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Abstract

Potential algebras feature in the minimal model program and noncommutative res-
olution of singularities, and the important cases are when they are finite dimensional,
or of linear growth. We develop techniques, involving Gröbner basis theory and gener-
alized Golod-Shafarevich type theorems for potential algebras, to determine finiteness
conditions in terms of the potential.

We consider two-generated potential algebras, and prove that they can not have
dimension smaller than 8, using Gröbner bases arguments, and arguing in terms of
associated truncated algebra. We derive from the improved version of the Golod-
Shafarevich theorem,that if the potential has only terms of degree 5 or higher, then
the potential algebra is infinite dimensional. We prove, that potential algebra for any
homogeneous potential of degree n ⩾ 3 is infinite dimensional. The proof includes a
complete classification of all potentials of degree 3. Then we introduce a certain version
of Koszul complex, and prove that in the class Pn of potential algebras with homo-
geneous potential of degree n + 1 ⩾ 4, the minimal Hilbert series is Hn = 1

1−2t+2tn−tn+1 ,
so they are all infinite dimensional. Moreover, growth could be polynomial (but at
least quadratic) for the potential of degree 4, and is always exponential for potential
of degree starting from 5. For one particular type of potential we prove a conjecture
by Wemyss, which relates the difference of dimensions of potential algebra and its
abelianization with Gopakumar-Vafa invariants.
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1 Introduction

Questions we study in this paper arise from the fact, that potential algebras, appearing in
minimal model program, in noncommutative resolution of singularities, such as reconstruc-
tion algebra introduced by M. Wemyss [11], are important, when they are finite dimensional,
or have linear growth. So it was our goal to develop techniques allowing to recognize when a
potential gives rise to an algebra, which has this kind of finiteness properties, or extract more
information on the algebra, such as its dimension, in terms of potential. Potential algebras
and their versions appear in many different and related contexts in physics and mathematics
and are known also under the names vacualgebra, Jacobi algebra, etc. (see, for example,
[2, 1, 3, 4, 11]).

Throughout the paper we are living mainly in the following situation, K⟨x, y⟩ is the free
associative algebra in two variables, F ∈ K⟨x, y⟩ is a cyclicly invariant polynomial, not nec-
essarily homogeneous, however the case of a homogeneous F will be treated separately. We
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always assume that F starts in degree ⩾ 3, that is, the first three homogeneous components
of F are zero: F0 = F1 = F2 = 0, which means we suppose generators of A are linearly in-
dependent. We consider the potential algebra AF , given by two relations, which are partial
derivatives of F , i.e. AF is the factor of K⟨x, y⟩ by the ideal IF generated by ∂F

∂x and ∂F
∂y ,

where the linear maps ∂
∂x ∶ K⟨x, y⟩ → K⟨x, y⟩ and ∂

∂y ∶ K⟨x, y⟩ → K⟨x, y⟩ are defined on
monomials as follows:

∂w

∂x
= { u if w = xu,

0 otherwise,

∂w

∂y
= { u if w = yu,

0 otherwise.

This notion of noncommutative derivation of free associative algebra was first introduced
by Kontsevich in [9], an equivalent definition is given, for example, in [6].

Using the improved version of the Golod–Shafarevich theorem [14] and involving the fact
of potentiality, we derive the following fact.

Theorem 1.1. Let AF be a potential algebra given by a not necessarily homogeneous potential
F having only terms of degree 5 or higher. Then AF is infinite dimensional.

We prove this estimate in Section 1 and compare it to the one, which could be obtained by
a straightforward application of the classical version of the Golod–Shafarevich [7] theorem
not involving fully the fact of potentiality, but only the information on the number and
degrees of relations, which follows from it.

In Section 3 we deal first with the case of homogeneous potentials of degree 3. We classify
all of them up to isomorphism and see that the corresponding algebras are infinite dimen-
sional. We also compute the Hilbert series for each of them.

Next, we prove the following theorem.

Theorem 1.2. If F ∈ K⟨x, y⟩ is a homogeneous potential of degree n ⩾ 4, then the potential
algebra = K⟨x, y⟩/Id(∂F∂x ,

∂F
∂y ) is infinite dimensional.

Moreover, the minimal Hilbert series in the class Pn of potential algebras with homogeneous
potential of degree n + 1 ⩾ 4 is Hn = 1

1−2t+2tn−tn+1 .

Corollary 1.3. Growth of a potential algebra with homogeneous potential of degree 4 can be
polynomial (at least quadratic), but starting from degree 5 it is always exponential.

As a consequence of Example 3.6 in case of potential of degree 4 we have that algebra
A(3) = AF(3) = x2y2⟲, that is algebra given by relations A(3) = ⟨x, y⟩/{xy2 + y2x,x2y + yx2}
has a minimal Hilbert series, namely H(3) = 1

1−2t+2t3−t4 . It has polynomial growth of degree
not higher then two by reasons, which are obvious if one notices that 1

1−2t+2t3−t4 =
1

(1+t)(1−t)3 ,
but exact calculations of the terms an of the series H(3) = ∑antn via the recurrence an =
2an−1 − 2an−3 − an−4 shows, that linear growth is impossible.

The above two facts together ensure that potential algebras with homogeneous potential
of degree ⩾ 3 are always infinite dimensional. As a tool for the proof we construct a complex,
in a way analogous to the Koszul complex. However, not all maps in our complex have
degree one. One of the maps has degree, which depends on the degree of the potential.

In Section 4, we show that the dimension of every potential algebra is at least 8. For that we
use Gröbner basis technique and arguments involving truncated algebra A(n) = A/span{un},
where un are monomials of degree bigger than n.

