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Abstract

The potential of the A2 quantum elliptic model (3-body Calogero elliptic model) is defined

by the pairwise three-body interaction through Weierstrass ℘-function and has a single coupling

constant. A change of variables has been found, which are A2 elliptic invariants. In those, the

potential becomes a rational function, while the flat space metric as well as its associated vector

are polynomials in two variables. It is shown the model possesses the hidden sl3 algebra - the

Hamiltonian is an element of the universal enveloping algebra Usl3 for arbitrary coupling constant

- being equivalent to sl3-quantum top. The integral in a form of the third order differential

operator with polynomial coefficients is constructed explicitly, being also an element of the universal

enveloping algebra Usl3 . It is shown that there exists a discrete sequence of coupling constants for

which a finite number of polynomial eigenfunctions up to a (non-singular) gauge factor occur.
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The A2 elliptic model (3-body elliptic Calogero model, see e.g. [1]) describes three parti-

cles on the line with pairwise interaction given by the Weierstrass ℘-function. It is charac-

terized by the Hamiltonian

H(e)
A2

= − 1

2

3∑
i=1

∂2

∂x2
i

+ ν(ν−1) (℘(x1−x2) + ℘(x2−x3) + ℘(x3−x1)) ≡ −1

2
∆(3)+V , (1)

where ∆(3) is three-dimensional Laplace operator, κ ≡ ν(ν − 1) is coupling constant. The

Weierstrass function ℘(x) ≡ ℘(x|g2, g3) (see e.g. [2]) is defined as

(℘′(x))2 = 4 ℘3(x)− g2 ℘(x) − g3 = 4(℘(x)− e1)(℘(x)− e2)(℘(x)− e3), (2)

where g2,3 are its invariants and e1,2,3 are roots, usually, it is chosen e ≡ e1 + e2 + e3 = 0.

If in (2) the trigonometric limit is taken, ∆ ≡ g32 + 27g33 = 0, with one of periods going to

infinity, the Hamiltonian of A2 trigonometric/hyperbolic model (3-body Sutherland model)

occurs. If both invariants g2 = g3 = 0 we arrive at A2-rational (3-body Calogero) model.

For future convenience we parameterize the invariants as follows

g2 = 12(τ 2 − µ) , g3 = 4τ(2τ 2 − 3µ) , (3)

where τ, µ are parameters.

The Hamiltonian (1) is translation-invariant, thus, it makes sense to introduce center-of-

mass coordinates

Y =
3∑
1

xi , yi = xi −
1

3
Y , (4)

with a condition
∑3

1 yi = 0. Laplacian ∆(3) ≡
∑3

i=1
∂2

∂x2
i
in these coordinates takes the form,

∆(3) = 3 ∂2
Y +

2

3

(
∂2

∂y21
+

∂2

∂y22
− ∂2

∂y1∂y2

)
.

Separating out center-of-mass coordinate Y two-dimensional Hamiltonian arises

HA2 = − 1

3

(
∂2

∂y21
+

∂2

∂y22
− ∂2

∂y1∂y2

)
+ ν(ν−1) (℘(y1−y2) + ℘(2y1+y2) + ℘(y1+2y2)) .

(5)

Since we will be interested by general properties of the operator HA2 , without a loss of

generality we assume that the operator (5) is defined on real plane, y1,2 ∈ R2 while the

fundamental domain of the Weierstrass function ℘(x) is not fixed. The symmetry of the

Hamiltonian (5) is S2⊕Z2⊕ (Tr)
2⊕ (Tc)

2. It consists of permutation S2(y1 ↔ y2), reflection
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Z2(y1,2 ↔ −y1,2) and four translations Tr,1(2) : y1(2) → y1(2)+1 and Tc,1(2) : y1(2) → y1(2)+i τc

(periodicity). Perhaps, S2 ⊕ (Tr)
2 ⊕ (Tc)

2 can make sense as a double-affine A2 Weyl group.

Let us consider a formal eigenvalue problem

HA2Ψ = EΨ , (6)

without posing concrete boundary conditions. Assume f(x) be a non-constant solution of

the equation

f ′(x)2 = 4f(x)3 − 12τf(x)2 + 12µf(x) . (7)

Thus, it can be written as

f(x) = ℘(x|g2, g3) + τ ,

cf. (2),(3). Now let us introduce new variables

x =
f ′(y1)− f ′(y2)

f(y1)f ′(y2)− f(y2)f ′(y1)
, y =

2(f(y1)− f(y2))

f(y1)f ′(y2)− f(y2)f ′(y1)
, (8)

which have a property

x(−y1,−y2) = x(y1, y2) , y(−y1,−y2) = −y(y1, y2) .

