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1 Introduction

Over the last seven years, the pure spinor formalism for the superstring has been success-
fully used to compute multiloop scattering amplitudes and describe Ramond-Ramond
backgrounds in a super-Poincaré covariant manner [I]. Nevertheless, there are some fun-
damental features of the new formalism which are not yet well-understood. Two such
features are the composite b ghost and the Hilbert space for the pure spinor variables.

As in N = 2 topological strings, the b ghost in the pure spinor formalism is not a
fundamental worldsheet variable but is a composite operator defined to satisfy {Q, b} =T
where () is the BRST operator and T is the stress tensor. However, in the pure spinor
formalism, the composite b ghost involves inverse powers of A* where A* is the pure
spinor variable constrained to satisfy Ay*A = 0. Since this operator diverges when certain
components of A\* are zero, the b ghost is not a globally defined function on the space
of pure spinors; rather, it must be described using a certain extension of the higher
cohomologies of this space.

Although it was shown in [2][3] how to functionally integrate over A* in the presence
of such operators, it was unclear how to properly define the Hilbert space of allowable
functions of pure spinor variables. In this paper, this Hilbert space question will be
answered by explicitly computing the partition function for the pure spinor variables and
studying properties of the states in the Hilbert space. It will be shown that only states
which diverge slower than (A)~™* when A — 0 contribute to the pure spinor partition
function. Since the functional integral [ dX f(\) is well-defined as long as f(\) diverges
slower!] than (A)7 when A — 0 (or slower than (A\)™® if we use the globally defined
holomorphic top form on the pure spinor space instead of d'*)), this result implies that
functional integration over \* can be consistently defined.

For states depending only on the zero modes of A%, the Hilbert space of states in

ISince A = 0 is a point in the complex variety, the expression “f(\) diverges as A™F” has to be taken
in the algebraic geometry sense, i.e. as follows: f()\) is singular on some subvariety containing A = 0, but
Mg .. Ag f(A) is regular at A = 0 where A;, ¢ = 1,...,k are some, not necessarily independent, linear
functions in the ambient vector space C'6.



the pure spinor formalism is easily understood and is given by arbitrary polynomials in
A%, This follows from the fact that A = 0 is the point of high codimension, so that any
holomorphic function extends to A = 0. Since A* is constrained to satisfy Ay* A = 0, these
polynomials are parameterized by constants f(q,...a,) for n = 0 to co which are symmetric
in their spinor indices and which satisfy 7;*“* f(ay..a,) = 0.

As shown in [4], this Hilbert space for the zero modes is described by the partition
function
Zo(t) = (1 —)715(1 — 10#* + 16t> — 16t° + 10t° — ¢*)

where A* carries +1 t-charge. Expanding Zy(t) in powers of ¢, one reproduces the inde-
pendent number of f(a,..a,)’s at order t". After multiplying by (1—¢)'® which comes from
the partition function for the 16 8% zero modes, (1 —1)*Zy(t) describes the z-independent
degrees of freedom for the massless sector of the open superstring. For example, 1 de-
scribes the Maxwell ghost, —10¢? describes the photon, +16t% describes the photino, and
the remaining terms describe the antifields for these states. Note that Z,(t) satisfies the
identity Zy(1/t) = —t3Zy(t) which implies a symmetry between the fields and antifields.

In this paper, we shall perform a similar analysis for the non-zero modes of A%, as well
as the modes of its conjugate momentum w,. The partition function for the lowest non-
zero mode was already computed in [5], and we shall extend this computation up to the
first five non-zero modes. The computation will be performed in two ways, firstly using
the ghost-for-ghost method and secondly using the fixed-point method. After including
the contribution from the matter variables (x*, 0% p,), we will show that the complete
partition function correctly describes the first five massive levels of the open superstring
spectrum.

In computing the partition function for the non-zero modes of A* and w,, we will
discover a surprise. Because the constraint Ay*\ = 0 generates the gauge transformation
dawa = A*(7,)\)q for the conjugate momentum, one naively expects that the Hilbert
space is described by polynomials of A* and w, (and their worldsheet derivatives) which
are invariant under this gauge transformation. However, in addition to these ordinary
gauge invariant states, we will discover that field-antifield symmetry implies that there
are additional states starting at the second mass level which contribute to the partition
function with a minus sign. These additional states should therefore be interpreted as
fermions, which is surprising since A* and w, are bosonic variables.

We will argue that these extra fermionic states are related to the b ghost in the pure
spinor formalism, and come from functions which are not globally defined on the space of
the pure spinors. As discussed in [6], the constrained pure spinor ghosts can be treated as
a (7 system where one solves the pure spinor constraint locally in terms of unconstrained
worldsheet variables (3;,7%) for ¢ = 1 to 11. This solution in terms of unconstrained
variables is well-defined only when a certain component of A\* is non-vanishing. One
can therefore patch together different solutions where the different patches correspond to



regions in the space of pure spinors where different components of \* are assumed to be
non-zero.

The gauge invariant polynomials are globally defined on all patches, however, one
can also consider functions which are only well-defined on the overlap of two patches,
on the overlap of three patches, etc. When the function is defined on the overlap of N
patches, it is natural to identify the state with a fermion/boson if N is even/odd. This
can be understood if one converts from the patching language of Cech cohomology to the
differential form language of Dolbeault cohomology. Using Dolbeault language, functions
defined on the overlap of N patches are associated with (N — 1)-forms which have the
standard fermionic/bosonic statistics for differential forms when N — 1 is odd/even.

The extra fermionic states which start to appear at the second mass level will all be
identified in Dolbeault language with differential three-forms, and are therefore fermionic.
Furthermore, it will be argued that all these states are related to a certain term in the
composite operator for the b ghost.

In the pure spinor formalism, the b ghost satisfying {Q, b} = T is a composite operator
constructed from both the matter variables (z#, 0%, p,) and ghost variables (A%, w, ). This
composite operator cannot be globally defined on all patches, and in Dolbeault language,
is described by the sum of a zero-form, one-form, two-form and three-form. The three-form
in the b ghost is independent of the matter variables (z*, 0% p,), and will be identified
with a fermionic scalar in the pure spinor partition function at the second mass level. At
higher mass levels, the extra fermionic states in the pure spinor partition function can be
similarly identified with products of this fermionic three-form with polynomials of A* and
w, (and their worldsheet derivatives).

In hindsight, the appearance of the b ghost in the (A% w,) partition function is not
surprising since any covariant description of massive states is expected to include auxiliary
spacetime fields whose vertex operator involves the b ghost. Nevertheless, the manner in
which the b ghost appears in a partition function for bosonic worldsheet variables is quite
remarkable and suggests that many important features of the b ghost can be learned by
studying the pure spinor partition function.

The plan of this paper is as follows: We begin in section 2/ by reviewing the basics of the
pure spinor formalism. Due to the non-linear nature of the pure spinor constraint, there
is a subtlety in defining the pure spinor Hilbert space. We shall recall two appropriate
languages—the Cech description and its Dolbeault (or non-minimal) cousin—that can be
used to address this subtlety, and also introduce Chesterman’s BRST method with an
infinite tower of ghosts-for-ghosts [7]. Following our discussion of the toy models in [§],
we then indicate how these descriptions are related. This will serve as an introduction to
the picture we are going to establish.

In section Bl the partition function of gauge invariant polynomials are computed by



explicitly constructing them at lower levels. We point out that the space of gauge invari-
ants is insufficient if one requires field-antifield symmetry; in particular, a fermionic state
is found to be missing at level 2, which later will be identified as a term in the composite
b ghost.

Section []is devoted to the computation of the partition function including the missing
states found in section Bl (The results are listed in appendix Bl) We use two methods
for the computation, each with its advantages and disadvantages. The first method uti-
lizes Chesterman’s BRST description of the pure spinor system [7] involving ghosts-for-
ghosts. A nice feature of this method is that two important symmetries—field-antifield
and “x-conjugation” symmetries—are (formally) manifest. However, since this description
requires an infinite tower of ghosts-for-ghosts, the expression for the partition function
is not rigorously defined. Nevertheless, we show that there is an unambiguous way to
compute the partition function level by level respecting the two symmetries. The sec-
ond method uses a fixed point formula which generalizes the zero mode result of [4].
The formula includes the spin dependence of the states, and the computation is fairly
straightforward. However, it misses some finite number of states that must be recovered
by imposing the two symmetries.

We then explain in section Bl how the field-antifield and *-conjugation symmetries can
be understood from the structure of pure spinor cohomologies.

In section [6] we relate the partition function and the superstring spectrum. After in-
cluding the contribution from the matter variables, we show that a simple twisting of the
charges gives rise to the partition function of lightcone fields and their antifields. Fur-
thermore, we show up to the fifth massive level that the partition function thus obtained
reproduces the usual lightcone superstring spectrum (without the on-shell condition).

We conclude in section [l and indicate some possible applications of our findings.
Several appendices are included for convenience. Some group theoretical formulas are
collected in appendix [Al and a list of partition functions can be found in appendix [Bl
Finally in appendix [C] we present some details of the reducibility analysis of the pure
spinor constraint.

2 A brief review of the pure spinor formalism

Let us begin by reviewing certain aspects of the pure spinor formalism and indicating
the results we are going to establish in the present paper. This is not intended to be
a complete overview of the formalism, as we only cover issues which are relevant to the
partition function computation. On the other hand, we will also include a summary of
our results obtained from the analysis of simple toy models with quadratic constraints [8].
The essential features of these simpler toy models are very similar to those of the more
complicated pure spinor model.



2.1 Basics and a subtlety

The worldsheet variables of the pure spinor formalism consist of the following three sectors:
2 (P, 0Y), (Wa,AY), (u=0,...,9, a=1,...,16). (2.1)

(We restrict ourselves to the left-moving sector of closed strings, or the open string.) The
first two sectors are the Green-Schwarz-Siegel variables describing the string propagation
in ten-dimensional superspace, and they satisfy the usual free field operator product
expansions [9]:

6a"

z—w

" (2)a” (w) = =" log(z —w),  pa(2)0°(w) = (2.2)

In addition to these “matter” sectors, there is a bosonic “ghost” sector consisting of the
pure spinor variable A* subject to quadratic constraints [10]

XN =0 (p=0,...,9), (2.3)

and its conjugate w,.

Physical states are defined by the cohomology of the “physical BRST operator”

Q= /)\ada,
| (2.4)
where d, = po + (v#0),02" — 5(7”9)01(9%89) :

@) can be checked to be nilpotent using the free field operator products (Z2) and the
pure spinor constraint (2.3]). The massless vertex operator, for example, can be written
in a manifestly super-Poincaré invariant manner by coupling a spinor superfield to a pure
spinor as

U= \"Au(2,0). (2.5)

Expanding in powers of €, one finds the (zero-momentum) vertex operators for the photon
and photino to be (Ay*#) and (Ay*0)(7,0)q. A similar construction has been done for
states at the first massive level [13], and by now there are various arguments that the
cohomology of () reproduces the full superstring spectrum in a covariant manner.

However, there is an important subtlety that has to be explained. Namely, we have
not yet specified the Hilbert space in which the cohomology of @) is computed. Classically,

2There are some arguments how this BRST operator arises from gauge fixing a fermionic local sym-
metry of a Green-Schwarz-like classical action, but in this paper we will not worry about the “origin” of
pure spinors. Readers interested in this issue are referred to [11][12].



because of the constraint (2.3, the conjugate w, must appear in combinations invariant
under the “gauge transformation” generated by the constraint Ay#*\ = 0:

Iawa = A (YN )a - (2.6)

Examples of such gauge invariants are the A—Chargeﬁ current J, the Lorentz current N*”,
and the energy-momentum tensor 7T'. Their classical expressions are given by

1
J=—-wA, NH = _?‘WW)\’ T =—wo\. (2.7)

Quantum mechanically, however, since w and X are not free fields, it is not obvious how to
define these composite operators. One way is to parameterize A (and w) by genuine free
fields. Using the decomposition U(5) C SO(10), the pure spinor constraint (Z:3]) implies
the 5 conditions

1
= g(A+)—1eabcdeAb6Ade (2.8)
where A* decomposes under U(5) as
A= (A, A, AY) = (1,10,5). (2.9)

So (w,A) can be parameterized by 11 free B pairs which describe (A;, A\y) and their
conjugate momenta.

However, one now runs into a subtlety concerning inverse powers of A, in the definition
of A* in (Z8). Recall that inverse powers of A are also required to construct the composite
“reparameterization b-ghost” that satisfies [14] 2]

Qb =T. (2.10)

Once inverse powers of A are allowed, it naively appears that the cohomology of () becomes
trivial due to the relation

{Q, A0, =1. (2.11)

Of course, the expression )\;18+ is not globally well-defined on X, but so is the composite
b-ghost. Thus, one has to clarify which type of poles in A are allowed and which are not,
what global properties the allowed expressions should have and so on. One of our aims in
the present paper is to clarify this issue by applying the general framework of curved gy
systems [I5], [I7, [6] to pure spinors. (For the mathematically better developed theory of
[ry-systems on superspaces of the form IITX or TIT* X, see e.g. [18, [19]; for the treatment
of instanton effects, see [20].)

3 Although the charge measured by Jj is often called the “ghost number”, we shall call it the “\-charge”
to avoid confusion with another ghost number which will be introduced later.



2.2 Pure spinor sector as a curved (v system

A standard way to construct a general curved (7 system on a complex manifold X is
to employ a Cech description of X. Namely, one starts with a set of free conformal
field theories taking values in the coordinate patches {Us} of X, and tries to glue them
together [15, 17, [6]. The field content of each conformal field theory is described by
the (holomorphic) coordinates of a patch u® and its conjugate v, satisfying the free field
operator product expansion

0%

u(2)vp(w) = po— (2.12)

Unlike conventional sigma models on complex manifolds, one need not introduce anti-
holomorphic coordinates.

Not all manifolds X, however, lead to a consistent worldsheet theory. A basic re-
quirement is that one must be able to consistently glue the operator products (2.12]) on
overlaps. Gluing on double overlaps U4 N Up can always be done (though they are not
quite unique), but the gluing on Uy N Up, Uy N Ug and U N Us must be consistent on
the triple overlap Uq N Up NU¢ (cocycle condition). In order that there is no topological
obstruction for this, the first Pontryagin class p;(X) must be vanishing. Analogous ob-
structions can be present for the global existence of worldsheet currents that generate the
symmetries of X (“equivariant version” of p;(X)). Also, to be able to define the energy-
momentum tensor 7' globally (i.e. to have a conformal field theory), X must possess a
nowhere vanishing holomorphic top-form and hence the first Chern class ¢;(X) must also
be vanishing.

In the case of pure spinors all these obstructions turn out to be absent [6]. The target
space is basically the space of SO(10) pure spinors, with the origin removed:

Xio = {A" | )\Q'Ygﬁ)‘ﬁ =0,A# 0}, (2.13)

which is a complex cone over a compact projective space Xig. It is well known that X
is the homogeneous space

Xy = SO(10)/U(5), (2.14)

and has ten (complex) dimensions. The origin A = 0 is removed from the space of all
solutions to the equations Ay#\ = 0 in order to meet the general criteria above, p; = ¢; =0
etc. That is, X7 is regarded as a C*-bundle over the base Xjo (thus we are dealing with
the Bv-system which is not covered by the general analysis of [21]). With this removal
of the origin understood, X can be covered by 16 patches {Us} (A =1,...,16) where
in each patch at least one component of A (which we denote A\*) is non-vanishing. Very
explicit formulas for the gluing of operator products, symmetry currents J and N*”, and
the energy-momentum tensor 7' can be found in [6].

10



Given a space X on which the curved 37 system can be consistently defined, the space
of observables, or simply the Hilbert space of the model, is defined as the cohomology
of the difference operator 4, also known as Cech operator. Let us recall that a Cech
n-cochain ¢ = (¢pAo414n) refers to the data assigned to every nth overlaps, Ugya,...a, =
UgyN---NUy,, and § sends an n-cochain to an (n + 1)-cochain:

n

(&b)AOWAnH _ Z(_l)z‘wAO...Ai...AnH . (215)

=0

The nth Cech cohomology H"(0) is defined as the space of d-closed n-cochains (n-cocycles)
modulo d-exact elements (n-coboundaries). In particular, the zeroth cohomology H 0(5)
is simply the space of “gauge invariant” operators defined globally on X. But experience
with models with a simple quadratic constraint of the form A*\* = 0 suggests that higher
cohomologies are important as well []].

With respect to the higher cohomologies, there are several lessons to be learned from
the analysis in [§]. First, for the models considered in [§], only the zeroth cohomology
HO(5) and the first cohomology H'(0) were non-empty. Second, there was a one-to-
one mapping between H°(4) and H'(5). Finally H'() was essential for having “field-
antifield symmetry” after coupling the system to the fermions (p;, #°). (In the pure spinor
formalism, “field-antifield symmetry” literally refers to the symmetry between spacetime
fields and antifields, and is essential for the consistent definition of scattering amplitudes.)

Somewhat surprisingly, the situation is almost identical for the pure spinor system,
except that H'(§) is replaced by the third cohomology H?(5). More precisely, only the
zeroth cohomology and the third cohomology will contribute to the partition function, and
there will be a conjectured one-to-one mapping between states in H°(§) and in H3(0). In
the pure spinor formalism, an additional reason why H?3(6) is important is that a nontrivial
element in H3()) is essential for the construction of the composite reparameterization b-
ghost.

2.3 Dolbeault or non-minimal description

The description of the curved v system in the previous subsection was done using the
Cech language by patching together a collection of free conformal field theories [I8]. There
is a closely related formulation which uses the Dolbeault language. The two are related in
the same manner as the standard Cech and Dolbeault cohomologies of a complex manifold
are related. In the Cech description, only the holomorphic local coordinates u, of X were
used, but the Dolbeault description utilizes the antiholomorphic variable u® as well. This
allows the construction of a partition of unity on X and, by considering the cohomology of
an extension of the Dolbeault operator dx, one can deal exclusively with globally defined
objects [19, 17, [6].

11



In the pure spinor formalism, the so-called non-minimal formulation corresponds to
this Dolbeault formulation [2][3]. There, one introduces another set of pure spinor vari-
ables A, and its (target space) differential r, = d\, which are constrained to satisfy

A Xg =0, Aay"rg =0. (2.16)

The conjugate momenta for the non-minimal fields are denoted by w® and s®, and they
must appear in combinations which are invariant under the non-minimal gauge transfor-
mations

oW = Kﬂ('ﬁt )
Sys® = UH(y,\)

(5\I/wa = \Du('yur)aa (2 17)

[e%
)

(0%
)

with A, and ¥, being bosonic and fermionic gauge parameters.

