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Abstract. Most physical systems are modelled by an ordinary or a partial
differential equation, like the n-body problem in celestial mechanics. In some
cases, for example when studying the long term behaviour of the solar system
or for complex systems, there exist elements which can influence the dynam-
ics of the system which are not well modelled or even known. One way to
take these problems into account consists of looking at the dynamics of the
system on a larger class of objects, that are eventually stochastic. In this pa-
per, we develop a theory for the stochastic embedding of ordinary differential
equations. We apply this method to Lagrangian systems. In this particular
case, we extend many results of classical mechanics namely, the least action
principle, the Euler-Lagrange equations, and Noether’s theorem. We also ob-
tain a Hamiltonian formulation for our stochastic Lagrangian systems. Many
applications are discussed at the end of the paper.
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Introduction

Ordinary as well as partial differential equations play a fundamental role in
most parts of mathematical physics. The story begins with Newton’s formulation
of the law of attraction and the corresponding equations which describe the motion
of mechanical systems. Regardless the beauty and usefulness of these theories in the
study of many important natural phenomena, one must keep in mind that they are
based on experimental facts, and as a consequence are only an approximation of the
real world. The basic example we have in mind is the motion of the planets in the
solar system which is usually modelled by the famous n-body problem, i.e. n points
of mass mi which are only submitted to their mutual gravitational attraction. If one
looks at the behaviour of the solar system for finite time then this model is a very
good one. But this is not true when one looks at the long term behaviour, which is
for instance relevant when dealing with the so called chaotic behaviour of the solar
system over billions years, or when trying to predict ice ages over a very large range
of time. Indeed, the n-body problem is a conservative system (in fact a Lagrangian
system) and many non-conservative effects, such as tidal forces between planets,
will be of increasing importance along the computation. These non-conservative
effects push the model outside the category of Lagrangian systems. You can go
further by considering effects due to the changing in the oblateness of the sun. In
this case, we do not even know how to model such kind of perturbations, and one
is not sure of staying in the category of differential equations1.

As a first step, this paper proposes tackling this problem by introducing a
natural stochastic embedding procedure for ordinary differential equations. This
consists of looking for the behaviour of stochastic processes submitted to constraints
induced by the underlying differential equation2. We point out that this strategy is
different from the standard approach based on stochastic differential equations or
stochastic dynamical systems, where one gives a meaning to ordinary differential
equations perturbed by a small random term. In our work, no perturbations of the

1Note that in the context of the solar system we have two different problems: first, if one
uses only Newton’s gravitational law, one must take into account the entire universe to model the
behaviour of the planets. This by itself is a problem which can be studied by using the classical
perturbation theory of ordinary differential equations. This is different if we want to speak of
the “real” solar system for which we must consider effects that we ignore. In that case, even the
validation of the law of gravitation as a real law of nature is not clear. I refer to [15] for more
details on this point.

2This strategy is part of a general programme called the embedding procedure in [14] and
which can be used to embed ordinary differential equations not only on stochastic processes but
on general functional spaces. A previous attempt was made in [12],[13] in the context of the
non-differentiable embedding of ordinary differential equations.
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2 INTRODUCTION

underlying equation are carried out.

A point of view that bears some resemblance to ours is contained in V.I.
Arnold’s materialization of resonances ([5],p.303-304), whose main underlying idea
can be briefly explained as follows: the divergence of the Taylor expansion of the
arctan function at 0 for | x |> 1 can be proved by computing the coefficients of
this series. However, this does not explain the reason for this divergence behaviour.
One can obtain a better understanding by extending the function to the complex
plane and by looking at its singularities at ±i. The same idea can be applied in
the context of dynamical systems. In this case, we look for the obstruction to lin-
earization of a real systems in the complex plane. Arnold has conjectured that this
is due to the accumulation of periodic orbits in the complex plane along the real
axis. In our case, one can try to understand some properties of the trajectories of
dynamical systems by using a suitable extension of its domain of definition. In our
work, we give a precise sense to the concept of differential and partial differential
equations in the class of stochastic processes. This procedure can be viewed as a
first step toward the general “stochastic programme” as described by Mumford in
[50].

Our embedding procedure is based on a simple idea: in order to write down
differential or partial differential equations, one uses derivatives. An ordinary differ-
ential equation is nothing else but a differential operator of order one3. In order to
embed ordinary differential equations, one must first extend the notion of derivative
so that it makes sense in the context of stochastic processes. By extension, we mean
that our stochastic derivative reduces to the classical derivative for deterministic
differentiable processes. Having this extension, one easily defines in a unique way,
the stochastic analogue of a differential operator, and as a consequence, a natural
embedding of an ordinary differential equation on stochastic processes.

Of course, one can think that such a simple procedure will not produce any-
thing new for the study of classical differential equations. This is not the case. The
main problem that we study in this paper is the embedding of natural Lagrangian
systems which are of particular interest for classical mechanics. In this context,
we obtain some numerous surprising results, from the existence of a coherent least
action principle with respect to the stochastic embedding procedure, to a derivation
of a stochastic Noether theorem, and passing by a new derivation of the Schrödinger
equation. All these points will be described with details in the following.

Two companion papers ([17],[8]) give an application of this method to derive
new results on the formation of planets in a protoplanetary nebulae, in particular
a proof of the existence of a so called Titus-Bode law for the spacing of planets
around a given star.

The plane of the paper is as follow:

3In this case, we can also speak of vector fields.
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In a first part, we develop our notion of a stochastic derivative and study in
details all its properties.

Chapter 1 gives a review of the stochastic calculus developed by Nelson [52]. In
particular, we discuss the classical definition of the backward and forward Nelson
derivatives, denoted by D and D∗, with respect to dynamical problems. We also
define a class of stochastic process called good diffusion processes for which one can
compute explicitly the Nelson derivatives.

In Chapter 2 we define what we call an abstract extension of the classical
derivative. Using the Nelson derivatives, we define an extension of the ordinary de-
rivative on stochastic processes, which we call the stochastic derivative. As pointed
out previously, one imposes that the stochastic derivative reduces to the classical
derivative on differentiable deterministic processes. This constraint ensures that
the stochastic analogue of a PDE contains the classical PDE. Of course such a
gluing constraint is not sufficient to define a rigid notion of stochastic derivative.
We study several natural constraints which allow us to obtain a unique extension
of the classical derivative on stochastic processes as

(0.1) Dµ =
D + D∗

2
+ iµ

D −D∗
2

, µ = ±1.

By extending this operator to complex valued stochastic processes, we are able to
define the iterate of D, i.e. D2 = D ◦ D and so on. The main surprise is that the
real part of D2 correspond to the choice of Nelson for acceleration in his dynamical
theory of Brownian motion. However, this result depends on the way we extend
the stochastic derivative to complex valued stochastic processes. We discuss several
alternative which covers well known variations on the Nelson acceleration.

In Chapter 3 we study the product rule satisfied by the stochastic derivative
which is a fundamental ingredient of our stochastic calculus of variation. We also
introduce an important class of stochastic processes, called Nelson differentiable,
which have the property to have a real valued stochastic derivative. These processes
play a fundamental role in the stochastic calculus of variation as they define the
natural space of variations for stochastic processes.

The second part of this article deals specifically with the definition of a sto-
chastic embedding procedure for ordinary differential equations.

Chapter 4 associate to a differential operator of a given form acting on suf-
ficiently regular functions a unique operator acting on stochastic processes and
defined simply by replacing the classical derivative by the stochastic derivative.
This is this procedure that we call the stochastic embedding procedure. Note that
the form of this procedure acts on differential operators of a given form. Although
the procedure is canonical for a given form of operator, it is not canonical for a
given operator.

The previous embedding is formal and does not take constraints which are of
dynamical nature, like the reversibility of the underlying differential equation. As
reversibility plays a central role in physics, especially in celestial mechanics which
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is one domain of application of our theory, we discuss this point in details. We
introduce an embedding which respect the reversibility of the underlying equation.
Doing this, we see that we must restrict attention to the real part of our oper-
ator, which is the unique one to possess this property in our setting. We then
recover under dynamical and algebraic arguments studies dealing with particular
choice of stochastic derivatives in order to derive quantum mechanics from classical
mechanics under Nelson approach.

The third part is mainly concerned with the application of the stochastic em-
bedding to Lagrangian systems.

We consider autonomous4 Lagrangian systems L(x, v), (x, v) ∈ U ⊂ Rd × Rd,
where U is an open set, which satisfy a number of conditions, one of it being
that it must be holomorphic with respect to the second variable which represent
the derivative of a given function. Such kind of Lagrangian functions are called
admissible. Using the stochastic embedding procedure we can associate to the
classical Euler-Lagrange equation a stochastic one which has the form

∂L

∂x
(X(t),DX(t)) = D

[
∂L

∂v
(X(t),DX(t))

]
, (SEL)

where X is a real valued stochastic process.

Lagrangian systems possess very special features, the main one is that the
Euler-Langrange equation comes from a variational principle. We than are lead
to look for a stochastic variational principle giving the stochastic Euler-Lagrange
equation. We remark that the Lagrangian function L keep sense on stochastic
processes and can be considered as a functional. As a consequence, we can search
for the existence of a least action principle which gives the stochastic Euler-Lagrange
equation (SEL). The existence of such a stochastic least action principle is far from
being trivial with respect to the embedding procedure. Indeed, it must follows from
a stochastic calculus of variations which is not developed apart from this procedure.
Our problem can then be formalize as the following diagram:

(0.2)

L(x, dx/dt) LAP−−−−→ ELyS
yS

L(X,DX) SLAP ?−−−−−−→ (SEL),
where LAP is the least action principle, S is the stochastic embedding procedure,
(EL) is the classical Euler-Lagrange equation associated to L and SLAP the at
this moment unknown stochastic least action principle. The existence of such a
principle is called the coherence problem.

Chapter 7 develops a stochastic calculus of variations for functionals of the
form

(0.3) E

[∫ b

a

L(X(t),DX(t)) dt

]
,

4This restriction is due to technical difficulties.
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where E denotes the classical expectation. Introducing the correct notion of ex-
tremals and variations we obtain two different stochastic analogue of the least action
principle depending on the regularity class we choose for the admissible variations.
The main point is that for variations in the class of Nelson differentiable process,
the extremals of our functional coincide with the stochastic Euler-Lagrange equa-
tion obtained via the stochastic embedding procedure. This result is called the
coherence lemma. In the reversible case, i.e. taking as a stochastic derivative only
the real part of our operator, we obtain the same result but in this case one can
consider general variations.

In chapter 8, we provide a first study of what dynamical data remain from the
classical dynamical system under the stochastic embedding procedure. We have
focused on symmetries of the underlying equation and as a consequence on first
integrals. We prove a stochastic analogue of the Noether theorem. This allows us
to define a natural notion of first integral for stochastic differential equations. This
part also put in evidence the need for a geometrical setting governing Lagrangian
systems which is the analogue of symplectic manifolds.

Chapter 9 deals with the stochastic Euler-Lagrange equation for natural La-
grangian systems, i.e. associated to Lagrangian functions of the form

(0.4) L(x, v) = T (v)− U(x),

where U is a smooth function and T is a quadratic form. In classical mechanics U
is the potential energy and T the kinetic energy. The main result of this chapter
is that by restricting our attention to good diffusion processes, and up to a a well
chosen function ψ, called the wave function, the stochastic Euler-Lagrange equa-
tion is equivalent to a non linear Schrödinger equation. Moreover, by specializing
the class of stochastic processes, we obtain the classical Schrödinger equation. In
that case, we can give a very interesting characterization of stochastic processes
which are solution of the stochastic Euler-Lagrange equation. Indeed, the square of
the modulus of ψ is equal to the density of the associated stochastic process solution.

In chapter 10, we define a natural notion of stochastic Hamiltonian system.
This result can be seen as a first attempt to put in evidence the stochastic analogue
of a symplectic structure. We define a stochastic momentum process and prove
that, up to a suitable modification of the stochastic embedding procedure called
the Hamiltonian stochastic embedding, and reflecting the fact that the “speed” of a
given stochastic process is complex, we obtain a coherent picture with the classical
formalism of Hamiltonian systems. This first result is called the Legendre coherence
lemma as it deals with the coherence between the Hamiltonian stochastic embedding
procedure and the Legendre transform. Secondly, we develop a Hamilton least
action principle and we prove again a coherence lemma, i.e. that the following
diagram commutes

H(x(t), p(t))

Hamilton least action principle
²²

SH // H(X(t), P (t))

Stochastic Hamilton least action principle
²²

(HE)
SH

// (SHE)
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where SH denotes the Hamiltonian stochastic embedding procedure.

The last chapter discuss many possible developments of our theory from the
point of view of mathematics and applications.



Part 1

The stochastic derivative





CHAPTER 1

About Nelson stochastic calculus

1.1. About measurement and experiments

In this section, we explain what we think are the basis of all possible extensions
of the classical derivative. The setting of our discussion is the following:

We consider an experimental set-up which produces a dynamics. We assume
that each dynamics is observed during a time which is fixed, for example [0, T ],
where T ∈ R∗+. For each experiment i, i ∈ N, we denote by Xi(t) the dynamical
variable which is observed for t ∈ [0, T ].

Assume that we want to describe the kinematic of such a dynamical variable.
What is the strategy ?

The usual idea is to model the dynamical behaviour of a variable by ordinary
differential equations or partial differential equations. In order to do this, we must
first try to have access to the speed of the variable. In order to compute a significant
quantity we can follow at least two different strategies:

• We do not have access to the variable Xi(t), t ∈ [0, T ], but to a collection
of measurements of this dynamical variable. Assume that we want to
compute the speed at time t. We can only compute an approximation of
it for a given resolution h greater than a given threshold h0. Assume that
for each experiment we are able to compute the quantity

(1.1) vi,h(t) =
Xi(t + h)−Xi(t)

h
.

We can then try to look for the behaviour of this quantity when h varies.
If the underlying dynamics is not too irregular, then we can expect a limit
for vi,h(t) when h goes to zero that we denote by vi(t).

We then compute the mean value

(1.2) v̄(t) =
1
n

n∑

i=1

vi(t).

If the underlying dynamics is not too irregular then v̄(t) can be used to
model the problem. In the contrary the basic idea is to introduce a ran-
dom variable.

Remark that due to the intrinsic limitation for h we never have access
to vi(t) so that this procedure can not be implemented.

9



10 1. ABOUT NELSON STOCHASTIC CALCULUS

• Another idea is to look directly for the quantity

(1.3) v̄h,n(t) =
1
n

n∑

i=1

vi,h(t).

Contrary to the previous case, if there exists a well defined mean value
v̄h(t) when n goes to infinity then we can find an approximation v̄h,n as
close as we want to v̄h. Indeed it suffices to do sufficiently many experi-
ences. We then look for the limit of v̄h(t) when h goes to zero.

For regular dynamics these two procedures lead to the same result as all these
quantities are well defined and converge to the same quantity. This is not the case
when we deal with highly irregular dynamics. In that case the second procedure
is easily implemented contrary to the first one. The only problem is that we loose
the geometrical meaning of the resulting limit quantity with respect to individual
trajectories as one directly take a mean on all trajectories before taking the limit
in h.

This second alternative can be formalized using stochastic processes and leads
to the Nelson backward and forward derivatives that we define in the next section.

We have take the opportunity to discuss these notions because the previous
remarks proves that one cannot justify the form of the Nelson derivatives using a
geometrical argument like the non differentiability of trajectories for a Brownian
motion. This is however the argument used by E. Nelson ([53],p.1080) in order to
justify the fact that we need a substitute for the classical derivative when study-
ing Wiener processes. This misleadingly suggest that the forward and backward
derivative capture this non differentiability in their definition, which is not the case.

1.2. The Nelson derivatives

Let (Ω,A,P) be a probability space, where A is the σ-algebra of all measurable
events and P is a probability measure defined on A. Let P = {Pt} and F = {Ft} be
an increasing and a decreasing family of sub-σ-algebras, respectively. We denote by
let E[· | B] the conditional expectation with respect to any sub-σ-algebra B ⊂ A.
We denote by L2(Ω) the Hilbert space of all square integrable random variables,
endowed with the Hilbertian norm ‖ . ‖L2(Ω). We denote by I an open interval of
R.

Definition 1.1. A d-dimensional random process X(·) defined on I ×Ω is an
SO-process if: X(·) has continuous sample paths, X(·) is F and P adapted, for all
t ∈ I, X(t) ∈ L2(Ω), the mapping t → X(t) from I to L2(Ω) is continuous.

Definition 1.2. A d-dimensional random process X(·) is an S1-process if it
is an SO-process such that

(1.4) DX(t) = lim
h→0+

E

[
X(t + h)−X(t)

h
| Pt

]
,

and

(1.5) D∗X(t) = lim
h→0+

E

[
X(t)−X(t− h)

h
| Ft

]
,
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exist in L2(Ω) for t ∈ I, and the mappings t 7→ DX(t) and t 7→ D∗X(t) are both
continuous from I to L2(Ω).

Definition 1.3. We denote by C1(I) a completion of the totality of S1-processes
in the norm

(1.6) ‖ X ‖= sup
t∈I

(‖ X(t) ‖L2(Ω) + ‖ DX(t) ‖L2(Ω) + ‖ D∗X(t) ‖L2(Ω)

)
,

Remark 1.1. The main point in the previous definitions for a forward and
backward derivative of a stochastic process, is that the forward and backward fil-
tration are fixed by the problem. As a consequence, we do not have an intrinsic
quantity only related to the stochastic process. A possible alternative definition is
the following:

Definition 1.4. Let X be a stochastic process, and σ(X) (resp. σ∗(X)) the
forward (resp. backward) adapted filtration. We define, when they exist, the quan-
tities

dX(t) = lim
h→0+

h−1E[X(t + h)−X(t) | σ(Xs, s ∈ I ∩ (−∞, t])],(1.7)

d∗X(t) = lim
h→0+

h−1E[X(t)−X(t− h) | σ(Xs, s ∈ I ∩ [t,+∞))].(1.8)

In this case, we obtain intrinsic quantities, only related to the stochastic pro-
cess. However, these new operators behave very badly from an algebraic point of
view. Indeed, without stringent assumptions on stochastic processes, we do not have
linearity of d or d∗.

