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Abstract

The potential of the Ay quantum elliptic model (3-body Calogero elliptic model) is defined
by the pairwise three-body interaction through Weierstrass g-function and has a single coupling
constant. A change of variables has been found, which are A, elliptic invariants. In those, the
potential becomes a rational function, while the flat space metric as well as its associated vector
are polynomials in two variables. It is shown the model possesses the hidden sl3 algebra - the
Hamiltonian is an element of the universal enveloping algebra Uy, for arbitrary coupling constant
- being equivalent to slz-quantum top. The integral in a form of the third order differential
operator with polynomial coefficients is constructed explicitly, being also an element of the universal
enveloping algebra Ug,. It is shown that there exists a discrete sequence of coupling constants for

which a finite number of polynomial eigenfunctions up to a (non-singular) gauge factor occur.



The A, elliptic model (3-body elliptic Calogero model, see e.g. [1]) describes three parti-
cles on the line with pairwise interaction given by the Weierstrass gp-function. It is charac-

terized by the Hamiltonian
1
= - ‘Z gz T YD (plor—a2) + plea—s) + ples—a1)) = —5 APV, (1)

where A®) is three-dimensional Laplace operator, x = v(v — 1) is coupling constant. The

Weierstrass function p(z) = p(x|gs, g3) (see e.g. [2]) is defined as

(¢'(2))* = 490°(2) —g2 p(x) — g5 = Ap(x) —er)(p(x) — e2)(p(z) —e3),  (2)

where gp 3 are its invariants and e; 3 are roots, usually, it is chosen e = e; + ez +e3 = 0.
If in (2) the trigonometric limit is taken, A = g5 + 27g3 = 0, with one of periods going to
infinity, the Hamiltonian of As trigonometric/hyperbolic model (3-body Sutherland model)
occurs. If both invariants go = g3 = 0 we arrive at Ap-rational (3-body Calogero) model.

For future convenience we parameterize the invariants as follows

g2 = 12(72 -, g3 = 47’(27’2 —3u) (3)

where 7, ;1 are parameters.
The Hamiltonian (1) is translation-invariant, thus, it makes sense to introduce center-of-

mass coordinates

3
1
1

with a condition Z‘I’ y; = 0. Laplacian A®) = Zf’zl aa—; in these coordinates takes the form,

2 0? 0? 0?
@ _ anz 4 2
& B0+ 3 <3 dy2 3y13y2>

Separating out center-of-mass coordinate Y two-dimensional Hamiltonian arises

1 ( 0?*  0? 0?

e =3 \o2 v o2 opom

) +v(v=1) (p(yr —92) + py1+y2) + p(y1+2y2)) -
()

Since we will be interested by general properties of the operator H 4,, without a loss of
generality we assume that the operator (5) is defined on real plane, y; 2 € R? while the
fundamental domain of the Weierstrass function @(z) is not fixed. The symmetry of the

Hamiltonian (5) is S?®Zy @ (T,)? @& (T,)?. Tt consists of permutation S?(y; <> y»), reflection
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Zo(y1,2 <> —1h,2) and four translations 75 12) @ yi2) = vi)+1and Ty 1) @ Yi2) = Yie)+i 7e
(periodicity). Perhaps, S? @ (T,.)? @ (T,)? can make sense as a double-affine A, Weyl group.

Let us consider a formal eigenvalue problem
HaV = EV (6)

without posing concrete boundary conditions. Assume f(z) be a non-constant solution of

the equation
[l(@)? = 4f (@)’ =127 f(2)* + 12uf (2) . (7)
Thus, it can be written as
f@) = p(r]g, 95) + 7,
cf. (2),(3). Now let us introduce new variables

f' (1) = f'(w2) y= 2 = fg2)
F)f'(y2) — fly2) f'(y1) ) f'(v2) = fly2) f'(yn)

which have a property

r =

c(=y1, —12) = (W, y2) , Y=y, —y2) = =YW, y2) -

They are invariant with respect to the partial symmetry of the Hamiltonian (5): S*& (7,)?®
(T.)%. Tt can be shown that in rational limit 7 = p = 0 where the 3-body Calogero model

emerges the variables x,y coincide with those found in Riihl-Turbiner [3]

