10 4.16506631 0.43586052 -0.49597783 ×10−3

TABLE IV. Numerical values for f
(n)resc
A (u).

u f
(0)resc
A (u) f

(2)resc
A (u) f

(4)resc
A (u)

1/100 1.03848559 -0.19044446 ×10−1 0.12349670 ×10−1

1/70 1.04376926 -0.24085514 ×10−4 0.14850697 ×10−3

1/50 1.06372483 0.41107182 ×10−3 -0.14807331 ×10−5

1/30 1.11704682 0.11890403 ×10−2 8.51657317 ×10−8

1/20 1.19858425 0.29543259 ×10−2 1.22022631 ×10−7

1/15 1.30055059 0.66125741 ×10−2 -0.40611727 ×10−3

1/10 1.59379299 0.21293650 ×10−1 0.64609073 ×10−4

TABLE V. Numerical vs theoretical values for δU(u, â = 0.5).

u δUnum(u, â = 0.5) (Shah [38]) δUPN-theor/δUnum − 1 δUEOB-theor/δUnum − 1

1/100 -0.0101896245(5) -0.00000001(5) -0.00000001(5)

1/70 -0.0146705787(5) -0.00000000(3) -0.00000000(3)

1/50 -0.02075117876615(8) -0.000000000006(4) -0.00000000053(4)

1/30 -0.0354163457476(3) -0.000000000941(4) -0.00000000203(4)

1/20 -0.054722233077(1) -0.0000000327(2) -0.00000002109 (2)

1/15 -0.07519039(3) -0.0000004(4) -0.0000002(4)

1/10 -0.12016503504(2) -0.0000123021(2) -0.00000724874(2)

1/8 -0.15830027075(1) -0.00008135993(6) -0.00005156354(6)

1/7 -0.18858304135(2) -0.0002521042(1) -0.0001621950(1)

1/6 -0.2342693592(1) -0.0009347921(5) -0.0005626589(4)

1/5 -0.3135069374(1) -0.0044620321(3) -0.0016218169(3)

VI. COMPARISON BETWEEN ANALYTICAL

AND NUMERICAL RESULTS

In Figs. 1 and 2 we compare our current analytical

expressions of the various EOB potentials δG
(n)resc
S (u),

f
(n)resc
A (u) to their numerical counterparts, extracted
from the strong-field data computed by Shah et al. As
we see, there is an excellent visual agreement between
the numerical results (indicated by discrete dots) and

the analytical ones (continuous curves) for δG
(0)resc
S (u),

δG
(2)resc
S (u) and f

(0)resc
A (u). The only function for which

there are noticeable differences is f
(2)resc
A (u). It is then

possible to improve the numerical/analytical agreement
by adding some (effective) higher-order contributions to

f
(2)resc
A (u), say f

(2)resc,fit
A (u) = f

(2)resc,PN
A (u) + (c1 +

c2 ln(u))u
6. By fitting the numerical-minus-analytical

difference we found the following estimate of the higher-
order coefficients: c1 = −24303.04 and c2 = −11754.74.
We have instead no analytical prediction for both

δG
(4)resc
S and f

(4)resc
A , which would need an analytical

knowledge of δU at higher orders in â. On the other
hand, we found that the data points for the rescaled

quantity u−3δG
(4)resc
S can be easily fitted. For exam-
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ple, a quadratic fit of the form 262.1643u2 + 0.2878u −
3.1256 shows a reasonable agreement with the exist-
ing data points. We refrained from similarly fitting

for higher-order corrections to δG
(0)resc
S , δG

(2)resc
S and

f
(0)resc
A , except for δG

(0)resc
S for which we found a good

fit (within 5.6× 10−6) of numerical data to δG
(0)resc fit
S =

δG
(0)resc PN
S +(983.35+3330.99 ln(u))u7. The data points

for f
(4)resc
A are affected by large errors and a fit in this

case does not seem meaningful.