The Dolbeault operator dx can be defined as a natural extension of the Dolbeault
differential in complex geometry:
0

5 - — a—a ~ dxaT . 218
X = —Tald T (2.18)

Note that Jx is gauge invariant under (ZI7). If one wishes to be more rigorous, the
expression for dx should be understood in terms of its local expressions that are consis-
tently glued. Also, note that only the zero-modes for the non-minimal sector are relevant
for the Ox-cohomology due to the relation

Ox (sON) = WOX + s0r = —Thon-min - (2.19)

Whenever there is a dx-closed operator F' with positive weight h carried by the non-
minimal sector, it can be written as Ox of itself multiplied by the zero-mode of sO\:

——0x((sON)oF) = F . (2.20)

The minimal (Cech) and non-minimal (Dolbeault) formulations can be related by
imitating the argument that establishes the usual Cech-Dolbeault isomorphism. That is,
the cohomologies of 6 and dx are related using the partition of unity {pa} “subordinate
to” the coordinate patches {Uy}:

T
pa = —= — pa =1 and py =0 outside Uy,
DR
VX! = ()it 2
— A TA>\ — (Ar >\A)\
dpy =0 = — )
pa = Ox(pa) o

12



(Here and hereafter, Einstein summation convention does not apply for the index A;
when needed, we will always write the summation over A explicitly.) A Cech n-cochain
Y = (Ao 4n) is described in the Dolbeault language by an n-form
1
|
(n+1)! "

775 - Z wAOMAnpAodpAl ARERRA dpAn : (222)
e Ap

Since 1) is holomorphic (i.e. dxypA 4 = 0), the usual argument relating the Cech
and Dolbeault cohomologies can be applied (provided one uses a good cover so that dx-
cohomology is locally trivial).

2.4 Cohomology of the pure spinor superstring

In order to include the contribution of states that are not globally defined on the space of
pure spinors, the physical BRST operator @ = [ A\%d,, of (2.4)) should be modified either
to

Q=Q+0 or Q=Q+0x (2.23)

where ¢ and dx are defined in (ZI5) and (ZIR).

The space on which Q + ¢ (where § is either 4 or Oy ) acts naturally has two gradings,
one for ¢ (which will be called ghost number) and another for ¢ (which will be called
A-charge). The cohomology is thus graded by the sum of these two charges,

k:m—i—n—i—l

- o f‘m,n —6> f’m,n-i-..l - o
Q . Q
5

N f‘m,n—i-.l AN f‘m+1,n+1 - 5

where a cohomology element with degree k takes the form

@D: Z ¢m,na

St (2.24)
Ymp € F™" = H" @ Hypo (ghost number m, A-charge n).

The ghost number corresponds to the chain degree in Cech language and to the form degree

(measured by J.; = —rs) in Dolbeault language. For both cases, the A-charge is measured
by J,x = —wA. Hence, the summand %),,, in each descriptions are schematically,
Cech:  Ypn = (YA04m) - Dolbeault: Y, = (1), . (2.25)
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An important point is that a cohomology element in general consists of several pieces with
different 0-degrees. Nevertheless, as we shall argue momentarily, the cohomology of 0 (i.e.
Cech or Dolbeault cohomologies) plays a central role in studying (Q + d)-cohomology,
and we shall spend considerable time computing those cohomologies in the forthcoming
sections.

The conditions for an operator ¢ to be in the (Q + 0)-cohomology is as follows. For v
to be (Q + §)-closed, it must satisfy the master equation

( Q¢p,k—p =0 ;
QUpr1k-1+0Upr—yp = 0,
Q@+ =0 & q : (2.26)
Q¢q,k—q + 6¢q—1,k—1 =0 ;
\ 0Wgh—q = 0,
for some (p, q), or, more pictorially,
wp,k—p + ¢p+1,k—l + .- + ¢q,k—q
VAN VRN VRN
Q 3, Q 5 Q s
e N/ AN e N
0 0 0 0 0

In particular, the “head” element v, ;_, is Q-closed and the “tail” element v, ;_, is o-
closed. For ¢ to represent a non-trivial cohomology it must not be (Q + §)-exact. Then,
since () and 6 commute, one can without loss of generality assume that the head v, j_, is
(Q-non-exact and the tail 9, _, is 0-non-exact. Since d does not act on the physical sector
(z,p,0), the latter implies that the tail is an element of the d-cohomology (multiplied by
some function of (x,p,0)).

So when studying the (Q+6)-cohomology, one can simply restrict the tail element to be
in the §-cohomology. More specifically, when analyzing an exactness relation 1) = (Q+9)¢,
it can be assumed that ¢ has a d-closed tail which is “longer” than :

¢p,k—p—1 ¢q—1,k—q ¢q,k’—q—1 ¢q/,k’—q/—1 —6> 0
Q/ \6 Q/
L N
¢p,k—q wq,k—q —0

é

When ¢ is in (@ + ¢)-cohomology, it can happen that both the head and tail of v
carry ghost number 0. In this case, ¥ is in the cohomology of @) computed in the space
of globally defined operators, or simply:

S =Qu =0, (2.27)
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For example, the super-Maxwell vertex operator A*A,(x, @) is of this type. However, the
(Q + 0)-cohomology can also be affected by the higher cohomologies of §. An important
example of this phenomenon is the relation between the energy momentum tensor 7" and
the b-ghost in the pure spinor formalism. In this case, b is an object with its tail in the
third cohomology H?() and satisfies (Q + 6)b =T

Non-triviality of the cohomology In the above example involving the b ghost, it is
crucial that b3 is a nontrivial element in the d-cohomology. In fact, we shall argue later
that d-cohomology is non-empty only at ghost numbers 0 and 3, i.e. H"(J) = 0 when
n #0,3.

As described earlier, we do not wish to have the “inverse” of (Q 4 J) in the Hilbert
space since such an operator would trivialize the (Q + §) cohomology. The troublesome
operator satisfying {Q +0,£} =1 is

64 941942 gAr ... gAw 0,
f—(AA>+<)\A1)\A2>+"'+<>\A1...)\A16>N)\+’ (2.28)
in the minimal formalism, and is

bV

&= AN+ 70

(2.29)
in the non-minimal formalism. As described in [2][3], this operator can be excluded by
restricting the order of divergence in (AX)™" (or more precisely the ghost number n) to
be less than n = 11, which is also needed for defining the path integral over A and X zero-
modes as (AX) — 0. One possible problem with this restriction is that, since the b-ghost
diverges as fast as (AX)™>, one needs to introduce a regularization in computing higher
loop amplitudes that require more than 3 0’s. A regularization procedure was explained
in [3], but it was complicated to use in explicit calculations.

As mentioned above, the §-cohomology will be argued to be empty except for ghost
numbers 0 and 3. This implies that the worrisome divergence coming from fusing multiple
b’s are in fact BRST trivial and can be simply discarded, provided there is no divergence
arising at the boundary of the moduli space. In other words, the trivial cohomology of
H™(0) for n > 3 allows one to consistently remove operators which diverge faster than
(AN) 3.

We will begin our analysis of the cohomology of ¢ in section [3l But before entering
into the details, let us explain another method for computing the d-cohomology and
its relation with the Cech/Dolbeault cohomologies described earlier. This alternative
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method utilizes Chesterman’s ghosts-for-ghosts introduced in his BRST approach to the
pure spinor constraint [7].

2.5 Ghost-for-ghost versus Cech/Dolbeault descriptions

For a curved (v system defined by homogeneous constraints G'(\) = 0 (I = 1,...,N),
an alternative to the Cech/Dolbeault formulation would be to apply the BRST formalism
to describe the constraint. Analysis of simple models [8] suggests that classically both
descriptions lead to the same Hilbert space (phase space) including the operators in higher
cohomologies. (See [22, 23] for a comparison of ordinary gauge invariant operators.) Al-
though the two descriptions differ in general quantum mechanically, our partition function
Tr[(—1)F - -] is insensitive to the discrepancy.

In the BRST framework, ghost pairs (br,c!) (and ghosts-for-ghosts if necessary) are
introduced to impose the constraint indirectly, and the Hilbert space is defined as the
cohomology of the BRST operator

D= /bIGI. (2.30)

The ghost numbers are assigned g(by, c’;w,\) = (1,—1;0,0) so that g(D) = 1 and the
cohomology H"(D) is graded accordingly.

A very nice feature of this ghost description of the constraints is that one can describe
the system entirely in terms of free fields. However, a difficulty arises when applying it
to the pure spinor system since the constraints are infinitely reducible.

A set of constraints is called reducible if not all the constraints are independent, i.e. if
there exist non-trivial relations among them. Depending on how one chooses to represent
the reducibility relations, there can be relations-for-relations. (This often happens if one
wishes to keep the symmetries of the system manifest.) For the pure spinor system, the
constraint is infinitely reducible meaning there is an infinite chain of relations-for-relations.
Thus, infinite generations of ghosts have to be introduced and the BRST operator D (230)
will have an infinite number of terms. It can be cumbersome in practice but a systematic
procedure for handling reducible constraints is known, and in fact, the ghost-for-ghost
method is quite useful for computing the full partition function of pure spinors.

Note that, when applied to the pure spinor case, the operator D is used to implement
the pure spinor constraint via its cohomology, and is unrelated to the physical BRST
operator @ = [ A*d,. However, D can be combined with @ to define a single nilpotent
operator of the form Q = D + Q + - --, where the ellipses can be fixed by requiring
nilpotency and are essentially unique. Then, the so-called “cohomological perturbation
theory” (formally) assures that the constrained cohomology of @ (D = 0) is equivalent
to the unconstrained cohomology of Q [24]. We will call this auxiliary BRST operator
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D in the ghost-for-ghost method as “mini-BRST operator”, and sometimes refer to its
cohomology as “mini-BRST cohomology”.

The mini-BRST operator D was first introduced by Chesterman in an attempt to
construct the ghost-extended physical BRST operator Q =D+Q+ H The idea
of having a single physical BRST operator acting on a totally unconstrained space is
attractive. But as D already contains infinite number of terms, actual construction of
() is not feasible. Thus, although we study the cohomology of the mini-BRST operator
D, we will not attempt to study the cohomology of the ghost-extended physical BRST
operator Q directly (except in the last section [6] where we make use of an SO(8) version

of @ to derive the lightcone spectrum).

One of our main goals is to establish a classical equivalence between the ghost-for-
ghost and Cech-Dolbeault descriptions. Although some portions are left conjectural, we
claim that the equivalence can be established using exactly the same arguments that were
presented for the simpler toy models [§]. That is, the cohomologies in question can be
related by defining a “non-minimal” version of Chesterman’s mini-BRST operator

D =D+ 0x (2.31)

where D is the usual mini-BRST operator of the ghost-for-ghost method, and 0x = —r,@w®
is the Dolbeault operator constructed from non-minimal variables.

At first sight, it seems that the non-minimal variables added here should be uncon-
strained to ensure the cohomology to be kept intact. We however note that whether \,
satisfies Ay*A = 0 or not is irrelevant as long as the cohomology is concerned. In both
cases, the non-minimal momenta w® and s, cannot contribute to the cohomology, so one
can switch between the two viewpoints by simply forgetting/imposing the non-minimal
constraint.

In section [ it will be argued that the following four cohomologies are classically
equivalent:

1. Minimal mini-BRST (ghost-for-ghost): cohomology of D
2. Non-minimal mini-BRST (ghost-for-ghost): cohomology of D + dx
3. Dolbeault cohomology dx (of gauge invariant operators)

4. Cech cohomology of 0 (of gauge invariant operators).

4The idea of working with unconstrained A* variables covariantly was originally developed by Grassi,
Policastro, Porrati and van Nieuwenhuizen in [25] 26] but with a truncation on the mini-BRST operator
D. Unfortunately, due to the truncation, it appeared difficult to assure that Q reproduces the superstring
spectrum. References [27] and [28] discusses the use of SO(8) and U (5) version of the mini-BRST operator,
respectively.
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Let us clarify the meaning of “gauge invariance” in this picture. Suppose we momentarily
forget the non-zero modes and think about a point particle moving in the space of pure
spinors Xj9. When one speaks of the gauge transformation dyw, = (AN),, it is implicitly
assumed that the phase space T" X, is embedded in a Euclidean space T*C!®. Then, the
gauge transformation generates a motion vertical to 7" X7y, and the gauge invariance of an
object simply means that it is living inside 7% X;o. Now, in the curved (v language of the
Cech/Dolbeault description, T* X is treated intrinsically and everything is manifestly
gauge invariant. So there is really no way to construct a “gauge non-invariant object” by
using the local coordinates on the cotangent space.

However, in the ghost-for-ghost description, (w,A) are promoted to genuine uncon-
strained free fields so that X is naturally embedded in the flat space C'. It is then
sometimes convenient to use (w, A) instead of their local parameterization to denote the
operators. But since not all expressions that can be written with (w,\) are in 7% X,
one needs to know when this notation makes sense. The notion of gauge invariance does
just this. Note that, at least classically, gauge invariant operators such as J = —wA and
N, = —(1/2)(wy,A) can be always translated to the intrinsic curved G language.

To relate the four cohomologies listed above, one can follow the steps (a) — (d) in the
diagram:

minimal mini-BRST Cech
I(a) 1(60
(c)
non-minimal mini-BRST ’(—%), Dolbeault

(b)

a) Adding/removing (unconstrained) non-minimal quartet under dx = —rw

b) Different choice of cohomology representatives

(

(b)

(c) Embedding to “extrinsic” space of free fields

() Restriction to “intrinsic” (or gauge invariant) operators on Xiq
(

d) Standard Cech-Dolbeault mapping (partition of unity)

We will come back to the explanation of this diagram in section [, but in short, steps (a)
and (c¢) can be used to embed the minimal mini-BRST and Dolbeault cohomologies in the
non-minimal mini-BRST cohomology, and both are then simply different choices of the
cohomology representatives (step (b)). The biggest conceptual step is step (c¢), where a
connection between free fields (ghost-for-ghost) and constrained fields (Cech/Dolbeault)
has to be made. For the pure spinor model, an added technical difficulty arises due to
the infinite number of ghosts on the ghost-for-ghost side. Nevertheless, one can at least
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formally state the mapping between the two regimes, and establish the equivalence of the
cohomologies at each ghost number (i.e. not just in the ghost number 0 sector) [§]:

H™(D) = H"(§) (5 =14 or dyx). (2.32)

Moreover, as mentioned above, we shall argue that only H° and H? are non-empty, and
that there is a one-to-one mapping between the two.

One of the basic tools for studying cohomologies is to compute their partition function
(or character). In particular, this is convenient for exposing some discrete symmetries such
as the mapping between H° and H3. So we will spend the next several sections computing
the partition functions of various cohomologies. Eventually, we shall argue that only H°
and H? are non-empty and that they together form a space that precisely reproduces the
correct superstring spectrum.

3 Naive partition function of pure spinors and miss-
ing states

In the last subsection, we explained various cohomologies that might be used to describe
the operators of the pure spinor sector. Eventually, it will be argued that they are clas-
sically all equivalent. In particular, all have structures that can be summarized by two
discrete symmetries of their partition functions, the “field-antifield symmetry” and the
“s-conjugation symmetry”. The former is essential for being able to define the spacetime
amplitudes, and the latter is responsible for the symmetry between gauge invariant opera-
tors (i.e. of the zeroth cohomology H°) and the operators that are not globally defined on
the pure spinor space (which turn out to live only in the third cohomology H?). Also, it
is only when the contribution from the latter is taken into account that the total Hilbert
space exhibits the field-antifield symmetry.

To explain what we have just stated, we here compute the partition function of the
globally defined gauge invariant operators by explicitly constructing them at lower Vi-
rasoro levels. It turns out that, starting from level 2, the space H° by itself lacks some
operators for having the field-antifield symmetry. The missing states turn out to be
fermionic and hence are naturally described by higher cohomologies of odd degrees.

3.1 Preliminaries
3.1.1 Definition of the partition function

The characters of the states we wish to keep track of are their statistics, weights (Virasoro
levels), t-charge (measured by J; = —w\ — pf#) and the Lorentz spin. The Lorentz spin of
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a state can be labeled by five integers which we denote by

i = (ayasazagas) Dynkin basis,

L PR (3.1)
= 5 lHipapspaps] - “five sign” basis.

Introducing formal variables (g, t,d) for each quantum numbers, we define the partition
function (character) as

=" Zu(t.5)q". (3:2)

The trace is taken over the various cohomologies explained above, and we will show that
all lead to the same result. Characters of the basic operators w and \ are

hw,\) = (1,0), t(w,\) = (=1,1),
p(w) = (00010 — _ ob(Fo1Eortostoitas) (0dd # of —’s), (3.3)

()\) 00001) _ ei(ialiagiagim;:l:as) (even # of —7S) )

=

The relation between the Dynkin basis and the “five sign basis” can be found in ap-

pendix [A]]

Sometimes, it is convenient to ignore the spin characters and concentrate on the di-
mensions of the Hilbert space

Z(q,t) = Tr(=1)Fg"ot™

= Zi(t)¢"

h>0 (3.4)

= Z Nh,nqht

h>0,n
Omne might wish to keep track of the ghost number (or g-charge), but the computation of
Z(q,1) is considerably easier than the computation of Z(q,t, g) as we explain shortly.

A list of partition functions at lower levels can be found in appendix [Bl

3.1.2 Cohomology via partition function

In section [6l, we will relate the partition function of pure spinors to that of the cohomology
of the physical BRST operator Q = [ A\*d,. Let us explain the basic idea behind this,
which is also useful for the computation of the partition function itself.

Let O be a fermionic nilpotent operator that commutes with Ly, Jy and the Lorentz
charge, let ‘H be the cohomology of O, and let F be the Hilbert space in which the
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cohomology of O is computed. Then it can be shown that the traces over ‘H and F
coincide:

Try (1) grotoer e = Trp(—1)F grotoer (3.5)
To show this, first split H and F to even and odd parts:
H=He&MH,, F=F.&F,. (3.6)

(In our case, fermion numbers will be carried by 6’s and the fermionic BRST ghosts.)
Then, since

fe:Ze+fe/Ze:(He+Be)+807

3.7
(Z=KerO, B=Im0O), (3.7)

and similar for e < o, the trace over B, and B, do not contribute to the right-hand side
of (3.5) due to the factor (—1)%.

All the cohomology operators d, Oy, and D satisfy the criterion we stated for general
0. Thus, although we defined the partition function as the trace over the cohomology
in the previous subsection, it could have been the trace over the space in which the
cohomology is computed. Below, we use the formula (B3] freely when computing the
partition functions.