T = —(?J% =+ 3/% + y1y2), y=—Y(y1 +v2) , (8.1)

as well as ones in trigonometric limit 1 = 0 where the 3-body Sutherland model emerges [3]

v = 2 feostan) + con(are) + cos(alun + ) — 3]

v = = [sinfag) + sin(ags) — sinfa(y: + 1)) (52

here « is parameter such that 7 = a?/12.  After cumbersome calculations it can be found

that the elliptic Calogero potential (see (1), (5)) in new variables takes a rational form,

2
3u(v —1) (x + 272 + pa® — 6(u — 7)y? + 3u7xy2)

Vg = 2 - SN




where
12D(z,y) = u’a*y? + 5drpla®y* + 27p% (37% — 4p)y® — 12ua® — 7271 pady®— (10)

108u(1? — 2u)ay* — 127 * — 18(472 + 5p)x?y? — 547(27% — 3 p)y* — 42® — 10872y — 2742 .

It is worth noting that the potential (9) is symmetric in y, V(z,y) = V(z, —y) as well as
D(z,y) = D(x,—y). Furthermore, 2D Laplacian (5) becomes the Laplace-Beltrami operator

B . 07 g7 o
Bgl21,22) = 1/2 Z@z gl/2gj32 - 9]82-8,2- +Z? 0z
7 7 1Y) J

which in (z,y)-coordinates looks explicitly as

02
Ag(z,y; 7, 1) = 3<3+m + pa’ 4+ (p— )y — pray® — MQIQ?/Q)(% +

2 2 2

x 0
S Y 2—3“)— 11
8376’y+< g T 3Ty duxy” =3ty 8y2+()

Y (3 + 872 + Tpa? — 3ury® — 6u2xy2>
2 2 2.2\ 9 2,2 9
(1+4m:+5,ux — 3uty” —6p Ty )— —|—2y(27'+3u:c—3u Y >—

ox Jy
Thus, the flat contravariant metric, defined by the symbol of the Laplace-Beltrami operator
in these coordinates, becomes polynomial in x,y. The Hamiltonian is the sum of Laplace-
Beltrami operator (11) with polynomial coefficients and rational potential (9). Taking in
the Laplace-Beltrami operator (11) in the rational limit 7 = p = 0, we arrive at the Laplace-

Beltrami operator A{

of the 3-body Calogero model [3]. If we take the trigonometric limit

1 = 0, the Laplace-Beltrami operator A(gtrig ) of the 3-body Sutherland model emerges [3].
The denominator D in (9) turns out to be equal to the determinant of the contravariant

metric D = Det(g"¥) = é. It is worth noting some properties of the determinant D: in

rational case D'/? is the zero mode of the Laplace-Beltrami operator
A;rat)Dl/Q - 0.

In trigonometric case

Aétrig)Dl/2 _ —127’D1/2,

and in general case,

Ay(z,y;T, p)DY? = —12r (1 — u(2x — 3uy2)) D'V? .



It easy to verify that the determinant D(x,y) given by formula (10) can be written as

1
D(w,y) = ZW*, (12)

where the function

dy 0 Jx O
W = gy or 9T 9y 7 (13)
Oy Oy1  Oya Oy
is the Jacobian associated with the change of variables (y1,y2) — (z,y). Perhaps, the
equation w? = 12 D(x,y) can be considered as the equation for the elliptic surface [11]. One

can verify that W admits a representation in factorized form,

(1 — y2) o(y1 + 2y2) o(y2 + 2u1)
ot (y1) ot (y2) o3 (Y1 + 12)

W(yl,yz) = (14)

Here the Weierstrass o-function [2] has the parameters g; given by (3) and e = —7 is a root
of the p—Weierstrass function, ¢'(—7) = 0. The function oy is the o-function associated

with the half-period w corresponding to the root —7, thus, p(w) = —7. Then by definition
(see [2]),

o(r +w) exp ( 0 (w) x) |

7 = =50 ()

There are two essentially different degenerations of the p—Weierstrass function to trigono-

metric case: (I) when e = —7 is double root, thus, e = 27 is the simple root and then pu = 0,
and (IT) when e = —7 is a simple root and p = 27%. In both cases
2 2
o o
p(z) =

4sin20‘2—x 12

but in the case (I) 7 = ‘f—; whereas for the second case (II) 7 = —%2 . For the first degeneration

the Jacobian

8 — 2 2
Wy, y2) = e sin a(y12 v2) sin a(y1—2|— 2) sin o y12—1— v2) (14.1)
and for the second one the Jacobian is factorized as follows
8 sin Oé(y12—y2) sin a(y1—2&-2y2) sin a(2y12+y2)
Wiy y2) = — T (14.2)
o cos? S cos? X2 cos? LR

where « is a parameter such that 7 = o?/12.  The factorization of the case (I) cannot be
generalized to the elliptic case where, in general, we have no multiple roots.