Because of the need to have in hands numerical data
with the same value of u and several pairs of opposite
values of â, the numerical values of the various extracted
EOB potentials in Tables III and IV were limited to
the semi-strong-field region 0 < u ≤ 0.1. In order to
gauge the validity of our analytical results for larger val-
ues of u, we compared the values of the redshift correction
δU(u, â) predicted by inserting in the rhs of Eq. (2.22) our
analytical PN-expanded results (3.11) to the (corrected)
numerical data of Ref. [20] (using δznum1 ≡ −z21δU

num).
We display in Table V the ratios

δUanalytical/δUnumerical − 1 for two different analyt-
ical predictions of δU : either the straightforward PN
expansion (3.9) or its EOB-theoretical form (2.22) (in

which we use the PN expansions of the functions δG
(n)
S

and δf
(n)
A , Eqs. (4.3), and the numerical knowledge

of A
(0)
1SF(u) as given by model 14 in Ref. [16]). For

information, we indicate an estimate of the fractional
numerical uncertainty on δUnumerical communicated by
Shah. Let us first note that the EOB version of our ana-
lytical estimate is systematically more accurate than the
corresponding PN estimate. The analytical/numerical
agreement is (as expected) excellent in the weak-field
regime 7 (u ≪ 1) and stays rather good (especially for
the EOB version) in the strong-field regime (see the
u = 1

5 EOB data point which agrees within 1.6 × 10−3

with the numerical data).

We leave to future work a study of methods for im-
proving the analytical/numerical agreement. In particu-
lar, we know from the arguments of Ref. [16] that δz1 will
blow up proportionally to 1/z21 near the light ring (where
z1 → 0) or, equivalently, that δU will blow up propor-
tionally to U4 = 1/z41 there. As explained in Ref. [16],
this blow up suggests that one should introduce in the
concerned EOB potentials some pφ dependence. How-
ever, the introduction of such a pφ dependence will, in
turn, modify the parity of the functional dependence on
â of the concerned EOB potentials. [Indeed, we see on
Eq. (2.23) that the circular value of pφ has no well-defined
parity in â.] Let us finally mention that, in order to
achieve a more complete knowledge of fA and δGS in

7 However, the rather large errors on the data points at r̂0 = 100
and 70 show that these points do not bring meaningful informa-
tion beyond our analytical results.

the strong-field domain, it would be necessary to have
more numerical data on δU , with some suitably chosen
sampling of the (u, â) plane. In particular, data for small
values of â would be useful for controlling the strong-field

behavior of δG
(0)
S (u) which is of most physical interest

(see end of Conclusions).

VII. CONCLUSIONS

Let us summarize our main results:

We derived the very simple relation Eq. (2.9) between
the GSF correction δz1 to the redshift (considered as a
function of the orbital frequency) and the O(m2

1) con-
tribution to the two-body Hamiltonian (considered as a
function of phase space variables). The latter relation
then implied the simple relation (2.22) between δz1 and
the O(ν) contributions to the EOB coupling functions A
and GS .

We analytically computed the PN expansion of δz1 (or,
equivalently, δU = −δz1/z

2
1) up to orderO(u9.5) included

and O(â4) included. See Eqs. (3.11). We then converted
the latter expansions (using Eq. (2.22)) into correspond-
ingly accurate PN expansions of the O(ν) corrections δA,
δGS to the EOB coupling function A,GS . The latter re-
sults represent drastic improvements in our knowledge of
the spin-dependent interactions encoded within the EOB
potentials A and GS .

Going beyond PN expansions (whose validity is a priori
limited to the weak-field domain u ≪ 1), we showed how
to extract the numerical values of δA and δGS in the
strong-field domain u = O(1) from the numerical GSF
calculations of δz1 [20]. See Eqs. (5.1), (5.2) and Tables I
and II. We then compared the latter numerical results
to our high-accuracy PN expansions and found excellent
agreement when u ≪ 1, and a good agreement (∼ 10−3)
up to u = 0.20 (corresponding to r0 = 5M).

Let us finally discuss what is probably the physically
most important result of the present work. It concerns
the main EOB spin-orbit coupling function GS . Both
our analytical results and our GSF-extracted numerical
data show that the rescaled GSF correction δGresc

S (u, â)
significantly increases8 from its value 1 at large separa-
tions (u → 0) to values of order 5 at separations of order
r0 ≃ 10M (i.e. u ≃ 0.1). However, the LO rescaling
factor used for δGS is negative, and equal to − 5

8u
4. This

means that the GSF correction tends to diminish the
value of the total spin-orbit coupling. This confirms what
was found in the previous (less accurate) PN calculations
[53–55]. Let us consider for simplicity the â → 0 limit of

8 Similarly to a corresponding increase of δA when â = 0 [16], this
increase is linked to the blow up of δGS at the light-ring.
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(a) (b)

FIG. 1. Panel (a): The data points and the theoretical predictions for δG
(0)resc
S (u). Panel (b): The data points and the

theoretical predictions for δG
(2)resc
S (u).

(a) (b)

FIG. 2. Panel (a): The data points and the theoretical predictions for f
(0)resc
A (u). Panel (b): The data points and the theoretical

predictions for f
(2)resc
A (u).