They are invariant with respect to the partial symmetry of the Hamiltonian (5): S2⊕(Tr)
2⊕

(Tc)
2. It can be shown that in rational limit τ = µ = 0 where the 3-body Calogero model

emerges the variables x, y coincide with those found in Rühl-Turbiner [3]

x = −(y21 + y22 + y1y2), y = −y1y2(y1 + y2) , (8.1)

as well as ones in trigonometric limit µ = 0 where the 3-body Sutherland model emerges [3]

x =
1

α2
[cos(αy1) + cos(αy2) + cos(α(y1 + y2))− 3] ,

y =
2

α3
[sin(αy1) + sin(αy2)− sin(α(y1 + y2))] , (8.2)

here α is parameter such that τ = α2/12 . After cumbersome calculations it can be found

that the elliptic Calogero potential (see (1), (5)) in new variables takes a rational form,

V (x, y) =
3ν(ν − 1)

4

(
x+ 2τx2 + µx3 − 6(µ− τ 2)y2 + 3µτxy2

)2

D
, (9)
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where

12D(x, y) = 9µ2x4y2 + 54τµ2x2y4 + 27µ2(3τ 2 − 4µ)y6 − 12µx5 − 72τµx3y2− (10)

108µ(τ 2 − 2µ)xy4 − 12τ x4 − 18(4τ 2 + 5µ)x2y2 − 54τ(2τ 2 − 3µ)y4 − 4x3 − 108τxy2 − 27y2 .

It is worth noting that the potential (9) is symmetric in y, V (x, y) = V (x,−y) as well as

D(x, y) = D(x,−y). Furthermore, 2D Laplacian (5) becomes the Laplace-Beltrami operator

∆g(z1, z2) = g−1/2
∑
ij

∂

∂zi
g1/2gij

∂

∂zj
= gij

∂2

∂zi∂zj
+
∑ gij,i

2

∂

∂zj
,

which in (x, y)-coordinates looks explicitly as

∆g(x, y; τ, µ) = 3
(x
3
+ τx2 + µx3 + (µ− τ 2)y2 − µτxy2 − µ2x2y2

) ∂2

∂x2
+

y
(
3+ 8τx+7µx2 − 3µτy2 − 6µ2xy2

) ∂2

∂x∂y
+

(
− x2

3
+ 3τy2 +4µxy2 − 3µ2y4

) ∂2

∂y2
+ (11)(

1 + 4τx+ 5µx2 − 3µτy2 − 6µ2xy2
) ∂

∂x
+ 2y

(
2τ + 3µx− 3µ2y2

) ∂

∂y
.

Thus, the flat contravariant metric, defined by the symbol of the Laplace-Beltrami operator

in these coordinates, becomes polynomial in x, y. The Hamiltonian is the sum of Laplace-

Beltrami operator (11) with polynomial coefficients and rational potential (9). Taking in

the Laplace-Beltrami operator (11) in the rational limit τ = µ = 0, we arrive at the Laplace-

Beltrami operator ∆
(rat)
g of the 3-body Calogero model [3]. If we take the trigonometric limit

µ = 0, the Laplace-Beltrami operator ∆
(trig)
g of the 3-body Sutherland model emerges [3].

The denominator D in (9) turns out to be equal to the determinant of the contravariant

metric D = Det(gij) = 1
g
. It is worth noting some properties of the determinant D: in

rational case D1/2 is the zero mode of the Laplace-Beltrami operator

∆(rat)
g D1/2 = 0 .