Surprisingly, the gauge rotation of (5) with determinant D (10) as a gauge factor

h = —3D7% (Ha, — Eo) D? |

[SIN
S
—
t
SN—
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where Ey = 3v(3v+1)7, transforms the Hamiltonian H s, — Ey into the algebraic operator(!),

o2
h = <x + 372% + 3pa® 4+ 3(u — 72)y? — 3uTay? — 3,u2x2y2> i
x
2
y<3 + 87z 4 Tux® — 3ury® — 6,u2xy2> +
0xdy
1( — 22 4+ 9719 + 12uxy® — 9,u2y4> 8—2 + (16)
3 oy?
2 2 2.2\ 9 2 2\ 9
(1+31/)<1 + 41w 4 Spx” — 3uty” — 6p xy >8_ +2(1+3y)y<27+3mf—3u Y )8_ +
Z )
3v(l+ 3V),LL<25L’ — 3,uy2) .
Note the important Z, symmetry property of this gauge-rotated Hamiltonian h,
It implies that in the variables (u = x,v = y?) the operator h remains algebraic,
2
h(u,v) = (u + 3ru? + 3pu® + 3(p — 7)v — 3pTuv — 3u2u2v> W +
u
0? u? 0?
2v (3 + 87u + Tpu® — 3uTv — 6,u2uv> + 4v< — — 4+ 3mv +4puv — 3u202> — + (17)
Judv 3 ov?

(1+ 3v) (1 + 47u 4 5pu® — 3uTv — 6,u2uv> 82 +
u

2 0
2( - % 4+ 7(7 4+ 120)v + 2u(5 + 9v)uv — Ip? (1 + 2u)vz> p +

3v(l+ 3V)u<2u — 3/w) :

[t is an alternative algebraic form of the gauge-rotated operator (15). Note that the variables
u,v are invariants with respect to the total symmetry of the Hamiltonian (5): S? @ Zy ®
(T,)* ® (T.)* .

The operator h(z,y) has also a certain property of self-similarity: the gauge-rotated oper-
ator h = D™™hD™ with m = (3 —v) has polynomial coefficients as well as the corresponding

gauge-rotated operator IEA2 = D "kp,D™ (see below). It is easy to verify that

hl, = h4_31, — 12(1 — 2V)T .

Evidently, the operator h, has the same functional form of the potential (9) as h,.



Let

0 0 0 0 0 0
J1—%, J2—8_y’ J3—$%7 J4—y%; J5—«'Ea—y, J6—ya_y7
0 0 0 0
J7—$($£+ya—y+3V) , Jg—y(x%+ya—y+3v). (18)

Notice that these formulas define a representation (—3v,0) of the Lie algebra sl(3) in differ-

ential operators of first order (see e.g. [3]). If spin of representation
—3v=n

takes integer value, a finite-dimensional representation appears: the space

(n+2)(n+1)

P, =<2y | 0<p+qg<n>, dimP,= 5 ’

(19)

is preserved by J’s. It can be easily shown that for any v the operator h (16) can be rewritten

in terms of sl(3) generators,
h = (14 3v)J1Js — 3vJsJy + 3J1Js + 3703 + 67(1 —dv)JsJs +3(u—73)J; +  (20)

1
(1 + 120)(JuJs + J5Jy) + 2(1 4 3v) puJsJ7 — 3urJyJs — §J52 + 313 +
dpdsdy 4+ p(1 — 6v)Jr s — 3> JZ .

Thus, the gauge-rotated Hamiltonian h describes si(3)-quantum top in a constant magnetic
field. Hence, 3-body elliptic Calogero model with arbitrary coupling constant is equivalent
to sl(3)-quantum top in a constant magnetic field. If coupling constant in (1) takes discrete
values

n:g(n—i—i’)),n:O,l,Q,..., (21)

the Hamiltonian h has finite-dimensional invariant subspace P, as well as the Hamiltonian

(5). Hence, there may exist a finite number of analytic eigenfunctions of the form

(n+2)(n+1)
5 )

[SIN

\Iln,i = Pn’l<l’,y) D s ?::1,...,

(22)
where polynomial P, ;(z,y) € P,, see (19). For example, for n = 0 (at zero coupling),
E071:0, P071:1 .