In Section 5 we consider the conjecture formulated by Wemyss and Donovan in [12]. The
conjecture says that the difference between the dimension of a potential algebra and its
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abelianization is a linear combination of squares of natural numbers starting from 2, with
non-negative integer coefficients.

Moreover, in [13] it is shown, that these integer coefficients do coincide with Gopakumar-
Vafa invariants [8].

We give an example of solution of the conjecture for one particular type of potential,
namely for the potential F = x2y+xyx+yx2+xy2+yxy+y2+a(y), where a = ∑n

j=3 ajy
j ∈ K[y]

is of degree n > 3 and has only terms of degree ⩾ 3.

2 Estimates from the Golod-Shafarevich theorem

In this section we get the following estimate: if a potential F has only terms of degree
5 or higher, then AF is infinite-dimensional. We obtain it applying an improved version
of the Golod-Shafarevich theorem, for not necessarily homogeneous algebras [14, 10], and
additionally incorporating the fact that relations arise from a th potential.

We start by showing, for comparison purposes, that straightforward application of classical
version of the Golod-Shafarevich theorem gives infinite dimensionality of algebra for not
necessarily homogeneous case, for potentials, having only terms of degree 7 or higher, and
for homogeneous potentials of degree ⩾ 6.

First, we recall the Golod–Shafarevich theorem.

Theorem GS. Let A = K⟨x, . . . , xk⟩/Id(g1, g2, . . . ), where each gj is homogeneous of degree
⩾ 2 and assume that non-negative integers m2,m3, . . . are such that for each k ⩾ 2, the
number of the relations gj of degree k does not exceed mj. then the Hilbert series HA of A
satisfies the following lower estimate:

HA ⩾ ∣
1

1 − kt +m2t2 +m3t3 + . . .
∣ ,

where the order on power series is coefficient-wise: H = ∑hjtj ⩾ G = ∑ gjtj if hj ⩾ gj for all
j and ∣H ∣ is the series obtained from H by replacing with 0 all coefficients starting from the
first negative one ∣H ∣ =H if all coefficients of H are non-negative).

Proposition 2.1. Let F be a (not necessarily homogeneous) potential starting with degree
n + 1 with n ⩾ 6 (that is, Fj = 0 for j ⩽ n). Then AF is infinite dimensional.

Proof. Consider the algebra Â given by the generators x, y and the relations being all ho-
mogeneous components of the relations ∂F

∂x and ∂F
∂y of A = AF . Clearly Â is a quotient of A

and therefore A is infinite dimensional provided Â is. Clearly, Â satisfies the conditions of
the Golod–Shafarevich Theorem with k = 2, sj = 0 for j ⩽ n and sj = 2 for j ⩾ n we have at
most two relations of each degree ⩾ n). Thus the theorem yields

HÂ ⩾ ∣
1

1 − 2t + 2tn + 2tn+1 + . . .
∣ = ∣ 1 − t

1 − 3t + 2t2 + 2tn
∣ .

One can check that all coefficients of the series given by last rational function are positive if
n ⩾ 6 and that the said series has negative coefficients if n ⩽ 5. Thus A is infinite dimensional
if n ⩾ 6.
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Note that the same estimate follows from Vinberg’s generalization [10] of the Golod–
Shafarevich theorem.

If F is homogeneous, a slightly better estimate follows. Surprisingly, it is not that much
better.

Proposition 2.2. Let F be a homogeneous potential starting with degree n + 1 with n ⩾ 5.
Then AF is infinite dimensional.

Proof. Clearly, A satisfies the conditions of the Golod–Shafarevich Theorem with k = 2,
sn = 2 and sj = 0 for j ≠ n (we have two relations of degree n). Thus the theorem yields

HA ⩾ ∣
1

1 − 2t + 2tn
∣ .

One can check that all coefficients of the series given by last rational function are positive if
n ⩾ 5 and that the said series has negative coefficients if n ⩽ 4. Thus A is infinite dimensional
if n ⩾ 5, that is, for potentials of degree 6 and higher.

Theorem 2.3. Let AF be a potential algebra given by a not necessarily homogeneous potential
F having only terms of degree 5 or higher. Then AF is infinite dimensional.

Proof. Recall that AF = K⟨x, y⟩/I, where I is the ideal generated by G = ∂F
∂x and H = ∂F

∂y .

Consider the algebra B = K⟨x, y⟩/J , where J is the ideal generated by G and Hx. the
Golod–Shafarevich series for B is GB(t) = 1 − 2t2 + t4 + t5 since J is an ideal given by the
relation of minimal degree 4 and one relation of minimal degree 5. We apply the improved
version of the Golod–Shafarevich theorem from [14] (page 1187). Note that there is t0 ∈ (0,1)
such that GB(t0) < 0. For instance, one can take t0 = 0.654. From this it follows that B
is not only infinite dimensional but has exponential growth, see ??, Theorem 2.7, p.10 for
details.

Next we show that Ix ⊂ J . Indeed, Ix is spanned (as a vector space) by m1Hm2x
and m1Gm2x, where m1,m2 are monomials from K⟨x, y⟩. An element of the second type
m1Gm2x belongs to J since G ∈ J and J is an ideal. For elements of the first type, we need
to show that they can be expressed as linear combinations of elements of the second type
and elements of the first type containing Hx (with m2 starting with x). Indeed, this will
suffice since Hx ∈ J and J is an ideal. For this purpose we can use the commutation relation
Hy = yH − xG+Gx obtained from the syzygy [H,y]+ [G,x] = 0 (see Lemma3.4. So, we use
here the fact that our relations G and H are not arbitrary but are coming from a potential.
After applying this commutation relation repeatedly to Hm2x, we can pull all y with which
m2 might start to the left of H ensuring the presence of Hx. Hence Ix ⊂ J .