In trigonometric case

∆(trig)
g D1/2 = −12τD1/2 ,

and in general case,

∆g(x, y; τ, µ)D
1/2 = −12τ

(
1− µ(2x− 3µy2)

)
D1/2 .
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It easy to verify that the determinant D(x, y) given by formula (10) can be written as

D(x, y) =
1

12
W 2 , (12)

where the function

W =
∂y

∂y2

∂x

∂y1
− ∂x

∂y2

∂y

∂y1
, (13)

is the Jacobian associated with the change of variables (y1, y2) → (x, y) . Perhaps, the

equation w2 = 12D(x, y) can be considered as the equation for the elliptic surface [11]. One

can verify that W admits a representation in factorized form,

W (y1, y2) =
σ(y1 − y2)σ(y1 + 2y2)σ(y2 + 2y1)

σ3
1(y1)σ

3
1(y2)σ

3
1(y1 + y2)

. (14)

Here the Weierstrass σ-function [2] has the parameters gi given by (3) and e = −τ is a root

of the ℘−Weierstrass function, ℘′(−τ) = 0. The function σ1 is the σ-function associated

with the half-period ω corresponding to the root −τ , thus, ℘(ω) = −τ . Then by definition

(see [2]),

σ1(x) =
σ(x+ ω)

σ(ω)
exp

(
− σ′(ω)

σ(ω)
x
)
.

There are two essentially different degenerations of the ℘−Weierstrass function to trigono-

metric case: (I) when e = −τ is double root, thus, e = 2τ is the simple root and then µ = 0,

and (II) when e = −τ is a simple root and µ = 3
4
τ 2 . In both cases

℘(x) → α2

4 sin2 αx
2

− α2

12

but in the case (I) τ = α2

12
whereas for the second case (II) τ = −α2

6
. For the first degeneration

the Jacobian

W (y1, y2) =
8

α3
sin

α(y1 − y2)

2
sin

α(y1 + 2y2)

2
sin

α(2y1 + y2)

2
(14.1)

and for the second one the Jacobian is factorized as follows

W (y1, y2) =
8

α3

sin α(y1−y2)
2

sin α(y1+2y2)
2

sin α(2y1+y2)
2

cos3 αy1
2

cos3 αy2
2

cos3 α(y1+y2)
2

. (14.2)

where α is a parameter such that τ = α2/12 . The factorization of the case (I) cannot be

generalized to the elliptic case where, in general, we have no multiple roots.

Surprisingly, the gauge rotation of (5) with determinant D (10) as a gauge factor

h = −3D− ν
2 (HA2 − E0)D

ν
2 , (15)
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where E0 = 3ν(3ν+1)τ , transforms the HamiltonianHA2−E0 into the algebraic operator(!),

h =
(
x+ 3τx2 + 3µx3 + 3(µ− τ 2)y2 − 3µτxy2 − 3µ2x2y2

) ∂2

∂x2
+

y
(
3 + 8τx+ 7µx2 − 3µτy2 − 6µ2xy2

) ∂2

∂x∂y
+

1

3

(
− x2 + 9τy2 + 12µxy2 − 9µ2y4

) ∂2

∂y2
+ (16)

(1 + 3ν)
(
1 + 4τx+ 5µx2 − 3µτy2 − 6µ2xy2

) ∂

∂x
+ 2(1 + 3ν)y

(
2τ + 3µx− 3µ2y2

) ∂

∂y
+

3ν(1 + 3ν)µ
(
2x− 3µy2

)
.

Note the important Z2 symmetry property of this gauge-rotated Hamiltonian h,

h(x, y) = h(x,−y) .

It implies that in the variables (u = x, v = y2) the operator h remains algebraic,

h(u, v) =
(
u+ 3τu2 + 3µu3 + 3(µ− τ 2)v − 3µτuv − 3µ2u2v

) ∂2

∂u2
+

2v
(
3 + 8τu+ 7µu2 − 3µτv− 6µ2uv

) ∂2

∂u∂v
+ 4v

(
− u2

3
+ 3τv + 4µuv− 3µ2v2

) ∂2

∂v2
+ (17)

(1 + 3ν)
(
1 + 4τu+ 5µu2 − 3µτv − 6µ2uv

) ∂

∂u
+

2

(
− u2

3
+ τ(7 + 12ν)v + 2µ(5 + 9ν)uv − 9µ2(1 + 2ν)v2

)
∂

∂v
+

3ν(1 + 3ν)µ
(
2u− 3µv

)
.

It is an alternative algebraic form of the gauge-rotated operator (15). Note that the variables

u, v are invariants with respect to the total symmetry of the Hamiltonian (5): S2 ⊕ Z2 ⊕

(Tr)
2 ⊕ (Tc)

2 .