For n =1 at coupling



the operator h has three-dimensional kernel (three zero modes) of the type (a1 + asy + b).

The first non-trivial solutions appear for n = 2 and

10
K = —

g
Eigenvalues are given by the roots of the algebraic equation of degree 6,
(B2 4+ 47F + 4p)(E? + 87E + 4p + 127 (E* + 127E + 4u + 167%) = 0,
given by
EY = _—ortoy/r2—p, EP=—dr+2y72—pu, EP =—6r+2.56m2— 4.

The corresponding eigenfunctions are of the form (a,2%+ aszy + azy?® + bix + by +¢). Using
formulas (8) and (15), one can construct the corresponding eigenfunctions for operator (1)
in an explicit form.

Observation: Let us construct the operator

parxy H

7=0
where J°(n) = 22 —|—y6% —n is the Euler-Cartan generator of the algebra slz (18). It can be

immediately shown that the algebraic operator h (16) at integer n commutes with iéﬁzn(a:’, Y),

[h(z,y) , iz, y)] 0 Po — 0,

Hence, z;az(x y) is the particular integral [5] of the A, elliptic model (5).

It is known (see [1]) that A, elliptic model is (completely)-integrable having a certain
3rd order differential operator ka, as the integral. Perhaps, the most easy way to find
this integral is to look for it in a form of algebraic differential operator of the 3rd order,

[h, ka,] = 0. In the explicit form it is given by the following expression

kay = —20(1+30)(2 + 3v) py (27 + 3z — 3%y (23)

0
+ = (1 + 32 + w)y(p + 87 + Wurxr + 21p*x* — uPry® — 18,u333y2)%

Wl

(1 + 3v)(2 + 3v)(1 + 472 + 6ua® — 24uty® — 36p°xy* + 27M3y4)a—y

Nl )



+(2+ 31/)y<3 T+ 4272 + p)x + 1772 + 8pPa®
2

. 0
+3u(r? = 2u)y* — 6Ty’ — 6u3$2y2> s

2
~3 (24 3v) (J: + a7 + 5px’ + 3(p — 47 y? — 27ty —

2

0xdy

33uTwy® + 9ty + 18,u3xy4>

2

8
- (2 + 3vyl + 37 + 3px® — Tury® — 107yt + 6,u3y4)8—y2

+ y(l + 572 4 220 + 37%)2? + 3u(r? — 2p)zy? + YuTa®

83
— 7(3p — 27%)y? + 3Pt — 3pPraty’ — 2p3x3y2> 93

2
+ ( - §x2 4+ 2(57% + pw)ay? — 272° + 37y® — 2pat + 3u(r? — 2u)y* + 19p Toy?

93
3,2 4 2,3, 2 2_ 4
—6p’zy —|—10uxy—6umcy>m
10, 11 4 2 2\, 2 2,2 2
—y(x%—grx +§M$ — BBuray” + 3(pu — 27%)y° — 1p xy
3
327t + 618 4)
+ou Ty +ou Ty 0201
2 2 3 2 4 5 99 2,4 5 6) 9
- <y + —z° + 2txy” — 3utys + —pxtyt — 4ptxyt + 2,uy>—3
27 3 Ay

It is invariant with respect to y — —y,

kAQ(xvy) = kA2<x> _y)a

similarly to the gauge rotated Hamiltonian h(z,y) (see (16)). Thus, after the change of
variables (z,y) — (u = z,v = y?) the operator ka,(u,v) remains algebraic. Let us note
for (2 + 3v) = 0 or, saying differently, for n = 2 the operator ky, becomes a 3rd order
homogeneous differential operator, it contains 3rd derivatives only. This operator can be

rewritten in terms of sl(3)-generators,

2
ka, = JEJ+3(2+30)7J1 5], — §(1 +30)(2 + 3v)Jy Js 5+ (24)



3TJ1J4J6 + I/(2 + 3V)J1J5J3 - 3VJ1J6J5 - (1 + 9V>TJ3J1J4 +

8
(120 + 1277 — (1 4+ 3v)(11p+ 167%) + (14 3v)*(n + 87%)) J5 Ju — §(1 +3v)(2+ 3v)TJS J5 +

W

424 3v)(1 — 3v)urJis +

(372+(1+3u)(5u+47'2) — (1+3u)2(u+87'2)) J3JyJs+ (,u+872+2(1+3u)(,u—47'2))J3J4J6 +