The last step is the following. We suppose that AF = K⟨x, y⟩/I is finite dimensional. Then
the quotient (of vector spaces) K⟨x, y⟩x/Ix is also finite dimensional. Then Bx̄ = K⟨x, y⟩x/J ′
with J ′ = J ∩K⟨x, y⟩x, and x̄ = x+J is also finite dimensional because Ix ⊆ J ′ = J ∩K⟨x, y⟩x.
But B can be presented as

B = Alg(ȳ) +Bx̄ +Bx̄ȳ +Bx̄ȳ2 + ⋅ ⋅ ⋅ = Alg(ȳ) +BxAlg(ȳ),

where Alg(ȳ) is the subalgebra of B generated by ȳ. Since Bx̄ is finite dimensional, it follows
that B has linear growth. However, this contradicts the fact that B has exponential growth
obtained in the first part of the proof.
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3 Homogeneous potential

Here we consider the question on infinite-dimensionality of potential in homogeneous case.
This will be the basis for the non-homogeneous arguments as well.

Theorem 3.1. If F ∈ K⟨x, y⟩ is a homogeneous potential of degree 3, then the potential
algebra A = K⟨x, y⟩/Id(∂F∂x ,

∂F
∂y ) is finite dimensional.

Proof. Since F is a homogeneous cyclicly invariant polynomial of degree 3, we have

F = ax3 + b(x2y + xyx + yx2) + c(xy2 + yxy + y2x) + dy3.

Consider the abelianization F ab ∈ K[x, y] of F , obtained from F by assuming that x and y
commute:

F ab = ax3 + 3bx2y + 3cxy2 + dy3.
As K is algebraically closed, we can write F ab as a product of three linear forms:

F ab = (α1x + β1y)(α2x + β2y)(α3x + β3y).

If the three forms above are proportional, a linear substitution turns F ab into x3. The same
substitution turns F into x3 as well. If two of the three forms are proportional, while the
third is not proportional to the first two, then a linear substitution turns F ab into 3x2y.
The same substitution turns F into x2y + xyx + yx2. Finally, if no two of the above three
linear forms are proportional, then a linear substitution turns F ab into 3x2y + 3xy2. The
same substitution turns F into x2y + xyx + yx2 + xy2 + yxy + y2x.

Thus a linear substitution turns F into either x3 or x2y+xyx+yx2 or x2y+xyx+yx2+xy2+
yxy+y2x. Thus we can assume that F ∈ {x3, x2y+xyx+yx2, x2y+xyx+yx2+xy2+yxy+y2x}.

If F = x3, then A = K⟨x, y⟩/Id(x2). If F = x2y + xyx + yx2, then A = K⟨x, y⟩/Id(xy +
yx, x2). Finally, if F = x2y + xyx + yx2 + xy2 + yxy + y2x, then A = K⟨x, y⟩/Id(xy + yx +
y2, x2 + xy + yx) = K⟨x, y⟩/Id(xy + yx+ y2, x2 − y2). In each case the given quadratic defining
relations form a Gröbner basis in the ideal of relations (with respect to the usual degree
lexicographical ordering; we assume x > y). In each case, the algebra is infinite dimensional.
It has exponential growth for F = x3 and it has the Hilbert series HA = 1+ 2t+ 2t2 + 2t3 + . . .
in the other two cases (the normal words are yn and ynx).

Theorem 3.2. If F ∈ K⟨x, y⟩ is a homogeneous potential of degree n ⩾ 4, then the potential
algebra A = K⟨x, y⟩/Id(∂F∂x ,

∂F
∂y ) is finite dimensional.

Moreover, the minimal Hilbert series in the class Pn of potential algebras with homogeneous
potential of degree n + 1 ⩾ 4 is Hn = 1

1−2t+2tn−tn+1 .

Since the minimal Hilbert series in the class Pn of potential algebras with homogeneous
potential of degree n + 1 ⩾ 4 is Hn = 1

1−2t+2tn−tn+1 , they are also all infinite dimensional.

Corollary 3.3. In particular, growth of a potential algebra with homogeneous potential of
degree 4 can be polynomial, but starting from degree 5 it is always exponential.

We need a number of general observations.

Lemma 3.4. For every F ∈ K⟨x, y⟩ such that F0 = 0, F = x∂F
∂x + y

∂F
∂y . Furthermore, the

equality F = ∂F
∂x x +

∂F
∂y y holds if and only if F is cyclicly invariant. In particular, [x, ∂F∂x ] +

[y, ∂F∂y ] = 0 if and only if F is cyclicly invariant.
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Proof. Trivial

Lemma 3.5. Let F ∈ K⟨x, y⟩ be cyclicly invariant such that F0 = F1 = 0 and A = ⟨x, y⟩/I
with I = Id(∂xF,∂yF ) be the corresponding potential algebra (∂x, ∂y stand for ∂/∂x and ∂/∂y,
respectively). Then

0→ A
d3Ð→A2 d2Ð→A2 d1Ð→A

d0Ð→K→ 0

is a complex exact at the three rightmost terms, where d0 is the augmentation map,

d1(u, v) = xu + yv, d2(u, v) = (
∂x∂xF ∂x∂yF
∂y∂xF ∂y∂yF

)( u
v
) , d3(u) = (xu, yu).