The operator h(x, y) has also a certain property of self-similarity: the gauge-rotated oper-

ator h̃ = D−mhDm with m = (1
2
−ν) has polynomial coefficients as well as the corresponding

gauge-rotated operator k̃A2 = D−mkA2D
m (see below). It is easy to verify that

h̃ν = h4−3ν − 12(1− 2ν)τ .

Evidently, the operator h̃ν has the same functional form of the potential (9) as hν .
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Let

J1 =
∂

∂x
, J2 =

∂

∂y
, J3 = x

∂

∂x
, J4 = y

∂

∂x
, J5 = x

∂

∂y
, J6 = y

∂

∂y
,

J7 = x(x
∂

∂x
+ y

∂

∂y
+ 3ν) , J8 = y(x

∂

∂x
+ y

∂

∂y
+ 3ν) . (18)

Notice that these formulas define a representation (−3ν, 0) of the Lie algebra sl(3) in differ-

ential operators of first order (see e.g. [3]). If spin of representation

−3ν = n

takes integer value, a finite-dimensional representation appears: the space

Pn = < xpyq | 0 ≤ p+ q ≤ n > , dimPn =
(n+ 2)(n+ 1)

2
, (19)

is preserved by J ’s. It can be easily shown that for any ν the operator h (16) can be rewritten

in terms of sl(3) generators,

h = (1 + 3ν)J1J3 − 3νJ3J1 + 3J1J6 + 3τJ2
3 + 6τ(1− 4ν)J3J6 + 3(µ− τ 2)J2

4 + (20)

τ(1 + 12ν)(J4J5 + J5J4) + 2(1 + 3ν)µJ3J7 − 3µτJ4J8 −
1

3
J2
5 + 3τJ2

6 +

4µJ6J7 + µ(1− 6ν)J7J3 − 3µ2J2
8 .

Thus, the gauge-rotated Hamiltonian h describes sl(3)-quantum top in a constant magnetic

field. Hence, 3-body elliptic Calogero model with arbitrary coupling constant is equivalent

to sl(3)-quantum top in a constant magnetic field. If coupling constant in (1) takes discrete

values

κ =
n

9
(n+ 3) , n = 0, 1, 2, . . . , (21)

the Hamiltonian h has finite-dimensional invariant subspace Pn as well as the Hamiltonian

(5). Hence, there may exist a finite number of analytic eigenfunctions of the form

Ψn,i = Pn,i(x, y) D
ν
2 , i = 1, . . . ,

(n+ 2)(n+ 1)

2
, (22)

where polynomial Pn,i(x, y) ∈ Pn, see (19). For example, for n = 0 (at zero coupling),

E0,1 = 0 , P0,1 = 1 .

For n = 1 at coupling

κ =
4

9
,
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the operator h has three-dimensional kernel (three zero modes) of the type (a1x+ a2y + b).

The first non-trivial solutions appear for n = 2 and

κ =
10

9
.

Eigenvalues are given by the roots of the algebraic equation of degree 6,

(E2 + 4τE + 4µ)(E2 + 8τE + 4µ+ 12τ 2)(E2 + 12τE + 4µ+ 16τ 2) = 0 ,

given by

E
(1)
± = −2τ ± 2

√
τ 2 − µ , E

(2)
± = −4τ ± 2

√
τ 2 − µ , E

(3)
± = −6τ ± 2

√
5τ 2 − µ .

The corresponding eigenfunctions are of the form (a1x
2+a2xy+a3y

2+ b1x+ b2y+ c). Using

formulas (8) and (15), one can construct the corresponding eigenfunctions for operator (1)

in an explicit form.

Observation: Let us construct the operator

i(n)par(x, y) =
n∏

j=0

(J 0(n) + j) ,

where J 0(n) = x ∂
∂x

+y ∂
∂y
−n is the Euler-Cartan generator of the algebra sl3 (18). It can be

immediately shown that the algebraic operator h (16) at integer n commutes with i
(n)
par(x, y),

[h(x, y) , i(n)par(x, y)] : Pn → 0 ,

Hence, i
(n)
par(x, y) is the particular integral [5] of the A2 elliptic model (5).