This difficulty is not apparent as long as one restrict attention to a single sto-
chastic process.

1.3. Good diffusion processes

Let I = (0, 1). Let (Ω,A,P) be a probability space endowed with an increasing
filtration (Pt) and a decreasing filtration (Ft).

We introduce special classes of diffusion processes for which we can explicitly
compute the Nelson derivatives.

The first one allows to compute the first order derivatives D and D∗:

Definition 1.5. We denote by Λ1 the set of diffusion processes X satisfying
the following conditions:

i- X solves a stochastic differential equation :

dX(t) = b(t,X(t))dt + σ(t,X(t))dW (t), X(0) = X0,(1.9)

where X0 ∈ L2(Ω), W (·) is a P-Brownian motion, b : I×Rd → Rd and σ : I×Rd →
Rd ⊗ Rd are Borel measurable functions satisfying the hypothesis : there exists a
constant K such that for every x, y ∈ Rd we have

sup
t

(|σ(t, x)− σ(t, y)|+ |b(t, x)− b(t, y)|) 6 K |x− y| ,(1.10)

sup
t

(|σ(t, x)|+ |b(t, x)|) 6 K(1 + |x|).(1.11)

ii- For any t ∈ I, X(t) has a density pt(x) at point x.
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iii- Setting aij = (σσ∗)ij, for any i ∈ {1, · · · , n}, for any t0 ∈ I,

(1.12)
∫ 1

t0

∫

Rd

|∂j(aij(t, x)pt(x))| dxdt < +∞.

iv- X(·) is also a F-Brownian diffusion.

The second one allows to compute, under very strong conditions, the second
order derivatives DD∗, D∗D, D2 and D2

∗:

Definition 1.6. We denote by Λ2 the subset of Λ1 whose diffusion processes
X are such that their drift b and the function

(t, x) → ∂j(aij(t, x)pt(x))
pt(x)

are bounded, belong to C1,2(I ×Rd), and have all its first and second order deriva-
tives bounded.

Remark 1.2. • Hypothesis i) ensures that (1.9) has a unique t−continuous
solution X(·).

• Hypothesis i), ii) and iii) allow to apply theorem 2.3 p.217 in [48].
• We may wonder in which cases hypothesis ii) holds. Theorem 2.3.2 p.111

of [57] gives the existence of a density for all t > 0 under the Hörmander
hypothesis which is involved by the stronger condition that the matrix
diffusion σσ∗ is elliptic at any point x. A simple example is given by a
SDE where b is a C∞(I × Rd) function with all its derivatives bounded,
and where the diffusion matrix is a constant equal to cId. In this case,
pt(x) belongs to C∞(I × Rd); moreover, if X0 has a differentiable and
everywhere positive density p0(x) with respect to Lebesgue measure such
that p0(x) and p0(x)−1∇p0(x) are bounded, then b(t, x)− c∇log(pt(x)) is
bounded as noticed in the proof of proposition 4.1 in [63]. So hypothesis
ii) seems not to be such a restrictive condition.

According to the theorem 2.3 of [48] and thanks to iv), we will see that Λ1 ⊂
C1(I) and that we can compute DX and D∗X for X ∈ Λ1 (see Theorem 1.1).

1.4. The Nelson derivatives for good diffusion processes

A useful property of good diffusions processes is that their Nelson’s derivatives
can be explicitly computed. Precisely, we have:

Theorem 1.1. Let X ∈ Λ1 which writes dX(t) = b(t,X(t))dt+σ(t,X(t))dW (t).
Then X is Markov diffusion with respect to the increasing filtration (Pt) and the
decreasing filtration (Ft). Moreover, DX and D∗X exists w.r.t. these filtrations
and :

DX(t) = b(t,X(t))(1.13)
D∗X(t) = b∗(t,X(t))(1.14)

where x → pt(x) denotes the density of X(t) at x and

bi
∗(t, x) = bi(t, x)− ∂j(aij(t, x)pt(x))

pt(x)

with the convention that the term involving 1
pt(x) is 0 if pt(x) = 0.
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Proof. The proof uses essentially theorem 2.3 of Millet-Nualart-Sanz [48].
Set I = (0, 1).

(1) Let X ∈ Λ1. Then X is a Markov diffusion w.r.t. the increasing filtration
(Pt), so:

E

[
X(t + h)−X(t)

h
|Pt

]
= E

[
1
h

∫ t+h

t

b(s, X(s))ds |Pt

]
,

and

E

∣∣∣∣E
[
X(t + h)−X(t)

h
|Pt

]
− b(t,X(t))

∣∣∣∣ 6 1
h

E

∫ t+h

t

|b(s,X(s))− b(t,X(t))| ds

=
1
h

∫ t+h

t

E |b(s,X(s))− b(t,X(t))| ds.

Using the fact that b is Lipschizt and that t → E[Xt] is locally integrable, we can
conclude that

1
h

∫ t+h

t

E |b(s,X(s))− b(t,X(t))| ds
h→0−→ 0 a.s.

Therefore DX exists and DX(t) = b(t,X(t)).

(2) As X ∈ Λ1, we can apply theorem 2.3 in [48]. Hence X(t) = X(1− t) is a
diffusion process w.r.t. the increasing filtration (F1−t) and whose generator reads

Ltf = b
i
∂if +

1
2
aij∂ijf

with aij(1− t, x) = aij(t, x) and

b
i
(1− t, x) = −bi(t, x) +

∂j(aij(t, x)pt(x))
pt(x)

.

We have :

E

[
X(t)−X(t− h)

h
|Ft

]
= E

[
X(1− t)−X(1− t + h)

h
|F1−t

]

= −E

[
1
h

∫ 1−t+h

1−t

b(s, X(s))ds |F1−t

]
.(1.15)

Using the same calculations and arguments as above since hypothesis iii) implies
that

t → E

[
∂j(aij(t, X(t))pt(X(t)))

pt(X(t))

]

is locally integrable, we obtain that D∗X(t) exists and is equal to

−b(1− t, X(1− t)).

¤

In the case of fractional Brownian motion of order H 6= 1/2, the Nelson deriva-
tives do not exist. However, one can define new operators extending the Nelson
derivatives in the fractional case H > 1/2. We refer to the work of Darses and
Nourdin [18] for more details.
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1.5. A remark about reversed processes

This part reviews basic results about reversed processes, with a special empha-
sis to diffusion processes. We use Nelson’s stochastic calculus.

Let X be a process in the class C1(I). We denote by X̃ the reversed process
: X̃(t) = X(1 − t), with his ”past” P̃t and his ”future” F̃t. As a consequence, we
also have x̃ ∈ C1(I).

Using the operators d and d∗ defined in definition 1.4,we have:

Lemma 1.1. d∗x(t) = −dx̃(1− t) = −d̃x̃(t).

Proof. The definition of d∗ gives immediately:

d∗x(t) = lim
ε→0+

E

[
x̃(1− t)− x̃(1− t + ε)

ε

∣∣∣∣Ft

]
.

But Ft = σ{x(s), t 6 s 6 1} = σ{x̃(u), 0 6 u 6 1− t} = P̃1−t.
Thus:

d∗x(t) = lim
ε→0+

−E

[
x̃(1− t + ε)− x̃(1− t)

ε

∣∣∣P̃1−t

]
= −dx̃(1− t) = −d̃x̃(t).

¤
The same computation is not at all possible when dealing with the operators

D and D∗.



CHAPTER 2

Stochastic derivative

In this part, we construct a natural extension1 of the classical derivative on real
stochastic processes as a unique solution to an algebraic problem. This stochastic
derivative turns out to be necessarily complex valued. Our construction relies
on Nelson’s stochastic calculus [52]. We then study properties of our stochastic
derivative and establish a number of technical results, including a generalization
of Nelson’s product rule [52] as well as the stochastic derivative for functions of
diffusion processes. We also compute the stochastic derivative in some classical
examples. The main point is that, after a natural extension to complex processes,
the real part of the second derivative of a real stochastic process coincide with
Nelson’s mean acceleration. We define a special class of processes called Nelson
differentiable, which will be of importance for the stochastic calculus of variations
developed in chapter 7. This part is self contained and all basic results about
Nelson’s stochastic calculus are reminded.

2.1. The abstract extension problem

In this section, we discuss in a general abstract setting, what kind of analogue
of the classical derivative we are waiting for on stochastic processes.

Let K = R or C. In the sequel, we denote by SK the whole set of K-valued
stochastic processes. Let K′ be an extension of K. We denote by PK a given subset
of SK′

2. We simply denote SK by S when a result is valid for both K = R or K = C.

We first remark that real3 valued functions naturally embed in stochastic pro-
cesses.

Indeed, let f : R→ R be a given function. We denote by Xf the deterministic
stochastic process defined for all ω ∈ Ω, t ∈ R, by

(2.1) Xf (t)(ω) = f(t).

We denote by ι : RR → S the map associating to f ∈ RR the stochastic process Xf .

We denote by Pdet (resp. Sdet) the subset of P (resp. S) consisting of deter-
ministic processes, and by P k

det (resp. Sk
det) the set ι(Ck), k > 0. In the sequel, we

1A precise meaning to this word will be given in the sequel.
2We do not give more precisions on this set for the moment, the set P can be the whole set

of real or complex valued stochastic processes, or a particular class like diffusion processes,etc.
3Our aim was first to study dynamical systems over Rn. However, as we will see we will need

to consider complex valued objects.

15
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assume that P always contains ι(C0).

As a consequence, we have a natural action of the classical derivative on the
set of differentiable deterministic processes P k

det, k > 1, that we denote again by
d/dt, i.e. for all f ∈ C1, and all t ∈ R, ω ∈ Ω,(

d

dt
Xf

)
(t)(ω) := X df

dt
(t)(ω).

Equivalently, the following diagram commutes:

(2.2)

C1 ι−−−−→ Sdet

f −−−−→ Xfyd/dt

yd/dt

C0 ι−−−−→ Sdet

ḟ −−−−→ Xḟ := d
dtXf

Definition 2.1. Let K = R or C and K′ be an extension of K. An extension
of d/dt on PK is an operator δ, i.e. a map δ : PK → SK′ such that:

i) δ coincides with d/dt on P 1
det,

ii) δ is R-linear.

Condition i), which is a gluing condition on the classical derivative is necessary
as long as one wants to relate classical differential equations with their stochastic
counterpart.

Condition ii) is more delicate. Of course, one has linearity of δ on Diff. A
natural idea is then to preserve fundamental algebraic properties of d/dt, R-linearity
being one of them. This condition is not so stringent, if for example we consider
K = C. But, following this point of view, one can ask for more precise properties
like the Leibniz rule

(2.3)
d(X · Y )

dt
=

dX

dt
· Y + X · dY

dt
, ∀X,Y ∈ P 1

det.

In what follows, we construct a stochastic differential calculus based on Nelson’s
derivatives.

2.2. Stochastic differential calculus

In this part, we extend the classical differential calculus to stochastic processes
using a previous work of Nelson [52] on the dynamical theory of Brownian motion.
We define a stochastic derivative and review its properties.

2.2.1. Reconstruction problem and extension. Let us begin with some
heuristic remarks supporting our definition and construction of a stochastic deriv-
ative.

Our aim is to construct a ”natural” operator on C1(I) which reduces to the
classical derivative d/dt over differentiable deterministic processes4. The basic idea

4A rigourous meaning to this sentence will be given in the sequel.
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underlying the whole construction is that, for example in the case of the Brownian
motion, the trajectories are non-differentiable. At least, this is the reason why Nel-
son [52] introduces the left and right derivatives DX and D∗X for a given process
X. If we refer to geometry, forgetting for a moment processes for trajectories, the
fundamental property of the classical derivative dx/dt(t0) of a trajectory x(t) at
point t0, is to provide a first order (geometric) approximation of the curve in a
neighbourhood of t0. One wants to construct an operator, that we denote by D,
such that the data of DX(t0) allows us to give an approximation of X in a neigh-
bourhood of t0. The difference is that we must know two quantities, namely DX
and D∗X, in order to obtain the information5. For computational reasons, one
wants an operator with values in a field F. This field must be a natural exten-
sion of R (as we want to recover the classical derivative) and at least of dimension
2. The natural candidate to such a field is C. One can also recover C by saying
that we must consider not only R but the doubling algebra which corresponds to C.

This informal discussion leads us to build a complex valued operator D :
C1(I) → PC(I), with the following constraints:

i) (Gluing property) For X ∈ P 1
det, DX(t) = dX/dt,

ii) The operator D is R-linear,

iii) (Reconstruction property) For X ∈ C1(I), let us denote by

DX = A(DX,D∗X) + iB(DX,D∗X),

where A and B are linear R-valued mappings by ii). We assume that the mapping

(DX,D∗X) 7→ (A(DX, D∗X), B(DX, D∗X))

is invertible.

Lemma 2.1. The operator D has the form

DµX = [aDX + (1− a)D∗X] + iµb [DX −D∗X] , µ = ±1,

where a, b ∈ R and b > 0.

Proof. We denote by A(X) = aDX + bD∗X and B(X) = cDX + dD∗X. If
X ∈ C1(I), we have DX = D∗X = dX/dt, and i) implies

a + b = 1, c + d = 0.

We then obtain the desired form. By iii), we must have b 6= 0 in order to have
invertibility. ¤

In order to rigidify this operator, we impose a constraint coming from the anal-
ogy with the construction of the scale-derivative for non-differentiable functions in
[12].

iv) If D∗ = −D, then A(X) = 0, B(X) = D.

5This remark is only valid for general stochastic processes. Indeed, as we will see, for diffusion
processes, there is a close connection between DX and D∗X, which allows to simplify the definition
of D.
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We then obtain the following result:

Lemma 2.2. An operator D satisfying conditions i), ii), iii) and iv) is of the
form

(2.4) Dµ =
D + D∗

2
+ iµ

D −D∗
2

, µ = ±1.

Proof. Using lemma 2.1, iii) implies the relations: 2a− 1 = 0 and 2b = 1, so
a = b = 1/2. ¤

We then introduce the following notion of stochastic derivative:

Definition 2.2. We denote by Dµ the operators defined by

Dµ =
D + D∗

2
+ iµ

D −D∗
2

, µ = ±1.

2.2.2. Extension to complex processes. In order to embed second order
differential equations, we need to define the meaning of D2, and more generally of
Dn, n ∈ N. The basic problem is that, contrary to what happens for the ordinary
differential operator d/dt, even if we consider real valued processes X, the derivative
DX is a complex one. As a consequence, one must extend D to complex processes.

For the moment, let us denoted by DC the extension to be define of D, to
complex processes. Let F be a field containing C to be defined, and DC : C1

C(I) →
SF. There are essentially two possibilities to extend the stochastic derivative leading
to the same definition: an algebraic and an analytic one.

2.2.2.1. Algebraic extension. Let us assume that:

i) the operator DC is R-linear.

Let Z = X + iY be a complex process, where X and Y are two real processes.
By R-linearity, we have

DC(Z) = DCX +DC(iY ).

As DC reduce to D on real processes, we obtain

DC(Z) = DX +DC(iY ),

which reduce the problem of the extension to find a suitable definition of D on
purely imaginary processes.

We now make an assumption about the image of DC:

ii) The operator DC is C-valued.

This assumption is far from being trivial, and has many consequences. One
of them is that, whatever the definition of DC(iY ) is, we will obtain a complex
quantity which mixes the components of DX in a non trivial way.

Remark 2.1. One may wonder if another choice is possible, as for example,
using quaternions in order to avoid this mixing problem. However, a heuristic idea
behind the complex nature of D is that it corresponds to a fundamental property
of Nelson processes, the (in general) non-differentiable character of trajectories.
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Then, the doubling of the underlying algebra is related to a symmetry breaking6.
The computation of D2 is not related to such phenomenon.

In the following, we give two different extensions of D to complex processes
under hypothesis i) and ii). The basic problem is the following:

Let Y be a real process. We denote

(2.5) DY = S(Y )± iA(Y ),

where

(2.6) S(Y ) =
[
D + D∗

2

]
(Y ), and A(Y ) =

[
D −D∗

2

]
(Y ),

and the letters S and A stand for the symmetric and antisymmetric operators with
respect to the exchange of D with D∗.

We denote

(2.7) DC(iY ) = R(Y ) + iI(Y ),

where R(Y ) and I(Y ) are two real processes.

One can ask if we expect for special relations between R(Y ), I(Y ) and S(Y ),
A(Y ).

C-linearity. If no relations are expected for, the natural hypothesis is to assume
C-linearity of DC, i.e.

(2.8) DC(iY ) = iDY.

As a consequence, we obtain the following definition for the operator DC:

We denote by C1
C(I) the set of stochastic processes of the form Z = X + iY ,

with X,Y ∈ C1(I).

Definition 2.3. The operator DC : C1
C → PC is defined by

DC,µ(X + iY ) = DµX + iµDµY, µ = ±1,

where X,Y ∈ C1.

In the sequel, we simply denote by DC for DC,µ.

The following lemma gives a strong reason to choose such a definition of DC.
We denote by

Dn
C = DC ◦ · · · ◦ DC.

Lemma 2.3. We have

D2
C =

DD∗ + D∗D
2

+ i
D2 −D2

∗
2

.(2.9)

Proof. One use the C-linearity of operator D. ¤
We note that the real part of D2 is the mean acceleration as defined by Nelson

[52].