We will also use the formula (3.35]) in section [6] when we relate the partition function
of pure spinors to the cohomology of the physical BRST operator @ = [ A\*d,. Although
() does not commute with Jy, we will argue that one can twist the t-charge using the
Lorentz current so that the twisted charge 0 piece of () has the same cohomology as @)
(except for the on-shell condition Ly = 0). Then the cohomology of @) can be read off
from the twisted partition function. It will be shown in section [6 that the cohomology
thus obtained precisely reproduces the lightcone spectrum of the superstring.

Finally, note that our partition function remains the same for the classical and quan-
tum cohomologies. Although some classical cohomology elements may not be in the

quantum cohomology, such elements will drop out in the form of doublets, f 9, g. Hence,
due to the factor of (—1)F, they do not affect the partition function. (For the Cech
operator ¢, the fermion number operator F' counts the order of cochains.)

3.2 Counting of gauge invariant polynomials and the missing
states

Now, let us actually construct the elements of H® at lower Virasoro levels. The states
we construct are polynomials of w, A and their derivatives, and are invariant under the
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“gauge transformation”
Iawa = A (1) - (3.8)

In the language of curved (37 theory these correspond to globally defined operators. Ba-
sic invariants with a single w are the A-charga) and Lorentz currents, and the energy-
momentum tensor for the pure spinor sector

1
J=—-w\, N = —;uv‘“’)\, T = —wo\. (3.9)

Of course, arbitrary products of these operators are again gauge invariant. Starting from
level 2, there will be certain gauge invariant polynomials with negative A-charge meaning
that the number of w’s is strictly larger than that of A\’s. These, however, are perfectly
normal gauge invariant operators and should not be confused with the “missing states”
alluded to at the beginning of this section.

The true missing states, which first appear at level 2, are fermionic and are crucial
for reproducing the massive spectrum of the superstring. The purpose of this section is
to show that the Hilbert space of “naive” gauge invariants lacks field-antifield symmetry
and hence is not the appropriate Hilbert space in the pure spinor formalism. Later,
we shall explain how the missing states fit into the higher degree cohomologies of the
Cech/ Dolbeault or ghost-for-ghost descriptions.

Descriptions of gauge invariants at levels 0 and 1 can also be found in references [4][5].

3.2.1 Level 0 gauge invariants

At the lowest level, the Hilbert space is spanned by non-vanishing polynomials of A. Due
to the pure spinor constraint, A’s can only appear in the “pure spinor representations”

Aeryez ooxen) — (0000n)t",  (n>0). (3.10)

Here, we also indicated the t-charge of the state, and the symbol (ajam -+ - ) signifies
the “spinorial vy-traceless condition”, which means that the expression is zero when any
two indices oj; are contracted using Vhia;- Since the pure spinor representations have

dimensions
. (n+7)(n+6)(n+5)2(n+4)2*(n+3)2*n+2)(n+1)
dim(0000n) = e g , (3.11)
the level 0 partition function is easily found to be [4]
1 —10t* + 16t° — 16t +10t° —* (1 4+1)(1 4 4t +¢°
Zo(t) = i i _ 1)+t e (3.12)

(1— 1) (1—pn

5 We call J the A-charge current to distinguish it from the t-charge current J; = —w\ — pf.
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3.2.2 Field-antifield symmetry

Before proceeding to the next level, let us explain an important symmetry possessed by
the zero-mode partition function. Looking at (3.12), one immediately notices that Zy(t)
has the following symmetry:

Zo(t) = —t8Zy(1/t). (3.13)

As we shall explain shortly, this symmetry is related to field-antifield symmetry in the
pure spinor superstring. The symmetry is important for having a non-degenerate inner
product on the physical states and the value —8 is related to the A-charge anomaly of the
pure spinor system [4].

In order to explain how the field-antifield symmetry is related to the inner product
structure of pure spinor superstring, let us compute the total weight 0 partition function
for the pure spinor superstring, by including the contribution from 6. (The momenta w,,
Po and Oz* do not affect the weight 0 partition function, and we ignore the zero modes
k* of Oz* as usual.) Assigning t-charge 1 to 6%, the partition function for % is easily
computed and reads

Zpo(t) = Trop(—1)Ft70 = (1 —1)'F. (3.14)
Hence, the total weight 0 partition function is

Zo(t) = Zxo(t) Zyo(t)

3.15
=1—10t> + 16t> — 16t° + 10t° — 8 (3.15)

Now Zo(t) is nothing but the partition function for the cohomology of Qo = [ A*p,
carrying t-charge zero. For the massless sector, the cohomology of )y coincides with
the zero-momentum cohomology of @ = [ A\*d,. The cohomology representatives can be
explicitly identified as follows:

t0 1,
—10t*:  (\"6),
1667 1 (M"0)(7,0)a ,
—16t° 1 (M"0)(M°0) (7,,0)* (310
1065 . (M0)(M0) (09,,0) ,
—t% (M) (MY 0)(A°0) (07mp0) -

It is then easy to see that an appropriate inner product (V,W) can be defined on the
cohomology using the zero-mode prescription

(N 0) (M) (M"0) (07mp0)) = 1. (3.17)
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Every cohomology element V' has its conjugate (antifield) V4 such that
(V,Va) = (VIVy) =1, (3.18)

where V1 denotes the BPZ conjugate of V' [29]. Since A* has t-charge anomaly —8 while
0 has 16, the rule (BI7) precisely saturates the anomaly. It is analogous to the rule for
the bosonic string, (cOcd?c) = 1, and can be derived from functional integration methods
after including an appropriate BRST-invariant measure factor [14].

Below, we shall argue that the partition function of pure spinors has the field-antifield
symmetry ([BI3) at each Virasoro level, and therefore all physical states in the pure spinor
superstring appear in field-antifield pairs.

3.2.3 Level 1 gauge invariants

The weight 1 can be saturated either by one w or one 9\, and we wish to count the states
that do not vanish due to the pure spinor constraints

MHA=0, I(AYHN) =2MH0X = 0. (3.19)

For the states with w, one must also require invariance under the gauge transformation
dawa = Ny(7#X)q. For the level 1 operators, the latter condition implies that w must
appear in the form of the gauge invariant currents J and N*”. Hence, all the possible
states with a single w are (n > 0)

wa NENFL L \BD) = (0000m)t"

3.20
wa(v“y)aﬂk«ﬁ)\ﬁl D (0100n)t™. (3:20)
The states involving O\ are described by (n > 0)
N NP A8 = (0000, n + 1)
(3.21)

DNAHPNENP NI = (0010n)t™+2.

Note that while AMy*0X = 0 due to the pure spinor constraint, the 3-form Ay*PO\ is
non-vanishing.

Adding up all four contributions, one finds [5]
46 — 144t + 116t2 + 16t% — 16t° — 1165 + 144t7 — 46¢°

Z .22
2(1 +1)(23 + 20t + 23¢?)
= ) 3.23
(1—-t)H (3:23)
This satisfies the same field-antifield symmetry as Zy(t):
Zi(t) = —t8Z,(1/t). (3.24)
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3.2.4 Level 2 gauge invariants and a missing state

Explicit constructions of the gauge invariant polynomials at level 2 can be obtained using
similar methods. But at this level we encounter several new features. Most importantly,
we will find that the space of gauge invariant polynomials does not posses the field-
antifield symmetry. This implies the space has to be augmented by some finite number
of terms. As already hinted in section 2.5 these “missing states” correspond to elements
of higher degree cohomologies in Cech/Dolbeault and ghost-for-ghost descriptions. (We
shall explain this in detail in section [5l) For now, however, let us focus on the space of
gauge invariant polynomials and enumerate them.

First of all, there are polynomials with two w’s. One might expect that these w’s only
appear in the form of N*” or J, but there in fact is a gauge invariant polynomial with
negative A-charge

foz = 3onz + NMV(’Y},LV(“J)O[ . (325)

Appearance of f, is interesting, but we stress that it is a perfectly normal gauge invariant
polynomial and has nothing to do with the “missing states”. Of course, f, multiplied by
some function of \ is again gauge invariant, but this carries non-negative A-charge and
can be expressed in terms of operators constructed from N# and J.

The states with two N’s, two J’s, and one N and one J are (n > 0)

N Noot A™ = (Y3090) a1 (Vpo) @) ap AT A2 NN = (0200n)¢"

Ny N A™ = (Y00) a1 (o1 ) a AT AN A = (0001, n + 1)¢" (3.26)
Ny IA™ = (7,0) 0y @Wap A2 N AP = (0100n) " ’
JIN™ = G wa, NOTAX2 N AP = (0000m)t™ .

Here, we left the y-traceless conditions implicit, and the indices in [uv, po] are traceless,
block-symmetric, and antisymmetric within each blocks. In fact, the 4-form piece of
NNA® NJX® and JJA™ can be written as (n > 0)

fa)‘(n) - (3waowa + (/Vlww)ao (7#1/“1)04))‘((0(0 >‘ﬂl o )‘ﬁn»

3.27
— (00010) ® (0000n)t" !, (3:27)

so one must be careful not to double count.

As for the polynomials with a single derivative, the following states are independent
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(n>0):

ONM AN = 9wy ¥ o, NN NP — (0100n)t™
DTN = 9w, NN\ = (0000n)t™
NH I = ((ww)alawo ACINIE L\ (v-traces))

+ (wvﬂuV)aO (ONyPoTh Ao yer\Br o \Bn)
= ((0100,n + 1) + (1001n) + (0000, n + 1))¢" " + (0110n)t" 2,
JOM = N0 N1 \FL L \Fe) 4 wao((‘g)\%yp)m)\((ao DD A VED)
= (0000, 7 + 1)t" ™' + (0010n)t"+2
T = wadX* = (00000)2° .

(3.28)

Note that TATTD and w,, OA(@0 41 \P1 ... A\Bn) are not independent.

Finally, there are two types of polynomials with two derivatives, 9?AA™ and (OX)2\™),
and some of them are related by the level 2 pure spinor condition

MHEOPN 4 OXMYHON = 0. (3.29)

The independent states are (n > 0)

PANE NP = (00001) ® (0000n)E" !
oA 2 NP AP = (0000, n + 2)t"2 (3.30)
(5>\7ulm)ﬁl(9>\((a>\ﬂ1 A2 )P — (0010, n + 1)t"+3 ) .
(O 5, (DA77 ) g, NP1 NP2 o \Brt2) = (0020m)t" .

Adding up all the contributions, (3:25]), (3:26]), (3:28) and (330), one finds

Z poly(t) = 16t + 817 — 3840t + 7794¢* — 10848t + 12870* — 12032¢°

ol
(1—t)e
+ 822215 — 48967 + 2823t° — 1136t° + 240t"° — 3241 + 2t12} . (3.31)

The missing state As already mentioned, Z ., we just computed does not posses
the field-antifield symmetry. However, one finds that

Zy(t) = Zapoiy(t) =t
1
- m{—t—”‘ + 1665 — 120672 4 5761 — 1003 + 528¢ — 214¢* + 592¢°

— 592t° 4 214t° — 528" 4 1003t® — 576t° + 120¢'° — 16¢'* + t12} (3.32)
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does have the desired symmetry
Zy(t) = —t 8 Zy(1/1) . (3.33)

Therefore, we expect to have an extra fermionic singlet with t-charge —4 at weight 2.
Because it is fermionic, it cannot be a usual gauge invariant state. Indeed, it will be
identified as an element of higher cohomology in all four descriptions, minimal and non-
minimal ghost-for-ghost, Cech and Dolbeault.

4 Partition function of pure spinors and its symme-
tries

In this section, we present two independent methods for computing the full partition func-
tion of pure spinors. The first method utilizes Chesterman’s ghost-for-ghost description
of pure spinors [7], while the second method uses a fixed point formula extending the
zero mode result of [4]. Neither method gives the complete partition function in closed
form, but the partition functions can be computed level by level unambiguously once one
imposes the requirements of field-antifield and “x-conjugation” symmetries.

We present the ghost-for-ghost method first because the two symmetries are (formally)
manifest in this formalism. However, since the ghost-for-ghost description of the pure
spinor requires an infinite tower of ghosts-for-ghosts, the expression for the partition
function is ill-defined and one has to invoke an analytic continuation in order to maintain
the two symmetries. Also, using this method, it is difficult to compute the partition
function keeping the spin dependence of the states.

For the fixed point method, the difficulty in writing a closed formula arises because
the states that depend on inverse powers of A (or A\ in non-minimal formulation) do not
appear to contribute. However, the number of such states is finite at any given level, and
they can be recovered by requiring the two discrete symmetries.

This section is organized as follows. In section E] (which is accompanied by ap-
pendix [C)) we introduce the BRST description of the pure spinors using an infinite tower
of ghosts-for-ghosts. We then use it in section to motivate the form of field-antifield
and “x-conjugation” symmetries and to compute the partition function. The last sec-
tion A3 is on the fixed point formulas for the partition function. If one accepts the
two symmetries described in section BL.2.], section 43 can be read independently from
sections 1] and
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4.1 Ghost-for-ghost description of pure spinors

In this section, we analyze the (infinite) reducibility conditions for the pure spinor con-
straint using the BRST formalism. The resulting BRST operator D was first introduced
by Chesterman [7]@ As already mentioned, we sometimes refer to D as the mini-BRST
operator to avoid confusion with the physical BRST operator Q = [ A\*d,,

Chesterman’s ghost-for-ghost construction is designed so that the ghost number 0 co-
homology H°(D) reproduces the space of gauge invariant functions of the constrained
system. Indeed, the partition functions of D-cohomology in weight 0 and 1 sectors pre-
cisely describe the number of gauge invariant objects described above. However, starting
at weight 2, we find extra cohomology elements which do not correspond to the naive
gauge invariants, as is expected from the analysis of toy models [§]. We shall claim that
those extra states are as important a part of the Hilbert space of the pure spinor system
as the naive gauge invariants. We will come back to this issue in section

4.1.1 Reducibility conditions and the ghosts-for-ghosts

Let us start by constructing a nilpotent operator d, whose weight 0 cohomology is iso-
morphic to the space of polynomials of A\, modulo the pure spinor constraint. For the
time being, we shall concentrate on the “position space” A, and ignore the “momentum
space” w. Later in section [4.1.3 we will construct the mini-BRST operator D from ¢ by
extending the action of ¢ to the full phase space at the quantum level.

To facilitate the discussion below, we denote the pure spinor constraint as
GM =M =0, A =(10000) = 10. (4.1)

Now, following the usual strategy of the ghost-for-ghost construction, we introduce a
fermionic antighost (or C-type ghost) ¢* to ‘kill’ the pure spinor part of A and define the
d-action

SCHM =GN S =M. (4.2)

Then, a function f(\) proportional to Ay*\ is d-exact and does not contribute to the ¢-
cohomology. (Later, in order to construct the mini-BRST operator in the phase space, we
shall include the momentum like B-type ghost conjugate to C', which is in the conjugate
representation A;.)

First order reducibility However, because the pure spinor constraint is reducible, this
is not the end of the story: Using the (strong) identity

()"YMA)(%)‘)a =0, (4.3)

6Note, however, that the spin contents of the ghosts-for-ghosts we derive is slightly different from the
ones proposed by Chesterman [7]. (See footnote[7)

28



one can construct a d-closed state

(VM) a s (4.4)

which must be killed by introducing another generation of ghost. The coefficient (y,\)q
in ([A3]) is called the “reducibility coefficient” and we denote it as

GMRYP =0 — RY=(7MNa, A= (00010)=T16. (4.5)

(For convenience, we put an underline to the index newly appeared.) The reducibility
coefficient Rﬁf is “complete”, meaning there are no other (strong) relations for the pure
spinor constraint, independent from (4.3]).

Now, in order to eliminate the unwanted d-closed state, a second generation ghost must
be introduced to kill it cohomologically. For the case at hand, we introduce a bosonic
ghost

C2 o o, (4.6)
and define the d-action to trivialize (¢\)4:
§C*4 = C’AlRﬁf = 006 = cu(V'N)a - (4.7)

Then, by definition, the action of ¢ is strongly nilpotent up to this order.

Second order reducibility At the next order, the reducibility coefficients are defined
by

RPRY ~0 (weak equality) . (4.8)

As opposed to the first order reducibility (£3), weak equality is enough for unwanted
0-closed elements to appear. A complete reducibility coefficient for the case at hand i@

RY = (#N0)*, Az = (01000) = 45. (4.9)

Again, this relation implies the existence of unwanted J-closed states of the form C'42 Rﬁg +

M43 where M*3 is some polynomial free of C42. Explicitly, the following combination is
0-closed

CPRY + MY o o, ("N + . (4.10)
To kill these, we introduce the third generation fermionic ghosts
C% (4.11)
and extend the d-action as
504 = C’AQR’;%;’ + MY o 5 = o (PN)Y + e (4.12)

One can check the strong nilpotency of d-action up to this order.

" In [7], R;f; = \“ is also considered as the reducibility coefficient and, correspondingly, an additional
singlet ghost ¢ was introduced. But, as we explain in appendix[C.I] there are no d-closed states associated
to this relation and this additional ghost should not be introduced.
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Higher order reducibilities The analyses of the higher order reducibility conditions
are similar. For the readers interested, we include the third and fourth order analyses in
appendix [Cl Explicit constructions of the reducibility coefficients R’:Z“ (and hence the
mini-BRST operator) soon become tedious at higher orders. But as we will now explain,
the spin contents of the ghosts-for-ghosts can be easily inferred without actually doing
the reducibility analysis. Moreover, as we will argue in section [4.1.3] the knowledge of
spin contents is sufficient for determining the structure of reducibility coefficients.

4.1.2 Spins of ghosts-for-ghosts

Since the ghosts needed in the ghosts-for-ghosts implementation of pure spinor constraints
are all free fields, computation of their partition functions are straightforward. Demanding
that they reproduce the level 0 spin partition function of pure spinors, Zy(t,d), their
Lorentz spins can be readily determined. Let us denote by A,, the representations of the
nth generation C-type ghosts. (A,’s are not necessarily irreducible.) By convention, we
include a minus sign, (—1)=l in A, if the corresponding ghost is a fermion. In order to
reproduce Zy(t, ), the A,’s must satisfy

Zo(t,5) = [J@ -ty =T T (@ — vttero)- o, (4.13)

n>0 n>0 ueAy

or equivalently (by canceling (1 — )~ present in both sides),

110 — 10£° + T6° — 1617 + 10t° — 145 = [ (1 — ")~ (4.14)

n>1

Now, by expanding both sides in ¢ and comparing the coefficients of t", the ghost rep-
resentations A,’s can be uniquely determined. For example, the first few terms of the
expansion on the right hand side read

[T =)™ = 1 Aut 4 (S*Ay + Ap)t + (SP Ay + AL © Ay + Ag)t?
= (4.15)
+(S4Al+S2A1®A2+S2A2+A1®A3—|—A4)t4+... ’

where the symmetric products S* are understood in the supersense. It should be clear
that A, is uniquely determined by the equality at ¢". In figure L1l we list the A,’s for
the first few generations of the BRST ghosts. (Since it is sometimes convenient to treat
A% as the zeroth generation ghost, we also indicated it in the list.)