It is known (see [1]) that A2 elliptic model is (completely)-integrable having a certain

3rd order differential operator kA2 as the integral. Perhaps, the most easy way to find

this integral is to look for it in a form of algebraic differential operator of the 3rd order,

[h, kA2 ] = 0. In the explicit form it is given by the following expression

kA2 = −2ν(1 + 3ν)(2 + 3ν)µ y (2τ + 3µx− 3µ2y2) (23)

+
1

3
(1 + 3ν)(2 + 3ν)y(µ + 8τ 2 + 28µτx + 21µ2x2 − 9µ2τy2 − 18µ3xy2)

∂

∂x

− 2

9
(1 + 3ν)(2 + 3ν) (1 + 4τ x + 6µx2 − 24µ τy2 − 36µ2xy2 + 27µ3y4)

∂

∂y

8



+ (2 + 3ν)y
(
3 τ + 4(2τ 2 + µ)x+ 17µτx2 + 8µ2x3

+ 3µ(τ 2 − 2µ)y2 − 6µ2τxy2 − 6µ3x2y2
) ∂2

∂x2

− 2

3
(2 + 3ν)

(
x+ 4τx2 + 5µx3 + 3(µ− 4τ 2)y2 − 27µ2x2y2−

33µ τxy2 + 9µ2τy4 + 18µ3xy4
) ∂2

∂x∂y

− (2 + 3ν)y(1 +
8

3
τ x + 3µx2 − 7µτy2 − 10µ2xy2 + 6µ3y4)

∂2

∂y2

+ y
(
1 + 5τx+ 2(2µ+ 3τ 2)x2 + 3µ(τ 2 − 2µ)xy2 + 9µτx3

− τ(3µ− 2τ 2)y2 + 3µ2x4 − 3µ2τx2y2 − 2µ3x3y2
) ∂3

∂x3

+
(
− 2

3
x2 + 2(5τ 2 + µ)xy2 − 2τx3 + 3τy2 − 2µx4 + 3µ(τ 2 − 2µ)y4 + 19µ τx2y2

− 6µ3x2y4 + 10µ2x3y2 − 6µ2τxy4
) ∂3

∂x2∂y

− y
(
x+

10

3
τ x2 +

11

3
µx3 − 13µ τxy2 + 3(µ− 2τ 2)y2 − 11µ2x2y2

+ 3µ2τy4 + 6µ3xy4
) ∂3

∂x∂y2

−
(
y2 +

2

27
x3 + 2τ xy2 − 3µ τy4 +

5

3
µx2y2 − 4µ2xy4 + 2µ3y6

) ∂3

∂y3
.

It is invariant with respect to y → −y,

kA2(x, y) = kA2(x,−y) ,

similarly to the gauge rotated Hamiltonian h(x, y) (see (16)). Thus, after the change of

variables (x, y) → (u = x, v = y2) the operator kA2(u, v) remains algebraic. Let us note

for (2 + 3ν) = 0 or, saying differently, for n = 2 the operator kA2 becomes a 3rd order

homogeneous differential operator, it contains 3rd derivatives only. This operator can be

rewritten in terms of sl(3)-generators,

kA2 = J2
1J4 + 3(2 + 3ν)τJ1J3J4 −

2

9
(1 + 3ν)(2 + 3ν)J1J3J5+ (24)
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3τJ1J4J6 + ν(2 + 3ν)J1J5J3 − 3νJ1J6J5 − (1 + 9ν)τJ3J1J4 +

1

3

(
12µ+12τ 2 − (1+ 3ν)(11µ+16τ 2) + (1+ 3ν)2(µ+8τ 2)

)
J2
3J4 −

8

9
(1+ 3ν)(2+ 3ν)τJ3

3J5 +

4(2 + 3ν)(1− 3ν)µτJ2
3J8 +

2

3

(
3τ 2+(1+3ν)(5µ+4τ 2)−(1+3ν)2(µ+8τ 2)

)
J3J4J3+

(
µ+8τ 2+2(1+3ν)(µ−4τ 2)