6This reduces to DX = D∗X for deterministic differentiable processes, namely the invariance
under h → −h.
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Remark 2.2. In ([52],p.81-82), Nelson discusses natural candidates for the
stochastic analogue of acceleration. More or less, the idea is to consider quadratic
combinations of D and D∗, respecting a gluing property with the classical derivative:

Let Qa,b,c,d(x, y) = ax2 + bxy + cyx + dy2 be a real non-commutative quadratic
form such that a + b + c + d = 1. A possible definition for a stochastic acceleration
is Q(D,D∗).

We remark that the condition a + b + c + d = 1 implies that when D = D∗, we
have Q(D, D∗) = D = D∗.

The simplest examples of this kind are: D2, D2
∗, DD∗ and D∗D.

We can also impose a symmetry condition in order to take into account that
we do not want to give a special importance to the mean-forward or mean-backward
derivative, by assuming that Q(x, y) = Q(y, x), so that Q is of the form

Qa(x, y) = a(x2 + y2) + (1− 2a)
xy + yx

2
, a ∈ R.

The simplest example in this case is obtained by taking a = 0, i.e.

Q0(D, D∗) =
DD∗ + D∗D

2
.

This last one corresponds to Nelson’s mean acceleration and coincide with the real
part of our stochastic derivative.

It must be pointed out that Nelson discusses only five possible candidates where
at least a three parameters family can be defined by Qa,b,c,1−a−b−c(D, D∗). His five
candidates correspond to the simplest cases we have described.

The choice of Q0(D, D∗) as a mean acceleration is justified by Nelson using a
Gaussian Markov process X(t) in equilibrium, satisfying the stochastic differential
equation

dX(t) = −ωX(t)dt + dW (t).

We will return to this problem below.

2.2.2.2. Analytic extension. We first remark that D and D∗ possess a natural
extension to complex processes. Indeed, let X = X1 + iX2, with Xi ∈ C1(I) then

D(X1 + iX2) = D(X1) + iD(X2) and D∗(X1 + iX2) = D∗(X1) + iD∗(X2).

As a consequence, the quantities S(Y ) and A(Y ) introduced in the previous section
for real valued processes make sense for complex processes, and the quantity A(X)+
iS(X) is well defined for the complex process X ∈ C1

C(I). As a consequence, we
can naturally extend D(X) to complex processes by simply posing

D(X) =
D + D∗

2
+ µi

D −D∗
2

,

with the natural extension of D and D∗.
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2.2.2.3. Symmetry. A possible way to extend D is to assume that the regular
part of DC(iY ) is equal the imaginary part of D(Y ), i.e. that the geometric meaning
of the complex and real part of DY is exchanged. We then impose the following
relation:

R(Y ) = σA(Y ).
This leads to the following extension: the operator DC : C1

C → PC would be defined
by

DC,µ(X + iY ) = DµX − iµDµY, µ = ±1,

where X, Y ∈ C1.

2.2.3. Stochastic derivative for functions of diffusion process. In the
following, we need to compute the stochastic derivative of f(t, Xt) where Xt is a
diffusion process and f is a smooth function.

Definition 2.4. We denote by C1,2
b (I×Rd) the set of functions f : I×Rd → R,

(t, x) 7→ f(t, x) such that ∂tf , ∇f and ∂xixj
f exist and are bounded.

In the sequel, we denote by ∂ijf for ∂xixj f .

Our main result is the following lemma:

Lemma 2.4. Let X ∈ Λ1 and f ∈ C1,2(I × Rd). Then, we have:

Df(t,X(t)) =
[
∂tf + DX(t) · ∇f +

1
2
aij∂ijf

]
(t,X(t)),(2.10)

D∗f(t,X(t)) =
[
∂tf + D∗X(t) · ∇f − 1

2
aij∂ijf

]
(t,X(t)).(2.11)

Proof. Let X ∈ Λ1 and f ∈ C1,2(I × Rd). Thus f belongs to the domain of
the generators Lt and Lt of the diffusions X(t) and X(t). Moreover these regularity
assumptions allow us to use the same arguments as in the proof of theorem 1.1 in
order to write :

Df(t, X(t)) = ∂tf(t,X(t)) + Lt(f(t, ·))(X(t))

=
[
∂tf + bi∂if +

1
2
aij∂ijf

]
(t,X(t))

=
[
∂tf + DX(t) · ∇f +

1
2
aij∂ijf

]
(t,X(t))

and

D∗f(t, X(t)) = ∂tf(t,X(t))− L1−t(f(t, ·))(X(t))

=
[
∂tf + D∗X(t) · ∇f − 1

2
aij∂ijf

]
(t,X(t))

¤
We deduce immediately the following corollary :

Corollary 2.1. Let X ∈ Λ1 and f ∈ C1,2(I × Rd). Then, we have:

Dµf(t, X(t)) =
[
∂tf +DµX(t) · ∇f +

iµ

2
aij∂ijf

]
(t,X(t)).(2.12)
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and

Corollary 2.2. Let X ∈ Λ1 with a constant diffusion coefficient σ and f ∈
C1,2(I × Rd). Then, we have:

Dµf(t,X(t)) =
[
∂tf +DµX(t) · ∇f +

iµσ2

2
∆f

]
(t,X(t)).(2.13)

2.2.4. Examples. We compute the stochastic derivative in some famous ex-
amples, like the Ornstein-Uhlenbeck process and a Brownian mation in an external
force.

For each example, the underlying space Λ1 is constructed using the natural
filtration generated by the stochastic process considered and its reversed.

2.2.4.1. The Ornstein-Uhlenbeck process. A good model of the Brownian mo-
tion of a particle with friction is provided by the Ornstein-Uhlenbeck equation:

(2.14)





X ′′(t) = −αX ′(t) + σξ(t),
X(0) = X0,
X ′(0) = V0,

where X(t) is the position of the particle at time, α is the friction coefficient, σ is
the diffusion coefficient, X0 and V0 are given Gaussian variables, ξ is ”white noise”.
The term −αX ′(t) represents a frictional damping term.

The stochastic differential equation satisfied by the velocity process V (t) :=
Y ′(t) is given by:

(2.15)
{

dV (t) = −αV (t)dt + σdW (t),
V (0) = V0.

We can explicitly compute DV and D2V :

Lemma 2.5. Let V (·) be a solution of

(2.16)
{

dV (t) = −αV (t)dt + σdW (t),
V (0) = V0,

where V0 has a normal distribution with mean zero and variance σ2

2α .

Then V ∈ C2(]0, +∞)) and:

DV (t) = −iαV (t)(2.17)
D2V (t) = −α2V (t).(2.18)

Proof. The solution is a Gaussian process explicitly given by:

(2.19) ∀t > 0, V (t) = V0e
−αt + σ

∫ t

0

e−α(t−s)dW (s).

Therefore, we can compute the expectation and the variance of the normal
variable V (t) :

(2.20)

{
E[V (t)] = E[V0]e−αt,

Var(V (t)) = σ2

2α +
(
Var(V0))− σ2

2α

)
e−2αt.
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We notice, as in [29], that if V0 has a normal distribution with mean zero and
variance σ2

2α , then X is a stationary gaussian process which distribution pt(x) at
each time t reads

(2.21) pt(x) =
√

α√
πσ

e−
αx2

σ2 .

As a consequence, we have for all t > 0

(2.22) σ2∂x ln(pt(x)) = −2αx.

Moreover,

(2.23) DV (t) = −αV (t),

and according to theorem 1.1, we obtain

(2.24) D∗V (t) = −αV (t)− σ2∂x ln(pt(V (t))) = αV (t).

Therefore DV (t) = −iαV (t), and using the C−linearity of D, we obtain D2V (t) =
−α2V (t), which concludes the proof. ¤

2.2.4.2. Brownian particle submitted to an external force. In some examples of
random mechanics, one has to consider the stochastic differential system:

(2.25)





dX(t) = V (t)dt,
X(0) = X0,
dV (t) = −αV (t)dt + K(X(t))dt + σdW (t),
V (0) = V0.

The processes X and V may represent the position and the velocity of a particle
of mass m being under the influence of an external force F = −∇U where U is a
potential. Set K = F/m. The ”free” case K = 0 is the above example.

When K(x) = −ω2x (a linear restoring force), the system can also be seen
as the random harmonic oscillator. In this case, it can be shown that if (X0, V0)
has an appropriate gaussian distribution then (X(t), V (t)) is a stationary gaussian
process in the same way as before.

Let us come back to the general case.

First, we remark that X is Nelson-differentiable and we have DX(t) = D∗X(t) =
V (t). Moreover, Nelson claims in ([52],p.83-84) that, when the particle is in equi-
librium with a special stationary density,

DV (t) = −αV (t) + K(X(t)),(2.26)
D∗V (t) = αV (t) + K(X(t)).(2.27)

We can summarize these results with the computation of D :

DX(t) = V (t),(2.28)
D2X(t) = K(X(t))− iαV (t).(2.29)





CHAPTER 3

Properties of the stochastic derivatives

3.1. Product rules

In chapter 7, we develop a stochastic calculus of variations. In many prob-
lems,we will need the analogue of the classical formula of integration by parts,
based on the following identity, called the product or Leibniz rule

d

dt
(fg) =

df

dt
g + f

dg

dt
, (P )

where f, g are two given functions.

Using a previous work of Nelson [52], we generalize this formula for our sto-
chastic derivative. We begin by recalling the fundamental result of Nelson on a
product rule formula for backward and forward derivatives:

Theorem 3.1. Let X,Y ∈ C1(I), then we have:

d

dt
E[X(t) · Y (t)] = E[DX(t) · Y (t) + X(t) ·D∗Y (t)](3.1)

We refer to ([52],p.80-81) for a proof.

Remark 3.1. It must be pointed out that this formula mixes the backward and
forward derivatives. As a consequence, even without our definition of the stochas-
tic derivative, which takes into account these two quantities, the previous product
rule suggests the construction of an operator which mixes these two terms in a
”symmetrical” way.

We now take up the various consequences of this formula regarding our operator
D. A straightforward calculation gives:

Lemma 3.1. Let X, Y ∈ C1(I), we then have:

d

dt
E[X(t) · Y (t)] = E[Re(DX(t)) · Y (t) + X(t) · Re(DY (t))](3.2)

E[Im(DX(t)) · Y (t)] = E[X(t) · Im(DY (t))](3.3)

Lemma 3.2. Let X, Y ∈ C1
C(I). We write X = X1 + iX2 and Y = Y1 + iY2

where Xi, Yi ∈ C1(I). Therefore :

(3.4) E[DµX · Y + X · DµY ] =
d

dt
g(X(t), Y (t)) + r(X(t), Y (t)),

where

(3.5) g(X, Y ) = E[X · Y ],

25
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and

(3.6) r(X, Y ) = −2E[Y1 · Im(DµX2)]− 2E[Y2 · Im(DµX1)]
+i (2E[Y1 · Im(DµX1)]− 2E[Y2 · Im(DµX2)]) .

Proof. We have
(3.7)

YDµX = Y1Re(DµX1)− Y1Im(DµX2)
−Y2Im(DµX1)− Y2Re(DµX2)
+i (Y1Im(DµX1) + Y1Re(DµX2) + Y2Re(DµX1)− Y2Im(DµX2)) .

In a symmetrical way, we obtain
(3.8)

XDµY = X1Re(DµY1)−X1Im(DµY2)
−X2Im(DµY1)−X2Re(DµY2)
+i (X1Im(DµY1) + X1Re(DµY2) + X2Re(DµY1)−X2Im(DµY2)) .

Forming the sum of these expressions and using lemma 3.1, we obtain (3.4). ¤

The next lemma will be of importance in chapter 7 for the derivation of the
stochastic analogue of the Euler-Lagrange equations:

Lemma 3.3. Let X, Y ∈ C1
C(I). We write X = X1 + iX2 and Y = Y1 + iY2

where Xi, Yi ∈ C1(I). Therefore, we have:

(3.9) E[DµX · Y + X · D−µY ] =
d

dt
g(X(t), Y (t))

where g(X,Y ) = E[X1 · Y1 −X2 · Y2] + iE[Y1 ·X2 + Y2 ·X1] = E[X · Y ]

Proof. We have
(3.10)

YDµX = Y1<(DµX1)− Y1=(DµX2)
−Y2=(DµX1)− Y2<(DµX2)
+i (Y1=(DµX1) + Y1<(DµX2) + Y2<(DµX1)− Y2=(DµX2)) ,

and in a symmetrical way
(3.11)

XD−µY = (X1 + iX2)(DµY1 + iDµY2)
= X1<(DµY1) + X1=(DµY2)

+X2=(DµY1)−X2<(DµY2)
+i (−X1=(DµY1) + X1<(DµY2) + X2<(DµY1) + X2=(DµY2)) .

We form the sum of these expressions and we use the lemma 3.1 to obtain
(3.4). ¤

3.1.1. A new algebraic structure. A convenient way to write equation (3.9)
is to use the following Hermitian product:

For all X, Y ∈ PC, we denote by ? the product

(3.12) X ? Y = X · Y ,

where . denotes the usual scalar product.

Formula (3.9) is then equivalent to:

(3.13) DE[X ? Y ] = E [DX ? Y + X ?DY ] ,
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where we have implicitly used the fact that D reduces to d/dt when this quantity
has a sense.

This new form leads us to the introduction of the following algebraic structure,
which is, as far as we know, new. Let δ be the canonical mapping

(3.14) δ :
PC ⊗ PC → PC
X ⊗ Y 7→ X ? Y .

We define for D the quantity ∆(D) = D⊗1+1⊗D, which we will call the coproduct
of D. Then, denoting by E the classical mapping which takes the expectation of a
given stochastic process, we obtain the following diagram:

(3.15)

PC ⊗ PC
∆(D)−−−−→ PC ⊗PC

X ⊗ Y −−−−→ DX ⊗ Y + X ⊗DYyδ

yδ

X ? Y −−−−→ DX ? Y + X ?DYyE
yE

E[X ? Y ] D−−−−→ E[DX ? Y + X ?DY ]

This structure is similar to the classical algebraic structure of Hopf algebra. The
difference is that we perturb the classical relations by a linear mapping, here given
by E. It will be interesting to study this kind of structure in full generality.

3.2. Nelson differentiable processes

3.2.1. Definition. We define a special class of processes, called Nelson-differentia-
ble processes, which will play an important role in the stochastic calculus of varia-
tions of chapter 7.

Definition 3.1. A process X ∈ C1(I) is called Nelson differentiable if DX =
D∗X.

Notation 3.1. We denote by N 1(I) the set of Nelson differentiable processes.

A better definition is perhaps to use D instead of D and D∗ saying that Nelson
differentiable processes have a real stochastic derivative.

The main idea behind this definition is that we want to define a class P of
processes in C1(I) such that if X ∈ C1(I) then for all Y ∈ P , we have

Im(D(X + Y )) = Im(DX).

This condition imposes that Im(DY ) = 0.

This condition will appear more clearly in chapter 7 concerning the stochastic
calculus of variations.

Remark 3.2. We must keep in mind that our definition of the stochastic deriva-
tive follows the idea of the scale calculus developed in [12] to study non-differentiable
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functions. In that context, the existence of an imaginary part for the scale deriva-
tive of a function is seen as a resurgence of its non-differentiability. In particular,
when the underlying function is differentiable then the scale derivative is real. That
is why we have chosen to call processes such that D = D∗ Nelson differentiable.

The definition of Nelson differentiable processes is only given for processes in
C1(I). It is not at all clear to know what is the correct extension to C1

C(I). As we
have no use of such kind of notion on C1

C(I) we do not discuss this point here.

Of course a difficult problem is to characterize these processes. The next section
discusses some examples.

3.2.2. Examples of Nelson-differentiable process. We give examples of
Nelson-differentiable processes.

3.2.2.1. Differentiable deterministic process. It is probably the first and the
simplest example. Let x(·) be a differentiable deterministic process defined on
I × Ω. The past P and the future F are trivial:

∀t ∈ I, Pt = Ft = {∅,Ω}.
As a consequence, we have

∀t ∈ I, Dx(t) = D∗x(t) = x′(t),

where x′ is the usual derivative of x.
3.2.2.2. A very special random example. Let X ∈ C1(I). In [52], Nelson shows

that X is a constant (i.e. X(t) is the same random variable for all t) if and only
if : ∀t ∈ I, DX(t) = D∗X(t) = 0. So it provides us a random example of
N 1(I)−process.

3.2.2.3. The random harmonic oscillator. The random harmonic oscillator sat-
isfies the stochastic differential equation:

(3.16)





dX(t) = V (t)dt
dV (t) = −αV (t)dt− ω2X(t)dt + σdW (t)
X(0) = X0, V (0) = V0,

As a consequence, we have X(t) =
∫ t

0

V (s)ds with E

[∫ b

0

|V (s)|2 ds

]
< ∞

(b > 0), and X has a strong derivative in L2. We then obtain DX(t) = D∗X(t) =
V (t). Finally, we have X ∈ N 1([0, b]) and DX(t) = V (t).

3.2.3. About the structure of Nelson-differentiable diffusion processes.
Using theorem 1.1, we can find a sufficient and a necessary condition for a diffusion
process to be a Nelson-differentiable process:

Lemma 3.4. Let X ∈ Λ1, then X ∈ N 1(I) if and only if for all i ∈ {1, · · · , d},
all t ∈ I and x ∈ Rd such that pt(x) > 0

(3.17)
d∑

j=1

∂j(aij(t, x)pt(x)) = 0.

A consequence of this lemma is that a diffusion belonging to Λ1 with a constant
diffusion coefficient cannot be a Nelson-differentiable process.
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Remark 3.3. When the diffusion equation is time homogeneous and the solu-
tions have a density, we note that this density must be a stationary density.

The difficulty to solve (3.17) relies on the fact that the density pt(x) is related
to the coefficient aij(t, x) via the Fokker-Planck equation (Kolmogorov forward
equation).