Proof. First, we show that d2 = 0. Obviously, d0 ○ d1 = 0. Note that this kind of complex
ending is rather common. It is shared, for instance, by the Koszul complex of a quadratic
algebra. Next, we show that d1 ○ d2 = 0. Indeed,

d1(d2(a, b)) = d1(∂x∂xFa + ∂x∂yFb, ∂y∂xFa + ∂y∂yFb)
= x(∂x∂xFa + ∂x∂yFb) + y(∂y∂xFa + ∂y∂yFb)
= (x∂x∂xF + y∂y∂xF )a + (x∂x∂yF + y∂y∂yF )b
= (∂xF )a + (∂yF )b = 0,

where the second last equality is due to Lemma 3.4, while the last equality follows from the
definition of A.

Now we show that d2 ○ d3 = 0. Indeed,

d2(d3(u)) = d2(xu, yu) = (∂x(∂xFx+∂yFy)u, ∂y(∂xFx+∂yFy)u) = ((∂xF )u, (∂yF )u) = (0,0),

where the second last equality is due to Lemma 3.4 and cyclic invariance of F .
Now the exactness of the complex in question at K and at the rightmost A are obvious.

It remains to check its exactness at the rightmost A2. That is, we have to verify that if
d1(u, v) = 0, then (u, v) = d2(a, b) for some a, b ∈ A.

Let u, v ∈ A be such that d1(u, v) = 0. Pick u1, u2 ∈ K⟨x, y⟩ such that u1+I = u and v1+I = v.
Since xu + yv = 0 in A, we have xu1 + yv1 ∈ I. Since I = xI + yI + ∂xFK⟨x, y⟩ + ∂yFK⟨x, y⟩,
we see that xu1 + yv1 = ∂xFa1 + ∂yFb1 + xp + yq, where a1, b1 ∈ K⟨x, y⟩ and p, q ∈ I. Using
Lemma 3.4, we have ∂xF = x∂x∂xF + y∂y∂xF and ∂yF = x∂x∂yF + y∂y∂yF . Plugging these
into the previous equality, we get

xu1 + yv1 = (x∂x∂xF + y∂y∂xF )a1 + (x∂x∂yF + y∂y∂yF )b1 + xp + yq.

Rearranging the terms, we arrive to

x(u1 − p − ∂x∂xFa1 − ∂x∂yFb1) + y(v1 − q − ∂y∂xFa1 − ∂y∂yFb1) = 0,

where the equality holds in K⟨x, y⟩. This can only happen if both summands in the above
display are zero:

u1 − p − ∂x∂xFa1 − ∂x∂yFb1 = v1 − q − ∂y∂xFa1 − ∂y∂yFb1 = 0.

Factoring out I and using that p, q ∈ I, u1 + I = u and v1 + I = v, we get

u = ∂x∂xFa + ∂x∂yFb, v = ∂y∂xFa + ∂y∂yFb

in A, where a = a1 + I and b = b1 + I. That is, (u, v) = d2(a, b), as required.
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The next step will be to construct an example for which the above complex is exact at
its leftmost A, that is for which d3 is injective. Later we shall show that this is the case for
generic homogeneous potential.

Example 3.6. For n ⩾ 3, consider the homogeneous degree n + 1 potential

F = xn−1y2
⟲ =

xn−1y2 + xn−2y2x + . . . + xy2xn−2 + y2xn−1 + yxn−1y.

Denote the corresponding potential algebra B, then the Hilbert series of B is given by HB(t) =
1

1−2t+2tn−tn+1 and the complex of Lemma 3.5 for B is exact.

Proof. The defining relations ∂xF = xn−2y2+xn−3y2x+ . . .+y2xn−2 and ∂yF = xn−1y+yxn−1 of
B form a reduced Gröbner basis in the ideal of relations of B with respect to the left-to-right
degree lexicographical ordering assuming x > y. Indeed the leading monomials xn−2y2 and
xn−1y of the defining relations have one overlap only: xn−1y2 = x(xn−2y2) = (xn−1y)y, which
resolves. Knowing the Gröbner basis, it is routine to determine normal words (those words
which does notcntain as a subwords leading monomials of Gröbner bases) and hence the
Hilbert series, which gives HA(t) = 1

1−2t+2tn−tn+1 . It remains to show that the complex

0→ B
d3Ð→B2 d2Ð→B2 d1Ð→B

d0Ð→K→ 0

is exact, where d0 is the augmentation map,

d1(u, v) = xu + yv, d2(u, v) = (
∂x∂xF ∂x∂yF
∂y∂xF ∂y∂yF

)( u
v
) , d3(u) = (xu, yu).

Now observe that this complex is exact at the leftmost B. Indeed, this exactness is
equivalent to the injectivity of d3. Since none of the two leading monomials of the elements
of the Gröbner basis starts with y, the set of normal words is closed under multiplication by
y on the left. Hence the map u↦ yu from B to itself is injective and therefore d3 is injective.
By Lemma 3.5, the complex is exact at its three rightmost terms. Thus it remains to verify
exactness at the leftmost B2.

Set bk = dimBk. Consider the kth slice of the complex:

0→ Bk → B2
k+1 → B2

k+n → Bk+n+1 → 0.

By exactness atK and the rightmostB, we have d1(B2
k+n) = Bk+n+1. Hence dimkerd1∩B2

k+n =
2bk+n − bk+n+1. By exactness at the rightmost B2, d2 maps B2

k+1 onto kerd1 ∩B2
k+n. Hence

dimkerd2∩B2
k+1 = 2bk+1−2bk+n+bk+n+1. Finally, d3 is injective and therefore dimd3(Bk) = bk.