When the spin contents of the ghosts are not of interest, one can ignore them in (£.14)
and only keep their dimensions

N, = dim A4, . (4.16)
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gh# C-type ghosts t-charge A, N,
0 A° 1 (00001) 16
1 ct 2 —(10000) —10
2 Oa 3 (00010) 16
3 v 4 —(01000) —45
4 ot 5 (10010) 144
5 s ¢t 6 —((11000) + (00020) + (10000)) —456
6 | oW, o gra g, 7T (20010) + (01010) + (10001) + (00010) 1440

Figure 4.1: Spin contents of C-type BRST ghosts

In fact, there is a closed formula for N,,’s given in [30] [4]@:

N = S D (4 DR (@ VI + 2 VB, (n>2). G1T)

Here, p(n) is the Mobius function defined as

1, ifn=1,
p(n) =4 (=1)%, if nis a product of k distinct primes, (4.18)
0, otherwise .

Below, we will need some moments of N,’s that can be computed using the Mellin
transformation of the Mdbius function and an analytic continuation [4]. Some relevant
formulas thus obtained ardg

YN =11, Y (n+1)N, =8, Y (n+1)°N, =4,

n>0 n>0 n>0
> (n+1)'N,=—-4, > (n+1)°N, =4,
n>0 n>0

68 (4.19)

Y (41PN, =~ Y (n+1)'°N, =-39%,
n>0 3 n>0

> Ny=-5, ) kNy=-3, > KNy=-1.

k>1 k>1 k>1

80ur indexing convention for N,, differs from [4]; we apologize for the inconvenience.
9See [31] for some recent mathematical attempts to give meaning to these manipulations.
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Of these formulas, the first line has clear physical interpretations:

Crot = 2 Z N, =22, total central charge (17,

n>0

Qpor = — Z(n +1)N, = -8, total A-charge anomaly (JT'), (4.20)
n>0

kit = — Z(n +1)2N, = —4, total U(1)-charge anomaly (J.J).
n>0

J and T, which will be defined later, are the total A-charge current and total energy-
momentum tensors for the ghost extended system.

4.1.3 Chesterman’s mini-BRST operator

Let us go back to the ghost-for-ghost program and implement the free field resolution
in the phase space at the fully quantum level. That is, we shall construct a nilpotent
mini-BRST D such that

5C =[D,C}. (4.21)

Using our result on the ghost-for-ghost implementation of the pure spinor constraint
(section TT] and appendix [C)), construction of D is straightforward. First, introduce
the B-type ghosts conjugate to the C-type ghosts. They carry the conjugate Lorentz
representations A, and satisfy the free field operator product expansions

gy —0% Opo

V(e (w) = . P (Doslw) = 2 P (E)m(w) = 2, e (422)

Then, for the pure spinor system, the BRST operator D can be written schematically as
(recall Cy = A by convention)

D= Z Z Bn—l—lcncn—k

n20 k=0 (4.23)
= " Ba,, (CA R+ MA)

n>0

where M4 is discussed in appendix[Cl It is convenient to split D in terms of the resolution
degree, or the “C-charge”. Using the result from appendix [C the first several terms in
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D are found to be
D=Dy+Dy+Dy+ D3+ Dy+---,

1
Do =" (M), Di=—p"c"(uNas D2 = 0" ((07w) +eucs)

2
3
Ds = —p" (" 1y (Yo Mo + §cu0a) : (4.24)
1 5 4
D, = ib“’yp (ag(y”PA)“ + gcuc”p) + b, (Um(v”“)\)o‘ — gc,,c”“)

%‘baﬂUua(WuA)g.
Since D is only linear in the B-type ghosts, quantum nilpotency of D follows from that
of the d-action.

In fact, as announced earlier, there is a simple way to specify the form of D without
actually doing the reducibility analysis. First, for the pure spinor constraint, the re-
ducibility coefficients Rﬁ:“’s are linear in A\ and M“»+1’s are quadratic in C-type ghosts.
Then, since there is only one way to construct a Lorentz singlet from A* and two arbitrary
representations A, ; and A, the tensor structure in R’:Z“ is uniquely fixed up to a scale.
The choice of this scale is a matter of convention and the appropriate choice of MAn+1
follows from the nilpotency of D.

We hope our discussion in this section convinced the reader that the ghost-for-ghost
mini-BRST operator D is an object much tamer than might be expected, and we now
turn to the analysis of its cohomology.

4.1.4 Mini-BRST cohomology versus gauge invariant polynomials

To initiate the analysis of the mini-BRST (or ghost-for-ghost) cohomology H*(D), we
first explain how the gauge invariant polynomials described in section are translated
to the ghost-for-ghost language. As is expected from the general theory of the BRST
formalism, we find them in the ghost number 0 cohomology H°(D). However, we also
claim that there should be non-trivial cohomology elements of higher ghost numbers that
do not correspond to naive gauge invariants.

Basic gauge invariant currents and their composites In the ghost-for-ghost lan-
guage, A-charge and Lorentz currents, and the energy-momentum tensor of the pure
spinors are extended to include the ghost contributions as

J=> (n+1)j., N™=) N¥, T=>T,. (4.25)

n>0 n>0 n>0

We note in passing that the BRST ghost number is measured by

Jy==Y njn. (4.26)
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In these formulas, j,, N** and T,, denote the U(1) current, Lorentz current, and energy-
momentum tensor for the nth generation ghost:

jO = _Wa)\a7 jl = _bucu? j2 = _pao—a7 T
1 1
N§¥ = =5y, NP =-—2bet, N = = (o), (4.27)

Ty = —w, X", Ty = =V'0c,, Th=—p“0o,,
Note that the U(1)-currents are normalized as

It is easy to see that (j , NW, T) are D-closed and, corresponding to the fact that the

original gauge invariant currents were not weakly vanishing, these basic D-closed currents
are not D-exact.

Gauge invariants with negative A-charges As we saw in section B.2.4] there are
certain gauge invariant polynomials in which w’s do not appear in the form of basic
invariants J, N* or T. A typical example of these is

fo = 3Jwa + N (7,w)a - (4.29)

Naively, one would expect that it will be described in the ghost-for-ghost language as

?

fo=3Jwa + N" (1w)a - (4.30)

This guess, however, turns out to be wrong. Roughly speaking, the ghost contributions
in f, has to be doubled, because Jw and Nw are quadratic in w while being linear in the
ghosts.

The correct expression for the f, can be determined systematically level by level in
the C-charge defined by (B, C,) = (0,n). Denoting by f,, the C-charge n piece of f,,
the condition

A~

Df,=0 (4.31)
leads classically to a set of master equations

level 0: 0 =[Dy, fa,o + ]Eoc,l]Oa

level 1: 0 =[Do+ Dy, fao + far + fazlt,
‘ (4.32)
level n: 0= [D0+D1+--~+Dn,fo+fa,1+fa,2+"'+fa,n+1]n>
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which can be used to fix f(w level by level. The notation [D, f], suggests that only the
pieces up to C-charge n are kept after taking the commutator.

For example, the first several terms of fa in the C-charge decomposition are

fa,O = fa =3 1.j0wa + Néw(’)/ij)a,
far = 2(3 - 25100 + N (4,0w)a) | (4.33)
fa,Q = 2(3 - 3Jowa + Nﬁ“’(%yw)a) + 800" (V00 )

and it is straightforward to check f, satisfies the (classical) master equations up to level 1.
The general form of f, would be

fo=203Jws + N"(quw)a) = foa+ Z anBiBp_iChy . (4.34)

n>2 k=1
where the BBC terms are needed because of the BOC terms in D.

Quantum mechanically, things become more complicated because multiple contrac-
tions do not respect the levels of the classical master equation. However, one can try to
find the quantum improvement terms after working out the classical expressions and see
if it remains in the cohomology. For fa at hand, the quantum correction should be of the
form

fa - fa,cl + Aawa 5 (435)

with A being some number. For the models studied in [§], the states analogous to fa drop
out from the quantum mini-BRST cohomology while they survive in the Cech/Dolbeault
cohomology, and this leads to a quantum discrepancy of the two methods that is invisible
from the partition function. However, for the case of pure spinors, the partition func-
tion indicates the existence of the (classical and quantum) operator carrying the same
charges as fa does. This then implies that there should be a way to define fa quantum
mechanically both in curved (v and ghost-for-ghost methods.

Of course, the procedure described here applies also to the basic gauge invariant poly-
nomials. But for them, it is much easier to guess the correct results than to systematically
work out what they get mapped into.

States in the higher cohomology The elements of D-cohomology we have been
considering up to now are all living in H°(D), including fa with negative A\-charge. That
is, they all correspond to some gauge invariant polynomials studied in section To
understand why the higher cohomologies are expected to be non-empty, let us study the
higher cohomology of the mini-BRST operator considered in [8]:

D:/bx‘x‘ (i=1,...,N). (4.36)
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Clearly, the operator b is in the D-cohomology. One also finds bw;, bwwy)y = b(wiw; —
%@jwz) etc. to be in the cohomology and, in general, there is a one-to-one mapping
between the gauge invariant operators (elements of H°(D)) and those with a single b
(elements of H'(D)). Roughly speaking, the correspondence is given by

HO(D) H'(D)
flw,A\;0) < bf(\w;0)
1 b

)\i, )\((Z)\])) bwi, bw((z-wj))

where the above table indicates that the roles of \' and w; are swapped in H°(D) and
H'(D). The precise correspondence can be established by constructing a inner product
that couples H°(D) and H(D). We shall refer to the symmetry between H°(D) and
H'(D) as the *-conjugation symmetry, as in [§].

The symmetry can be seen at the level of partition function as follows. The corre-
spondence above (for the toy models) relates the states at

qmtngo PN q1+n+mt—2—ngl ] (437)

The factor ¢'t~2¢' on the right hand side corresponds to b, and the trade-off \' < w;
corresponds to the switch ¢ «» ¢/t, since w; have conformal weight one and the t-charge
opposite of that of \’. Hence, the partition function should behave under the *-conjugation
as

Z(q.t) = —q't *Z(q,q/t). (4.38)

In the next section, we start the study of the partition function of pure spinors. The
partition function will be found to have a covariance property very similar to (£38]). The
only difference is that the prefactor will be —¢?t~* instead of —¢'t=2. Then, in the coming
sections, we shall identify the operator responsible for this factor (i.e. the generalization
of the operator b in (£30)) as an element of the third cohomology H?3(D) (instead of
HY(D)).

4.2 Partition function of the mini-BRST cohomology

In the previous section, we resolved the pure spinor constraint using the infinite chain of
free-field ghosts, and constructed the BRST operator D. Since D carries t-charge 0, the
partition function of its cohomology is equal to that of the total Hilbert space of (now
unconstrained) pure spinors and the ghosts. Therefore, the full partition function of pure
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spinors can be formally written as

Z(q,1,) H(H aany —An H ) A)

n>0 h>0 h>1

= Zo(t, & HH htn—i-l —An (1 — qht—n—l)—zn'

n>0h>1

(4.39)

In the second line, we factored out the zero-mode contributions which, by definition,
reproduces Zy(t, ). Ay signifies the conjugate representation of A;. For example, the
chiral and antichiral spinors are conjugate to each other, S, = S_.

It may seem difficult to extract useful information from this formal expression. In fact,
on the contrary, once the moments of N;’s are known, the two important symmetries of
the partition function—the field-antifield symmetry and the *-conjugation symmetry—
can be easily deduced from ([£39). Also, by expanding in ¢, and employing some analytic
continuations, one can obtain from (4.39) a well-defined expression at each Virasoro level.
We shall demonstrate this by computing the partition function of the first and second
mass levels.

4.2.1 Symmetries of the partition function

Elementary calculations show that Z(q,t) defined in (439) has the following symmetries
(we drop the spin dependence for simplicity):

— Npny—(n+1)Np
field-antifield Z(g,t) = H<(—1) =y )Z (a:1/t) 0
n>0 .
symmetry: _ —t_8Z(q 1/t)
_ —nNn —in(n+1)Nyn(n+1)Ny,
wconjugation  Z(@:t) = H<(—1) g~ DN o) )Z(q,q/t) .
n>0 .
symmetry: B

=—q¢t " Z(q,q/t).

From these two symmetries, one also finds

Z(q,t) = H((—l)(”+l)N"q Ln(n+1) Nn g (n+1)? Nn>Z(q’qt)
n>0 (4.42)
= ¢t Z(q, qt).
Imposing those symmetries on the formal expression for Z(q,t) means that one has made
an analytical continuation

Z(g,t) = [ [(=ig™""*n(a) Ve v (g, ¢7) "™, (4.43)

n>0
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where the elliptic functions are defined as

Di(g,t) =i Y (=1)rgain /2t (4.44)
= —ig"Pn(" =t [ =" =", (4.45)
h>1
n(g) =g (1 —d"). (4.46)
h>1

The symmetries above follow from the well-known transformation properties of the theta
function:

1911(Q>t) = —1911(% 1/t) = —ql/Qt ﬁll(q,qt)- (4-47)

x-conjugation symmetry and the higher cohomology As in the case of the toy
models (see section T4 and [§]), the x-conjugation symmetry suggests that there are non-
trivial fermionic elements in the higher D-cohomology. The element with charges —¢?t~*
generalizing the state b of the toy models is of particular importance. Unfortunately, the
construction of this state in the BRST framework is not straightforward, obstructed by
the complexity of the infinite ghosts-for-ghosts. However, the state has a particularly nice
interpretation in the Cech/Dolbeault cohomologies. In fact, it turns out to be nothing
but the tail term b3 of the composite reparameterization b-ghost. Hence, it carries ghost
number 3, and we expect from the *-conjugation symmetry that there is a one-to-one
mapping between H°(D) and H3(D). We shall come back to this issue in section [l

Remark on the modular property Modular properties of the total partition function
Z(q,t) = Zyp0(q,t)Z,x(q,t) of the pure spinor superstring can in principle be studied
using the expression given here. If one defines ¢ = €™ and transforms to the cylinder
coordinate, one expects the contribution to the partition function Z(q,t) = ¢~ “/>*Z(q, t)
of fields and antifields to be separately invariant under 7 — —1/7. However, to verify this
symmetry one first needs to decide how to separate the contributions of the spacetime
fields and antifields. In section [0 we shall argue that the correct identification involves
the lightcone boost charges as well as the t-charge: after twisting the t-charge current as
J=J,+N+ Ny~ + 2N, all the physical fields and their antifields appear at 2 and
t5 respectively, and their partition functions are separately invariant under 7 — —1/7.
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4.2.2 Partition functions of non-zero modes

Our full partition function represents the cohomology of the mini-BRST operator D. In
particular, by expanding in ¢ and ¢
Z(qt) = Y Nung™t", (4.48)
m>0,n

one gets the number of cohomology elements with weight m and t-charge n. Now, we
wish to show that N, , can be determined inductively using the two symmetries and the
initial data

Now = {O,’ (n <0), (4.49)
’ dim(0000n), (n >0).

Let us demonstrate this by showing how the level 1 and 2 partition functions

Zy(t) = Nigt", Zo(t) =) Nont", (4.50)

are uniquely obtained.

Level 1 partition function The field-antifield symmetry at level 0 implies that the
polynomial

_ (n+7)(n+6)(n+5)*(n+4)*(n+3)*(n+2)(n+1)
foln) = 7.6-52.42.32.2 (4.51)
(: No, forn > O) ,

possesses the property

fo(n) = fo(—n —8), (4.52)
which follows from the Serre duality on the space of projective pure spinors
H'(X10,0(n)) = H'" (X9, Ky, ® O(—n))*,
and the relation
Ky, = O(8).
Then, from the expression (A39) for the full partition function, one finds

0
Zl(t) = a_qZ(qa t)|q=0

= Zo(t) Y (" +tF )Ny, (4.53)

k>0

=5(S foln—k=DN"+ ST foln+k+ DNt

k>0 n>k+1 n>—k—1
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This expression is not quite well defined as it contains infinite series both in ¢ and 1/¢.
Since what we wish to have is the series in ¢, an analytic continuation must be performed
to throw away the series in 1/t. We perform the analytic continuation in a manner such
that the coefficients of ¢ in

Zy(t) =Y filn)t", (4.54)

respect the field-antifield symmetry. As will be shown shortly, the correct prescription is
to simply discard the 1/t* and higher poles in ¢:

Zy(t)=> "> (foln—k=1)+ foln+k+1))Ny. (4.55)

n>—1 k>0

Now, since fo(k) is a polynomial of order 10, the sum over k in the last expression
can be performed if one knows the (even) moments of Ny up to Y, (k +1)'°N,. We have
already listed those moments in (A.I9) and the result of the sum is a geometric series of

the form (A54) with

~ (n+1D)(n+2)(n+3)(n+4)%*(n+5)(n+6)(n+7)(11n* + 88n + 345)
fi(n) = 25.33.52.7 ’

(4.56)

The sum over n can then be readily done and therefore the partition function (which
takes into account the number of states) at level 1 is:

Zi(t) =Y fi(n)t"

n>0

457
46— 144¢ + 11662 + 16£3 — 1615 — 11610 + 14447 — 46¢5 (457)
B (1—t)'6 ’
0 <0
Np=1 (n <0), (4.58)

Note that Ny, and N, , are consistent both with the field-antifield and the *-conjugation
symmetries. Also, the form of fi(n) is consistent with our earlier result:

dim ((0100n) + (0000n)) , (n=0),
fi(n) = 4 dim((0100n) 4 2(0000n)), (n=1), (4.59)
dim((0100n) + 2(0000n) + (0010, — 2)), (n >2).

In general, there is no reason why the result obtained using the prescription above
also respects the x-conjugation symmetry. That is, some (finite) number of states might
be missing, which are implied by the lower level partition function and the *-conjugation
symmetry:

Nm,n = {Vm+n+2,—n—4 - (460)
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This will be the case for level 2 and higher. For these cases, we simply add the missing
pieces together with their antifields so that the number of states is consistent with both
symmetries.