In order to give examples of Nelson differentiable process, we give a criteria for
Nelson differentiable process constructed from a diffusion:

Proposition 3.1. Let X ∈ Λ1 and Y (t) = f(t,X(t)) where f ∈ C1,2
b (R,Rd).

Then Y is a Nelson-differentiable process if and only if f solves the following partial
differential equation:

(3.18) ∂tf(t, x) +
∑

i,j

(
∂j(aij(t, x)pt(x))

pt(x)
∂if(t, x) + aij(t, x)∂ijf(t, x)

)
= 0.

We can simplify this condition for suitable diffusion processes:

Corollary 3.1. Let X ∈ Λ1 with a constant diffusion coefficient and a sta-
tionary density p(·). Let Y (t) = f(X(t)) where f ∈ C2(Rd). Then Y is a Nelson-
differentiable process if and only if f solves the following partial differential equa-
tion:

(3.19) ∇x ln p(x) · ∇xf(x) + ∆f(x) = 0.

Despite the simple form of this partial differential equation, its resolution seems
to be a very difficult problem since we work on an unbounded domain. This will
be studied in a forthcoming paper.

3.2.4. Product rule and Nelson-differentiable processes.

Corollary 3.2. Let X, Y ∈ C1
C(I). If X is Nelson-differentiable then :

(3.20) E[DµX(t) · Y (t) + X(t) · DµY (t)] =
d

dt
E(X(t), Y (t))

Proof. This is a simple consequence of the fact that if X = X1 + iX2 is
Nelson-differentiable then Im(DµX1) = Im(DµX2) = 0. ¤
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CHAPTER 4

Stochastic embedding of differential operators

A natural question concerning ordinary and partial differential equations con-
cerns their behaviour under small random perturbations. This problem is partic-
ularly important in natural phenomena where we know that models are only an
approximation of the real setting. For example, the study of the long term be-
haviour of the solar system is usually done by running numerical computations on
the n-body problem. However, many effects in the solar systems are not included
in this model and can be of importance if one looks for a long term integration, as
non conservative effects (due to tidal forces between planets) and the oblatness of
the sun which is not yet modelled by a differential equation.

The main problem is then to find the correct analogue of a given differential
equation taking into account the following facts:

i) The classical equation is a good model at least in first approximation,
ii) One must extend this equation to stochastic processes.

Using the stochastic derivative introduced in the previous part, we give a nat-
ural embedding of partial or ordinary differential equations into stochastic partial
or ordinary differential equations. It must be pointed out that we do not perturb
the classical equation by a random noise or anything else. In this respect we are
far from the usual way of thinking underlying the fields of stochastic differential
equations or stochastic dynamical systems.

Of course, having this natural embedding, we can naturally define what a sto-
chastic perturbation of a differential equation is. This is simply a stochastic pertur-
bation of the stochastic embedding of the given equation. The main point is that we
stay in the same class of objects dealing with perturbations, which is not the case
in the stochastic theory of differential equations, where we jump from classical solu-
tions to stochastic processes in one step using for example Ito’s stochastic calculus1.

In this part we first give a general embedding procedure for partial differential
equations. We discuss classical examples, in particular first and second order dif-
ferential equations. The case of Lagrangian systems is studied in details in chapter
7. An important part of classical differential equations coming from mechanics are
reversible. This property is not conserved by the previous stochastic embedding
procedure. We define a special embedding called reversible, which preserves this
property, meaning that if X is a solution of the stochastic embedded equation, then
X̃, the reversed process, is again a solution.

1This remark is also valid for all the theories of this kind, using your favourite stochastic
calculus, like Malliavin calculus for example.

33



34 4. STOCHASTIC EMBEDDING OF DIFFERENTIAL OPERATORS

4.1. Stochastic embedding of differential operators

In this part, we first give an abstract embedding procedure based on an exten-
sion of the classical derivative defined in the previous part. We then specialize our
embedding procedure using the stochastic derivative.

4.1.1. Abstract embedding. Let A be a ring, we denote by A[x] the ring of
polynomials with coefficients in A.

Definition 4.1. A differential operator is an elements of A[d/dt].

Let O ∈ A[d/dt], the differential operator O is of the form

(4.1) O = a0(•, t) + a1(•, t) d

dt
+ · · ·+ an(•, t) dn

dtn
, ai ∈ A, = 0, . . . , n,

for a given n ∈ N, called the degree of O.

The action of O on a given function x : R→ Rd, t 7→ x(t) is denoted O · x and
defined by

(4.2) O · x =
n∑

i=0

ai(x(t), t)
dx

dt
.

Definition 4.2 (Abstract stochastization). Let O ∈ A[d/dt] be a differential
operator, of the form

(4.3) O = a0(•, t) + a1(•, t) d

dt
+ · · ·+ an(•, t) dn

dtn
, ai ∈ A, = 0, . . . , n,

where n ∈ N is given.
The stochastic embedding of O with respect to the extension δ : P → S is an

element Oδ of P [δ] defined by

(4.4) Oδ = a0(•, t) + a1(•, t)δ + · · ·+ an(•, t)δn, ai ∈ A, i = 0, . . . , n,

where δn = δ ◦ · · · ◦ δ.

The action of Oδ on a given stochastic process X, denoted by Oδ ·X is defined
by

(4.5) Oδ ·X =
n∑

i=0

ai(X, t)δiX,

where the notation ai(X, t) stands for the stochastic process defined for all ω ∈ Ω
by

(4.6) ai(X, y)(ω) = ai(X(ω, t), t).

The main property of this embedding is the fact that

(4.7) Oδ |P n
det

= O,

so that the classical differential equation associated to O, and given by

O · x = 0, (E)

is contained in the stochastic differential equation

Oδ ·X = 0. (SE).
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4.1.2. Nelson Stochastic embedding. Using the stochastic derivative, we
have a particular stochastic embedding procedure. Let A = C1(Rd × R).

Definition 4.3 (Stochastization). Let O ∈ A[d/dt] be a differential operator,
of the form

(4.8) O = a0(•, t) + a1(•, t) d

dt
+ · · ·+ an(•, t) dn

dtn
, ai ∈ A, = 0, . . . , n,

where n ∈ N is given.
The stochastic embedding of O with respect to the stochastic extension Dµ is an

element Ostoc of A[Dµ] defined by

(4.9) Ostoc = a0(•, t) + a1(•, t)Dµ + · · ·+ an(•, t)Dn
µ , ai ∈ A, i = 0, . . . , n.

We denote by S the operator associating to an operator O of the form 4.8 the
operator Ostoc. As a consequence, we will frequently use the notation S(O) for Ostoc.

In some occasions, in particular for the Euler-Lagrange equation, we will need
to consider differential operators in a non-standard form. Precisely, we need to
consider operators like

(4.10) Ba =
d

dt
◦ a(•, t).

This notation means that Ba acts on a given function as

(4.11) Ba · x =
d

dt
(a(x(t), t))) .

The basic idea is to define the stochastic embedding of Ba as follow:

Definition 4.4. The stochastic embedding of the basic brick Ba is given by

(4.12) Ba = D ◦ a(•, t).
However, classical properties of the differential calculus allow us to write Ba

equivalently as

(4.13) Ba · x = a′(x)
dx

dt
.

The stochastic embedding of this new form of Ba is given by

(4.14) Ba.X = a′(X)DX.

The main problem is that in general, we do not have

(4.15) Ba = Ba,

as in the classical case.

This reflects the fact that S acts on operators of a given form and not on oper-
ators as an abstract element of a given algebra. In particular, this is not a mapping.

Nevertheless, there exists a class of functions a such that equation (4.15) is
valid:

Lemma 4.1. Equation (4.15) is satisfied on the set Λ with constant diffusion if
a is an harmonic function.

Proof. This follows easily from corollary 2.2. ¤
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In the sequel we study some basic properties of this embedding procedure on
differential equations.

4.2. First examples

4.2.1. First order differential equations. Let us consider a first order dif-
ferential equation

dx

dt
= f(x, t), 1− (ODE)

where x ∈ R and f : R× R→ R is a given function. The stochastic embedding of
(1-ODE) leads to

DX = F (X, t), 1− (SODE)
where F is real valued.

The reality of F imposes important constraints on solutions of 1-(SODE). In-
deed, we must have

DX = D∗X,

so that X belongs to the class of Nelson-differentiable processes.

In our general philosophy, ordinary differential equations are only coarse ap-
proximations to reality which must include stochastic behaviour in its foundation.
A stochastic perturbation of a first order differential equation is then highly non-
trivial. Indeed, we must consider SODE’s of the form

DX = F (X, t) + εG(X, t),

where G(X, t) is now complex valued. As a consequence, we allow solutions to leave
the Nelson-differentiable class.

4.2.2. Second order differential equations. Let us consider a second order
differential equation

d2x

dt2
+ a(x)

dx

dt
+ b(x) = 0, (2− (ODE)

where x ∈ R, and a, b : R → R are given functions. The stochastic embedding of
(2− (ODE)) leads to

D2X + a(X)DX + b(X) = 0.

In this case, contrary to what happens for first order differential equations, we have
no reality condition which constrains our stochastic process.

In order to study such kind of equations, one can try to reduce it to a first order
equation, using standard ideas. We denote by Y = DX, then the second order
equation is equivalent to the following system of first order stochastic differential
equations:

(4.16)
{ DX = Y,
DY = −a(X)Y − b(X).

One must be careful to take Y ∈ C1
C(I) as Y is a priori a complex stochastic process.

This remark is of importance since if we apply the stochastic embedding procedure2

2Note that we have not defined the stochastic embedding procedure on systems of differential
equations.
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to the classical system of first order differential equations

(4.17)





dx

dt
= y,

dy

dt
= −a(x)y − b(x),

by saying that we apply separately the stochastic embedding on each differential
equations, we obtain the stochastic equation (4.16) but with Y ∈ C1(I), which im-
poses strong constraints on the solutions of our equations.

This example proves that the stochastic embedding procedure is not so easy to
define if one wants to deal with systems of differential equations. We will return
on this problem concerning the stochastic embedding of Hamiltonian systems.





CHAPTER 5

Reversible stochastic embedding

5.1. Reversible stochastic derivative

In our construction of the stochastic derivative, we have imposed some con-
straints as for example the gluing to the classical derivative on differentiable deter-
ministic processes. We have moreover kept some properties of the classical deriva-
tive such as linearity. However, we have not conserved more important properties of
the classical derivative which are used in the study of classical differential equations.
For example, let us consider

d2x

dt2
= f(x), (E)

which is the basic equation of Newton’s mechanics. An important property of this
kind of equations is its reversibility:

Let t → x(t) be a solution of (E). We denote by x̃(t) = x(−t). Then, we have

d2x̃

dt2
=

d

dt
(−dx

dt
(−t)) =

d2x

dt2
(−t) = f(x(−t)) = f(x̃(t)),

proving that the reversed solution x̃(t) is again a solution of the same equation. In
this case, we say that the differential equation is reversible.

The reversibility argument used the following important property:

d

dt
(x(−t)) = −dx

dt
(−t). (R)

The natural way to introduce a notion of reversibility is then to look for the
stochastic differential equation satisfied by X̃(t) = X(−t) ∈ C1(I) the reversed
processes. However, in general, we do not have access to DX̃ or D∗X̃. As a con-
sequence, a definition using this characterization is not effective. In the following,
we follow a different strategy.

A convenient way to characterize the reversibility of a given differential equa-
tion, described by a differential operator

(5.1) O =
∑

i

ai
di

dti
∈ R[d/dt]

is to prove that this operator is invariant under the substitution

(5.2) r : R[d/dt] −→ R[d/dt]

which is R linear and defined by

(5.3) r(d/dt) = −d/dt.
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We then introduce in our setting, the following analogous substitution:

Definition 5.1. The reversibility operator R : C[D,D∗] → C[D,D∗] is a C
morphism defined by

(5.4) R(D) = −D∗, R(D∗) = −D.

We have the following immediate consequence of the definition:

Lemma 5.1. The reversibility operator is an involution of C[D, D∗].

This operator acts non trivially on our stochastic derivative. Precisely, we have:

Lemma 5.2.

(5.5) R(D) = −D.

The complex nature of the stochastic derivative induces new phenomenon which
are different from the classical case. For example, we have

(5.6) R(D2) = D2
,

contrary to what happens for r.

We now define our notion of a reversible stochastic equation.

Definition 5.2 (Reversibility). Let O ∈ C[D,D∗], then the stochastic equation
O ·X = 0 is reversible if and only if R(O) ·X = 0.

A natural problem is the following:

Reversibility problem: Find an operator such that the stochastic embedding
of a reversible equation is again a reversible equation in the sense of definition 5.2.

Let us consider the family of stochastic derivatives Dµ, µ = 0,±1. Without
assuming a particular form for the underlying equation, the preservation of the
reversible character reduces to prove that the operator δ which is chosen satisfies

(5.7) R(δ) = −δ.

In the family of stochastic derivatives Dµ, µ = 0,±1, only one case is possible:

Lemma 5.3. A reversibility of a differential equation is always preserved under
a stochastic embedding if and only if this embedding is associated to the stochastic
derivative D0.

Proof. Essentially this follows from equation (5.5). If we want to preserve
reversibility then the operator Dµ must satisfied R(Dµ) = −Dµ. This is only
possible if Dµ is real, i.e. µ = 0. ¤

It must be pointed out that the operator

D0 =
D + D∗

2
,

has been obtained by different authors using the following argument:

If we use only D (or D∗) then, we give a special importance to the future (or
past) of the process, which has no physical justification. As a consequence, one
must construct an operator which combines these two quantities in a more or less
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symmetric way. The simplest combination is a linear one aD + bD∗ with equal
coefficients a = b. The gluing to the classical derivative leads to a = b = 1/2.

The problem with this construction is that this argument is used on diffusion
processes, where D and D∗ are not free. As a consequence, working with D is the
same (even if the connection with D∗ is not trivial) than working with D∗. We can
not really justify then the use of D0. It must be pointed out that E. Nelson [52]
does not use D0 in his derivation of the Schrödinger equation, but simply D.

Here, this operator is obtained by specialization of Dµ, which form is imposed
by our construction (linearity, gluing to the classical derivative, reconstruction prop-
erty). The reconstruction property imposes that µ 6= 0 unless we work with diffusion
processes.

Imposing a new constraint on the reversibility on this operator leads us to
µ = 0. The operator D0 is of course defined on C1(I), but in order to satisfy the
whole constraints of our construction, we must restrict its domain to diffusion pro-
cesses.

We can of course find reversible equations without using D0 but Dµ. We keep
the notations and conventions of chapter 4. We first define the action of R on a
given operator of the form

(5.8) O =
n∑

i=0

ai(•, t)(−1)iDi
.

Definition 5.3. The action of R on (5.8) is denoted R(O) and defined by

(5.9) R(O) =
n∑

i=0

ai(•, t)Di.

The definition 5.2 of a reversible equation can then be extended to cover oper-
ators of the form 5.8.

5.2. Reversibility of the stochastic Newton equation

Using this definition, we can prove that the stochastic equation

D2
µX = −∇U(X), (E)

is reversible.

Indeed, we have:

Lemma 5.4. Equation (E) is reversible.

Proof. We have

(5.10) R(D2
µX +∇U(X)) = D2

µX +∇U(X),
= D2

µX +∇U(X).

As U is real valued and X are real stochastic processes, we deduce from (E) that

(5.11) D2
µX = −∇U(X) = −∇U(X).
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We deduce that

(5.12) R(D2
µX +∇U(X)) = 0,

which concludes the proof. ¤

5.3. Iterates

There exists a fundamental difference between D0 and Dµ, µ 6= 0. The operator
D0 send real stochastic processes to real stochastic processes in the contrary of Dµ,
µ 6= 0, which leads to complex stochastic processes. As a consequence, the n-ième
iterates of D0 is simply defined by

(5.13) Dn
0 = D0 ◦ · · · ◦ D0,

without problem, where a special extension of Dµ, µ 6= 0 to complex stochastic
processes must be discussed.

5.4. Reversible stochastic embedding

Using D0, we can define a stochastic embedding which conserves the fundamen-
tal property of reversibility of a given equation. We keep notations from chapter
4.

Definition 5.4 (Reversible stochastization). Let O ∈ A[d/dt] be a differential
operator, of the form

O = a0(•, t) + a1(•, t) d

dt
+ · · ·+ an(•, t) dn

dtn
, ai ∈ A, = 0, . . . , n,

where n ∈ N is given.
The reversible stochastic embedding of O is an element Orev of C1(I)[D0] defined

by

(5.14) Orev = a0(•, t) + a1(•, t)D0 + · · ·+ an(•, t)Dn
0 , ai ∈ C1(I), i = 0, . . . , n.

A differential equation (E) is defined by a differential operator O ∈ A[d/dt],
i.e. an equation of the form

O · x = 0, (E)
where x is a function.

Using stochastization, the reversible stochastic analogue of (E) is defined by

Orev ·X = 0, (RSE)

where X is a stochastic process.

5.5. Reversible versus general stochastic embedding

The reversible stochastic embedding leads to very different results than the
general stochastic embedding. We can already see this difference on first order
differential equations. Let us consider

dx

dt
= f(x),

where x ∈ R and f is a real valued function. The reversible stochastic embedding
gives

D0X = f(X).
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Contrary to what happens for the stochastic embedding, this equation does not
impose for the solution to be a Nelson differentiable processes.

For second order systems, a new phenomenon appears, which makes the re-
versible embedding interesting. Let us consider a second order equation of the
form:

d2x

dt2
= f(x). (Ef )

This equation is equivalent to the system:{
dx
dt = y
dy
dt = f(x)

. (Sf )

The stochastic embedding of (E) is given by:

D2
µX = f(X), X ∈ C1.