Thus the exactness of the slice is equivalent to the equality bk = 2bk+1−2bk+n+bk+n+1. On the
other hand, we know that bk are the Taylor coefficients of the rational function 1

1−2t+2tn−tn+1 ,
which are easily seen to satisfy the recurrent relation bk+n+1 = 2bk+m − 2bk+1 + bk. Hence all
the slices of the complex are exact and therefore the entire complex for B is exact.

Denote by Pn the class of all potential algebras with homogeneous potential of degree
n + 1.

In the remaining part of this section, we will show that the Hilbert series of the algebra B
with potential of degree n + 1 is actually minimal in the class Pn (n ⩾ 3), which ensure that
any algebra in this class is infinite dimensional.
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Proposition 3.7. For every n ⩾ 3, the Hilbert series of the potential algebra B given by

the potential xn−1y2⟲ is minimal in the class Pn of potential algebras with homogeneous
potentials of degree n + 1 on two generators.

Proof. First, note that the for every A ∈ P, the kth coefficient of the Hilbert series is 2k for
each k < n, the same as for the free algebra T = K⟨x, y⟩. Since B ∈ Pn, the coefficients up to
degree n−1 of HB are indeed minimal. Now each A ∈ P is given by two relations of degree n.
Then dimAn is 2n − 2 = dimTn − 2 if these relations are linearly independent and is greater
otherwise. Since the defining relations of B are linearly independent, dimBn = 2n − 2 and is
minimal. Consider now dimAex

k with k = n + 1. For an arbitrary A ∈ P, the component of
degree n + 1 of the ideal of relations is the linear span of 8 elements being the two relations
∂xF and ∂yF (here F is the potential for A) multiplied by the variables x and y on the left
or on the right. However these 8 elements exhibit at least one non-trivial linear dependence
[∂xF,x] + [∂yF, y] = 0. Thus dimAn+1 ⩾ 2n+1 − 7. We already know the Hilbert series of B,
which gives dimBn+1 = 2n+1 − 7. So, the n + 1-st coefficient of the Hilbert series of Aex is
again minimal.

We proceed in the following way. Assume k is a non-negative integer such that the
coefficients of HB are minimal up to degree k + n inclusive. We shall verify that the degree
k+n+1 coefficient of HB is minimal as well, which would complete the inductive proof. The
last paragraph was actually providing us with the basis of induction. Consider the slice of
the above complex.

0→ Ak → A2
k+1 → A2

k+n → Ak+n+1 → 0

for algebras A ∈ P. Note that the coefficients of HB are minimal up to degree k + n. This
means that dimBj = dimAj for j ⩽ k+n for Zarisski generic A ∈ Pn. Indeed, it is well-known
and easy to show that in a variety of graded algebras the set of algebras minimizing the
dimension of any given graded component is Zarisski open. Thus generic members of the
variety will have component-wise minimal Hilbert series. To proceed with the proof, we need
the following lemma.

Lemma 3.8. Let n,m,N, k1, . . . , km be positive integers and for 1 ⩽ j ⩽ m, rj ∶ KN →
K⟨x1, . . . , xn⟩ be a polynomial map taking values in degree kj homogeneous component of
K⟨x1, . . . , xn⟩. For s ∈ KN , As is the algebra given by generators x1, . . . , xn and relations
r1(s), . . . , rm(s). Assume also that Λ is a p×q matrix, whose entries are degree d homogeneous
elements of K[s1, . . . , sN]⟨x1, . . . , xn⟩. For every fixed s, we can interpret Λ as a map from
(As)q to (As)p (treated as free right A-modules) acting by multiplication of the matrix Λ
by a column vector from (As)q. Fix a non-negative integer i and let U be a non-empty
Zarisski open subset of KN such that dimAs

i and dimAs
i+d do not depend on s provided

s ∈ U . For s ∈ KN let ρ(i, s) be the rank of Λ as a linear map from (As
i)q to (As

i+d)p and
ρmax(i) = max{ρ(i, s) ∶ s ∈ U}. Then the set Wi = {s ∈ U ∶ ρ(i, s) = ρmax(i)} is Zarisski open
in KN .

Proof. Let t ∈ Wi. Then ρ(i, t) = g, where g = ρmax(i). Pick linear bases of monomials
e1, . . . , eu and f1, . . . , fv is At

i and At
i+d respectively. Obviously, the same sets of monomials

serve as linear bases for As
i and As

i+d respectively For s from a Zarisski open set V ⊆ U . Then
Λ as a linear map from (As

i)q to (As
i+d)p for s ∈ V has an uq × vp matrix Ms with respect to

the said bases. The entries of this matrix depend on the parameters polynomially. Since the
rank of this matrix for s = t equals g, there is a square g × g submatrix whose determinant
is non-zero when s = t. The same determinant is non-zero for a Zarisski open subset of V .
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Thus for s from the last set the rank of Ms is at least g. By maximality of g, the said rank
equals g. Thus t is contained in a Zarisski open set, for all s from which ρ(i, s) = g. That is,
Wi is Zarisski open.