Wl N

2 4
§(1 + 36V + 7202) 7355 — (1 — 3v) JsJg o — 5(1 + 6v)TJ3Jg s + 2(2 + 3v)pP T3 J7 Iy +
1
—4(1 + 3v) pur J3 Jg Jg + 5(1 +30)(2+3v) (1 + 87%) Ju s — (u(1+6v) —2(5+ 12v)7%) JyJ3 Js —
4
5(1 +30)(2 + 3V)urJyJsJr — T(3p — 27%)J; — 3u(u — )2 s — 3(u — 27 Iy JE +

1 4
2(7 + 6V)/JJTJ4J6J7 — 3MQTJ4J82 - 5(2 + 9V2)J5J3J1 — 5(1 + 18V2)TJ5J§ —

2

2
27J§ + (L4 6v)utsJrJs — JeJoJs — 2(1 — 4v)T s 55 —

4
§(2+3V)MJ5J3J7— 3

5 1
—27JsJs s — g,LLJGJ5J7 — gm(&s —120°) JrJ3 s — (14 6v)p) JrJs s+

Ai® J7 g Js + 12ut Jg Ji — Qur Je s Js — 2u° T3
It is evident that if —3v = n the operator (23) has the space P, as a finite-dimensional
invariant subspace. It seems natural to assume that the gauge-rotated integral ka, written
in variables x1, xs, 23,

Kx, = D3k, D72,

2

should coincide with the integral found recently by Oshima [6].
An important observation about a connection of the determinant (10) D = D(7, u) with
discriminants should be made. It can be shown that D being written in Cartesian coordinates

has the factorized form,
D(0,0) = 4a° +27y* ~ (y1 — v2)° (1 — y3)° (v — 93)° ,
s0, it is the discriminant of cubic equation;
D(1,0) = 1272 +42® + 727°2%y* + 10872y” + 27y° + 1087%y" ~

sin? a(yr — ya) sin? alyr — y3) sin? a(ys — y3) , (25)
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W2 ()

5, where (cf.

. . . . .. 2
is a trigonometric discriminant, where 7 = <. In general, D(1,u) =

<.

(14))

o(y1 —y2) o(y2 — y3) o(ys — y1)
ot (y1) o1 (y2) o1 (ys)

and o(z) and oy (z) are the Weierstrass o functions (see [2]), might be an elliptic discriminant.

W(T’ N) ~

(26)

It has to be noted that the operator h(u,v) (see (17)) (as well as ka, (u, v)) can be rewritten
in terms of the generators of the algebra ¢(®: the infinite-dimensional, eleven generated

algebra of differential operators [9]. It can have a finite-dimensional representation space,
Q, =<uPv! | 0<p+2¢<n> . (27)

This algebra is the hidden algebra of the G5 rational and trigonometric models. It may
remain the hidden algebra of the G4 elliptic model.

In this paper we demonstrate that As elliptic model belongs to two-dimensional quasi-
exactly-solvable (QES) problems [7, 8]. We show the existence of an algebraic form of the A,
elliptic Hamiltonian, which is the second order polynomial element of the universal envelop-
ing algebra Ug,. We construct explicitly the integral - commuting with the Hamiltonian - as
the third order polynomial element of the universal enveloping algebra Ug,. If this algebra
appears in a finite-dimensional representation those elements possess a finite-dimensional
invariant subspace. This phenomenon occurs for a discrete sequence of coupling constants
(21) for which polynomial eigenfunctions may occur. It looks very much similar to the case
of Ay elliptic model (the Lame Hamiltonian, see [4]), where the new variable making the
Ay elliptic Hamiltonian the algebraic operator is x = @. A generalization of developed
approach to A, elliptic models for n > 2 seems straightforward. It is worth noting that a
certain algebraic form for a general BC,, elliptic model was found some time ago in [10] (see
also [4]). It was shown also the existence of the sl(n) hidden algebra structure and it was
shown that it is equivalent to sl(n) quantum top.

Note added. When the present study was completed, based on the transformation (8),
the following has been formulated

Conjecture (M. Matushko, August 2014). The analog of transformation (8) for arbitrary n

is given by the solution of the linear system

Mu = e,

11



where u = (ug,...,u,), e=(1,1,...,1)" with

i @ o(y)

It is evidently correct for n = 1. We plan to check validity of this conjecture elsewhere.
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