This equation is equivalent is equivalent to the stochastic system:
{ DµX = Y
DµY = f(X) (∗)

with X ∈ C1 and Y ∈ C1
C as long as µ 6= 0.

However, the elementary stochastic embedding of (S) is given by (*), but for
X ∈ C1 and Y ∈ C1.

As a consequence, we have coherence between the associated systems (*) and
the embedded systems if and only if µ = 0.
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CHAPTER 6

Stochastic Lagrangian systems

Most of classical mechanics can be formulated using Lagrangian formalism
([4],[1]). Lagrangian mechanics contains important problems, like the n-body prob-
lem. Using our framework, we study Lagrangian dynamical systems under stochas-
tic perturbations1.

Our approach is first to embed classical Lagrangian systems, in particular the
associated Euler-Lagrange equation (EL) in order to obtain an idea of what kind
of equation govern stochastic Lagrangian systems. We then develop a stochastic
calculus of variations. We obtain an analogue of the least-action principle2 which
gives a second stochastic Euler-Lagrange equation, denoted by (SEL) in the sequel.
We then prove the following surprising result, called the coherence lemma: we have
S(EL) = (SEL).

The principal interest of Lagrangian systems is that the action of a group of
symmetries leads to first integrals of motion, i.e. functions which are constants on
solutions of the equations of motion. The celebrated theorem of E. Noether gives
a precise relation between symmetries and first integrals. We prove a stochastic
analogue of E. Nother theorem.

Finally, we prove that the stochastic embedding of Newton’s Lagrangian sys-
tems lead to a non linear Schrödinger’s equation for a given wave function whose
modulus is equal to the probability density of the underlying stochastic process.

6.1. Reminder about Lagrangian systems

We refer to [4] for more details, as well as [1].

Lagrangian systems play a central role in dynamical systems and physics, in
particular for mechanical systems. A Lagrangian system is defined by a Lagrangian
function, commonly denoted by L, and depending on three variables: x, v, and t
which belongs in the sequel to R. As Lagrangian systems come from mechanics,
the letter x stands for position, the letter v for speed and the letter t for time. In
what follows, we consider a special type of Lagrangian function called admissible
in the following.

Definition 6.1. An admissible Lagrangian function is a function L such that:

1For the n-body problem, which is usually used to study the long term behavior of the
solar system [46], this problem is of crucial importance. Indeed, the n-body problem is only
an approximation of the real problem, and even if some numerical simulations take into account
relativistic effects [37], this is not sufficient [49].

2In our case, the word least-action is misleading and a better terminology is stationary (see
below).
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i) The function L(x, v, t) is defined on Rd×Cd×R, holomorphic in the second
variable and real for v ∈ R.

ii) L is autonomous, i.e. L does not depend on time.

Condition i) is fundamental. This condition is necessary in order to apply
the stochastization procedure (see below). The fact that we only consider au-
tonomous Lagrangian function is due to technical difficulties in order to take into
account backward and forward filtrations in the computation of the stochastic
Euler-Lagrange equation (see below).

Remark 6.1. In applications, admissible Lagrangian functions L are analytic
extensions to the complex domain of real analytic Lagrangian functions. For ex-
ample, the classical Newtonian Lagrangian L(x, v) = (1/2)v2 − U(x), defined on
an open3 subset of R × R, with an analytic potential is an admissible Lagrangian
function.

A Lagrangian function L being given, the equation
d

dt

(
∂L

∂v

)
=

∂L

∂x
. (EL)

is called the Euler-Lagrange equations.

An important property of the Euler-Lagrange equation is that it derives from
a variational principle, namely the least action principle (see [4],p.59). Precisely, a
curve γ : t 7→ x(t) is an extremal4 of the functional

Ja,b(γ) =
∫ b

a

L(x(t), ẋ(t), t)dt,

on the space of curves passing through the points x(a) = xa and x(b) = xb, if and
only if it satisfies the Euler-Lagrange equation along the curve x(t).

6.2. Stochastic Euler-Lagrange equations

We now apply our stochastic procedure S to an admissible Lagrangian.

Lemma 6.1. Let L(x, v) : Rd × Cd → C be an admissible Lagrangian func-
tion. The stochastic Euler-Lagrange equation obtained from (EL) by the stochastic
procedure is given by

Dµ

(
∂L

∂v
(X(t),DµX(t)

)
=

∂L

∂x
(X(t),DµX(t)). S(EL)

Proof. The Euler-Lagrange equation associated to L(x, v) can be seen as the
following differential operator

OEL =
d

dt
◦ ∂L

∂v
− ∂L

∂x
,

acting on (x(t), ẋ(t)). The embedding of OEL gives

OEL = Dµ ◦ ∂L

∂v
− ∂L

∂x
.

3This Lagrangian function is not always defined on R×R. An example is given by Newton’s
potential U(x) = 1/x, x ∈ R∗.

4We refer to [4], chapter 3, §.12 for an introduction to the calculus of variations.
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As OEL acts on (x(t), ẋ(t)), the operator OEL acts on (X(t),DµX(t)). This con-
cludes the proof. ¤

The free parameter µ ∈ {−1, 0, 1} can be fixed depending on the nature of the
extension used.

It must be pointed out that there exist crucial differences between all these
extensions due to the fact that Dµ is complex valued for µ = ±1 and real for µ = 0.
Indeed, let us consider the following admissible Lagrangian function:

L(x, v) =
1
2
v2 − U(x),

where U is a smooth real valued function. Then, equation S(EL) gives

DµV = U(X),

where V = DµX. When µ = ±1, this equation imposes strong constraints on X
due to the real nature of U(X), namely that D2

µX ∈ N1(I).

On the contrary, when µ = 0, i.e. in the reversible case, these intrinsic condi-
tions disappear.

6.3. The coherence problem

Up to now, the stochastic embedding procedure can be viewed as a formal ma-
nipulation of differential equations. Moreover, as most classical manipulations on
equations do not commute with the stochastic embedding, this procedure is not
canonical 5. In order to rigidify this construction and to make precise the role of
this stochastic embedding procedure, we study the following problem, called the
coherence problem:

We know that the Euler-Lagrange equations are obtained via a least-action
principle on a functional. The main problem is the existence of a stochastic analogue
of this least-action principle, that we can call a stochastic least action principle,
compatible with the stochastic embedding procedure.

L(x(t), ẋ(t))

Least action principle
²²

S // L(X(t),DX(t))

Stochastic least action principle ?
²²

(EL)
S

// (SEL)

(6.1)

In the next chapter, we develop the necessary tools to answer to this problem,
i.e. a stochastic calculus of variations. Note that due to the fact that the sto-
chastic Lagrangian as well as the stochastic Euler-Lagrange equation are fixed, this
problem is far from being trivial. The main result of the next chapter is the La-
grangian coherence lemma which says precisely that the stochastic Euler-Lagrange
equation obtained via the stochastic embedding procedure coincide with the char-
acterization of extremals for the functional associated to the stochastic Lagrangian
function using the stochastic calculus of variations. As a consequence, we obtain a

5We return to this problem in our discussion of a stochastic symplectic geometry which can
be used to bypass this kind of problem.
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rigid picture involving the stochastic embedding procedure and a first principle via
the stochastic least action principle.

This picture will be then extended in another chapter when dealing with the
Hamiltonian part of this theory.



CHAPTER 7

Stochastic calculus of variations

The embedding procedure allows us to associate a stochastic Euler-Lagrange
equation to a stochastic Lagrangian function. A basic question is then the existence
of an analogue of the least action principle. In this section, we develop a stochas-
tic calculus of variations for our Lagrangian function following a previous work of
K. Yasue [71]. Our main result, called the coherence lemma, states that the sto-
chastic Euler-Lagrange equation can be obtained as an application of a stochastic
least action principle. Moreover, this derivation is consistent with the stochastic
embedding procedure.

7.1. Functional and L-adapted process

In the sequel we denote by I a given open interval (a, b), a < b.

We first define the stochastic analogue of the classical functional.

Definition 7.1. Let L be an admissible Lagrangian function. Set

Ξ =
{

X ∈ C1(I), E
[∫

I

|L(X(t),DµX(t))|dt

]
< ∞

}
.

The functional associated to L is defined by

(7.1) FI :





Ξ −→ C

X 7−→ E

[∫ b

a

L(X(t),DµX(t))dt

]
.

In what follows, we need a special notion which we will call L-adaptation, as
Yasue in [71]:

Definition 7.2. Let L be an admissible Lagrangian function. A process X ∈
C1(I) is called L-adapted if:
i) For all t ∈ I, ∂xL(X(t),DµX(t)) is Pt and Ft measurable, and ∂xL(X(t),DµX(t)) ∈
L2(Ω).
ii) ∂vL(X(t),DµX(t)) ∈ C1(I).

The set of all L−adapted processes will be denoted by L.

7.2. Space of variations

Calculus of variations is concerned with the behaviour of functionals under
variations of the underlying functional space, i.e. objects of the form γ + h, where
γ belongs to the functional space and h is a given functional space of variations. A
special care must be taken in our case to define what is the class of variations we
are considering. In general, this problem is not really pointed out as both variations
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and curves can be taken in the same functional space (see [4],p.56,footnote 26). We
introduce the following terminology:

Definition 7.3. Let Γ be a subspace of C1(I) and X ∈ C1(I). A Γ-variation
of X is a stochastic process of the form X + Z, where Z ∈ Γ. Moreover set

ΓΞ = {Z ∈ Γ, ∀X ∈ Ξ, Z + X ∈ Ξ} .

We note that ΓΞ is a subspace of Γ.
In the sequel, we consider two subspaces of variations: N1(I) and C1(I).

The choice of C1(I) is natural. However, doing this we can obtain stochastic
processes with completely different behaviour than X1.

What is the specific property of X ∈ C1(I) that we want to keep ?

If we refer to the construction of the stochastic derivative, then a main point
is the existence of an imaginary part in DµX2. This property is related to the non-
differentiability of the underlying stochastic process. We are then lead to search
for variations Z which conserve this imaginary part. As a consequence, we must
consider Nelson difference processes introduced in the previous part3, and denoted
by N1(I).

7.3. Differentiable functional and critical processes

We now define our notion of differentiable functional. Let Γ be a subspace of
C1(I).

Definition 7.4. Let L be an admissible Lagrangian function and FI the asso-
ciated functional. The functional FI is called Γ-differentiable at an X ∈ Ξ ∩ L if
for all Z ∈ ΓΞ

(7.2) FI(X + Z)− FI(X) = dFI(X, Z) + R(X,Z),

where dFI(X, Z) is a linear functional of Z ∈ ΓΞ and R(X, Z) = o(‖ Z ‖).
The stochastic analogue of a critical point is then defined by:

Definition 7.5. A Γ-critical process for the functional FI is a stochastic pro-
cess X ∈ Ξ∩L such that dFI(X,Z) = 0 for all Z ∈ ΓΞ such that Z(a) = Z(b) = 0.

7.3.1. The Γ = C1(I) case. Our main result is:

Lemma 7.1. Let L be an admissible lagrangian with all second derivatives
bounded. Then the functional FI defined by (7.1) is C1(I)-differentiable at any

1Of course, this is not the case in the classical case: one consider x ∈ C∞(I) and z ∈ C∞(I)
such that x+h ∈ C∞(I) is very similar to x. For example, we don’t choose z ∈ C0(I) which leads
to radically new behaviour of x + z with respect to x.

2Of course, as long as µ = ±1. This is of importance since we will be able to choose a more
general variations space in this case.

3An analogous problem is considered in [13], where a non differentiable variational principle
is defined.
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X ∈ Ξ ∩ L, and C1(I)Ξ = C1(I). For all Z ∈ C1(I), the differential is given by:
(7.3)

dFI(X, Z) = E

[∫ b

a

[
∂L

∂x
(X(u),DµX(u))−D−µ

(
∂L

∂v
(X(u),DµX(u))

)]
Z(u)du

]

+g(Z, ∂vL)(b)− g(Z, ∂vL)(a),

where

(7.4) g(Z, ∂vL)(s) = E [Z(u)∂vL(X(u),DµX(u))] .

Proof. Thanks to the Taylor expansion of L, we have for Z ∈ C1(I)

L(X + Z,D(X + Z))− L(X,DX) = ∂xL(X,DX)Z + ∂vL(X,DX)DZ

+
∫ 1

0

(1− s)
(
∂2

xL(T s)Z2 + ∂2
xvL(T s)ZDZ + ∂2

vL(T s)(DZ)2
)
ds,(7.5)

where T s = (X + sZ,DX + sDZ).
Since Z ∈ C1(I) and X ∈ Ξ ∩ L, the expectation

E

[∫ b

a

(∂xL(X(s),DX(s))Z(s) + ∂vL(X(s),DX(s))DZ(s)) ds

]

is well defined. The Cauchy-Schwarz inequality shows that supI E[|ZDZ|], supI E[|Z|2]
and supI E[|DZ|2] are O(‖Z‖2) since Z ∈ C1(J). Moreover ∂2

xvL, ∂2
xL and ∂2

vL are
bounded. Therefore C1(I)Ξ = C1(I) and we can write
(7.6)

FJ(X+Z)−FJ (X) = E

[∫ b

a

(∂xL(X(s),DX(s))Z(s) + ∂vL(X(s),DX(s))DZ(s)) ds

]
+o(‖Z‖).

Using the product rule (3.9), we deduce (7.3). ¤

7.3.2. The Γ = N1(I) case. Our main result is:

Lemma 7.2. Let L be an admissible lagrangian with all second derivatives
bounded. The functional FI defined by (7.1) is N1(I)-differentiable at any X ∈
Ξ ∩ L, and N1(I)Ξ = N1(I). For all Z ∈ N1(I), the differential is given by:
(7.7)

dFI(X, Z) = E

[∫ b

a

[
∂L

∂x
(X(u),DµX(u))−Dµ

(
∂L

∂v
(X(u),DµX(u))

)]
Z(u)du

]

+g(Z, ∂vL)(b)− g(Z, ∂vL)(a),

where

(7.8) g(Z, ∂vL)(s) = E [Z(u)∂vL(X(u),DµX(u))] .

Proof. In the same way, the equation (7.6) holds. As Z ∈ N1(I), we can use
the product rule (3.20). So we deduce (7.7) from (7.6). ¤

7.4. Least action principles

As for the computation of the differential of functionals, we must consider two
cases: Γ = C1(I) and Γ = N1(I).
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7.4.1. The Γ = C1(I) case. The main result of this section is the following
analogue of the least-action principle for Lagrangian mechanics.

Theorem 7.1 (Global Least action principle). Let L be an admissible la-
grangian with all second derivatives bounded. A necessary and sufficient condition
for a process X ∈ Ξ ∩ L ∩ C3(I) to be a C1(I)-critical process of the associated
functional FI is that it satisfies

∂L

∂x
(X(t),DµX(t))−D−µ

[
∂L

∂v
(X(t),DµX(t))

]
= 0.(7.9)

We call this equation the Global Stochastic Euler-Lagrange equation (GSEL).

We have conserved the terminology of least-action principle even if we have no
notion of extremals for our complex valued functional.

Proof. The proof can be reduced to the case I = (0, 1). Let X ∈ C3(I) be a
solution of

(7.10)
∂L

∂x
(X(t),DµX(t))−D−µ

[
∂L

∂v
(X(t),DµX(t))

]
= 0,

then X is a C1(I)-critical process for the functional FI .

Conversely, let X ∈ Ξ∩L∩ C3(I) be a C1(I)-critical process for the functional
FI , i.e. dFI(X,Z) = 0, or equivalently

Re(dFI(X, Z)) = Im(dFI(X, Z)) = 0.

We define:

Z(1)
n (u) = φ(1)

n (u) · Re
(

∂L

∂x
(X(t),DµX(t))−D−µ

[
∂L

∂v
(X(t),DµX(t))

])

and

Z(2)
n (u) = φ(2)

n (u) · Im
(

∂L

∂x
(X(t),DµX(t))−D−µ

[
∂L

∂v
(X(t),DµX(t))

])

where (φ(i)
n )n∈N are sequences of C∞([0, 1] → R+) deterministic bump functions

on [0, 1], i.e. for all n ∈ N, φn(0) = φn(1) = 0 and φn = 1 on [αn, βn] with
0 < αn < βn < 1, limn→∞ αn = 0, limn→∞ βn = 1.

Thus, for all n ∈ N,

Re(dFI(X, Z(1)
n )) =

E

∫ 1

0

φn(u)Re2

(
∂L

∂x
(X(u),DµX(u))−D−µ

[
∂L

∂v
(X(u),DµX(u))

])
du = 0.

By the bounded dominated convergence theorem, we deduce that:

E

∫ 1

0

Re2

(
∂L

∂x
(X(u),DµX(u))−D−µ

[
∂L

∂v
(X(u),DµX(u))

])
du = 0.

The same argument leads to:

E

∫ 1

0

Im2

(
∂L

∂x
(X(u),DµX(u))−D−µ

[
∂L

∂v
(X(u),DµX(u))

])
du = 0.
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Therefore for almost all t ∈ [0, 1] and almost all ω ∈ Ω,

∂L

∂x
(X(t),DµX(t))−D−µ

[
∂L

∂v
(X(t),DµX(t))

]
= 0.

¤

7.4.2. The Γ = N1(I) case. An easy consequence of Lemma 7.2 is

Lemma 7.3. Let L be an admissible lagrangian with all second derivatives
bounded. A solution of the equation

∂L

∂x
(X(t),DµX(t))−Dµ

[
∂L

∂v
(X(t),DµX(t))

]
= 0,(7.11)

called the Stochastic Euler-Lagrange Equation (SEL), is a N1(I)-critical process for
the functional FI associated to L.

We have not been able to prove the converse of this lemma for N1-variations.
As an example of possible difficulties, we have not found a suitable deforma-

tion of the process Z(1) and Z(2) which are Nelson differentiable and which allow
to conclude.