GS and work with the Kerr-rescaled spin-orbit coupling

ĜS(u, ν, â1, â2) =
GS(r,m1,m2, S1, S2)

GKerr
S (r,m1 +m2, a1 + a2)

= 1 +
δGS

GKerr
S

(7.1)

(taken for S1 = 0 = S2). The current (combined PN and

GSF) knowledge of the latter function is

ĜS(u, ν, 0, 0) = 1− 5

16
νuδG

(0)resc
S (u)− 1

16
ν2u2ϕ1(u)

+ O(ν3) (7.2)

=

(
1 +

5

16
νuδG

(0)resc
S (u)

+
41

256
ν2u2ϕ2(u) +O(ν3)

)
−1

,
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FIG. 3. The data points for f
(2)resc
A , the theoretical PN predic-

tion (dashed curve) and the fit f
(2)resc,fit
A (u) = f

(2)resc,PN
A (u)+

(c1 + c2 ln(u))u
6 where c1 = −24303.04 and c2 = −11754.74.

FIG. 4. The data points for the rescaled quantity
1
u3 δG

(4)resc
S (u) for which no theoretical prediction is available.

The solid curve superposed to the points corresponds to a
(quadratic) fit by the function 262.1643u2 +0.2878u−3.1256.

where ϕn(u) = 1+O(u) denotes a generic PN correction
factor. In the second equation we have used an inverse
resummation of ĜS as found useful in recent EOB work.
Damour and Nagar [37] have a provided an effective ex-

pression for 1/ĜS(u, ν, 0, 0), parametrized by a constant
c3 as indicated below

[ĜS(u, ν, 0, 0)]
−1 = 1 +

5

16
νu

(
1 +

102

5
u

)

+c3νu
3 +

41

256
ν2u2 . (7.3)

FIG. 5. The quantity ĜS(u, ν, 0, 0) used in Damour-Nagar
(dashed curve) [37] as well as the present determination (solid
curve) are compared in the case ν = 0.25.

Using our result, Eq.(4.3), for δG
(0)resc
S (u) we can define

an effective function of u, ceff3 = ceff3 (u), such that the
replacement c3 → ceff3 (u) in (7.3) is consistent with our
full PN-expanded result. The value at u = 0 of this
ceff3 (u) is found to be

ceff3 (0) =
80399

2304
− 241

384
π2 ≈ 28.7012 . (7.4)

One finds that after an initial small decrease from
c3(0) = 28.7012 to c3(0.0041) = 28.6175, c3(u) then
monotonically increases with u. It reaches the nu-
merically calibrated value of Refs. [37, 57], namely
ccalibrated3 = 44.786477, at u = 0.1593 and then continues
increasing towards large values (e.g. c3(0.5) = 441.3976).

The inverse-resummed function ĜS(u, ν, 0, 0) defined by
inserting our result in the second equation (7.2) (with
ϕ2(u) = 1 and O(ν2) → 0) is shown in Fig. 5 for
ν = 0.25 and is compared to the calibrated result of
[37, 57]. Note that our results predict a faster fall-off of

ĜS in the strong-field domain. It will be interesting to
explore the EOB application of this finding.

Appendix A: The Kerr case: an overview

In the test-mass limit (S1 = 0 = m1), i.e. in the Kerr
case (with mass m2 and spin S2), the effective Hamilto-
nian reads

Ĥ
(0)
eff =

√
AK(1 + p2φu

2
cK) + 2uKu2

cKpφâ2 , (A1)

where uK ≡ m2/r, â2 = a2/m2 = S2/m
2
2 and

AK(uK , â2) =
1− 4u2

cK

1 + 2uK
, GK

S (uK , â2) = 2uKu2
cK ,

(A2)
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with

rcK(r,m2, â2)
2 = r2 + a22 +

2m2a
2
2

r

=
m2

2

u2
K

(
1 + â22u

2
K + 2â2u

3
K

)

ucK(uK , â2) =
uK√

1 + â22u
2
K(1 + 2uK)

. (A3)

Note also the expression of AK in terms of the Boyer-
Lindquist coordinate uK = m2/r:

AK(uK) = 1− 2uK +
4â22u

4
K

1 + â22u
2
K(1 + 2uK)

= 1− 2uK + 4â22u
2
Ku2

cK (A4)

The redshift z1 = ∂Heff/∂µ, as a function of uK (here-
after we simply denote uK by u and ucK by uc) and pφ,
reads

z1(u, pφ, â2) =
AK(u, â2)√

AK(u, â2)(1 + p2φuc(u, â2)2)
=

√
AK

QK
,

(A5)
where

QK = 1 + p2φuc(u, â2)
2 . (A6)