Level 2 partition function The computation of the weight 2 partition function Z,
can be done in a similar manner. That is, it can be determined from the two symmetries
and the lower dimensional ones Z, and Z;. First,

1 9?
imz(%tﬂq:o

_ ZO {ZN tn+1+t—n 1 %(Z Nn(tn+1+t_n_l))2

Zy(t) =

n>1 n>0

! 2(n+1) 2( 1; (4.61)

n—+ —2(n+
+5 2 NaH 41 )}
n>0
1
= Zl(t) + §Z1 ZN tn+1 4 1) + ZO ZN t2 (n+1) +t (n+1))
n>0 n>0

Again, by an appropriate analytic continuation, the series in 1/t can be discarded in such
a way that the coefficient f5(t) in

=Y faln)t" (4.62)

contains the field-antifield symmetry. As before, this can be achieved by simply discarding
1/t? and higher poles giving the result

1
=2+ B )G +n) 6 +n)

x (360528 + 580664n + 321543n” + 90400n* + 14450n* + 1320n° + 55n°).
(4.63)

fa(n) =

One can check that the polynomial fo(n) obtained here coincides with our earlier result
obtained by counting the number of gauge invariant polynomials, i.e. > o | fo(n)t" =
Z3 poly(t). This means that, even though fs is consistent with the field-antifield symmetry,
fa(n) = fo(—n — 8), the result after the summation of the geometric series (A62) is not.
More concretely, one finds

Zpoly(t) + 1875 poy (1/1) = 2/t*. (4.64)

Also, the definition (£.62]) is inconsistent with the *-conjugation symmetry because

Ny s =0 # —Noo=-1. (4.65)
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As expected from the general analytic continuation of the full partition function Z(q,t),
those two failures are related. Indeed, both can be remedied at the same time by adding
the term' —r to ([E62) so that

Zo(t) = —%4 + 3 )t

1
= m{—t“‘ + 16t~ — 120t~ 4+ 576t~ — 1003 + 528t — 214¢* + 5924

— 592¢% + 214¢° — 528t + 1003¢® — 576¢" + 120" — 16t +¢*} . (4.66)

It is easy to see the number of states implied by the modified partition function (ZGG),

Ny =< -1, (n=-4), (4.67)
f2(n) ) (TL > _4) )

is now consistent with both field-antifield symmetry and *-conjugation symmetry.

4.3 Fixed point formulas for the full partition function

In the previous section, we presented a formula for the full partition function of pure
spinors using an infinite tower of ghosts-for-ghosts. The formula is natural and convenient
for motivating the two important symmetries of the partition function, i.e. the field-
antifield symmetry and the x-conjugation symmetry. Also, we were able to compute
the partition function level by level, respecting those two symmetries. However, the
computation using (£39) is not easy if one wishes to keep the spin information of the
states. We here present a very simple fixed point formula for the partition function
including the spin character, extending the zero mode formula given in [4]. Although our
formulas (A.87) and (£88) miss some finite number of states at each Virasoro level, these
missing states can be recovered by imposing the two symmetries as in the case of the
ghost-for-ghost method.

It may seem troubling that the fixed point formulae we present below “miss” some
states, but in fact this is not so hard to explain.

4.3.1 Some remarks on the fixed point formulae

A classic example of the fixed point formula is Weyl formula for the character x, of an
irreducible representation of a simple Lie group G:

Xulg) = Trr, (9) , g€ G. (4.68)

1%Note that this is equal to § x fo(—4)t~*
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Such a representation R, can be realized by geometric quantization of a coadjoint orbit
0,~G/T,
R, = H° (Ous Ly) (4.69)

where L, is a holomorphic line bundle over O, whose first Chern class ¢; (L,) coincides
with the symplectic form on O,,, determined, in turn, by the dominant weight 1 € P,.
The character can be written as a sum over the fixed points w of the action of the element
g € G on O,, each point contributing essentially a character of the Hilbert space obtained
by quantizing the tangent space T,,0,:

TwO,

Xu(9) = Zw: - 6“’“’(&)_ p (4.70)

where e, ,,(g) € C* is the eigenvalue of the action of g on the fiber of the line bundle L,|,,
over w.

The formula (£70) can be also understood as follows. Let us cover O, by the open
neighbourhoods U, of the fixed points w, which are invariant with respect to the action
of the maximal torus T, C G containing g. Then the intersections Uy, N Uy, N---N Uy,
are also T,-invariant. The character, being additive, can be written as follows:

Trio(g) = » (=1)'Trgi(g)  (positivity of 1) (4.71)
= ZTer (9) — Z Try,, mv,, (9) + -
w w1 <ws2

(inclusion-exclusion) (4.72)
+ (—1)F 1 Z Trv,, AUy U, (g)+--.

w1 <wo < -<wWg

On the one hand, the [-fold intersections Uy, N Uy, N ... N U, contain (C*)*'"" and,
therefore, contribute zero to the character, using the definition

d 0, z#£L (4.73)

pEZ

On the other hand, set-theoretically, the exclusions-inclusions of the sets U, and their
intersections, as in ([E70):

(Uwa) \ (Uw1<w2Uw1 N Uwz) U (Uw1<w2<w3Uw1 N Uwz N Uw:s) = Uw{w} (4'74)

i.e. we are left with the fixed points only, or, rather, their infinitesimal neighbourhoods.

These well-known considerations [32] stumble immediately once we replace the com-
pact orbit O, by the space X of pure spinors. As we stated many times before the space
Xjo is the total space of the C*-bundle over the space Xy of projective pure spinors.
Thus, the group SO(10) x U(1) acts on X;¢ without fixed points. Therefore the character
must vanish, for the simple reason (£73)).
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In reality, however, we manage to get a non-vanishing character, both the zero modes [4]
and the non-zero ones, as we shall do below.

The resolution of the apparent paradox is the fact that in a sense the total character,
taking into account both positive and negative degrees of \,, counts both fields and
anti-fields of the spacetime theory, which cancel each other.

The creative part of the computation is to separate the vanishing character into the
two opposite contributions, one coming from the fields, the other coming from the anti-
fields. Picking up the contributions from the fields, one obtains a non-vanishing character.
Moreover, after coupling to the fermionic matter sector (p,,#%), one can introduce an-
other definition of the fields and antifields using the norm (A\365) = 1. Of course, this new
definition differs from the one expected from the pure spinor sector alone, but it has been
customarily used in the pure spinor formalism (and in the present paper), and is known
to lead to the correct spacetime amplitudes.

Thus, the true fields and anti-fields in the pure spinor superstring are constructed only
after including the contributions of the (p,, %) and x* sector. Since these contributions
also carry the t-charge (and there are different ways to attribute the t-charge to the
(pa, 0%, x#)-fields, to be explored below), the total t-charge of both fields and anti-fields
may become both positive and negative. For example, at the level of zero modes we only
have positive t-charge states.

4.3.2 Review of fixed point formula for level 0 partition function

For convenience, we briefly review the fixed point formula for the zero mode partition
function [4]. (See also [6].)

Geometric preliminary Let us begin by refining our description of the space of pure
spinors
Xio = {A* | AN =0, A #£0}

(4.75)
= (C*-bundle over Xy), (Xlo = 50(10)/U(5)) .

With the removal of the origin understood, Xiq can be covered by 16 patches, where in
each patch at least one component of A is non-vanishing. It is convenient to use the “five
sign” notation to describe the components of A. (See section BT and appendix [A.T] for
explanations.) In this notation, the character of 16 components are

Apsoyy = ez(Fortortostoitos) (even number of —’s) , (4.76)

and Xjo can be covered by 16 patches

Uisrar ={rA € Xio | Apsrass #0}. (4.77)
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In a given patch, a pure spinor can be parameterized using eleven parameters (g, uqp)
which are in the (1,10) of U(5). ug is the “angular” coordinate parameterizing the base
X1 and g is the coordinate for the fiber C*. For example in Uy,

1
A= ()‘-i-? )\aba )\a) - (ga GUap, ggeadeeubcude) : (478)
where
A = Apppir 70,
Aav = {Ai111__ and permutations }, (4.79)

A ={A\;____ and permutations }.
The characters of g and u,, in this patch are
g = ezlortortostoutos) g o o~(ator) (] < g <b<5). (4.80)
In other patches Ue(444+4), the characters will be

1 ¥ 1. — —
g = e26(0’1+0’2+0’3+04+05) _ 6260'7 Ueap = € e(oatop) e (€a0a+epop) ’ (481)

where € acts by even number of sign changes.

The fixed point formula By constructing the symmetry generators explicitly, one
finds the action of N,, on X;o which commutes with the J-rescaling of the C*-fiber. A
generic action of the maximal torus of SO(10) has 16 fixed points which are nothing but
the “origins” (uq = 0) of 16 patches. The spin character of pure spinors can then be
written as a sum of the contributions at the fixed points [6][32]

16 10

, 1 1
Zo(t,5) =) — 1 1T ey (4.82)

e=1 ez =1

where we use the notation of [4]. The sum over e describes the sum over 16 fixed points.
The first term of the summand is the character of the non-vanishing component g, and
the second term is the character of the rest u. 4, both at a given fixed point e. Summation
over the fixed points in (£.82) is straightforward and one gets [4]

1 — 102 +16¢3 — 16t° + 10t — 1¢8
(1—t)16 ‘

Zo(t, &) = (4.83)

At this point we can make more explicit the somewhat abstract discussion at the end
of the previous section.
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Had we not known that each coordinate patch U, should only contribute the positive
powers of ¢, i.e. the functions which are regular at A\, = 0, despite the fact that the A,
is not allowed to vanish, the full character would have been zero. Indeed, instead of the

1
B 4.84
T (s
factor in (4.82) we would have had
L e
= 0. (4.85)

1 —tez® 1 —t-le~3¢°

It is thus with this experience that we approach the full partition function. We shall take
the following point of view. We shall trust the fixed point formula for sufficiently large
positive t-charge and then use the x-conjugation and field-antifield symmetries to fix the
rest. The result will be identical to what we had before using ghosts-for-ghosts.

4.3.3 Fixed point formulas for the full partition function

Now, let us introduce two ways to extend the zero-mode fixed point formula (£82).
The two utilize different parameterizations for the non-zero modes and lead to partition
functions that differ by a finite number of terms at each level. Also, both miss a finite
number of terms with respect to the fully symmetric partition function. However, the
missing states can be unambiguously recovered by imposing the field-antifield and *-
conjugation symmetries, and the two formulas then give the same symmetric partition
function.

The first way of extending is to simply include the non-zero modes of A at each patch
(ges Ue.ap) € U, together with the modes of their conjugates (h,, v?):

Z(q,t,0) ZZ q,t,0) (4.86)
, 1 A 1
Z(q,t,0) = LIO 1 gobee (@111 1 — gro (Cavataon) -
10 1 ‘
- }1;[1 ght-le2¢0 (albll 1 — ghecadatenos

The first line represents the modes of (g, u.) and the second line represents the modes of

(h, v®).

To obtain another way of parameterizing the non-zero modes, one observes that the
constraints for the non-zero modes are essentially linear \gy*A_j, + -+ = 0 (A_, ~ "))
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while the constraint for the zero mode is quadratic A\gy*\g = 0. Therefore, the 11 compo-
nents of non-zero modes A_, (and their conjugates) can be thought as carrying different
characters from the zero-mode \g, and the contribution from a fixed point is

1 L 1
Ze q, ta 53 = 1__
040 = etes (ag:l T~ o (eorerann
1

10

1
X 1., leo—(esonterc (488)
}]l;[l_qhtGQEg(all;Ell_qhtGQ (ea0a+erop)
10
! 1
>< .
}]l;[ b qht_le_%ﬁ'g (a]b;El 1 - qht_le_%e'”"‘(ﬁa”a‘i'ﬁwb)

The second line describes the contributions of the A non-zero modes and the third line
describes the contributions of the w non-zero modes. As mentioned above, it carries
essentially the same information as the first formula (4.87]).

By expanding either (£87) or (£8]) in ¢, the level h partition function with spin
information is expressed in a simple form for all A~ > 1. The summation over 16 fixed
points is straightforward, and one gets a result of the form

Py(t,5)

Z(1,) = e (4.89)

where P (t, &) is some polynomial in ¢ with coefficients taking values in the representations
of SO(10), and (1 —)'® =[] ,c;¢(1 — te’7). We put a prime on P (t,5) as it lacks field-
antifield symmetry as of yet:

P/(t,0) # P, (1/t,—3d). (4.90)

We now turn to our results on Pj(t,5) and explain how to improve them so that they
respect the field-antifield and *-conjugation symmetries.

4.3.4 Partition functions for non-zero modes with spin character

Although the summation over 16 fixed points is straightforward, it is not obvious how
to combine local U(5) characters into SO(10) characters in a simple manner. A con-
venient computational trick is to utilize the Weyl character formula to take care of
the combinatorics. To do this, one first augments the factor for the zero-mode char-
acter H%Sb)zl(l — e (@oateos)) =1 representing the 10 “positive roots of SO(10)/U(5)”
by the character of the remaining 10 positive roots of SO(10), i.e. those of U(5),
Hégb)zl(l — e~ (Ca@a=o))=1 "and then extends the summation over the 16 fixed points € to
1920 elements of the SO(10) Weyl group W. Using the first parameterization of (£.87),
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1920 “local” contributions are given by
10

1 1
Z'LU 7t7 o =
(q U) 1— te%w.g H (1 _ e—(wa0a+wb0b))(1 _ e—(waa'a_wba'b))

(ab)=1
10 1
XH w-o H ha—(Wq0q+wpo (491)
h>1 hte2 (@B=1 1—q"e ( bTb)
10 1
XH —leH haWaoa+wpop
pspl—qhtle (ab)=1 L=qre "

(Using the second parameterization of ([A.88)), the formula is the same except for the last
two lines representing non-zero modes.) An element w € W acts on the five-sign basis by
permutations and an even number of sign changes. The two modifications “cancel” each
other and simply gives ) 7, = > Z..

Now multiplying e“? (where p is the half sum of positive roots) to both the numerator
and denominator of Z,(q,t, ), and denoting the SO(10) Weyl denominator by e’ R, the
sum over w reads

1920 5
20t = 32 2019 = ek S o e
7l (4.92)
X H{non—zero modes} )

h>1

Using the Weyl character formula, the summation over w € W is readily done leading
to the expressions of the form (489). This trick also explains why one gets SO(10)
representations as the coefficients of .

Level 1 Using the computational trick just mentioned at this level, the second param-
eterization of (£.88) yields

1 _ _
Ziona(t, ) = ——3{(45 + 1)t° — 144" + (126~ — 10)¢* + 16¢°

(1—1) (4.93)
— 16t — (1267 — 10)t° + 144¢" — (45 + 1)t°},
while the first parameterization (£87) yields
Ziast = Zina — 1. (4.94)
The singlet missing from Z; 14 is the gauge invariant current J = —wA, and the only way

to make Z; 15 consistent with field-antifield symmetry and *-conjugation symmetry up to
this level is to add 1 to it. So we conclude

Zl (t, &) - Z172nd(t, &) - Zl,lst(ta 5:) + 1 y (495)

where Zj opq Obtained from our second parameterization is defined in (£93)).
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Higher levels An important point to notice is that although Zs,4 reproduces the fully
symmetric partition function at level 1, neither Z;4 nor Zs,q reproduce the fully symmetric
partition function at higher levels. In particular, they both miss the fermionic singlet at
—q?t~* discussed above, and (a part of) analogous states at higher levels. Also, both Zy
and Zs,q miss some gauge-invariant operators. For example, at level 3, the numerator
Pi(t,0) in Zoyq starts as

P(t,5) = —10t 2 + (144 4+ 560 + 3 - 16)t ' + -, (4.96)

and the correction required includes both bosonic and fermionic operators. Nevertheless,
at least up to the fifth level, the difference between the t-expansions of the fully symmetric
partition function and the result from the fixed point formulas is always finite. Therefore,
the fixed point result can be unambiguously improved to the symmetric one using the
method described for the ghost-for-ghost partition function. (A list of the improved
numerator P,(t,5) can be found in appendix [B.2])

Towards fixed point formula for the fully symmetric partition function Since
we use the field-antifield and *-conjugation symmetries as guiding principles for computing
the complete partition function, it will be useful to build them into the fixed point formula
itself. Although we do not have an answer to this problem at the present time, organizing
the complete partition function into a character of 55( 10) affine Lie algebra seems to be
promising. Note that it is probably not going to work for the pure spinor sector only,
since the level of the SO(10) current algebra is negative. Together with the (p,,0%)
contribution one can expect a reasonable expression.

This should also be useful for extending our result to all mass levels. However, we
leave the study of these issues for future research, and we now turn to an explanation of
the symmetries of the partition function.

5 Structure of pure spinor cohomology

In this section, we explain the structure of the Hilbert space of the pure spinor system. In
particular, we will give a “microscopic” explanation of the states which do not correspond
to the usual gauge invariant polynomials. As mentioned repeatedly, those “missing” states
carry ghost number 3 and are essential for the partition function to have the symmetries

Z(q,t) = —t7Z(q,1/t) = —¢*t " Z(q,q/1). (5.1)

Since the structure of the pure spinor cohomology is surprisingly similar to that of simpler
models analyzed in [8], we will first briefly review the result obtained there.
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5.1 A brief summary of the toy models
5.1.1 Partition function and its symmetry
In [§], the curved [v-systems with a single quadratic constraint
NMAN=0, (i=1,...,N). (5.2)

are analyzed in detail. Unlike the pure spinor constraint, the constraint A\ = 0 is irre-
ducible for N > 2. Therefore, the BRST approach is very effective in this case. Only a
single pair of fermionic ghosts (b, ¢) has to be introduced and the mini-BRST operator is
given by

D= / bAX. (5.3)

The partition function of the D-cohomology is hence

1—¢ 1—¢"*)(1—q¢"t?
Z(q,t) — ( g N)( qh — )N 7 (54)
(L= (L= g")N(1 = ¢")
where the charges of the fields are defined as
h(b, c,w;, ') = (1,0,1,0), t(b,c,wi, \') = (=2,2,—1,1). (5.5)
Clearly, Z(q,t) satisfies the symmetries analogous to (5.1):
field-antifield symmetry:  Z(q,t) = —(—t)>""Z(q,1/t), (5.6)
“s-conjugation” symmetry: Z(q,t) = —¢'t 2Z(q,q/t). (5.7

Note that these symmetries naturally appear in pairs, as they are related to the double
periodicity of the theta function. (In other words, failure of one type implies the failure
of the other.)

Let us now turn to explain the “microscopic” origin of the symmetries. Both sym-
metries reflect certain discrete symmetries of the cohomology and can be understood in
terms of inner products that pair the elements of cohomologies. (In particular, the inner
product for the x-conjugation pairs H°(D) and H'(D).)