More generally, we can search for variations of the form

f

(
t,Re

(
∂L

∂x
(X(t),DµX(t))−D−µ

[
∂L

∂v
(X(t),DµX(t))

]))
,

where f is a sufficiently smooth function, which are adapted Nelson differentiable
processes. However the characterization of Nelson differentiable processes given by
Proposition 3.1 involves a PDE whose solutions are not known or even characterized.
As a consequence, we cannot decide if a given deformation of the stochastic process
via a function f is an adapted Nelson differentiable process or not.

7.5. The coherence lemma

It is not clear that the stochastic Euler-lagrange equation obtained by the
stochastization procedure and the N1(I) or C1(I) least-action principle coincide.
One easily sees that this is not the case for Γ = C1(I). Does there exist a stochastic
least-action principle which ensures that we obtain the same equations?

We tackle this question by studying if the following diagram commutes:

L(x(t), x′(t))

Least action Principle
²²

S // L(X(t),DX(t))

Stochastic Least action Principle
²²

(EL)
S

// (SEL)

(7.12)

Definition 7.6. We say that a Γ-Stochastic Least-action Principle (SLP) in-
duces

• a strong lagrangian coherence lemma if the previous diagram commutes,
i.e. a solution of (SEL) is a stationary point for (SLP) and conversely.

• a weak lagrangian coherence lemma if a solution of (SEL) is a stationary
point for (SLP).

A very consequence of the previous section is the following
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Lemma 7.4 (Weak lagrangian coherence lemma). The N1(I)-Stochastic Least-
action Principle induces a weak lagrangian coherence lemma.

When µ = 0, i.e. in the reversible case, the previous lemmas and theorems are
true under C1(I) variations.

Theorem 7.2 (Reversible coherence lemma). For µ = 0, the diagram (7.12)
commutes .

Note that when µ = 0, our stochastic derivatives coincides with the Misawa-
Yasue [51] canonical formalism for stochastic mechanics.



CHAPTER 8

The Stochastic Noether theorem

A natural question arising from the stochastization procedure of classical dy-
namical systems, in particular, Lagrangian systems, is to understand what remains
from classical first integrals of motion. First integrals play a central role in many
problems like the n-body problem. In this section, we obtain a stochastic ana-
logue of the Noether theorem. A stochastic generalization of the Noether theorem
has also been studied by M. Thieullen and J.C. Zambrini in [64]. They use ac-

tion functionals of the form S[z(·)] = Et0

∫ t1

t0

L(z(s), Dz(s), s)ds and they consider

Bernstein diffusion which are critical point of this action.
We then defined the notion of first integrals for stochastic dynamical systems.

We also discuss the consequences of the existence of first integrals in the context of
chaotic dynamical systems.

8.1. Tangent vector to a stochastic process

Let X ∈ C1(I) be a stochastic process. We define the analogue of a tangent
vector to X at point t.

Definition 8.1. Let X ∈ C1(I), I ⊂ R. The tangent vector to X at point t is
the random variable DX(t).

Remark 8.1. Of course, in order to define stochastic Lagrangian systems in
an intrinsic way, one must define the stochastic analogue of the tangent bundle to a
smooth manifold. In our case, it is not clear what is the adequate geometric object
underlying stochastic Lagrangian dynamics. For example, we can think of multidi-
mensional Brownian surfaces ([22],§.16.4). All these questions will be developed in
a forthcoming paper [16].

8.2. Canonical tangent map

In the sequel, we will need the following mapping called the canonical tangent
map:

Definition 8.2. For all X ∈ C1(I), we define the canonical tangent map as

(8.1) T :
{

C1(I) −→ C1(I)×PC,
X 7−→ (X,DX).

The mapping T will be used in the following section to define the analogue
of the linear tangent map for a stochastic suspension of a one parameter group of
diffeomorphisms.
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8.3. Stochastic suspension of one parameter family of diffeomorphisms

We begin by introducing a useful notion of stochastic suspension of a diffeo-
morphism.

Definition 8.3. Let φ : Rd → Rd be a diffeomorphism. The stochastic suspen-
sion of φ is the mapping Φ : P → P defined by

(8.2) ∀X ∈ P, Φ(X)t(ω) = φ(Xt(ω)).

In what follows, we will frequently use the same notation for the suspension of
a given diffeomorphism and the diffeomorphism.

Remark 8.2. It seems strange that we have not defined directly the notion of
diffeomorphism on a subset ג ⊂ P , i.e. mapping Φ : ג → ג which are Fréchet
differentiable with an inverse which is also Fréchet differentiable. However, these
objects do not always exist.

Using the stochastic suspension, we are able to define the notion of stochastic
suspension for a one-parameter group of diffeomorphisms.

Definition 8.4. A one-parameter group of transformations Φs : Υ → Υ,
s ∈ R, where Υ ⊂ P , is called a φ-suspension group acting on Υ if there exist
a one parameter group of diffeomorphisms φs : Rd → Rd, s ∈ R, such that for all
s ∈ R, we have:

i) Φs is the stochastic suspension of φs,
ii) for all X ∈ Υ, Φs(X) ∈ Υ.

This notion of suspension group comes from our framework. It relies on the
fact that we want to understand how symmetries of the underlying Lagrangian sys-
tems are transported via the stochastic embedding. The non-trivial condition on
the stochastic suspension of a one-parameter group of diffeomorphisms acting on
Υ comes from condition ii). However, imposing some conditions on the underlying
one parameter group, we can obtain a stochastic one parameter group which acts
on the set Λd of good diffusion processes.

Precisely, let us introduce the following class of one-parameter groups:

Definition 8.5. An admissible one parameter group of diffeomorphisms Φ =
{φs}s∈R is a one parameter group of C2-diffeomorphisms on Rd such that

(8.3) (s, x) 7→ φs(x) is C3.

and such that for all s ∈ R, all k ∈ {1, · · · , d}, the kth component φ
(k)
s of φs belongs

to T where T is the set of all f ∈ C1,2(I ×R) such that for all X ∈ Λ (2.1) holds.

The condition φ
(k)
s ∈ T may seem to be restrictive, but it is satisfied for affine

diffeomorphism of Rd. Such examples turn out to be important in classical me-
chanics as regards the conservation of momentum and angular momentum. It will
be treated in this chapter from the stochastic point of view.

The main property of admissible one parameter groups is the fact that they
are well-behaved on the set of good diffusions.
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Lemma 8.1. Let Φ = (φs)s∈R be a stochastic suspension of an admissible one
parameter group of diffeomorphisms. Then, for all X ∈ Λd, we have for all t ∈ I,
and all s ∈ R:

i) The mapping s 7→ DµΦsX(t) ∈ C1(R) (a.s.),

ii) We have
∂

∂s
[Dµ(φs(X))] = Dµ

[
∂φs(X)

∂s

]
(a.s.).

This lemma extends the classical case where X is a smooth function and Dµ

is the classical derivative with respect to time. In both cases, it reduces to the
Schwarz lemma. This equality plays an essential role in the derivation of the clas-
sical Noether’s theorem (see [4],p.89).

Proof. φ
(k)
s ∈ T , so we write (2.1):

Dµφ(k)
s (X)(t) = DµX(t) ·

(
∇φ(k)

s

)
X(t) +

iµ

2
aij∂2

ijφ
(k)
s X(t) (a.s.).

So:

∂sDµφ(k)
s (X)(t) = DµX(t) ·

(
∂s∇φ(k)

s

)
X(t) +

iµ

2
aij

(
∂s∂

2
ijφ

(k)
s

)
X(t) (a.s.).

Since (s, x) 7→ φs(x) is C3, we have ∂s∇φ(k)
s = ∇∂sφ

(k)
s and ∂s∂

2
ijφ

(k)
s = ∂2

ij∂sφ
(k)
s

by the Schwarz lemma.
We deduce that ∂sφ

(k)
s ∈ T , and we can conclude that :

∂

∂s
[Dµ(φs(X))] = Dµ

[
∂φs(X)

∂s

]
(a.s.).

¤
It must be pointed out that every extension of this lemma will lead to a sub-

stantial improvement of the following stochastic Noether theorem.

8.4. Linear tangent map

Let X ∈ C1(I) and φ : Rd → Rd be a diffeomorphism. The image of X under
the stochastic suspension of φ, denoted by Φ, induces a natural map for tangent
vectors denoted by Φ∗, called the linear tangent map, and defined as in classical
differential geometry by:

Definition 8.6. Let Φ be a stochastic suspension of a diffeomorphism φ such
that its kth component φ(k) belongs to T . The linear tangent map associated to Φ,
and denoted by Φ∗, is defined for all X ∈ C1(I) by

(8.4) Φ∗(X) = T (Φ(X)) = (Φ(X),D(Φ(X))).

8.5. Invariance

We then obtain the following notion of invariance under a one parameter group
of diffeomorphisms.

Definition 8.7. Let Φ = {φs}s∈R be an admissible one-parameter group of
diffeomorphisms and let L be a lagrangian L : C1(I) → C1

C(I). The functional L is
invariant under Φ if

L(φ∗X) = L(X), for all φ ∈ Φ.
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As a consequence, if L is invariant under Φ, we have

L(φs(X),D(φs(X))) = L(X,DX),

for all s ∈ R and X ∈ C1(I).

Remark 8.3. We note that this notion of invariance under a one parameter
group of diffeomorphisms does not coincide with the same notion as defined by K.
Yasue ([71], p.332, formula (3.1)) which in our notation is given by:

L(φs(X), φs(DX)) = L(X,DX), for all s ∈ R and X ∈ C1(I).

In fact, K. Yasue definition of invariance does not reduce to the classical notion
(see for example [4],p.88) for differentiable deterministic stochastic processes.

Moreover, Yasue’s definition is not coherent with the invariance notion used
in his proof of the stochastic Noether’s theorem ([71],theorem 4,p.332). See the
comment below.

8.6. The stochastic Noether’s theorem

Noether’s theorem has already been generalized a great number of times and
covers sometimes different statements [31]. Here, we follow V.I. Arnold’s ([4],p.88)
presentation of the Noether theorem for Lagrangian systems. We correct a previous
work of K. Yasue ([71], Theorem 4,p. 332-333).

Theorem 8.1. Let L be an admissible lagrangian with all second derivatives
bounded, and invariant under the admissible one-parameter group of diffeomor-
phisms Φ = {φs}s∈R. Let FI be the associated functional defined by (7.1) on Ξ.
Let X ∈ Ξ ∩ L be a C1(I)-stationary point of FI . Then, we have

d

dt
E

[
∂vL · ∂Y

∂s

∣∣∣∣
s=0

]
= 0,

where

(8.5) Ys = Φs(X).

Proof. Let Y (s, t) = φsX(t) for s ∈ R and a 6 t 6 b.
As L is invariant under Φ = {φs}s∈R, we have

∂

∂s
L(Y (s, t),DµY (s, t)) = 0 (a.s.).

As Y (., t) and DµY (., t) belong to C1(R) for all t ∈ [a, b] by definition 8.4, iii), we
obtain

(8.6) ∂xL · ∂Y

∂s
+ ∂vL · ∂DµY

∂s
= 0 (a.s.).

Using (Lemma 8.1,ii), this equation is equivalent to

(8.7) ∂xL · ∂Y

∂s
+ ∂vL · Dµ

(
∂Y

∂s

)
= 0 (a.s.).

As X = Y |s=0 is a stationary process for Ja,b, we have

(8.8) ∂xL = D−µ∂vL.
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As a consequence, we deduce that(
[Dµ∂vL] · ∂Y

∂s
+ ∂vL · Dµ

(
∂Y

∂s

))∣∣∣∣
s=0

= 0 (a.s.).

Taking the absolute expectation, we obtain

(8.9) E

[(
[Dµ∂vL] · ∂Y

∂s
+ ∂vL · Dµ

(
∂Y

∂s

))∣∣∣∣
s=0

]
= 0.

Using the product rule, we obtain

d

dt
E

[
∂vL ·∂Y

∂s

∣∣∣∣
s=0

]
= 0,

which concludes the proof. ¤

8.7. Stochastic first integrals

The previous theorem leads us to the introduction of the notion of first integral
for stochastic Lagrangian systems1.

8.7.1. Reminder about first integrals. Let X be a Ck vector field or Rd,
k > 1 (k could be ∞ or ω, i.e. analytic). We denote by φx(t) the solution of the
associated differential equation, such that φx(0) = x and by S the set of all these
solutions.

A first integral of X is a real valued function f : Rd → R such that for all
φx(t) ∈ S, we have

(8.10) f(φx(t)) = cx,

where cx is a constant.

We have not imposed any kind of regularity on the function f , so that f can
be just C0. In this case, the existence of a first integral does not impose many
constraint on the dynamics.

If f is at least C1, then we can characterize first integrals by the following
constraint:

(8.11) X · f = 0.

8.7.2. Stochastic first integrals. The previous paragraph leads us to search-
ing for an analogue of the classical notion of first integrals as a functional defined on
the set of solutions of a given stochastic Euler-Lagrange equation2 and real valued.
Looking for the stochastic Noether theorem, we choose the following definition:

Definition 8.8. Let L be an admissible Lagrangian system. A functional I :
L2(Ω) → C is a first integral for the Euler-Lagrange equation associated to L if

(8.12)
d

dt
[I(X(t))] = 0,

for all X satisfying the Euler-Lagrange equation.

1Of course, one can extend this definition to general stochastic dynamical systems.
2Of course, this definition will extend to arbitrary stochastic dynamical systems.
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We can now interpret the stochastic Noether theorem in term of first integrals,
i.e. the fact that the invariance of the Lagrangian L under of a one parameter
group of diffeomorphisms Φ = (φs)s∈R induces the existence of a first integral for
the associated Euler-Lagrange equation, defined by

(8.13) I(X(t)) = E

[
∂vL ·∂φsX(t)

∂s

∣∣∣∣
s=0

]
.

8.8. Examples

8.8.1. Translations. We follow the first example given by V.I. Arnold ([4],p.89)
for Noether theorem. Let L be the Lagrangian defined by

(8.14) L(X, V ) =
V 2

2
− U(X), where X ∈ R3,

V = (V1, V2, V3) ∈ C3, V 2 := V 2
1 + V 2

2 + V 2
3 and U is taken to be invariant under

the one parameter group of translations:

(8.15) φs(x) = x + se1,

where {e1, e2, e3} is the canonical basis of R3.

Then, by the Stochastic Noether’s theorem, the quantity

(8.16) E[DX1]

is a first integral since ∂V L = V and ∂sφs(X1(ω)) = e1.

8.8.2. Rotations. We keep the notations of the previous paragraph. We con-
sider the Lagrangian of the two-body problem in R3, i.e.

(8.17) L(X, V ) = q(V )− 1
|X| where q(V ) =

V 2

2
,

where | . | denotes the classical norm on R3 defined for all X ∈ R3, X = (X1, X2, X3)
by | X |2= X2

1 + X2
2 + X2

3 .

We already know that the classical Lagrangian L is invariant under rotations
when X ∈ R3 and V ∈ R3. Here, we must prove that the same is true for the
extended object, i.e. for L defined over R3 \ {0}×C3. This extension, as long as it
is defined, is canonical. Indeed, we define q(z) for z ∈ C3 as

(8.18) q(z) =
1
2
(z2

1 + z2
2 + z2

3), z = (z1, z2, z3) ∈ C3.

Note that our problem is not to discuss an analytic extension of the real valued
kinetic energy but only to look for the same function on C3 simply replacing real
variables by complex one. As long as the new object is well defined this procedure
is canonical, which is not the case if we search for an analytic extension of q over
C3 which reduces to q on R3.

Our main result is then that this group of symmetry is preserved under stochas-
tization, which is in fact a general phenomenon that will be discuss elsewhere.

Lemma 8.2. The lagrangian L defined over R3 \ {0} × C3 is invariant under
rotations φθ,k around the ek axis by the angle θ, k = 1, 2, 3.
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The proof is based on the two following facts:
• As φθ,k is a linear map whose matrix coefficients do not depend on t, we

have

(8.19) Dµ [φθ,k(X)] = φθ,k [DµX] ,

where φθ,k is trivially extended to C3.

• A simple calculation gives

(8.20) ∀ z ∈ C3, q(φθ,k(z)) = q(z).

We easily deduce the φθ,k invariance of L, i.e. that

(8.21) L(φθ,kX,D(φθ,kX)) = L(X,DX).

We now compute: ∂θφθ,k(X)|θ=0 = ek ∧X and

∂V L(X,DX) · ∂θφθ,k(X)|θ=0 = (X ∧ DX)k.

Therefore the expectation of the ”complex angular momentum” X ∧ DX is a
conserved vector (∧ is extended in a natural way to complex vectors).

8.9. About first integrals and chaotic systems

In this section, we discuss some consequences of the stochastic Noether’s theo-
rem in the context of chaotic dynamical systems. The study of deterministic chaotic
dynamical systems is difficult.

Here again, we return to the classical n-body problem, n > 3. In this case,
in particular for large n, the dynamics of the system is very complicated and only
numerical results give a global picture of the phase space. Despite the existence of
a chaotic behaviour, there exist several well known first integrals of the system.

These integrals are used as constraints on the dynamics and can give interest-
ing results, as for example J. Laskar’s [38] approach to the Titus-Bode law for the
repartition of the planets in the solar systems and extra-solar systems.

Using our approach, we can go further by claiming that such kind of integrals
continue to exist even if one consider a more general class of perturbations including
stochasticity. We note that this result is fundamental as long as one wants to
relate numerical computations on the n-body problem with the real dynamical
behaviour of the solar systems, and in this particular example, the dynamics of the
protoplanetary nebulae.





CHAPTER 9

Natural Lagrangian systems and the Schrödinger
equation

In this section, we explore in details the stochastization procedure for natural
Lagrangian systems. In particular, by introducing a suitable analogue of the ac-
tion functional, we prove that the stochastic Euler-Lagrange equation leads to a
non-linear Schrödinger equation, depending on a free parameter related to a nor-
malization constraint. For a suitable choice of this parameter we then obtain the
classical linear Schrödinger equation.