)
J3J4J6 +

2

9
(1 + 36ν + 72ν2)τJ3J5J3 − (1− 3ν)J3J6J2 −

4

3
(1 + 6ν)τJ3J6J5 + 2(2 + 3ν)µ2J3J7J8 +

−4(1+3ν)µτJ3J8J6+
1

3
(1+3ν)(2+3ν)(µ+8τ 2)J4J

2
3 − (µ(1+6ν)− 2(5+12ν)τ 2)J4J3J6 −

4

3
(1 + 3ν)(2 + 3ν)µτJ4J3J7 − τ(3µ− 2τ 2)J3

4 − 3µ(2µ− τ 2)J2
4J8 − 3(µ− 2τ 2)J4J

2
6 +

2(7 + 6ν)µτJ4J6J7 − 3µ2τJ4J
2
8 − 1

9
(2 + 9ν2)J5J3J1 −

4

9
(1 + 18ν2)τJ5J

2
3 −

4

3
(2 + 3ν)µJ5J3J7 −

2

27
J3
5 +

2

3
(1 + 6ν)µJ5J7J3 − J6J2J6 − 2(1− 4ν)τJ6J5J3 −

−2τJ6J5J6 −
5

3
µJ6J5J7 − 1

3
µτ

(
5− 72ν2

)
J7J3J4 − µ2(1 + 6ν)µ2

)
J7J3J8+

4µ2J7J8J6 + 12µτJ8J
2
6 − 9µτJ6J8J6 − 2µ3J3

8 .

It is evident that if −3ν = n the operator (23) has the space Pn as a finite-dimensional

invariant subspace. It seems natural to assume that the gauge-rotated integral kA2 written

in variables x1, x2, x3,

KA2 = D
ν
2 kA2 D

− ν
2 ,

should coincide with the integral found recently by Oshima [6].

An important observation about a connection of the determinant (10) D ≡ D(τ, µ) with

discriminants should be made. It can be shown thatD being written in Cartesian coordinates

has the factorized form,

D(0, 0) = 4x3 + 27y2 ∼ (y1 − y2)
2(y1 − y3)

2(y2 − y3)
2 ,

so, it is the discriminant of cubic equation;

D(τ, 0) = 12τ x4 + 4x3 + 72τ 2x2y2 + 108τxy2 + 27y2 + 108τ 3y4 ∼

sin2 α(y1 − y2) sin
2 α(y1 − y3) sin

2 α(y2 − y3) , (25)
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is a trigonometric discriminant, where τ = α2

3
. In general, D(τ, µ) = W 2(τ,µ)

12
, where (cf.

(14))

W (τ, µ) ∼ σ(y1 − y2)σ(y2 − y3)σ(y3 − y1)

σ3
1(y1)σ

3
1(y2)σ

3
1(y3)

, (26)

and σ(x) and σ1(x) are the Weierstrass σ functions (see [2]), might be an elliptic discriminant.

It has to be noted that the operator h(u, v) (see (17)) (as well as kA2(u, v)) can be rewritten

in terms of the generators of the algebra g(2): the infinite-dimensional, eleven generated

algebra of differential operators [9]. It can have a finite-dimensional representation space,

Qn = < upvq | 0 ≤ p+ 2q ≤ n > . (27)

This algebra is the hidden algebra of the G2 rational and trigonometric models. It may

remain the hidden algebra of the G2 elliptic model.

In this paper we demonstrate that A2 elliptic model belongs to two-dimensional quasi-

exactly-solvable (QES) problems [7, 8]. We show the existence of an algebraic form of the A2

elliptic Hamiltonian, which is the second order polynomial element of the universal envelop-

ing algebra Usl3 . We construct explicitly the integral - commuting with the Hamiltonian - as

the third order polynomial element of the universal enveloping algebra Usl3 . If this algebra

appears in a finite-dimensional representation those elements possess a finite-dimensional

invariant subspace. This phenomenon occurs for a discrete sequence of coupling constants

(21) for which polynomial eigenfunctions may occur. It looks very much similar to the case

of A1 elliptic model (the Lame Hamiltonian, see [4]), where the new variable making the

A1 elliptic Hamiltonian the algebraic operator is x = 1
℘(y1)

. A generalization of developed

approach to An elliptic models for n > 2 seems straightforward. It is worth noting that a

certain algebraic form for a general BCn elliptic model was found some time ago in [10] (see

also [4]). It was shown also the existence of the sl(n) hidden algebra structure and it was

shown that it is equivalent to sl(n) quantum top.

Note added. When the present study was completed, based on the transformation (8),

the following has been formulated

Conjecture (M. Matushko, August 2014). The analog of transformation (8) for arbitrary n

is given by the solution of the linear system

Mu = e,

11



where u = (u1, . . . , un)
t, e = (1, 1, . . . , 1)t with

M i
j =

dj−1℘(yi)

dyj−1
i

.

It is evidently correct for n = 1. We plan to check validity of this conjecture elsewhere.
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