We are back to the proof of Proposition 3.7. For the sake of brevity, denote aj =
min{dimAj ∶ A ∈ Pn}. By our assumption, dimBj = aj for all j ⩽ k + n. Let U = {A ∈
Pn ∶ dimAj = aj for j ⩽ k + n}. Then B belongs to the Zarisski open set U (since Pn is
just a finite dimensional vector space over K we can identify it naturally with some KN

and speak of Zarisski open sets etc.). By Lemma 3.8, the rank of d3 ∶ Ak → A2
k+1 is max-

imal for a Zarisski generic A ∈ U . Obviously, this rank can not exceed dimAk = ak. On
the other hand our complex is exact for A = B and therefore d3 ∶ Ak → A2

k+1 is injective
and has rank dimBk = ak for A = B. Hence, the set U1 of A ∈ U for which the rank of
d3 ∶ Ak → A2

k+1 equals ak = dimAk is a non-empty Zarisski open subset of U . Obviously,
B ∈ U1. Since for every A ∈ U1, d3 ∶ Ak → A2

k+1 is injective and d3(Ak) is contained in the
kernel of d2, the rank of d2 ∶ A2

k+1 → A2
k+n is at most 2ak+1−ak. Since the complex is exact for

A = B, the same rank for A = B equals 2ak+1 − ak, so the maximal possible rank for A ∈ U1

is 2ak+1 − ak. Let U2 be the set of A ∈ U1 such that the rank of d2 ∶ A2
k+1 → A2

k+n equals
2ak+1−ak. By Lemma 3.8, U2 is Zarisski open. Obviously, B ∈ U2. Then for A ∈ U1, d2(A2

k+1)
has dimension 2ak−1 − ak. Since our complex is exact at the rightmost A2, the dimension of
(kerd1)∩A2

k+n is 2ak−1 − ak for each A ∈ U2. Since our complex is exact at the rightmost A,
d1(A2

k+n) = Ak+n+1. Hence dimAk+n+1 = 2ak+n − 2ak+1 + ak for every A ∈ V2. Since for Zarisski
generic A ∈ V2, dimAk+n+1 = ak+n+1 and since B ∈ U2, we have dimBk+n+1 = ak+n+1, which
clinches the inductive proof.

4 The dimension of a potential algebra can not be

smaller than 8

Recall that as above K⟨x, y⟩ is the free associative algebra in 2 variables, F ∈ ⟨x, y⟩ is a cyclic
invariant polynomial.

Lemma 4.1. Let F ∈ K⟨x, y⟩ be a cyclic invariant polynomial which is a linear combination
of elements of degree 3 or larger, then

[x, ∂F∂x ] = [
∂F
∂y , y]

Moreover, if F is homogeneous of degree 3 then elements

x ⋅ ∂F∂x −
∂F
∂x ⋅ x, y ⋅

∂F
∂x −

∂F
∂x ⋅ y,

∂F
∂y ⋅ x − x ⋅

∂F
∂y

are linearly dependent over K.
In particular there are α1, α2, α3 ∈ K (not all zero) such that α1 ⋅ (x ⋅ ∂F∂x −

∂F
∂x ⋅ x) + α2(y ⋅

∂F
∂x −

∂F
∂x ⋅ y) + α3 ⋅ (∂F∂y ⋅ x − x ⋅

∂F
∂y ) = 0.

Proof. The first part follows from Lemma 3.3.
For the second part, observe that F is of degree 3, hence it is a linear combitation of

elements x3, y3, x2y + xyx + yx2, y2x + yxy + xy2.
We can write elements

x ⋅ ∂F∂x −
∂F
∂x ⋅ x, y ⋅

∂F
∂x −

∂F
∂x ⋅ y,

∂F
∂y ⋅ x − x ⋅

∂F
∂y
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for each F ∈ {y3, x3, x2y + xyx + yx2, y2x + yxy + xy2} and observe that in each case these
elements are linear combination of elements

x2y − yx2, y2x − xy2.

Lemma 4.2. Let F ∈ K⟨x, y⟩ be a cyclic invariant polynomial which is a homogeneous
of degree 3. Then ∂F

∂x ,
∂F
∂y ∈ spanK{x2, y2, xy + yx}. Moreover if ∂F

∂x and ∂F
∂y are linearly

independent over K then the set

S = {∂F∂x ⋅ x,
∂F
∂x ⋅ y, x ⋅

∂F
∂x , y ⋅

∂F
∂x ,

∂F
∂y ⋅ x,

∂F
∂y ⋅ y, x ⋅

∂F
∂y , y ⋅

∂F
∂y }

spans the vector space over the field K of dimension at least 6. Moreover, if the dimension
is 6 then ∂F

∂x and ∂F
∂y form a Gröbner Base.

Proof. Observe that f(1), f(2) ∈ spanK{x2, y2, xy + yx} since

f ∈ spanK{x3, xy2, x2y + xyx + yx2, y2x + yxy + xy2, y3}.

We can introduce the lexicographical ordering on the set of monomials in x, y, with x > y.
Notice that the leading monomials of ∂F

∂x and ∂F
∂y are in the set {x2, xy, y2} since ∂F

∂x ,
∂F
∂y ∈

spanK{x2, y2, xy + yx}. Let n(1) be the leading monomial of ∂F
∂x and n(2) be the leading

monomial of ∂F
∂y . We have ∂F

∂x = n(2)k(1)+g(1) and
∂F
∂y = n(2)k(2)+g(2) for some k(1), k(2) ∈

K and some g(1), g(2) ∈K⟨x, y⟩.
Consider monomials of degree 3 in K⟨x, y⟩ which don’t contain either n(1) nor n(2)

as a subword. Then, there are exactly 2 of such monomials, call them t(1), t(2), since
n(1), n(2) ∈ {xx,xy, yy}. This can be shown by considering all the possible cases of n(1)
and n(2) Notice that, every monomial of degree 3 is a linear combination of t(1) and t(2),
and elements from the set S. The linear space spanned by elements t(1) and t(2) will be
denoted T .