9.1. Natural Lagrangian systems

In ([4],p.84), V.I. Arnold introduces the following notion of natural Lagrangian
systems:

Definition 9.1. A Lagrangian system is called natural if the Lagrangian func-
tion is equal to the difference between kinetic and potential energy:

L(x, v) = T (v)− U(x).

As an example, we have the natural Lagrangian function associated to Newto-
nian mechanics:

L(x, v) =
1
2
v2 − U(x),

where U is of class C∞.

9.2. Schrödinger equations

9.2.1. Some notations and a reminder of the Nelson wave function.
We recall that Λ2 is the set of ”good” diffusion processes for which we can compute
the stochastic derivative of second order. Let Λ2

g be the subset of Λ2 whose elements
have a smooth gradient drift, and let Λ2

g,σ be the subset of Λ2
g whose elements have

a constant matrix diffusion σId. We set:

S = {X ∈ Λ2 | D2X(t) = −∇U(X(t))}.
For a diffusion X in Λ2 with drift b and density function pt(x), we set:

(9.1) Θ = (R+ × Rd) \ {(t, x), | pt(x) = 0}.
If X ∈ Λ2

g,σ then there exist real valued functions R and S smooth on Θ such that

(9.2) DX(t) =
(

b− σ2

2
∇ log(pt) + i

σ2

2
∇ log(pt)

)
(X(t)) = (∇S + i∇R)(X(t)),

since b is a gradient. Obviously:

(9.3) R(t, x) =
σ2

2
log(pt(x)).

65
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In this case, we introduce the function:

(9.4) Ψ(t, x) = e

(R + iS)(t, x)
K

(where K is a positive constant) called the wave function.
The wave function has the same form than that of Nelson one (see [52]). We

then set A = S − iR. So Ψ = e
iA
K and ∇A(t,X(t)) = DX(t). For a suitable

K, Nelson shows that if X satisfies its stochastized Newton equation (which is the
real part of ours) then Ψ satisfies a Schrödinger equation. We show, by using our
operator D, the same kind of result in the next section.

9.2.2. Schrödinger equations as necessary conditions.

Theorem 9.1. If X ∈ S ∩ Λ2
g,σ, then the wave function (9.4) satisfies the

following non-linear Schrödinger equation on the set Θ:

(9.5) iK∂tΨ +
K(K − σ2)

2
(∂xΨ)2

Ψ
+

σ2

2
∆Ψ = UΨ,

Proof. As U is a real valued function, X ∈ S implies

D2
X(t) = −∇U(X(t)).

The definition of Ψ implies that on Θ

∇A = −iK
∇Ψ
Ψ

.

Since ∇A(t,X(t)) = (DX)(t), we obtain

iKD∂xΨ
Ψ

(t,X(t)) = ∇U(t,X(t)).

Therefore, considering the k-th component of the last equation and using lemma
2.4, we deduce

iK

(
∂t

∂kΨ
Ψ

+DX(t) · ∇∂kΨ
Ψ

− i
σ2

2
∆

∂kΨ
Ψ

)
(t,X(t)) = ∂kU(X(t)).

Now DX(t) = −iK
∇Ψ
Ψ

(t,X(t)). Thus, by Schwarz lemma, we obtain

DX(t) · ∇∂kΨ
Ψ

= −iK

d∑

j=1

∂jΨ
Ψ

∂j
∂kΨ
Ψ

= − iK

2
∂k

d∑

j=1

(
∂jΨ
Ψ

)2

,

and

∆
∂kΨ
Ψ

=
d∑

j=1

∂2
j

∂kΨ
Ψ

= ∂k

d∑

j=1

∂j

(
∂jΨ
Ψ

)
= ∂k

d∑

j=1

∂2
j Ψ
Ψ

−
(

∂jΨ
Ψ

)2

.

Therefore

iK∂k


∂tΨ

Ψ
+ i

σ2 −K

2
∂k

d∑

j=1

(
∂jΨ
Ψ

)2

− i
σ2

2
∆Ψ
Ψ


 (t,X(t)) = ∂kU(X(t)).

By adding an appropriate function of t in S, we can arrange the constant in x of
integration in equation to be zero, and formula (9.5) follows as claimed. ¤



9.2. SCHRÖDINGER EQUATIONS 67

In order to recover the classical linear Schrödinger equation, we must choose
the normalization constant K. The main point is that in this case, we obtain a
clear relation between the modulus of the wave function and the density of the
underlying diffusion process. Precisely, we have:

Corollary 9.1. We keep the notations and assumptions of theorem (9.2.3).
We assume that

K = σ2.

Then the wave functional Ψ satisfies the linear Schrödinger equation

iσ2∂tΨ +
σ4

2
∆Ψ = UΨ,(9.6)

Moreover, if pt(x) is the density of the process X(t) at point x, then we have

(ΨΨ)(t, x) = pt(x).

Proof. K = σ2 kills the non-linearity in equation (9.5) and furthermore

log(ΨΨ) =
2
K

R =
2
σ2

R = log(p).

which concludes the proof. ¤

9.2.3. Remarks and questions.
• Obviously, in dimension 1, Λ2

σ ⊂ Λ2
g,σ since b is continuous.

• A natural question is to know if the converse of the corollary of () is true.
More precisely, if Ψ satisfies a linear Schrödinger equation, can we con-
struct a process X which belongs to S ∩ Λ2

g,σ and whose density is such
that pt(x) = |Ψ(t, x)|2 ?

R. Carmona tackled the problematic of the so-called Nelson pro-
cesses and proved in [10] under some conditions the existence of a pro-
cess X with gradient drift related to Ψ and whose density is such that
pt(x) = |Ψ(t, x)|2. However we do not know if this process belongs to our
space of good diffusions processes (which may turn to be a little restrictive
class in this case), but we can prove formally, i.e. even so assuming that
the formulae of the stochastized derivative to a function of the process
holds, that X satisfies the Newton stochastized equation. Therefore, this
leads one to question the extension of the derivative operator and the way
it acts on a large class of processes. This problem will be treated in a
forthcoming paper (See [17]).

• The fact that a process X satisfies the stochastized Newton equation of
Nelson implies (D2 − D2

∗)X = 0 (for the potential U is real). This is a
general fact for diffusion with gradient drift. Indeed, we can prove:

Lemma 9.1. Let X ∈ Λd, b its drift and p its density function. Let Gi

be the i-th column of the matrix (Gij) := (∂jbi−∂ibj). Then (D2−D2
∗)X =

0 if and only if for all t > 0, div(ptGi) = 0.

Thus, if X ∈ Λ2
g,σ it is clear that (D2 − D2

∗)X = 0 since the form∑
bk∂k is closed and so G = 0. An interesting question is then to know if
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the converse is true. So we may wonder ourselves if S ⊂ Λ2
g,σ.

The difficulty relies on the fact that p and b are related via the Fokker-
Planck equation, so the condition div(ptGi) = 0 may not be the good for-
mulation. However, one could use the work of S. Roelly and M. Thieullen
in [60] who use an integration by parts via Malliavin Calculus to charac-
terize gradient diffusion, in order to give a positive or negative answer to
our question.

• A basic notion in mechanics is that of action (see [4],p.60). The action
associated to a Lagrangian system is in general obtained via the action
functional. In our framework, a natural definition for such an action
functional is given by:

Definition 9.2. Let A be the functional defined on [a, b] × C1([a, b])
by:

(9.7) ∀t ∈ [a, b], ∀X ∈ C1(I), A(t,X) = E

[∫ t

a

L(Xs, (DX)s)ds |Xt

]
.

This functional is called the action functional.

Using this action functional, we have some freedom to define the cor-
responding “action”. The natural one is defined by

(9.8) AX(t, x) = E

[∫ t

a

L(Xs, (DX)s)ds |Xt = x

]
.

Usually, the wave function associated to AX an denoted by ψ̃ is then
defined as

(9.9) ψ̃X(t, x) = expiAX(t,x) .

However, it is not at all clear that such kind of function satisfies the
gradient condition, i.e. that

(9.10) ∇A(t,X(t)) = DX(t),

which is fundamental in our derivation of the Schrödinger equation.

However, the condition 9.10 is equivalent to prove that the real part
of DX is a gradient, which is not at all trivial in dimension greater than
two.

9.3. About quantum mechanics

Even if we look for dynamical systems, our work can be used in the context of
the so-called Stochastic mechanics, developed by Nelson [52]. The basic idea is to
reexpress quantum mechanics in terms of random trajectories. We refer to [11] for
a review.

The stochastic embedding theory can be seen as a quantization procedure, i.e.
a formal way to go from classical to quantum mechanics. This approach is already
different from Nelson’s approach, which do not define a rigid procedure to associate



9.3. ABOUT QUANTUM MECHANICS 69

to a given equation a stochastic analogue. Moreover, the acceleration defined by
Nelson as

(9.11) a(X) =
DD∗(X) + D∗D(X)

2
,

is only a particular choice. Many authors have tried to justify this form ([58],[59])
or to try another one. In our context, the form of the acceleration is fixed and
corresponds, as in the usual case, to the second (stochastic) derivative of X. As a
consequence, stochastic embeddings can be used to provide a conceptual framework
to stochastic mechanics. We refer to [58] where a complex valued velocity for a
stochastic process is introduced corresponding to the stochastic derivative of X.

However, stochastic mechanics as well as its variants have many drawbacks
with respect to the initial wish to describe quantum mechanical behaviours. We
refer to [54] and [11] for details. This is the reason why we will not develop further
this topic.





CHAPTER 10

Stochastic Hamiltonian systems

In this part, we introduce the stochastic pendant of Hamiltonian systems for
classical Lagrangian systems. The strategy is first to define the stochastic analogue
of the classical momentum. We then define a stochastic Hamiltonian. However, this
Hamiltonian is not obtained by the classical stochastic embedding procedure. This
is due to the fact that the momentum process is complex valued. As a consequence,
we must modify the procedure in order to obtain a coherent picture between the
classical formalism and the stochastic one. This leads us to define the stochastic
Hamiltonian embedding procedure which reflects in fact the non trivial character
of the underlying stochastic symplectic geometry to develop. Having the stochastic
Hamiltonian we prove a Hamilton least action principle using our stochastic calculus
of variations. We then obtain an analogue of the Lagrangian coherence lemma in
this case up to the fact that the underlying stochastic embedding procedure is now
the Hamiltonian one.

10.1. Reminder about Hamiltonian systems

We denote by I an open interval (a, b), a < b.

Let L : Rd × Rd × R→ R be a convex Lagrangian. The Lagrangian functional
over C1(R) is defined by

(10.1) L :
{

C1(R) −→ C1(R),
x 7−→ L(x, ẋ, t).

We can associate to L a Hamiltonian function using the Legendre transforma-
tion ([4],p.65). From the functional side, this induces a change of point of view, as
the functional is not seen as acting on x(t), which is the so-called configuration space
of classical mechanics, but on (x(t), ẋ(t)) which is associated to the phase-space.
This dichotomy between position and velocities has of course many consequences,
one of them being that the system is more symmetric (the symplectic structure).

Definition 10.1. Let L(x, v) be an admissible Lagrangian system. For all
x ∈ C1, we denote by

(10.2) p(x) =
∂L

∂v
(x, ẋ),

the momentum variable.

We now introduce an important class of Lagrangian systems.

Definition 10.2. Let L(x, v) be an admissible lagrangian system. The La-
grangian L is said to possess the Legendre property if there exists a function f :

71



72 10. STOCHASTIC HAMILTONIAN SYSTEMS

Rd → Rd, called the Legendre transform, such that

(10.3) ẋ = f(x, p),

for all x ∈ C1.

Most classical examples in mechanics possess the Legendre property. This fol-
lows from the convexity of L in the second variable (see [4],p.61-62).

We can introduce the fundamental object of this section:

Definition 10.3. Let L be an admissible Lagrangian system which possesses
the Legendre property. The Hamiltonian function associated to L is defined by

(10.4) H(p, x) = pf(x, p)− L(x, f(x, p)),

where f is the Legendre transform.

The Hamiltonian function plays a fundamental role in classical mechanics. We
introduce the stochastic analogue in the next section.

10.2. The momentum process

A natural stochastic analogue of the momentum variable is defined as follow:

Definition 10.4. Let L(x, v) be an admissible Lagrangian system. For all
X ∈ C1(I), we define the stochastic process P (t), called the canonical momentum
process, by

(10.5) P (t) =
∂L

∂v
(X(t),DX(t)).

This definition can be made more natural using the embedding ι defined from
C0(I) on Pdet and the linear tangent map introduced in chapter 8. Indeed, the
momentum process can be viewed as a functional on X ∈ C1(I), P : C1(I) → PC
defined by (10.5). We have for all X ∈ P 1

det = ι(C1(I)),

(10.6) P (X) = ι(p(x)),

where x ∈ C1(I) is such that X = ι(x). As by definition, we have

(10.7) ι(p(x)) = p(ι(x)) = p(X).

As p keeps a sense for X ∈ C1(I), we extend formula (10.7) to C1(I) leading to
definition 10.4.

If we assume that the Lagrangian possesses the Legendre property, then there
exists a Legendre transform f such that for all x ∈ C1, ẋ = f(x, p). We can ask if
such a property is conserved for the momentum process. We have:

Lemma 10.1. Let L(x, v) be an admissible Lagrangian system possessing the
Legendre property. Let f be the Legendre transform associated to L. We have

(10.8) DX(t) = f(X,P ),

for all X ∈ C1(I).

We can now define the stochastic Hamiltonian associated to L:
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Definition 10.5. Let L(x, v) be an admissible Lagrangian system possessing
the Legendre property. The stochastic Hamiltonian system associated to L is defined
by

(10.9) H :
{

PC × C1(I) −→ PC
(P, X) 7−→ Pf(X, P )− L(X, f(X, P )).

10.3. The Hamiltonian stochastic embedding

As in the previous chapter, we want to use the stochastic embedding procedure
to associate a natural stochastic analogue of the Hamiltonian equations. However,
we must be careful with such a procedure, as already discussed in chapter 4, §.4.2.2.
Indeed, the embedding procedure does not allow us to fix the notion of embedding
for systems of differential equations. Moreover, we must keep in mind that the
principal idea behind the Hamiltonian formalism is to work not in the configuration
space, i.e. the space of positions, but in the phase space, i.e. the space of positions
and momenta. As the stochastic speed is by definition complex, this induces a
particular choice for the embedding procedure in the case of Hamiltonian differential
equations.

Definition 10.6. Let F : Rd×Cd 7→ C be a holomorphic function, real valued
on real arguments. This function defines a real valued functional over C1(I)×C1(I),
for I a given open interval of R. The Hamiltonian embedding of the functional F
is the functional denoted by FS, defined on C1(I)× PC(I) by H, i.e.

(10.10) FS(X, P )(t) = F (X(t), P (t)).

We denote by SH the procedure associating the stochastic functional FS to F .
This procedure reduces to change the functional spaces for F from C1(I) × C1(I)
to C1(I)× PC.

The main property of the Hamiltonian stochastic embedding procedure (and
in fact it can be used as a definition) is to lead to a coherent definition with respect
to the momentum process. Precisely, we have:

Lemma 10.2 (Legendre coherence lemma). Let L(x, v) be an admissible La-
grangian system possessing the Legendre property. The following diagram commutes

(x, p)

SH

²²

H // H(x, p)

SH

²²
(X,P )

HS

// H(X,P )

(10.11)

The proof follows essentially from the fact that the stochastic Hamiltonian
embedding of the functional H, denoted by HS coincide with the definition 10.5 of
the stochastic Hamiltonian system associated to H via the Legendre transform and
the definition of the momentum process.

10.4. The Hamiltonian least action principle

Using the stochastic Hamiltonian function, we can use the stochastic calculus of
variations in order to obtain the set of equations which characterize the stationary
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processes of the following functional:

(10.12) Ja,b(X, P ) = E

[∫ b

a

(P (t)DX −H(X(t), P (t))) dt

]
,

defined on a domain Π ⊂ C1(I)× PC.

In order to apply our stochastic calculus of variations, we restrict our attention
to J on Π ⊂ C1(I)×C1

C(I). The fundamental result of this section is the following:

Theorem 10.1. A sufficient condition for an L-adapted process (X,P ) to be
N 1(I)-critical process of the functional Ia,b is that it satisfies the stochastic Hamil-
tonian equations

(10.13)




DX =

∂H

∂P
(X(t), P (t)),

DP = −∂H

∂X
(X(t), P (t)).

Proof. We must use the weak least action principle using the process Z =
(X, P ) ∈ C1(I)×PC and the Lagrangian denoted by L defined on Rd×Cd×Cd×Cd

by

(10.14) L(x, p, v, w) = pv −H(x, p).

As L(x, p, v, w) = L(x, v) formally via the Legendre transform, and L is assumed
to be admissible, we deduce that L is again admissible.

Let δZ be a N 1(I) variation of the form Z + δZ = (X + X1, P + P1), where
X1 and P1 are N 1 processes.

Using Lemma 7.3 a sufficient condition for Z to be a N1-critical process is that
it satisfies the Euler-Lagrange equation associated to L given by

(10.15)





∂L
∂x

(Z(t),DZ(t))−Dµ

[
∂L
∂v

(Z(t),DZ(t))
]

= 0,

∂L
∂p

(Z(t),DZ(t))−Dµ

[
∂L
∂w

(Z(t),DZ(t))
]

= 0.

An easy computation leads to

(10.16)




−∂H

∂x
(Z(t),DZ(t))−DµP (t) = 0,

DX(t)− ∂H

∂p
(Z(t),DZ(t)) = 0.

