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GRAPHON MODELS IN QUANTUM PHYSICS

ALI SHOJAEI-FARD

ABSTRACT. In this work we explain some new applications of Infinite Combinatorics to
Quantum Physics. We investigate the use of the theory of graphons in non-perturbative
Quantum Field Theory and Deformation Quantization which lead us to discover some new
interrelationships between these fundamental topics. In one direction, we study Dyson—
Schwinger equations in the context of the graph function theory of sparse graphs which en-
ables us to analyze non-perturbative parameters of strongly coupled Quantum Field Theories
via cut-distance compact topological regions of Feynman diagrams, Kontsevich’s x-product
and other new mathematical settings. In another direction, we initiate a theory of graph func-
tion representations for Kontsevich admissible graphs to formulate a new topological Hopf
algebraic formalism for the study of these graphs which brings some new useful mathemati-
cal tools to relate Deformation Quantization program with non-perturbative renormalization
program in Quantum Field Theory models.
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The research achievements of this work focus on some new applications of the theory of
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analytic graphs known as graphons, which has been initiated and studied in Infinite Com-
binatorics, to some fundamental topics in Quantum Physics namely, Quantum Field Theory
and Deformation Quantization. Recent research achievements in Mathematical Physics clari-
fied the appearance of a deep relation between the Connes—Kreimer Hopf algebraic approach
to the BPHZ perturbative renormalization process of Feynman diagrams and the Kontse-
vich’s x-product deformation machinery in a graphical calculus setting. In this work we aim

Kontsevich’s Deformation Quantization; Graphons; Non-Perturbative Topological Hopf Algebraic Renormal-
ization; Quantum Logics.
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to build some new mathematical tools which are useful to relate non-perturbative topolog-
ical Hopf algebraic renormalization of Dyson—Schwinger equations with the foundations of
Kontsevich’s Deformation Quantization formalism.

In Quantum Field Theory, the integral equations such as G =1+ [ I,G (with respect to
some integral kernel ) are obtained by the fixed point equations for Green’s functions with
the general form

(1.1) G:1+/Iﬁ//mﬁ///guﬁ_.

in a given (strongly coupled) physical theory ®. These fixed point equations are known as
Dyson—Schwinger equations and their solutions can be presented as formal power series in
running coupling constants. Therefore they could provide fundamental information for the
characterization of non-perturbative situations of gauge field theories on the basis of the
strength of running coupling constants. Thanks to the Connes—Kreimer approach to per-
turbative renormalization, these recursive equations have been reformulated in the language
of Hochschild cohomology of (commutative) bialgebras where we need to work on the chain
complexes such as (), -, Cn, b) derived from the Connes-Kreimer renormalization Hopf al-
gebra of Feynman diagrams Hyg(®). For each n, C,, is the vector space generated by linear
maps from Hpg(P) to Hpg(P)®" while the coboundary operator b is defined in terms of
the renormalization coproduct Apg such that the degree one homogeneous linear endomor-
phism B;r (known as the grafting operator) is the corresponding Hochschild one-cocycle with
respect to a given (1PI) primitive Feynman diagram ~. [1, 9, 40, 41, 42]

Dyson—Schwinger equations in physical theories with the vanishing S-function (such as
Conformal Field Theories) can be studied under a linear setting where Hopf subalgebras
generated by solutions of these equations are cocommutative. In physical theories with
non-zero f-functions such as (low energy) QCD, QFT-models with multi-flavors or theories
beyond Standard Model, we need to deal with much more complicated version versions of
these equations namely, (non-linear) Dyson—Schwinger equations. Asymptotic freedom prop-
erty in high energy QCD is useful to study these equations under higher order perturbation
theory while in low energy QCD the behavior of the physical system can only be understood
under a non-perturbative regime. The Hopf algebraic version of these equations has been
applied to study them in the context of some geometric objects encoded by some objects of
the Connes—Marcolli universal category of flat equi-singular vector bundles where at the end
of the day, we can analyze non-perturbative counterterms and other non-perturbative pa-
rameters derived from the BPHZ renormalization of Dyson—Schwinger equations via systems
of differential equations together with (ir-)regular singularities. Thanks to this geometric
treatment and the Manin renormalization Hopf algebra of Halting problem, the complexity
of non-perturbative computations in (systems) of Dyson—Schwinger equations has also been
considered. In addition, under an algebraic combinatorial setting, a new class of noncommu-
tative differential calculi has been formulated which characterize quantum integrable systems
in non-perturbative parts of gauge field theories. This noncommutative geometric approach
has been developed recently to build a new class of spectral triples which encode fundamental
geometric information of non-perturbative quantum motions. [10, 22, 24, 27, 28, 32, 37, 38, 39