Let Q be a linear space such that

Q⊕ spanKS = A(3)

where A(3) is the linear space of elements of degree 3 in K⟨x, y⟩ (where x and y have the
usual gradation 1). We can assume that Q ⊆ T .

Suppose that we have applied the Diamond Lemma to relations ∂F
∂x and ∂F

∂y to resolve

ambiquites involving n(1) and n(2). If there is some of ambiguity which doesn’t resolve
(this happens exactly when ∂F

∂x and ∂F
∂y are not Gröbner Base) then we have a relation of

degree 3 which has the leading monomial which doesn’t contain neither n(1) nor n(2) as a
subword (by construction this relation is in the ideal generated by ∂F

∂x and ∂F
∂y ). Consequently,

Q is a proper subspace of the linear space of elements of degree 3 which don’t contain n(1)
and n(2) as a subword, therefore Q has dimension smaller than 2 (recall that T has dimension
2). It follows that S has dimension larger than 6. Therefore, if ∂F

∂x and ∂F
∂y don’t form a

Gröbner base then S spans linear space of dimension at least 7.
On the other hand, if ∂F

∂x and ∂F
∂y form a Gröbner base then all ambiquities are resolved,

so Q = T by Diamond Lemma (since our algebra is graded), and so S spans vector space of
dimension exactly 6.
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Lemma 4.3. Let notation be as in Lemma 4.1. Let ∂F
∂x ,

∂F
∂y be linearly independent over K,

then S spans a linear space of dimension exactly 6. Moreover, ∂F
∂x ,

∂F
∂y form a Gröbner base.

Proof. Observe that by Lemma 4.1 the dimension of the linear space spanned by S is at
most 6. By Lemma 4.2 the dimension is 6. The result then follows from Lemma 4.2.

In the next theorem we will use the following notation. Let F ∈ K⟨x, y⟩ be a cyclic
invariant polynomial, then I will denote the ideal generated by ∂F

∂x and ∂F
∂y . Moreover, A(i)

will denote the linear subspace of K⟨x, y⟩ spanned by monomials of degree i.

Theorem 4.4. Let K be a field. Let G ∈K⟨x, y⟩ is a cyclic invariant polynomial which is a
linear combination of monomials of degrees larger than two. Let I be the ideal generated by
∂G
∂x and ∂G

∂y in K⟨x, y⟩, then K⟨x, y⟩/I has at least 8 elements linearly independent over K.

Proof. We can write G = F +H where F ∈ K⟨x, y⟩ is a cyclic invariant polynomial which is
homogeneous of degree 3 and H ∈ K⟨x, y⟩ is a cyclic invariant polynomial which is a linear
combination of monomials of degrees larger than three. Let J be the ideal generated by
∂G
∂x and ∂G

∂y and all monomials of degree 5. Let I be the ideal generated by ∂F
∂x and ∂F

∂y and

all monomials of degree 5. Clearly 1, x, y ∉ J + A(2) + A(3) + A(4) since ∂G
∂x ,

∂G
∂y are linear

combination of monomials with degrees larger than 2. We will consider two cases.
Case 1. Suppose that ∂F

∂x ,
∂F
∂y are linearly independent over K. Notice that there are 2

monomials of degree 2, call then p(1), p(2), such that any nontrivial linear combination of
these monomials doesn’t belong to I+A(3)+A(4), and hence doesn’t belong to J+A(3)+A(4),
since I +A(3) +A(4) = J +A(3) +A(4).

We claim that there are exactly 2 monomials m(1),m(2) of degree 3 such that every
nontrvial linear combination of m(1) and m(2) is not in J + A(4). Let m(1),m(2) be
monomials of degree 3 such that every nontrivial linear combination of m(1) and m(2) is
not in I +A(4). By Lemma 4.3 such monomials m(1),m(2) exist. We will show that this
is a good choice of m(1),m(2). Suppose on the contrary that there m which is a nontrivial
linear combination of m(1) and m(2) and m ∈ J +A(4). It follows that m ∈K ⋅ ∂G∂x +K ⋅

∂G
∂y +

S′ +A(4)+∑∞i=5A(i) where S′ = spanK{x ⋅ ∂G∂x , x ⋅
∂G
∂y , y ⋅

∂G
∂x , y ⋅

∂G
∂y ,

∂G
∂x ⋅x,

∂G
∂y ⋅x,

∂G
∂x ⋅ y,

∂G
∂y ⋅ y}.

Since m has no components of degree 2 then m ∈ S′+A(4)+∑∞i=5A(i). Recall that m ∈ A(3).
If follows that m is a linear combination of elements from S′′ = spanK{x ⋅ ∂F∂x , x ⋅

∂F
∂y , y ⋅

∂F
∂x ,

y ⋅ ∂F∂y ,
∂F
∂x ⋅ x,

∂F
∂y ⋅ x,

∂F
∂x ⋅ y,

∂F
∂y ⋅ y}. Therefore m ∈ I +A(4), and since I is homogeneous m ∈ I,

a contradiction.
We now claim that there is a monomial n ∈ A(4) such that n ∉ J . Observe first that if m ∈