The circular value of the (dimensionless) angular momen-
tum is

pKφ (u, â2) =
1− 2â2u

3/2 + â22u
2

√
u
√
1− 3u+ 2â2u3/2

. (A7)

The corresponding energy per unit mass, Ê = Ĥeff , reads

Ê(u, â2) =
1− 2u+ â2u

3/2

√
1− 3u+ 2â2u3/2

. (A8)

Substituting pφ = pKφ (u, â2) in the above expression for

zK1 yields the following “on shell” relation

zK1 (u, â2) =

√
1− 3u+ 2â2u3/2

1 + â2u3/2
. (A9)

The circular expression for the angular frequency param-
eter m2Ω

K = ∂Ĥeff/∂pφ (as a function of u after using
pφ = pKφ (u, â2) given in (A7)) is (Kepler’s law, for a Kerr

black hole)

m2Ω
K(u, â2) =

u3/2

1 + â2u3/2

=
(
â2 + u−3/2

)
−1

. (A10)

It is worth to note the following relations

m2Ω
K = â2G

K
S +

AKpKφ u2
c√

AK(1 + pKφ
2u2

c)
(A11)

= â2G
K
S +

√
AK

QK
pKφ u2

c (A12)

= â2G
K
S + zK1 pKφ u2

c = u2
c

(
2uâ2 + zK1 pKφ

)
.

Defining

Ω′ ≡ Ω

1− a2Ω
, m2Ω

′ ≡ m2Ω

1− â2m2Ω
, (A13)

one finds that this modified frequency satisfies the usual
Kepler law

m2Ω
′ = u3/2 . (A14)

In other words, the modified dimensionless frequency pa-
rameter

y′ ≡ (m2Ω
′)2/3 , (A15)

is such that

ucirc = y′ . (A16)

The explicit transformation y → y′ reads

y′ =
y

(1− â2y3/2)2/3

= y

[
1 +

2

3
â2y

3/2 +
5

9
â22y

3 +O(y9/2)

]
. (A17)

The inverse of this transformation is obtained by ex-
changing y′ and y and â2 → −â2, namely

y =
y′

(1 + â2y′3/2)2/3
. (A18)

Expressing z1(y
′) in terms of y leads to

zK1 (y) =
(1− 3y′ + 2â2y

′3/2)1/2

1 + â2y′3/2
(exact)

=
√
1− 3y + â2

(
2y5/2 + 3y7/2 +

27

4
y9/2

+
135

8
y11/2 +

2835

64
y13/2 +

15309

128
y15/2

)

+O(y8, â22) . (A19)

Note that the equation

1− 3y′ + 2â2y
′3/2 = 0 (A20)

defines the light-ring for co-rotating circular geodesics.
Table VII lists light-ring values of y′ for representative
values of â2.
Finally, the explicit expression, in a Kerr background,

of the GS∗
-type spin-orbit coupling (defined in an arbi-

trary equatorial metric by Eq. (2.21)) reads

GKerr
S∗

(u, â) = zK1 u2
c

[
1−

√
A(1− â2u3)

]

+
u4
c [(1 + â2u2)2 − 4â2u3]

u(1 +
√
QK)

. (A21)

Note that this quantity differs from the ratio R ≡
m2Ω

K
SO/p

K
φ between the dimensionless spin-orbit preces-

sion angular velocity [58]

m2Ω
K
SO =

1−
√
1− 3u+ 2â2u3/2

â2 + u−3/2
(A22)
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TABLE VI. Light-ring position y′ for fixed values of â2.

â2 y′

-1.0 0.25

-0.9 0.2557369509

-0.7 0.2684314963

-0.5 0.2831185829

0 0.3333333333

0.5 0.4260220478

0.7 0.4966885468

0.9 0.6419084184

1.0 1.0

and the dimensionless angular momentum pKφ . Indeed,

the structure of the effective Hamiltonian (2.12) shows
that ΩK

SO = limS1→0 ∂Heff/∂S1 is (in the test-mass limit
m1 → 0 with S1/m1 fixed) the sum of two contribu-

tions: a contribution ∝ GS∗
pφ and a contribution com-

ing from the S1 derivative of the orbital effective Hamil-
tonian

√
A(µ2 + L2/r2c) [the latter being even in spins,

and therefore notably containing relevant terms of the
form ∼ S1(S2 + S3

2 + . . .)]. In the Schwarzschild limit,
GKerr

S∗

reduces to

GSchw
S∗

(u) =
3u3

√
1− 3u

. (A23)
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