Having no complete control on solutions of Dyson—-Schwinger equations in strong running
coupling constants (which include infinite formal expansions of Feynman diagrams together
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with increasing powers of running coupling constants) is the most difficult challenge in The-
oretical and Mathematical Physics. The renormalization of these expansions could generate
infinite number of counterterms which should be added to the original Lagrangian of the phys-
ical theory and therefore non-perturbative quantum field theories are non-renormalizable in
this context. Lattice models, numerical methods, higher order perturbation techniques, the-
ory of instantons and AdS/CFT correspondence are incapable for a complete analysis of real
time dynamical processes in strongly coupled systems. In a separate setting, recently, a new
application of Infinite Combinatorics to Quantum Field Theory has been discovered which
enables us to use graph functions for the analysis of the behavior of sequences of Feynman
diagrams and infinite formal expansions of Feynman diagrams which contribute to Green’s
functions. Real time dynamical process can be encoded by components or terms of these
sequences such that the application of the topology of graphons to these models enable us
to provide an accurate mathematical formalism for the real time study of Dyson—Schwinger
equations. Graphons, which give us a new view for the study of limits of sequences of Feyn-
man diagrams, can be useful to compute non-perturbative parameters in terms of the renor-
malization of a particular class of graph functions (for sparse graphs) and some new other
mathematical structures. As we know edge densities in increasing sequences of sparse graphs
converge to zero where by rescaling the density matrix in terms of a non-zero function of the
number of vertices we can determine asymptotic behavior of those graphs. This technique
is useful for us when we want to describe the unique solution of a given Dyson—Schwinger
equation as the limit of the sequence of its partial sums (as linear combinations of decorated
sparse graphs) which converges to a non-zero graph function. The main achievement is to in-
terpret solutions of Dyson—Schwinger equations as boundary objects of a compact topological
space of finite graphs where thanks to the Connes—Kreimer Hopf algebraic renormalization,
an algebraic non-perturbative renormalization program for Dyson-Schwinger equations have
already been formulated. These new tools could lead us to bring some alternative advanced
mathematical modelings for the study of the phenomenology of non-perturbative situations
of Quantum Field Theories with strong running coupling constants. [32, 33, 34, 35]

In this work we explain the graphon model approach to Dyson—Schwinger equations to show
the impact of these analytic graphs in the mathematical formulation of a non-perturbative
renormalization program. We show that the non-perturbative parameters derived from this
renormalization program can be also interpreted via Baker-Campbell-Hausdorff quantization
formula and Kontsevich’s x-product.

In Quantum Physics, Deformation Quantization gives the required mathematical model
for the description of quantum systems under Dirac’s correspondence principle on the ba-
sis of quantizing the space of observables on a fixed Poisson manifold via defining a new
associative multiplication as a deformation of pointwise multiplication in the direction of
the Poisson structure. The Kontsevich approach has provided a universal local deformation
quantization for any open domain &/ C R? in the context of a graphical representation for
bidifferential operators where we have the star product on C*(U) with the following Taylor
series presentation

(12) f*a g = Z% Z WKBK,a<f7 g)

n=0 """ KeGl,
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such that « is the Poisson structure of the configuration space, the interior sum is over all
Kontsevich admissible graphs of degree one with n internal and two boundary vertices, Bx o
are bidifferential operators and coefficients wg are weights which satisfy the cocycle equation.
Kontsevich admissible graphs, which are in an one to one correspondence with bidifferential
operators, are useful tools in working on graphical calculus for derivations. We can rewrite
the star product (1.2) as the following way

(1.3) frag= DY WwkBra(f,9), Bualf,9):= > Bralf9)

Keg® (R4) Kegn(RY)

such that g®(R?) contains all Kontsevich admissible graphs with finite orders while g"(R%)
contains those graphs of order n. The main challenge is to determine the weights wg to obtain
an associative product where analytic and combinatorial techniques have been considered to
deal with it. Kontsevich admissible graphs can be visualized by nodes and geodesics in
a closed disk under some conditions. We can characterize these graphs via two integers
namely, the number of internal vertices decorated by polyvector fields in terms of the action
of a bidifferential operator (which maps a graph and a set of compatible polyvector fields
to a multidifferential operator) and the number of boundary vertices decorated by smooth
functions. Thanks to this class of graphs, the existence of a morphism between the differential
graded Lie algebra of the deformation complex of the associative algebra of smooth functions
on R? and the Chevalley-Eilenberg differential graded Lie algebra of linear homomorphisms
between polyvector fields and polydifferential operators has been approved. [17, 18, 19, 20,
21, 30]

In this setting, some interesting interconnections between (universal) Kontsevich’s Defor-
mation Quantization ([18, 21]) and the Hopf-Birkhoff factorization in the Connes—Kreimer
approach to perturbative Quantum Field Theory ([1, 9, 42]) have been discovered where the
Connes—Kreimer BPHZ Hopf algebraic perturbative renormalization has been reformulated
on the basis of the Baker-Campbell-Hausdorff formula and the Kontsevich’s bidifferential
symplectic operator for quantum deformations. It is shown that the Hopf-Birkhoff factor-
ization of each Feynman rules character can be interpreted as a deformation of the pointwise
multiplication of some exponential functions via the Kontsevich’s x-product in the direction
of the linear Poisson bracket. [19, 31]

In this work we explain a new theory of graph functions for Kontsevich admissible graphs
to build an infinite version of these graphs which can be encoded by boundary objects of
a compact topological Hopf algebra structure on the space of finite Kontsevich admissible
graphs. This new Hopf algebraic formalism enables us to study Deformation Quantization
in the context of the Connes—Marcolli universal category of flat equi-singular vector bunldes.
In addition, it leads us to suggest a non-local generalization for Kontsevich’s Deformation
Quantization which can work at the level of infinite dimensional manifolds. Furthermore,
we formulate the Kontsevich’s x-product for a class of noncommutative associative unital
algebras derived from solutions of Dyson—Schwinger equations and their renormalization
procedure.