5.1.2 Field-antifield symmetry

Importance of the first symmetry, Z(q,t) = —(—t)> ¥ Z(q, 1/t), is best appreciated when
the system is coupled to N fermionic be systems (p;, 6°). Then, the total partition function,

Z(g,t) = (1 =) [ [ = ") (1 = ¢"t7?), (5-8)

h>1
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satisfying

Z(q,t) = —1*Z(q,1/1), (5.9)

represents the cohomology of the “physical” BRST operator @ = [ A'p; (or more ap-
propriately that of Q@ = @ + D). The space on which () acts can be split into three
pieces

H: Q-cohomology,
F=Fr®@Foe®Fpp=14 A: Q-non-closed (5.10)
B: Q-exact.

Now, define a non-degenerate inner product (V, W) on F using the standard BPZ conju-
gation (V| = |V)T

(VW) = (VW)= lim 2*L(0|V(2)W (w)]0), (5.11)

z—00,w—0

with the basic overlap
(0](NG" — ¢)p|0) = 1. (5.12)

It is easy to see that the inner product couples A with B, and H with itself. (There can be
the coupling (A, H) but this can be set to zero by an appropriate choice of the cohomology
representatives.) Then, whenever there is a cohomology element V' € H, its antifield V4
satisfying (V,V4) = 1 also represents a cohomology. For example, the cohomology 1 is
paired with A0 — ¢. In general, V and V, are related by the transformation ¢ < 1/t but
with the t-charge anomaly —t2 which comes from the t-charge of A0 — c.

5.1.3 Paring of cohomology via x-conjugation symmetry

The other symmetry Z(q,t) = —¢'t2Z(q, q/t) can be understood in a similar manner [§].
The relevant inner product (V, W) can be defined as the overlap

(V,W) = (VIW) with (O[b_,]0) = 1. (5.13)

Here, (V| = |V)* refers to a certain definition of the BPZ conjugation and b = b_;
accounts for the prefactor (—¢'t=2). For the same reason as before, the inner product
induces a non-degenerate paring between H*(D) and H'~*(D) where the charges of a
pair is related by

qmtngk PN _ql+m+nt—2—ngl—k ) (514)

Since H*(D) = 0 for k < 0 (more or less by construction), the pairing implies that H*(D)
is non-empty only at H°(D) and H*(D)).
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5.1.4 Mini-BRST and Cech/Dolbeault cohomologies

To conclude our brief summary of the toy models, let us explain how the mini-BRST and
Cech/ Dolbeault languages are related. For definiteness, we concentrate on the relation
between the (minimal) mini-BRST cohomology H*(D) and the Dolbeault cohomology
H*(dx). The idea is to use the non-minimal mini-BRST cohomology H*(D + dx) to
bridge between the two, as the following figure indicates:

FO(@x) —= F(9x) -

In the figure, we put the D-cohomology on the left-most column and the dyx-cohomology
on the top row. Both cohomologies can be embedded in the non-minimal mini-BRST
cohomology of D + Jx as indicated by the arrows (a) and (c). (D + Ox)-cohomology
is graded by the sum of BRST ghost number and the Dolbeault form degree (number
of r’s) which runs diagonally from north-west to south-east. The cohomologies of D
and Ox then simply correspond to the different choices of cohomology representatives of
(D + dx)-cohomology (arrow (b)).

Step (a) is simply an adding of the non-minimal quartet (, A, s,r). Since the non-
minimal variables are unconstrained in the ghost-for-ghost framework, this does not affect
the cohomology. In particular, any representative of D-cohomology also serves as a rep-
resentative of (D + dx)-cohomology.

However, non-minimal variables can be used to obtain different representatives for
(D+ dx)-cohomologies, by replacing b in terms of 7 (step (b)). In fact, (ignoring the terms
proportional to the constraint (A\) and the ¢ ghost) one can choose a representative in
F™Y (m =0 or 1), where all the cohomology degrees are carried by r instead of b.

Finally, note that the cohomology representative in F™ is necessarily D-closed and
free of non-minimal conjugates @, and s,. Therefore, the object is “gauge invariant”
(both in minimal and non-minimal senses) and has intrinsic meaning on the constrained
cone A\ = 0. This gives the identification (c).

Mapping of b € H'(D): All the essential points of the mapping above can be seen by
computing the element of H'(0Jx) that corresponds to b € H'(D) of the minimal mini-
BRST cohomology. First, b is clearly in the non-minimal cohomology of D + dx. But

52



since

Aw
it is equivalent to
-7 Awy () (Qw) = (AN (rw)
b aX(zAX) — T . (5.16)

Because the last expression is b-independent and D-closed (i.e. gauge invariant), it can
be expressed in terms of the local coordinates on A\ = 0. Let us denote this “intrinsic”
expression by b. It is of course dx-closed. In fact, it also appears Ox-exact at first sight,
but since (A\)~'Aw is gauge non-invariant, there is nothing that can trivialize b on the
intrinsic geometry of A\ = 0. Hence, b represents a cohomology element of H'(Jx).

5.2 Mini-BRST and Cech /Dolbeault cohomologies for pure spinor

The relation between mini-BRST and Cech/Dolbeault cohomologies should be the same
for the pure spinor system, but explicit identifications of cohomology elements are not
straightforward due to the infinite number of BRST ghosts. Let us nevertheless explain
what one should expect for the structure of pure spinor cohomology, in view of the analysis
in the previous subsection.

Recall that the full partition function satisfies:

field-antifield symmetry:  Z(q,t)

“x-conjugation” symmetry: Z(q,t)

—t7%7(q,1/t), (5.17)
—*t7*Z(q, q/t). (5.18)

The field-antifield symmetry implies that one can define an inner product (V, W) for the
coupled system (w, \; p, ) with the overlap defined by using a weight t® operator \3¢° [I]

{O1AY*0) (A" 0)(AMr°0) (07,00)[0) = 1. (5.19)

The other symmetry suggests that there is an analog of the *-conjugation operation and
the b operator of the toy model such that the inner product (V, W) = (V|W) defined by

(V] = V) with (0]p|0) =0 (5.20)

induces a pairing of the cohomology. We claim that the b operator is nothing but the tail
element bs of the reparameterization b-ghost carrying charges —g*t=4g>.

Then, the inner product (V, W) pairs the cohomologies at ghost number k& with those
at ghost number 3 — &:

H*) —  H>*). (5.21)

93



(6 here denotes either Cech, Dolbeault, minimal or non-minimal mini-BRST operators.)
In particular, there is a one-to-one mapping between H°(§) and H?(d) as has been re-
peatedly announced. Cohomologies at negative ghost numbers H"(0) (n < 0), and hence
H™(68) (n > 3), should be empty. As for the remaining pair H'(6) and H?(§), we conjec-
ture that they are also empty. (One piece of evidence for this conjecture is that H°(§) and
H3(6) are sufficient to reproduce the superstring spectrum.) Leaving proofs of these con-
jectures as a future problem, let us see how the operator by at —¢?t~*¢® can be described
in various cohomologies.

5.3 The operator b3

Under the *-conjugation symmetry, the operator 1 in H°(d) is mapped to a fermionic
singlet at —¢?t~*, which we first encountered in section 3.2.4] and called the missing state.
This missing state will be identified with bs.

5.3.1 Cech/Dolbeault descriptions

The identification of by is easier in the Cech/Dolbeault cohomologies than in the mini-
BRST cohomology (this is different from the toy models). Indeed, it can be identified
as the “tail term” of the reparameterization b-ghost of the pure spinor formalism. Recall
that in the non-minimal pure spinor formalism the b-ghost is written as [14], 2][33] 34]

b= by + by + by + by,

_ . Go - Ao {m (7, d)* — N, (7" 00)* — JOH* — 15?6~
by = —5"0\a + —)\ag = —5%0\y — {7 () (Y = ) 1 } ’
(AN) 4(0N)
b — Xoﬂ”ﬁ{—][aﬁ} _ (quvpr){(d’yuypcg — 48N, m,}
(AN)2 768(AN)2 ’
2 = XarﬁmK[aﬁﬂ - _ (T'VWPT)NW(X'Ypd)
(AN) 64(AN)3 ’
b3 _ Xarﬁfr’yf,lsL[aﬁ’Y(s] _ (TVWPT)(X'YUTﬂT)NWNUT
(AN)4 512(AN)4 ’
(5.22)
and satisfies
{Q,by} =T, {0x,bi} +{Q,bi1} =0, (i=0,1,2), {0x,b35} =0. (5.23)

Being the tail of the b-ghost, b3 is clearly in the Dolbeault cohomology of intrinsic, or
gauge invariant operators. It is independent of (x,p,6) and carries charges —¢*t~%g>. So
this is the “missing state” we were looking for.
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The Cech description of bs is similar. It simply corresponds to a 3-cochain

ABCD IIABCD]
b= ) = Saxmyenn (5:24)
which can be related to the Dolbeault version using the partition of unity. Again, it is
clearly in the Cech cohomology of the gauge invariant operators.

We leave the geometrical interpretation of b3 and the related construction of inner
products as future projects.

5.3.2 Mapping to ghost-for-ghost language

Now, we move on to the identification of b3 in the mini-BRST cohomology of the ghost-
for-ghost language. It can be obtained from the Cech/Dolbeault version by a mapping
similar to (B.I6). For ease of notation, we choose to start from the Dolbeault language.
We do not work out the coefficients and the spinor index structures completely.

First, one has to embed b3 to the non-minimal mini-BRST cohomology. This can be
achieved by forgetting the pure spinor constraint (A is kept constrained) and adding the
ghost contributions so that

bg — Db370 = 5){6370 =0. (525)

Here, the notation bz indicates that it is in F*° (i.e. carries BRST ghost number 0) and
the main part of b3y would look like

(5.26)

(Recall that N7 is the Lorentz generators for the full system.)

Then, we proceed in the direction toward the minimal mini-BRST cohomology and
try to obtain the expression by 3 in which the non-minimal variables are absent:

-9
2.0 —X> 6370

-9
a; —2% ba1

Dl ,,

3
0,2 —>> by o

Dl ,,

bo,3
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At each step, one Dolbeault form r» = d\ will be taken off and the final form bo s is
supposed to be free of all the non-minimal fields, as in (5.15).

To get an idea on how b 3 should look like, let us do a very rough computation. First,
bso is a Ox of a gauge non-invariant (D-non-closed) operator ag o:

NP A B
CLQ,ON( @) @) Bang = by, (5.27)

(AN)?

Then we get another representative

b7 (AVP1) (AVopr ) (W)
(AN)?
where b is the first generation BRST ghost contained in the first term of D = )", Dy,

i.e. Dy = M. (See section LTl and appendix [C] for more details on the mini-BRST
operator.)

+ e b370 s (528)

b2,1 = Da2,0 ~

Similarly, by 1 can be written as

b X Hve y)\ 3
0~ P W) Bxars = bay (5.29)

(AN)?

and it leads to

P (Vo A) 0 (AP ) (WY )
(AX)?

b172 = DaLl ~ + e b271 ~ 6370 . (530)
Here, p® is the second generation BRST ghost contained in Dy = p*(¢\),, and we dropped
the term Dpayy ~ (AX)72b,b, (Ay,A)(Ay*Pr) which presumably is not very important.
Finally, we rewrite b; o as

P (7" N) o (WY \)
(AN)

Qp,2 ~ —5)(&0,2 = b1,2 ) (5-31)

and obtain from hitting it by Dy = 0" (O’a(’}/w,)\)a + cucl,)
6073 = DCLO,g = b“"(ufyu,,)\) 4+ b370 . (532)

This should give an expression for the —g*t~*¢> element in the minimal mini-BRST co-
homology.

Now, quite independently from the computation above (i.e. entirely within the mini-
mal ghost-for-ghost framework), it can be argued that there is a D-closed operator b that
starts from

b=0" Ny +--- . (5.33)



Since D commutes with the total Lorentz generator NW, one finds
D Nyy) = D0 )Ny = " Ny (7" N + - - (5.34)

where p* is the fourth generation ghost that came from Ds = p'* (¢, (V' A)a +€u04), and
the ellipsis denotes the (less important) contribution from Dy, 3 By, 1C3C)_3/!

Note that the pure spinor identity
1
2N (N = (" N0 = =5 (@37 )a(X9) 0 (5.3)

is rephrased in the ghost-for-ghost language as

2N (3o — J (7' N)a = DY, (5.36)
for some Y = —(1/2)wac” + - - -. Since p"* is y-traceless, one then finds
DO Ny + p#*Ya) = D(p"*) Vi -+, (5.37)

and is taken back to a situation similar to (534]) with Bs = b*” replaced by By = p* and
N, replaced by Y,,. Thus the general expectation is

b= (Z Bka> b (5.38)

k>3

where N3 = N s N, =Y, and so on, and the ellipsis is responsible for the corrections
from Dj > Bk+1Cka_m.

5.3.3 Properties of b; and the remaining missing states

Having explained that the fermionic singlet with charges —¢?*t~*¢? is nothing but the tail
term b3 (i.e. the three form piece) of the composite b-ghost, let us turn to a brief discussion
of the remaining missing states that we found at higher Virasoro levels (see (B])).

Although the number of missing states are finite at a given level, the x-conjugation
symmetry of the partition function indicates there are an infinite number of them, one
for every gauge invariant state, A(®\%) N# T etc. In view of our analysis of the toy
models, the charges of “x-conjugation pairs” must be related as

mtn k 2+m+nt—4—n

"ty - —q 9> " (5.39)

In particular, we conjecture that all the missing states are carrying ghost number 3 and
can be constructed by multiplying ghost number 0 operators to a single by (perhaps with
derivatives).

11 (B}, Cy) are the kth generation ghost; in particular Cs = Cuw -
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One should be able to prove the conjecture by constructing an inner product that
couples the x-conjugation pairs. As we explained in section [£.1.4] using toy models, the
inner product should be such that the cohomologies with b3 can be obtained roughly
by swapping the role of A and w. Some questions that can be checked explicitly even
before constructing the inner product are whether b3A“ and b30bs are trivial, and whether
operators of the form bsw(q, -+ *wa,) + -+ are in the cohomology. In the case of the
toy models these questions can be confirmed very easily. For example, using the BRST
method (remember D = bA')Y)

bA o D(w'), bOb o D(w'w'), (5.40)

and it is also easy to show that bw; etc. are in the cohomology. We believe the answers
are also affirmative for the pure spinor case, but will leave a proof of this to future
investigation.

6 Derivation of the lightcone spectrum

Finally in this section we derive the Green-Schwarz lightcone spectrum by combining the
pure spinor partition function with those of the physical variables x* and (p,,0*). The
lightcone spectrum we are to derive is the Fock space spanned by the transverse oscillators

o S, (i€8,,ae8,n>1), (6.1)

-n’ n

on the super-Maxwell ground states
i) + |a) = 8, + 8,. (6.2)
Their partition function is simply
Z1e(q, 3) = Tryo(—1)F gloer

s [ (6:3)

_ ~4h\8s
o (1=d")

Now, since the physical BRST operator of the pure spinor formalism @) (or more pre-
cisely Q+0) contains pieces with non-zero t-charge, the total partition function of the pure
spinor superstring Z(q, t, ) (which includes x and (p, #) sectors) is not directly related to
the cohomology of Q). Moreover, Z(q,t, ) differs from the lightcone partition function.
However, it will be shown in this section that if the t-charge is twisted appropriately us-
ing the lightcone boost charge (t — t), Z(q,t,&) can be related to the lightcone partition
function as

Z(q,1,3) — —Z4(q,3) +1Z(q,5). (6.4)
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The first term at ¢> represents the usual lightcone spectrum and the second term at ¢°
represents the spectrum of the antifields. If one writes Q = Qo+ Q1+ - - where @),, carries
t-charge n, it is obvious that the twisted total partition function Z(q, t, &) represents the
cohomology of #-charge 0 piece @y of Q. One might think that the cohomology of @
has nothing to do with that of @), but it will be shown that )y and () have the same
cohomology, except that the on-shell condition (Lo = 0) is not implied for the former.

Let us begin by first illustrating the analogous result for the bosonic string.

6.1 Lightcone spectrum of bosonic string from covariant parti-
tion function

The BRST operator of the bosonic string takes the form

Q = cT, + beoc
1 6.5
= Z c_nL, — 5 Z (m —n)c_mC_pnbmin (6.5)
nez m,neL

where we left the normal orderings implicit and the Virasoro operators are given by

1 2
Lo = 5k +> ot aum — 1,

m>1

1
L,= 3 Z ah_mQum  (n#0).

mEZL

(6.6)

Because of the ghost zero-mode oscillators {by, ¢o} = 1, the cohomology of @) consists of
two identical copies of the lightcone spectrum—those without ¢ (fields) and those with ¢
(antifields). Thus, the partition function defined by Tr(—1)¥ ¢ vanishes identically due
to field-antifield cancellation. One way to get a non-zero result is to impose an additional
condition by = 0 which drops all the antifields from the trace, but it is difficult to perform
an analogous operation in the pure spinor formalism. Another way to get a non-zero
result is to introduce a charge that distinguishes fields from antifields. Clearly, the ghost
number (t-charge) measured by

J=-bc (= t(bc)=(-1,1)) (6.7)

does the job. The (lightcone) partition function would then be

1
_ F LogJo _ _ —1 2
Zie(q,t) =Tr(=1)" ¢t = —q~ (t =1 )H =g (6.8)
h>1
where the prefactor represents the ground state tachyon (¢ = —¢~'t) and its antifield

(cOc = q~11?).
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In obtaining the expression (6.8]), we used the well-known fact that the physical spec-
trum is spanned by the transverse oscillators o', (i = 1,...,24, n > 0). Now, let us
explain how it can be obtained from the covariant partition function

Z(q7 tv O_:) = Zx(CL t7 &)Zbc(cb t7 53) 9

1
Ly = H (1— )26’

ho1 (6.9)
Zne =[O ="t T] (1 —g"t)".
h>2 h>—1

If the BRST operator @) carried ghost number (¢-charge) 0, the total partition function
Z(q,t,d) would represent its cohomology. But since @) carries ghost number 1, Z(q,t, &)
is not directly related to the cohomology. Nevertheless, there is a simple way to obtain
the partition function of cohomology (€8] from Z(q,¢,d). The procedure is simple and
one only has to twist the t-charge by the lightcone boost charge for the non-zero modes

+

O{n/

1

J—>J:J+2

Ni™. (6.10)
(The zero-modes k¥ are kept intact.) Then, the twisted {-charges read

t(k*, ok, ol b, c) = (0,£1,0,-1,1), (6.11)

n'’

and the twisted partition function becomes identical to (6.8]) representing lightcone fields
and antifields:
- - 1
O H o

h>1

Of course, Z(q, t, &) represents the cohomology of the #-charge 0 piece of Q,

Q=C0Qo+ Q1+ Qq,
QO _ —%k’—i_ nX:;éO C_nOé; 7 (613)

and not necessarily that of @ itself. However, as is apparent from (613) the cohomologies
of () and () are identical, except that the on-shell conditions are not implied for the
latter. (Recall that we are not imposing the by = 0 condition.) So the twisted partition
function (6.12) in fact represents the lightcone spectrum but without the on-shell condition.