J ∩A(4) then m ∈K ∂G
∂x +K

∂G
∂y +S′+S′A(1)+A(1)S′+∑

∞
i=5A(i). Recall that m has no therms

of degree 2; hence m ∈ S′ + S′A(1) +A(1)S′ +∑∞i=5A(i). Let m =m′ +m′′ where m′ ∈ S′ and
m′′ ∈ S′A(1)+A(1)S′+∑∞i=5A(i) = I∩A(4)+∑∞i=5A(i). Observe that sincem has no therms of
degree 3 thenm′ is a linear combination on elements x⋅ ∂H∂x −

∂H
∂x ⋅x+y ⋅

∂H
∂y −

∂H
∂y ⋅y (this element is

zero by Lemma 4.1) and element q = α1 ⋅(x⋅ ∂H∂x −
∂H
∂x ⋅x)+α2(y ⋅ ∂H∂x −

∂H
∂x ⋅y)+α3 ⋅(∂H∂y ⋅x−x⋅

∂H
∂y ) = 0

where α1, α2, α3 are as in Lemma 4.1. Therefore A(4) ∩ J = A(4) ∩ I +K ⋅ q, hence A(4) ∩ J
has dimension at most 7, so there exists a monomial n ∈ A(4) such that n ∉ J .

The conclusion:
By the construction any non-trivial linear combination of elements 1, x, y, p(1), p(2),

m(1), m(2), n is not in J , therefore K⟨x, y⟩/J has at least dimension 8.
Case 2. It is done similarly, with the same notation. In fact it is a bit easier, since there

are at least 3 monomials m(1),m(2),m(3) of degree 3 whose nontrivial linear combinations
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are not in J +A(4), so elements 1, x, y, p(1), p(2), n(1), n(2), n(3) and their nontrivial linear
combinations are not in J .

5 Difference of dimensions of A and its abelianization

via Gopakumar-Vafa invariants

In this section we consider the following conjecture due to Wemyss, [12]. The conjecture says
that the difference between the dimension of a potential algebra and its abelianization is a
linear combination of squares of natural numbers starting from 2, with non-negative integer
coefficients.

Moreover, in [13] it is shown, that these integer coefficients do coincide with Gopakumar-
Vafa invariants [8].

In this section we prove the conjecture for one example of potential of certain kind, using
Gröbner basis arguments.

Let F = x2y+xyx+yx2+xy2+yxy+y2+a(y), where a = ∑n
j=3 ajy

j ∈ K[y] is of degree n > 3 and
has only terms of degree ⩾ 3. Let A be the corresponding potential algebra A = K⟨x, y⟩/I,
where the ideal I is generated by dxF = xy + yx + y2 and dyF = xy + yx + x2 + b(y) with
b(y) = ∑n

j=3 ajy
j−1. Symbol B stands for the abelianization of A: B = A/Id(xy − yx).

Claim 1. dimB = n + 1.

Proof. Clearly B = K[x, y]/J , where J is the ideal generated by 2xy+y2 and 2xy +x2 + b(y).
We use the lexicographical ordering (with x > y) on commutative monomials. The leading
monomials of the defining relations are x2 and xy. Resolving the overlap x2y completes
the commutative Gröbner basis of the ideal of relations of B yielding 4yb(y) − 3y3, which
together with defining relations comprise a Gröbner basis. The corresponding normal words
are 1, x, y, . . . , yn−1. Hence the dimension of B is n + 1.

Claim 2. Denote c(y) = 1
2(b(y) − b(−y)) and d(y) = 1

2(b(y) + b(−y)), the odd and even
parts of b. Then A is infinite dimensional if and only if c = 0 (that is, if and only if a is odd).
If c ≠ 0 and m = deg c < n− 1 = deg b, then dimA = n+ 2m− 1. If c ≠ 0 and deg c = deg b, then
dimA = 3n − 3. In any case dimA − dimB is a multiple of 4.

Proof. We sketch the idea of the proof. From the defining relation xy + yx + y2 it follows
that both x2 and y2 are central in A. The other defining relation xy + yx + x2 + b(y) has
the leading monomial yn−1 (now we use the deg-lex order on non-commutative monomials
assuming x > y). One easily sees that if b is even (that is c = 0), then the defining relations
form a Gröbner basis. The leading monomials now are xy and yn−1, while the normal words
are yjxk with 0 ⩽ j < n, k ⩾ 0. Hence A is infinite dimensional.

Assume now that m = deg c < n − 1 = deg b. Since x2 and y2 are central, the defining
relations imply that so are xy + yx and c(y). In particular, we have a relation [x, c(y)] = 0.
The relation xy+yx+y2 = 0 allows us to rewrite [x, c(y)] = 0 as 2c(y)x+c(y)y = 0, providing
a relation with the leading monomial ymx. Now, resolving the overlap yn−1x, we get a
relation with the leading monomial x3. Now one routinely checks, that the defining relations
together with the two extra relations we have obtained form a Gröbner basis in the ideal
of relations. The leading monomials are xy, x3, yn−1 and ymx. Thus the normal words are
yj with 0 ⩽ j ⩽ n − 2, yjx and yjx2 with 0 ⩽ j ⩽ m − 1. This gives dimA = n + 2m − 1 and
dimA − dimB = 2m − 2, which is a multiple of 4 since m is odd.
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Finally, assume that deg b < deg c. In this case one can verify that the relation [x, c(y)] = 0
reduces to one with the leading monomial x3 and that the last relation together with the
defining relations forms a Gröbner basis in the ideal of relations. The leading monomials are
xy, x3 and yn−1. Thus the normal words are yj, yjx and yjx2 with 0 ⩽ j ⩽ n − 2. This gives
dimA = 3n − 3 and dimA − dimB = 2n − 4, which is a multiple of 4 since in this case n is
even.
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