This concludes the proof. ¤

Remark 10.1. In this proof we do not need a uniform assumption on the set
of variations as the Lagrangian does not depend on the variable w. In fact, we can
assume a variation in the direction P which belongs to C1(I).

10.5. The Hamiltonian coherence lemma

In this section, we derive the Hamiltonian analogue of the Lagrangian coherence
lemma.
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Lemma 10.3 (The Hamiltonian cohrence lemma). Let H : Rd ×Rd → R be an
admissible Hamiltonian system. Then, the following diagram commutes

H(x(t), p(t))

Least action principle
²²

SH // H(X(t), P (t))

Stochastic least action principle
²²

(HE)
SH

// (SHE)

(10.17)

The main point is that this result is not valid if one replaces the Hamiltonian
stochastic embedding by the natural stochastic embedding that we have used up
to now. We can keep the classical embedding procedure only when dealing with
real valued versions of the stochastic derivative. For example, if one deals with the
reversible stochastic embedding procedure, we obtain a unified stochastic embed-
ding procedure for both Lagrangian an Hamiltonian systems. We think however
that as well as the complex nature of the stochastic derivative has a fundamental
influence on the form of the stochastic Lagrangian equations, i.e. that we obtain
the Nelson acceleration, the fact to move from S to SH reflects a basic properties
of the underlying stochastic symplectic geometry we must take into account this
complex character of the speed. This problem will be studied in another paper.





CHAPTER 11

Conclusion and perspectives

This part aims at discussing possible developments and applications of the
stochastic embedding procedure.

11.1. Mathematical developments

11.1.1. Stochastic symplectic geometry. The Hamiltonian formalism de-
veloped in the last part suggest the introduction of what can be called a stochas-
tic symplectic geometry. An interesting construction of symplectic structures on
Hilbert spaces is given in [33].

The main point here is to construct an analogue of the geometrical structure
which puts in evidence the very particular symmetries of the Lagrangian equations
in classical mechanics. There exists already many attempt to construct a given
notion of symplectic geometry or at least a given geometry for stochastic processes,
but they are as far as we know of a different nature. We refer to the book of El-
worthy, LeJan and Li [43] for an overview. These geometries are only associated to
stochastic processes and translate into data of geometrical nature properties of the
underlying stochastic processes (like the Riemannian or sub-Riemannian structure
associated to Brownian motions and diffusions).

A recent work of J-C. Zambrini and P. Lescot ([40] and [41]) deals specifically
with symplectic geometry and a notion of integrability by quadratures.

For a discussion of integrability in our context see section 11.1.2.

11.1.2. PDE’s and the stochastic embedding. The stochastic embedding
of Lagrangian systems over diffusion processes lead to a PDE governing the den-
sity of the solutions of the stochastic Euler-Lagrange equation. Moreover, we have
defined a stochastic Hamiltonian system naturally associated to the Lagrangian.
However, some classical PDEs, as for example the Schrödinger equation, possess
an Hamiltonian formulation. This remark, which goes back to the work of Za-
kharov V.E. and Faddeev D. [72] is now an important subject in PDEs known as
Hamiltonian PDEs (see for example [33]). As a consequence, we have the following
situation:

(11.1)
HS

↓
PDE −→ H

Of course the relation between the PDE and HS is not of the same nature as the
relation with H.

77
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In the sequel, we list a number of problems and questions which naturally arise
from the previous diagram:

• There exists a notion of completely integrable Hamiltonian PDE (see [33]).
What about out stochastic Hamiltonian systems ?

Assuming that we have a good notion of integrability for HS , we have the fol-
lowing questions:

• Are there any relations between the integrability of H and HS?
• Is there a stochastic analogue of the Arnold-Liouville theorem?
• Is there a special set of “coordinates” similar to the action/angle variables?

We note that there already exists such a notion for Hamiltonian PDEs (see
[72]).

• Is there a notion of integrability by “quadratures”?
In that respect, we think about Lax work [35] on the integrability of PDEs.

11.2. Applications

11.2.1. Long term behaviour of chaotic Lagrangian systems. The dy-
namical behaviour of unstable or chaotic dynamical systems is far from being un-
derstood, unless we restrict to a very particular class of systems like hyperbolic
systems or weak version of hyperbolicity. This question arises naturally for small
perturbations of Hamiltonian systems for which there exists a large family of results
dealing with this problem, as for example the KAM (Kolmogorov-Arnold-Moser)
theorem, Nekhoroshev theorem and special phenomena like the Arnold diffusion
related to the so-called quasi-ergodic hypothesis.

Unfortunately, these results are difficult to use in concrete situations and only
direct numerical simulations provide some understanding of the dynamics [21].

There exists of course ergodic theory which tries to look for weaker information
on the dynamics than a direct qualitative approach. However, this theory leads also
to very difficult problems when one tries to implement it, as for example in the case
of Sinäı billiard. Moreover, there is a widely opinion in the applied community
that the long term behaviour of a chaotic systems is more or less equivalent to a
stochastic process. One example of such opinion is well expressed in the article of
J. Laskar [38] in the context of the chaotic behaviour of the Solar system: “Since
the characteristic time scale for the divergence of nearby orbits in the Solar system
is approximately 5 Myr, the orbital evolution of the planet becomes practically un-
predictable after 100 Myr. Thus in the long term, the motion of the Solar system
may be described by a random process, where orbits wander erratically in a chaotic
zone.”

What are the arguments leading to this idea ?

The first point is that chaotic dynamical systems are in general characterized
by the so-called sensitivity to initial conditions, meaning that a small error on the
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initial condition leads to very different solutions. Of course, one must quantify this
kind of sentence, and we can do that, with more or less canonicity, by introducing
Lyapounov exponents and Lyapounov time. Whatever we do, there is a non canon-
ical data in this, which is precisely to what extent we consider that two solutions
are different. This must be a matter of choice for a given system, and cannot be
fixed by any mathematical tool. In the sequel, we assume that a system is sensitive
to initial conditions in some region R of the phase space, and for a given metric, if
for all x0 ∈ R and all ε > 0, the distance at time t between a trajectory starting at
x0 and x0 + ε, denoted by d(t) is 1 approximately given by

(11.2) d(t) = εet/T ,

where T > 0 is the so-called Lyapounov time or horizon of predictability for the
system2. For an example of such an estimate, we refer to J. Laskar [39] where he
gives numerical evidences for the chaotic behaviour of the solar system.

As a consequence, for t sufficiently large with respect to T , we have no predic-
tion any more, or in other words, we can not assign to a given prediction a precise
initial condition. We then have lost the deterministic character of the equations of
motions. An idea is then to say that one musts then consider not a fixed initial
condition x0, but a given random variable representing all the possible behaviours
(kind of trajectories) one is lead to after a fixed time t: for example, ε > 0 being
fixed, we consider all the intersections of trajectories starting in the disk D(x0, ε)
with the ball B(x0, ε). We then obtain a family of directions. Assuming that we
can compute an average over the family of such a quantity which obtain an av-
eraged direction which select a given point of the ball B(x0, ε). We then follow
the selected trajectory during the time t, and continue again this procedure. Such
a construction is reminiscent of the classical construction of the Brownian motion
(see [29],p.66). Of course, this programme can only be carried in some specific
examples. We refer to the article of Y. Sinäı [61] for an heuristic introduction to
all these problems.

If we agree with the previous heuristic idea, one can then ask for the following:
how is the underlying stochastic process governed by the dynamical system ?

We return again to the Hamiltonian/Lagrangian case. The stochastic embed-
ding procedure answers precisely this question. The stochastic Euler-Lagrange
equation is the track of the underlying Lagrangian system on stochastic processes.
As a consequence, we can think that we are able to capture even the desired long
term behaviour of the Lagrangian system using this procedure.

In order to support our point of view, we suggest the following strategy:

1As we already stress, we can in some situations gives a precise meaning to all this point, like
for example in the Smale Horseshoes, but this is far to cover the wide variety of chaotic behaviour
which are studied in the applied literature.

2In concrete systems, one must involve a macroscopic scale (see [20],p.17), which bound the
admissible size of an error on a prediction. Here, this quantity is arbitrary replaced by e.
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Consider a perturbation of a completely integrable Hamiltonian system Hε(x) =
h(x) + εf(x), with x ∈ R2n for example. Let us assume that h(x) leads to a partic-
ular PDE under stochastic embedding, which can be well understood and solved.
The long term behaviour of the completely integrable Hamiltonian system is trivial.
This not the case for the stochastic analogue. What about the long term behaviour
of Hε ? We think that it is controlled by the stochastic analogue of the unperturbed
Hamiltonian. This result is related to a kind of stochastic stability which we must
define. However, this approach can be tested on a wide variety of examples, in
particular celestial mechanical problems.

11.2.2. Celestial mechanics. There exist many theories dealing with the
problem of the formation of gravitational structures. For planetary systems this
question is related to a long standing problem related to the “regular” spacing
of planets in the Solar system. This problem which goes back to Kepler (1595),
Kant (1755), von Wolf (1726), Lambert (1761), takes a mathematical form under
the Titius (1766) formulation of the so called Titius-Bode law giving a geometric
progression of the distance of the planets from the sun. We refer to the book of
Nieto [55] for more details. Even if this empirical law fails to predict correctly
the real distance for the Planet Pluto for example, its interest is that it suggests
that the repartition of exoplanet orbital semi-major axes could satisfy a simple law.
As a consequence, one searchs for a possible physical/dynamical theory supporting
the existence of such kind of law. Moreover, the discovery of many exo-planetary
systems can be used to test if the theory is based on universal phenomena and not
related to our knowledge of the Solar system.

All the actual theories about the origin of the solar system presuppose the
formation of a protoplanetary nebula, formed by some material (gas, dust, etc ...)
with a central body (a star or a big planet). We refer to Lissauer [42] for more
details.

Instead, we use a simplified model consisting of a large central body of mass
m0 with a large number of small bodies (mj)j=1,...,n, whose mass is assumed to
be small with respect to m0. The main problem is to understand the long term
dynamics of this model.

Following the work of Albeverio S., Blanchard Ph. and R. Hoegh-Krohn ([2],
see also [3]), we can modelize the motion of a given grain in the protoplanetary
nebula by a stochastic process (see [2],p.366-367), more precisely a diffusion pro-
cess. The problem is then to find what is the equation governing the dynamics of
such a stochastic process. Using our stochastic embedding theory, we can use the
classical formulation in order to obtain the desired equation. This question will be
detailed in a forthcoming article.

The main idea behind stochastic modelisation is the following:

The motion of a given small body in a protoplanetary nebula is given by the
Kepler model and a perturbation due to the large number of number of small bod-
ies. In [2], this perturbation is replaced by a white noise. As a consequence, the
movement of a small body is assumed to be described by a diffusion process. It
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must be noted that this assumption is related to a number of arguments, one of
them being that the dynamics of the underlying classical system is unstable. We
then return to our previous description of the chaotic behaviour of a dynamical
system. However, using the stochastic embedding theory, we can try to justify the
passage from a classical motion to a stochastic one looking at the following problem:

Let Lε = LKepler+Pε, be the Lagrangian system describing the dynamics of our
model. The Lagrangian LKepler is the classical Lagrangian of the Kepler problem,
and Pε is the perturbation. Using the stochastic embedding theory, we can deduce
two stochastic dynamical systems, one associated to Lε and denoted by Sε and
one associated to LKepler denoted by SKepler. If the previous strategy to replace
the perturbative effect by a White noise is valid, then we must have a kind of
stochastic stability between SKepler and Sε. The notion of stochastic stability must
be defined rigorously and be consistent with the stochastic embedding theory3.
Why such a stability result is reasonable ? The main thing is that we already look
in SKepler for statistical properties of the set of trajectories of stochastic (diffusion)
processes under the Kepler Lagrangian. There is no reason that the statistic of
this trajectories really differs when adding a small perturbation. This is of course
different if one look for the underlying deterministic system. All these questions
will be studied in a forthcoming paper.

11.2.3. Strange attractors. Strange attractors play a fundamental role in
turbulence and lead to many difficult problems. Most of the time, one is currently
interested in the geometrical properties of attractors (Hausdorf dimension,...), spe-
cial dynamical properties (existence of an SRB (Sibäı-Ruelle-Bowen) measure [68],
stability under perturbations....). However, focusing on a given attractor hides the
fact that most of the time we can not predict from the equation the existence of
such an attractor. This is in particular the case for the Lorenz attractor or the
Henon attractor. These attractors are obtained numerically. In some models, we
can construct a geometric model from which we can prove the existence of such a
structure (this is the case for the geometric Lorenz model) [26]. For example, S.
Smale [62] asks for an existence proof for the Lorenz equation of the attractor. This
has been done recently by W. Tucker ([66], [67]). However, no general strategy
exists in order to predict such an attractor.

Our idea is to use the stochastic embedding theory in order to predict the
existence of such an object. Let us consider the Lorenz equations. These equa-
tions are not a Lagrangian system. However, there exits a canonical embedding in
a Lagrangian system (see the report of M. Audin [6]). This lagrangian can then
be studied via the stochastic embedding procedure. The solutions are stochastic
processes whose density is controlled by a PDE. As we already explain, we expect
that the long term behaviour of the system is coded by this PDE. As the long term
dynamics of the Lorenz system if precisely supported by the Lorenz attractor, we
think that this structure can be detected in the PDE (as a stationary state for
example).

3It must be noted that there exists already several notion of stochastic stability in the liter-
ature, as for example Has’inskii [28], Kushner [34] and more recently Handel [27].



82 11. CONCLUSION AND PERSPECTIVES

We can also take this problem as a first step towards understanding the exis-
tence of coherent structures in chaotic dynamical systems. Moreover, the Lorenz
attractor is widely studied and there exists a great amount of results like the ex-
istence of a unique SRB measure (see [67]). We can then take this example as a
good system to compare classical methods of ergodic theory and our approach. For
more problems related to the Lorenz attractor, SRB measure . . . , see ([69],[70]).



Notations

d: dimension

(Ω,A,P) a probability space

- Stochastic processes

• We denote by

dX = b(t,X)dt + σ(t,X)dW, (∗)
the stochastic differential equation where b is the drift, σ the diffusion
matrix and W is a d-dimensional Wiener process defined on (Ω,A,P).

• We denote by X(t) the solution of (*) and by pt(x) its density (when it
exists) at point x.

• σ(Xs, a 6 s 6 b): the σ-algebra generated by X between a and b
• Ft: an increasing family of σ-algebras
• Pt: an decreasing family of σ algebras
• E [• | B]: the conditional expectation w.r.t. B
• ‖ . ‖: norm on stochastic processes.

- Functional spaces

• PR: real valued stochastic processes
• PC: complex valued stochastic processes
• Pdet: the set of deterministic stochastic processes
• P k

det: the set of deterministic stochastic processes of class Ck

• Λ: good diffusion processes
• Λg: good diffusion processes with a gradient drift
• Lp(Ω): set of random variables which belongs to Lp

• L2: the set of real valued processes which are Pt and Ft adapted and such

that E

[∫ 1

0

X2
t dt

]
< ∞.

• C1,2((0, 1)×Rd) the set of function which are C1 in the first variable and
C2 in the second one.

• N 1: the set of Nelson differentiable processes.

- Operators

• ∇: the gradient operator
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• ∆: the Laplacian operator
• Let f(x1, . . . , xn) be a given function. We denote by ∂xi

f the partial
derivative of f with respect to xi

• Let f(x1, . . . , xn, y1, . . . , ym) be a given function. We denote by ∂xf , x =
(x1, . . . , xn) the partial differential of f in the direction x.

• D: Nelson forward derivative
• D∗: Nelson backward derivative
• D: the stochastic derivative
• Dn, Dn

∗ , Dn: the n-th iterate of D, D∗ or D
• d and d∗: adapted forward and backward derivative

k > 1

• Ck: the set of real valued processes which are Pt and Ft adapted and such
that Di exists, 1 6 i 6 k.

• Ck
C: the set of complex valued processes which are Pt and Ft adapted and

such that Di exists, 1 6 i 6 k.

• Re(z): real part of z ∈ C.
• Im(z): imaginary part of z ∈ C.
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déterminisme, A. Dahan Dalmedico, J.-L. Chabert, K. Chemla, Editions du Seuil, 1992, pp.
11-18.

[21] Dumas S., Laskar J., Global dynamics and long-time stability in Hamiltonian systems via
numerical frequency analysis, Phys. Rev. Letters Vol. 70, No. 20, 2975-2979, 1993.

[22] Falconer K, Fractal geometry; Mathematical Foundations and Applications, John Wiley and
Sons ed, 1990.

[23] Feynman R., The development of the space-time view of quantum electrodynamics, Nobel
lecture, December 11, 1965.
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51ème année, 1998-99, no. 854.

[47] McDonald S., Beard R., An application of stochastic calculus of variations and the stochastic
Euler equation to financial economics, preprint, 2003.

[48] Millet A, Nualart D., Sanz M., Integration by parts and time reversal for diffusion processes,
The Annals of Probability 1989, Vol. 17, No. 1, 208-238.

[49] Moser J., Is the solar system stable ?, Math. Intelligencer 1 (1978/79), no.2, 65-71.
[50] Mumford D., The dawning of the age of stochasticity, in Mathematics: Frontiers and per-

spectives, V. Arnold, M. Atiyah, P. Lax, B. Mazur editors, AMS, 2000, 197-218.
[51] Misawa T., Yasue K., Canonical dynamical systems, J. Math. Phys. 28(11), 1987, 2569-2573.
[52] Nelson E., Dynamical theories of Brownian motion, second edition, Princeton, 2001.
[53] Nelson E., Derivation of the Schrödinger equation from Newtonian mechanics, Physical Re-

view, Vol. 150, No. 4, 1079-1084 (1966).
[54] Nelson E., Stochastic mechanics and random fields, in Ecole d’été de Probabilité de Saint-
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