In the previous paragraph, we recovered the well-known fact that the BRST cohomol-
ogy reproduces the lightcone spectrum [35]. Anticipating application to the pure spinor
formalism, let us briefly recall why this is the case. The crucial points to understand are
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(i) why the non-zero modes of be ghosts and lightcone oscillators a form a BRST quartet
and (ii) how the on-shell condition appears. An efficient way to understand both at the
same time is to use a unitary transformation that reveals the essential structure of Q). It
can be shown that @) can be brought to the form (see for example [36])

Qe P =d+d, (6.14)

where

X (6.15)
d, = CoL(t)Ot = 60(51{32 -1+ Z(O/ino%n + nC_nbn)) .
n#0
Clearly, d and d’ commute and the cohomology of d + d’ is the lightcone spectrum (d = 0)
with the on-shell condition (d' = 0). Since @) is identical to d and does not contain d’, its
cohomology is different from that of ) by the on-shell condition.

One could have tried to define the {-charge so that
Qo=d+d. (6.16)

It can be achieved for example by treating the ghost zero-modes differently from the ghost
non-zero modes and assigning #(by, cp) = (0, 0) instead of (—1,1). But this makes the par-
tition function vanish due to the field-antifield cancellation. We expect this phenomenon
to be a general feature of “on-shell partition functions” if one does not impose the by = 0
condition. Since it is not straightforward to impose the by = 0 condition in the pure spinor
formalism, we will be content with the “off-shell partition function” of the type (6.12)
and discuss the on-shell condition separately.

6.2 Lightcone spectrum from pure spinor partition function

As explained earlier, physical states in the pure spinor formalism are defined as the coho-
mology of Q 4 § in Cech-Dolbeault framework. We now wish to define an operator that
is the analog of Qo = —(1/2)k™ 3, c_na;, of the bosonic string as the twisted t-charge
0 piece of the physical BRST operator. To find the appropriate twisting of the ¢-charge
current J; = —wA — pb, let us study the massless vertex operators and see where the
lightcone degrees of freedom reside.

6.2.1 Twisting of t-charge

The super-Poincaré covariant vertex operator for the super-Maxwell fields is given by
V =X"A.(x,0)

= Aa(@) + (M0)a,(x) + (A"0) (07,)ax* (z) + - - (6.17)
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with a*(z) and x“(x) the photon and photino wave functions. (The first term A*), is
pure gauge and the ellipsis involve spacetime derivatives of a* and x®.) In this form, the
lightcone degrees of freedom (a’, x*) are contained in the terms at t*> and ¢3. But if the
t-charges of \ and 6 are twisted by the lightcone boost charge as

J — J=-wh—pb+ Nl +Nj, (6.18)
(ET Ay A YT0,770) = (2,0,2,0)), '

both are brought to ¢
2 (M'0ai(z),  M70)O7)ax"(x). (6.19)

Similar analysis shows that the lightcone degrees of freedom for the antiphoton and an-
tiphotino are brought to %, which explains our expectation (6.4):

Z(q,t,7) = 12 Z1(q,7) + 1°Z1.(q, 7) . (6.20)

The analysis here does not tell us how the ¢-charges of (the non-zero modes of) dz#
should be twisted, but it turns out that the appropriate definition of J is

J=-wh—p+ K, K=N+Nj +2N}". (6.21)

Note that we twisted the lightcone coordinates dx* twice as much as others, and we
indicate by the prime in N~ that the zero-mode of dz* = k* are kept intact. In our
convention, the boost charge K of the basic operators are

K(y*w,v"\) = (£1,£1), K(y"p,v*0) = (£1,£1),

. 6.22
K(k*,02'*,02") = (0,%4,0). (6.22)

It will now be argued that the ¢-charge 0 piece of the physical BRST operator plays a
role analogous to the Qo = —(1/2)k™ Zn#o c_na,, of the bosonic string. As a first step,
let us see how the total partition function Z(q, t, &) is twisted at several lower mass levels.

6.2.2 Massless states

It is easy to see that the twisted partition function for the zero modes Zg (t, &) represents
the lightcone super-Maxwell ground state. The twisted partition function can be easily
computed from the original spin partition function:

Zo(t,5) = 1 — 10t* + 16> — 16> + 10t° — 1£°

o s (6.23)
—  Zo(t,0) = —(8, — 8,)1* + (8, — 8,)1°.

At the level of vertex operators, this formula can be understood as follows. Covariant
vertex operators for the super-Maxwell antifields (a*, x%), for the ghost ¢, and for the
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antighost ¢* are similar to that of the super-Maxwell field (€17) but have different numbers
of A:

V= AN Az, 0)

=+ (Mn8) (A,0)(V770) xo () + (A8) (Ay,0) (047 0)ay, () + - -
U= A(z,0) =1c(x)+ -,
U* = X NN Asr (,0) = - + (W"0) (A" 0) (My°0) (0y,p0) ¢ () + - -

(6.24)

The terms of the covariant partition function Zg corresponds to the (vertex operators of)
component fields as

1—102 +16t° — 16¢° + 10t° — 1t°  — (¢, au, X", Xpo ay,, ) - (6.25)

Under the twisting (6.I8) one finds that only the lightcone degrees of freedom survives as
in

VAR A I R S B S A 1
1] ¢
—10¢% | a* a a”
16t3 Xd Xa
—16t° Xa X
10t6 a*—i— a*z‘ a*—
—1¢8 c*

Spurious degrees of freedom and the ghosts (a*, x?, ¢ etc.) are brought outside #>% and
get canceled by components with the opposite statistics.

6.2.3 First massive states

The lightcone partition function at level 1 can be derived in a similar manner. A new
feature here is the appearance of non-zero modes of z# which have to be twisted twice as
much (6.21)). The total partition function before the twisting is
Zl(ta 6) = Zw)\,lZpG,O + Zw)\,OZpH,l + Zw)\,OZpG,OZz,l
= ((45 + 1) — 144t + (126 — 10)¢* + 16t
— 161> — (126 — 10)1° + 144¢" — (45 + 1)t%) |
+ ((1 - 10£* + 16t — 16¢° + 10t° — 1¢*), ® (10, — 16,t " — 164t)),
and after the twisting (G.21]), it becomes
Z1(1,5) = (8, — 8,)1 2+ (=56, + 35,4, + 28 — 8, + 1)i° + (=56, + 56,,)1>
— (=565 + 564,)1° — (=56, + 354, + 28 — 8, + 1)t” — (8, — 8,)t*°
+ 20(1,6) @ (1 — 8p0)t 2+ (86 + 80.0)1" + (1, + 89.5)F%) . (6.26)
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A little algebra shows that again only the terms at #>6 survives:

Z1(t,G) = —1*(35+ 28 + 1 + 56, + 8, — 56,, — 8, — 56,, — 8,)

& (6.27)
+1°(35+ 28 + 1+ 56,, + 8, — 56,, — 8, — 56, — 8,) .

The cancellation among spurious states and ghosts occurs as indicated in figure 6.1

6.2.4 Higher massive states

The very same twisting procedure leads to the lightcone spectrum for the higher massive
states. The computations are straightforward once the spin partition functions Zj(t, &)
of the pure spinor are obtained. We list the latter up to level h = 5 in appendix [B.2] so
the interested reader can readily check the emergence of the lightcone spectrum.

6.3 ()y-cohomology and absence of on-shell condition

Finally, let us study the relation between the cohomologies of Qg and @) (or more precisely
that of Qy + ¢ and Q + & where 4 is either the Cech or Dolbeault operator). It will be
argued that Qo is an analog of k™", a; ¢, of the bosonic string, and in particular
that it does not imply the on-shell condition.

Under the twisted ¢-charge, ) splits into three pieces

Q=0Qo+ Q2+ Qu,
Qo =Xy, (d)=pa+ ks, dy=ps+0.02"),
Qs = (99K~ + (\y'9)da’ (6.28)

1
Q4= (\*0)0z" — 5()\7”0)(9%60) :

where the notation dz'* signifies the omission of zero-modes k*. (The Cech or Dolbeault
operators § also carries t-charge 0 and we implicitly include it in Q,.) Qo is certainly
nilpotent, but since it only contains the k™ component of the momentum, setting Qy = 0
cannot imply the on-shell condition.

In order to see that Qo indeed works as k™3, a, ¢, of the bosonic string, we study
its cohomology directly, by employing the method utilized in [27] to derive the (on-shell)
lightcone spectrum from Q).

6.3.1 Ghost-for-ghost method with an SO(8) parameterization of pure spinor

In section [A.1.1], we analyzed the reducibility conditions of the pure spinor constraint in an
SO(10) covariant manner. As was noted in [27], there is a simpler version of this analysis
if one breaks the covariance down to SO(8).
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t_4 5—2 tO 52 2?4 56 58 510 512
—16t! -8, -8,
4510 8, 28+1 8,
10,¢° 1 8, 1
10 1
—120¢t2 —28  —56,, — 8, —28
-100,t> | -1 -8, -1 —35 -1 -8, -1
-8, —28 -8,
-1
—2-10¢2 —-2.1 —-2.8, —-2.1
144¢3 8, 56,5 + 8, 56,, + 8 8.
144,13 8, 56,4 + 8 56,5 + 8, 8,
16,13 8 8,
2.16¢3 2.8, 2.8,
*
—2-16t° -2 8, -2-8,
—16,t° -8, -8,
—144,1° -8, —56,5s — 8, —b56,, — 8 -8,
—144¢t° -8, —56,, —8s; —56,5 — 8, -8,
2.10t5 2.1 2.8, 2.1
100,,t5 1
8y 28 8,
1 8, 1 35 1 8, 1
120t° 28 56, + 8, 28
—1¢8 -1
—10,t8 -1 -8, -1
—45¢t8 -8, -28—-1 -8,
16¢° 8 8,
0 0 0 —(35,28,1) 0 (35,28,1) 0 0 0
_(56&17 81)) (56sa> 81})
(56va7 85) _(561)(17 83)
(561157 8(1) _(56’087 Sa)

Figure 6.1: Lightcone first massive states from level 1 twisted character
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First, parameterize SO(8) antichiral and chiral components of \* as
M=%\ = (ys)" = viﬁi’si’. (6.29)

A% satisfies the pure spinor condition provided s is constrained to be null, s%s% = 0.
However, half of v* is spurious because of the gauge invariance

o0 = A*(7's)*  —  6AA* = A%(ss) =0. (6.30)

Repeating the BRST construction (sectiond.1]) in an SO(8) covariant manner, one obtains
a chain of free-field ghosts—for—ghost

(Brw Cn) (b(llv C?) ) (P;; Ué) ) (bgv Cg) ) (pilu Ufl) s T (631)

where as before (b3, ,,c5, ) are fermionic and (pi, , 0% ) are bosonic. Introducing a
fermionic ghost pair (b, ¢) for the remaining constraint s%s* = 0 (and denoting the conju-
gate to s* and v’ by t* and w?’), the mini-BRST operator reads [27]

D = /(bs‘is‘i + 5°Gh + Tyn) | (6.32)
where
e = — ()" + (bi&r2)” — (Racs)® + -+, (6.33)
Tgn = (w'oy) + (bics) + (p30%) + -+ -
Using a regularization 1 — 1+ 1 — -+ = lim, (1 + z)~! = 1/2 familiar in covariant

treatments of the xk-symmetry, it is straightforward to check that the combined system of
(1%, 54w, v*; By, Cy, b, c) has the desired central charge 22. Moreover, one can construct
a set of generators for the full SO(10) Lorentz current algebra (with appropriate level
—3), under which D and the physical BRST operator @’ (to be defined shortly) are
invariant [27, [37].

In [27], the SO(8) mini-BRST operator D was used to construct the ghost extended
physical BRST operator Q" = D + [ A\*d, + - - -, whose cohomology is equivalent to that
of @ = [ A*d,. The operator can be written in the same form as D,

Q' = /(bsdsd + 5°G* +2cT), (6.34)

provided one defines

G" =d" + (d)" + Gy, .

o 6.35
T =—(n" + 207" +v°n") + 2c{d* + T, (6.35)

12We departed from [27] in notation to match the notation of the present paper. In [27], the initial
parameterization was chosen oppositely (i.e. A* = s%) and the ghosts (ban—1,C2n—1, P2n, 02n)n>1 Were
denoted by (wp, tn, Wn, vp).
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with 7# being the superinvariant momentum dz* — 6y#90. The combinations (G%, 7) and
(Qgh, T, ) satisty the same algebra

G ()0 w) = 2L G T (w) = T(2)T (1) = regular (6.36)

Z—Ww

This algebra appears repeatedly in the pure spinor formalism, and is related to the algebra
generated by the first-class part of the Green-Schwarz-Siegel constraint d,, [9].

Now that the ghost extended physical BRST operator (6.34)) is written entirely in
terms of free fields, the analysis of its cohomology is straightforward as explained in [27].
Let us apply the argument to the case at hand, where the full operator ) is replaced by
its t-charge 0 piece Q.

6.3.2 Lightcone “off-shell” spectrum from ()y-cohomology

By coupling the SO(8) mini-BRST operator D to (g, one concludes that the cohomology
of Q is equivalent to that of the {-charge 0 contribution to Q' which is

Q) = / (bs*s* + s*G§ + 2¢Tp) | (6.37)
where

Gy =d+ (Nd)* + G, |

Lo b o e (6.38)
’26:—5693 + kT +2c¢{d" + Ty .

To study the cohomology of (), it is convenient to introduce the grading defined by
1(pa, 04, 00"F) = (1,—1,4£1) . (6.39)

Under the [-grading, Q) splits to

Q6 = Q6,1 + Q6,0 )
Qy = [ (s"ps — 02)

(6.40)
Q6,0 = (rest)
= f(bsasa + 50,00 + s"(Nd')* + s°Gh, + 20’k 4 de(cfd™) + 2¢Ty) -
It immediately follows that two quartets
(Pa, 04, t*, 5%,  (02/%,V, (), (6.41)
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decouple from the cohomology. Furthermore, the conditions implied by )f on the remain-
ing fields

(k5,02 ,  (pa,0?), (bo,co), (w',0'), (Bn,Cn), (6.42)

are the cohomology condition of

Q" = co [ (k™02 + 2(erd') + Ty (6.43)

= Co(k"‘v2 + 2(d’cl) + wigé —+ b(llcg 4+ ... )0 .

Remembering d,, = p, + k760, it then follows that the cohomology of Q" (and hence that
of Qp) is spanned by

0x',  (pa — kT,), (6.44)

on the super-Maxwell ground states (1, A6, (Ay*0)(7,0)a, - - - , AB0B)) (with appropriate
BRST ghost extensions).

If the full operator ) was used in place of @)y one would find cok~ (among other terms)
in the final form of @”, and this leads to the on-shell condition [27]. Summing up, we
have learned that the physical BRST operator ) of the pure spinor formalism contains
a piece Qo which plays an analogous role as k* )" 40O C—n of the bosonic string, and
the role of the rest of ) is to impose the on-shell condition on the “off-shell” lightcone
spectrum. This was what we wanted to explain.

6.3.3 Equivalence with light-cone partition function

In this subsection, we shall argue that after performing the twist of (6.21]), the ghost modes
of (w, A) cancel against the longitudinal modes of (p, 8, x) such that only the light-cone
degrees of freedom contribute to the partition function. Since the light-cone partition
function is modular invariant, the complete partition function which is twisted with re-
spect to (62I]) must also be modular invariant.

To show that after performing the twist of (G.21]), the ghost modes of (w, A) cancel
against the longitudinal modes of (p,0,z), it will be convenient to parameterize A® in
terms of A\* and A\* as in ([6.29). Since \® satisfies the constraint A\* = 0, it can be
described by 8 unconstrained bosons s together with a fermion ¢ which replaces the
constraint. Note that s® carries +2 t-charge and ¢ carries +4 ¢-charge. Their conjugate
momenta, which will be called t; and b, carry opposite {-charge and carry conformal
weight +1.

The variables (¢, 5%) have the same SO(1,1) x SO(8) Lorentz spin and f-charge as
(7~p,v"0) and have the opposite statistics. So the partition function for (¢4, s%) cancels
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the partition function for (y~p,76). Similarly, (b, ¢) have the same SO(1,1) x SO(8)
Lorentz spin and t-charge as (92',02'~) and have the opposite statistics. So just as
in bosonic string theory, the partition function for the (b, ¢) ghosts cancels the partition
function for the longitudinal (0z'*, dz'~) variables.

Finally, one has the remaining A* ghost variables which satisfy the constraint si"yfi’)\“ =
0. This constraint implies that only four of the eight A\* variables are independent and
since a null s% breaks SO(8) to U(4), one can write this constraint as A = 0 where A\* has
been decomposed into its U(4) components as A* = (A4, M%) for A =1 to 4. Under this
decomposition of SO(8) into U(4), the variables v~6 and ~v*p decompose as (64, 64) and
(pa,py). And since (wy, A1) carries the same SO(1,1) x U(4) Lorentz spin and i-charge
as (pg, GZ) and has the opposite statistics, their partition functions cancel out.

So after cancelling out these partition functions of the ghost and longitudinal matter
variables, the only remaining contribution comes from the light-cone variables (p4, 04, %)
which produce the standard modular invariant light-cone partition function of the super-
string.

7 Summary and future applications

In this paper, we computed the partition function for pure spinors up to the fifth mass
level using both the ghost-for-ghost method and the fixed-point method. After including
the partition function for the matter variables, we showed agreement with the light-cone
superstring spectrum up to the fifth mass level.

The main surprise in the computation is the appearance of fermionic states in the
pure spinor partition function starting at the second mass level. These fermionic states
all correspond to three-forms on the pure spinor space, and are related to a term in the
b ghost in the pure spinor formalism. Based on the symmetry properties of the pure
spinor partition function, we conjecture there is a one-to-one correspondence between
these fermionic states and the usual bosonic states which are associated to gauge-invariant
polynomials in (A%, w,).

There are several possible applications of these results for amplitude computations
and for superstring field theory. Using the RNS formalism, scattering amplitudes can be
computed either using conformal field theory techniques or using the operator method.
Although conformal field theory techniques are more convenient for multiloop amplitudes,
the operator method is convenient for one-loop computations where one expresses the
amplitude as a trace over states in the Hilbert space.

In this paper, the pure spinor partition function was only computed up to the fifth mass
level, but it might be possible to extend our results and construct an explicit formula for
the complete pure spinor partition function. One could then use the operator method in
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the pure spinor formalism, which might simplify the computations of one-loop amplitudes.

Another possible application of our results concerns the role of the b ghost in computing
multiloop scattering amplitudes. As discussed in [2][3], there are subtleties in computing
g-loop amplitudes when the 3g — 3 b ghosts contribute terms which diverge as fast as
(AN~ when A* — 0. Since the integral [dMA dA(AX)~!! diverges near A* = 0, the
functional integral over the pure spinor ghosts needs to be regularized when there are
terms which diverge as fast as (AX)"''. A consistent BRST-invariant regularization for
multiloop amplitudes was defined in [3], however, this regularization was complicated and
not very practical for computations.

In this paper, it was argued that the only states in the cohomology of the pure spinor
Hilbert space correspond to functions which are either zero-forms or three-forms. These
operators are either regular when \* — 0, or diverge as (A\)™2. When multiplying 3¢ — 3
b ghosts, one can in general get terms which diverge as fast as (AX)™%9+°. However, this
cohomology argument implies that there must exist an operator A(z, ..., z3,—3) such that,
after ignoring total derivatives in the Teichmiiller parameters,

b(Zl)b(ZQ)...b(Zgg_g) — [Q, A(Zl, caey 239_3)]

diverges no faster than (AX)~. (Note that [Q, b(21)b(22)...b(23,_3)] is proportional to total
derivatives in the Teichmiiller parameters, so the cohomology argument can only be used
if one can ignore these total derivatives.)

Since BRST-trivial operators do not affect on-shell scattering amplitudes, one can use
[Q, A(21, ..., z35-3)] to remove the dangerous divergences when (A\) — 0. Even though the
construction of A may be complicated, this is an alternative BRST-invariant regularization
method for (A\) — 0 divergences which may be more efficient for computations than the
regularization method described in [3].

A third possible application of these results is for superstring field theory. In [2], a
cubic open superstring field theory action was constructed using the pure spinor formalism.
However, the correct definition of the Hilbert space was unclear because of the possibility
of states diverging when (AX) — 0. Using the results of this paper, one now knows that
the Hilbert space must at least allow states which diverge as (AX)~® in order to reproduce
the correct massive spectrum. But it is an open question if one can consistently define a
multiplication rule for string fields in such a manner that states diverging like (AX)~!! are
never produced. Note that in string field theory, one cannot use BRST-trivial operators to
remove these dangerous states since off-shell string fields are not necessarily BRST-closed.
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Appendix

A SO(10) conventions and formulas

A.1 Dynkin labels

As is well known, all the irreducible representations of SO(10) can be labeled by five inte-
gers called Dynkin labels. Those are nothing but the highest weights of the representations
in an appropriate basis. In our convention,

vector:  (10000) = 10,

2-form: (01000) = 45,

3-form: (00100) =120, (A1)
antichiral spinor :  (00010) = 16,

chiral spinor : ~ (00001) = 16.

When computing the partition functions, it is sometimes more convenient to introduce
an orthogonal basis for the Cartan subalgebra, e, (a = 1,...,5) such that the fundamental
roots are

€1 — €y, €3 —e3, €3—e4 €4Ees. (A.2)

We then denote the character of e, by e’* where g, is a formal variable for bookkeeping.
Also the weight vectors in this basis are denoted by square bracket:

“:Z/‘aea o mpepapaps] o 7 (A.3)

The components j,’s take values in half integers and are related to the (integer valued)
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Dynkin labels (ajasasaqas) by

1251 1 11 1/2 1/2 aq
L1 011 1/2 1/2]||as
ws =10 01 172 12| |as]|. (A4)
[ig 000 1/2 1/2]|a
15 000 —1/2 1/2) \as

We refer to this basis as the “five sign basis” because the weights and characters of chiral
spinors are expressed as

1
p=glELELELEL AL o ealEmtostontontes), (A.5)

with even number of minus signs.

A.2 Some dimension formulas

Dimensions of the SO(10) irreducible representations are given by

dim(abcde)

= 24.34.431.52.6 —{(@+De+ D+ +1)e+1)

(a+b+2)(b+c+2)(ct+d+2)(c+e+2)
(a+b+c+3)b+c+d+3)(b+c+e+3)(c+d+e+3)
(a+b+ct+d+4)(a+b+ct+e+4)(b+c+d+e+4)(b+2c+d+e+5)
(

a+b+c+d+e+5)(a+b+20+d+e+6)(a+2b+20+d+e+7)}. (A.6)

Of special interest are the ‘(chiral) pure spinor representations’ (0000n), which have the
following dimensions

(n+7)(n+6)(n+5)>2*n+4)>2n+3)2*n+2)(n+1)
7.6-52.42.32.2

dim(0000n) = . (A.7)

B Table of partition functions

B.1 Partition functions without spin: number of states

List of coefficients N,,, present in the expansion Z(q,t) = > .o >, Nmaq"t" of the
pure spinors partition function. We include the usual gauge invariant states (N, , > 0)
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as well as the extra states (N,,,, < 0) which are described using BRST or Cech/Dolbeault
cohomologies (of third degree).

n NO,n Nl,n Ng’n N37n N47n N57n Nﬁ’n

81 0 0 0 0 0 0 —2772

-7 0 0 0 0 0 —672 —19824

-6 0 0 0 0 —126 —4068 —70522

-5 0 0 0 —16 —592 —11408 —153408

-4 0 0 -1 —46 —1073 —16974 —205373

300 0 0 —16 —592 —11408 —152736

210 0 0 0 0 0 0

-1 0 0 16 992 11408 152736 1597520
1 46 1073 16974 205373 2031130 17130386
16 592 11408 153408 1617344 14228752 | 108567392

672 | 19824 | 320304 | 3716208 | 34489920 | 271222800 | 1872478496

0
1
2| 126 | 4068 | 70522 868012 8479364 69771888 | 501686294
3
4 | 2772 | 76824 | 1180602 | 13125484 | 1173525227 | 892615196 | 5979762150

(B.1)

B.2 Spin partition functions

For convenience, we here list the partition functions with spin dependence up to fifth

Virasoro levels. Partition functions at each level are of the form
- Ph (ta 53)

Zn(t,3) = REnE where (1 —1)%=[](1—te"?), S=(00001)=16 (B.2)

Hes

and Py(t, ) is a polynomial of ¢ with coefficients taking values in the representations of
SO(10). For brevity, we only write the numerator P,(¢). Again, formulas include the
extra states in the third cohomology.

Level 0:

Py(t,&) = (00000); — (10000)0t* 4 (00010);6t>
— (00001)16t> + (10000)t° — (00000),® (B.3)

Level 1:

Py(t,&) = ((01000)45 + (00000);) — (10010) 144" 4 ((00020)126 — (10000)10) >
+ (00010)16t*> — (00001)15¢> — ((00002)126 — (10000)10)°
+ (10001)144¢" — ((01000)45 + (00000)7)¢*® (B.4)
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Level 2:

P2(t> 5)
—(00000),¢~* + (00001)16t ™% — (00100) 20t >

Level 3:

+ (+(01010)560 4 (00010)16)¢~"
(10020)1050 + (01000) 45 4+ 2(00000);)2° + (+(00030)g72 — (10010)144)¢"
(11000)320 + (00020)126 — 2(10000)10) >

+(01010)560 + 2(00010)34) >
(01001)3560 — 2(00001)14)2°

+(11000)320 — (00002)126 4 2(10000)10)t°
(00003)g72 + (10001)144)t" 4 (+(10002)1050 — (01000)45 — 2(00000);)¢*

(01001)560 — (00001)16)¢°
00100),20t™° — (00010),6t™ + (00000) "2 (B.5)

+ (-
(-
(
(-
(
(-
(=
(

n
n
n
n
n
n
n

P3(t7 5:)

—(00010) 16t + (00011)g19t™* — (00110) 1200t + (01020)3606t >
+ (—(10030)5280 + (01010)560 + 2(00010) 1)t "
+ (+(00040)2772 — (10020)1050 + (02000)770 4 3(01000)45 4+ 3(00000); )°
+ (—(11010)3696 + (00030)g72 — 3(10010)144)t"
+ (+(01020)3696 — 2(11000)390 + 3(00020) 196 — 3(10000)19) >
+ (+2(01010)s560 + 3(00010)4) ¢*
+ (—2(01001)560 — 3(00001)16) ¢’
+ (—(01002)3695 + 2(11000)390 — 3(00002) 126 + 3(10000) 1) °
+ (+(11001)3696 — (00003)g72 + 3(10001)144)t"
+ (—(00004)2772 + (10002)1050 — (02000)770 — 3(01000)45 — 3(00000); ) ¢*
+ (+(10003)5280 — (01001)560 — 2(00001)45) ¢
— (01002)36062™ + (00101) 1200t — (00011)10t'* + (00001) 16t (B.6)
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Level 4:

Py(t, )
—(00020)126¢ ™% + (+(00021) 1440 — (00010)15)¢~°
+ (—(00120)6930 + (00011)210 — (00000) )¢ ~*
+ (+(01030) 17280 — (00110) 1290 4+ (00001)14)¢ >
+ (—(10040)20790 + (01020)3696 + (00020)126 — (00100)120) ¢~
+ (+(00050)9504 — (10030)s5280 + (02010)s064
+ (10001) 144 + 3(01010)560 -+ 4(00010)16)¢ "
+ (—(11020)23040 + (00040)9772 — 3(10020)1050
+ 2(02000)770 + 5(01000) 45 + 6(00000); )¢’
+(01030) 17280 — (20001 )720 — 2(11010)3696 + 3(00030)g72 — 5(10010)144) 2"
(12000) 4410 + 2(01020)3606 — 4(11000)320 + 5(00020)126 — 6(10000)10) >
+(02010)s064 + (00021) 1449 + 4(01010)560 + 6(00010)1)¢?
(02001)gg64 — (00012) 1440 — 4(01001)560 — 6(00001 )16 )¢
+(12000) 4410 — 2(01002)3696 4+ 4(11000)320 — 5(00002)126 + 6(10000)0 ) ¢°
(01003)172s0 + (20010)729 + 2(11001)3696 — 3(00003)672 + 5(10001) 144) ¢”
+(11002)53040 — (00004) 9775 + 3(10002) 1050
— 2(02000)779 — 5(01000)45 — 6(00000); )¢*
+ (—(00005)g504 + (10003) 5280 — (02001 )s064
— (10010) 144 — 3(01001) 560 — 4(00001 ) 1)’
+ (+(10004)20790 — (01002)3696 — (00002)126 + (00100)120)¢'°
+ (—(01003)17280 + (00101)1209 — (00010)6 )"
+ (+(00102)g930 — (00011)210 4 (00000);)¢"
+ (=
+(

+ (
+ (=
+(
+ (=
+(
+ (=
+

(00012) 1440 + (00001)16) %

00002);26t* (B.7)

75



Level 5:

P5(t, )
—(00030)g72t~"
( (00031)g930 — (00020)126 — (00100)120)¢ "
—(00130)29568 + (00021 )1449 + (00101) 1990 — 2(00010)14)t "
(01040)64350 — (00120)6930 — (00200)4125 + 2(00011)219 — (00000); )¢~
—(10050)gs640 + (01030) 17280 — 2(00110)1200 + (00001) 1)t~
(00060)2s314 — (10040)20790 + (02020) 46800 + 3(01020)3696 + 2(00020)126 )¢~
—(11030)102060 + (00050) 9504 — 3(10030)5280 + (11001)3606
+ 2(02010)s064 + 2(10001) 144 + 6(01010)560 + 8(00010)16)¢
+ (+(01040)g4350 — (20011)g085 — 2(11020)23040 + 3(00040) 2772
— 5(10020)1050 + (03000)7644 + 4(02000)770 + 10(01000)45 4+ 9(00000); )¢°
+ (—(12010)436s0 + 2(01030) 17280 — 2(20001)729 — 5(11010) 3696
+ 5(00030) 672 — 10(10010) 144)¢"
+ (4+(02020) 46500 + (00031)g930 — (20100).4312 — 2(12000) 4410
+ 5(01020)3606 — 8(11000)320 + 10(00020) 156 — 9(10000)10) >
+ (+(10110)ss00 + 2(02010)s064 + 2(00021) 1449 + 8(01010)560 + 9(00010) ) ¢
+ (—(10101)s800 — 2(02001)s064 — 2(00012)1449 — 8(01001)560 — 9(00001)16) ¢’
+ (—(02002) 46800 — (00013)g930 + (20100) 4312 + 2(12000) 4410
— 5(01002)3696 + 8(11000)320 — 10(00002) 16 + 9(10000)10 ) ¢°
+ (+(12001) 43630 — 2(01003)17250 + 2(20010)720 + 5(11001 ) 3606
— 5(00003)g72 + 10(10001)144) "
+ (—(01004)64350 + (20011)s085 + 2(11002)23040 — 3(00004 ) 2772
+ 5(10002) 1050 — (03000)7644 — 4(02000)779 — 10(01000)45 — 9(00000); )¢*
+ (+(11003) 102060 — (00005)9504 + 3(10003)5280 — (11010)3696
— 2(02001)s064 — 2(10010)144 — 6(01001)550 — 8(00001)15) 2"
—(00006)28314 + (10004)20790 — (02002) 46800 — 3(01002)3606 — 2(00002)126 ) ¢"
+(10005)gs640 — (01003) 17280 + 2(00101) 1909 — (00010)6) ¢
—(01004) 64350 + (00102)g930 + (00200)4125 — 2(00011)219 + (00000); )¢*
+(00103) 29565 — (00012)1440 — (00110)1200 + 2(00001 )6 )"
—(00013)g930 + (00002)126 + (00100)199) ¢
00003)g72t™° (B.8)
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C Reducibility conditions for pure spinor constraint

Here, we compute the reducibility coefficients for the pure spinor constraint up to fourth
order. In section .11l we performed the analysis up to second order and found:

Original constraint: G4 = M#X\, A, = (10000) (C.1)

First order reducibility: R5* = (7*A)a, As = (00010), ©2)
— GAlRﬁf = (AMY*A) (74 )a = 0 (strong equality) , .

Second order reducibility: R = (v*A)*, Az = (01000), (©3)

— R Rﬁg = (v*N)a(7,A)* = 0 (weak equality) .

Before proceeding to the third order reducibility, let us mention a subtle but important
technicality in the BRST construction [24].

C.1 Technicalities and a remark on second order reducibility

In order to kill the spurious part of the first generation BRST ghost, Rﬁf must be “com-
plete” in the sense that any function Fly, satisfying

GYFy =0 (C4)
can be written as
FAI = flffAQ + GBlfAlBl (C5>

for some fa, and fa,p,. In computing Rﬁf, one can always choose it so that fa,p, is
graded antisymmetric for arbitrary Fa, satisfying (C.4]). Since the pieces of Rﬁf that
lead to graded symmetric pieces in fy4, g, are irrelevant for (or decouples from) the BRST
construction, Rﬁf should be chosen to meet this condition.

Similarly, the second order reducibility coefficient Rﬁ;’ must be chosen so that the
indices A;B; in the relation

RyRY =GP fap ™~ 0 (C.6)

are graded antisymmetric. (There is no analogous symmetric property for the reducibility
coefficients at higher degrees.)

Now, in connection with this, let us explain a subtlety we have not mentioned when
we computed the second order reducibility coefficient Rﬁg in the main text. At first sight,
there seems to be another non-trivial relation at this order [7]

RERY ~0 o ("A)aA" = (M*A) =0,

C.7
% =A% eg = (00000). (€.7)
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However, the relation R’ decouples from the BRST construction as there is no é-closed
state constructed out of this relation. That is, although

S(C2R%)=CMGP fap® m0 —  §(0aA") = (M AN =0, (C.8)

there is no way to cancel the weakly zero term on the right hand side by adding an
appropriate term M®*. This means that there is nothing to kill by introducing the next
generation ghost, and so one should not introduce this ghost. (If one were to introduce
the corresponding ghost, the action of ¢ on that ghost would not be nilpotent.)

The reason why there is no d-closed operator of the form C4*R% + M* is related
to the violation of the assumption (C.6l). As can be seen from the equation (C.§]), one
cannot construct an appropriate M*® because fa,p,** = 7, is symmetric in A; By, or in
other words because ¢*c”n,, = 0.

This concludes our discussion of the subtlety in the BRST construction, and let us
return to the computation of third and fourth reducibility coefficients.

C.2 Third and fourth order reducibilities

Third order reducibility A little computation shows

. 1
RUERG~0  —  RyY = (nuiA)s + 5 M)
4 1
- g(ng[u%})‘)ﬁ - 6(781“/)\)@7 (09)

A, = (10010) = 144.
The indices newly appeared, which we underline for convenience, are v-traceless and hence
in the 144 representation.

Indeed, there is a corresponding d-closed element of the form C’AZ‘R’;;‘ + M4+ where
M4 is free of C43 = c#:

: 4 5 1, 3 1,
OASRQ? + MA = ngV('V A)s — ECM (Your ) + 5608 + 6¢ (0% )s - (C.10)
In order to kill this, we introduce the fourth generation ghost and extend the nilpotent
action of 9 as

SCM = CM Ry + MM
(C.11)

4, 1, 3 1,
— 0o, = gcpy(w N — 60“ (Vo N) g + §cp0@ + 66 (Y )5 -

Fourth order reducibility As we described in section L.1.2] the spin contents of the
ghosts-for-ghosts are dictated by the level 0 partition function Zy(t, ). At this level, we
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expect
As = (11000) + (10000) + (00010) = 320 + 10 + 126. (C.12)
Indeed, one finds the following reducibility coefficients

Rﬁia = (nﬁ[[g,yﬁﬂ)\)a’ ASa = 3207
Ry = (y"2N)%,  Ag, =10, (C.13)

Rﬁic = (7”)\)((@5061)), As. = 126.
Here, indices in (($7)) are symmetric and (spinorial) -traceless, and those in [u, vp] are
traceless, block-symmetric, and antisymmetric within each blocks.

Corresponding d-closed elements are
CA‘*RI‘Z‘M + MAse = (Uﬂuvvp]])\) + ?C[[ucwﬂ
4 3 ’

4
C’A“Rﬁi" + M4 = 0,,(7PA\)* — gcyc””, (C.14)
7
A c
CURYY + M™ = 05(¥'N)y) = 5757
and we shall introduce the fifth generation ghosts

Chs = (clmrel et i) = (320,10,126), (C.15)

and extend the d-action as usual.
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