Generally speaking, passing from Classical Mechanics to Quantum Mechanics can be de-
scribed mathematically on the basis of changing the geometry and the logic. In Classical
Mechanics we have manifolds, groups and points together with the category of sets as funda-
mental tools for the analysis of classical systems. Points in a topological space together with
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some additional structures (such as Poisson brackets, symplectic forms, ...) determine a space
of states. Then each physical quantity has its value and each proposition of the form A € M,
represented in terms of some Borel subsets of the state space, has a truth-value true or false.
The Borel subsets of the state space form a natural Boolean g-algebra which means that the
Logic of classical systems is Boolean. In Quantum Mechanics we have Hilbert spaces, opera-
tors, noncommutative (Hopf) algebras and homomorphisms. The Kochen—Specker Theorem
tells us that there is no state space of a quantum system analogous to the classical state
space where physical quantities are represented as real-valued functions on the hypothetical
state space of a quantum system. This Theorem informs us that such a space does not exist
and it is impossible to assign values to all physical quantities at once and therefore it is
also impossible to assign true or false values to all propositions. However Birkhoff and von
Neumann built the foundations of an instrumentalist approach to Quantum Logic ([2]) where
upon measurement of the physical quantity A, we can find the result belong to M with a
determined probability. In their approach, pure states are represented by unit vectors in one
particular Hilbert space and propositions with the general form A € M are represented by
projection operators on this Hilbert space. These projections form a non-distributive lattice.
Non-distributive property, dependence on measurement tools and the use of real numbers
(as continuum) are the most fundamental problems of this instrumentalist approach and
its generalizations [8]. Thanks to modern categorical approaches to foundations of logics,
Quantum Logic has been rebuilt in terms of a topos of presheaves on the base category of
observables where we can reconstruct physical theories on the basis of search for a suitable
representation in a topos of a certain formal language. The base category of this topos model
is the category of von Neumann subalgebras of B(H). In this setting, the first order logic
(or propositional calculus) enables us to logically evaluate propositions with the general form
"the physical quantity such as A in a given physical system has a value in the subset M of
real numbers.” The key step is to find what truth-values such propositions have in a given
state of the system and how the truth-value changes with the state in time. This topos
model for the analysis of quantum systems, which has been developed by Isham, Doring
and Butterfield [8, 13, 14, 15, 16], can also provide higher-order logics for these systems.
However this topos model does not recognize the intrinsic difference between Quantum Me-
chanics and (non-perturbative) Quantum Field Theory and we need to pass from this topos
model to other models which are capable to recover real time processes in strongly coupled
systems with infinite degrees of freedom. Thanks to the graphon representation model for
Dyson—Schwinger equations, an alternative topos model for the logically analysis of (strongly
coupled) gauge field theories has been offered such that this new topos model (named it
as non-perturbative topos) is capable to show the impact of the strength of running cou-
plings in changing the logical evaluation procedure of physical quantities. This new topos
model can provide the logical notion for the understanding of non-locality and other intrinsic
foundations of non-perturbative regions of physical systems [34].

In this work we address this new topos model and then we provide a new modification of
this topos model which works for Kontsevich’s Deformation Quantization.
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2. FROM SPARSE GRAPHS TO GRAPHONS

In Infinite Combinatorics, graphons, which were introduced and developed as graph limits
of sequences of weighted finite (dense or sparse) graphs, posets, etc, have been applied in
several topics such as Graph Theory, Statistics, Machine Learning and Computer Science.
These analytic objects are useful for the study of extremely large graphs or networks in terms
of functional modelings, statistical estimation and random graph models. [4, 5, 6, 7, 25, 26]

In addition, the space of graphons together with additional topological and geometric
structures on it have already provided some useful mathematical tools for the study of non-
perturbative behavior of strongly coupled quantum systems. [12, 34, 35, 36|

A (bi)graphon can be introduced as a generalization of an edge weighted graph with a
continuum of vertices or as the convergent limit of a sequence of weighted finite graphs. We
can describe these analytic graphs in terms of real valued (symmetric) measurable functions
on 2 x € for a given probability space (€2, ug) where the graphon space is the quotient space of
all these (symmetric) (Lebesgue) measurable functions with respect to an equivalence relation
which identifies almost everywhere equal graphons. Bigraphons are graphons without the
symmetric property and they can be useful for us whenever we want to rebuild any Feynman
diagram in terms of the combinatorial information of its pixel picture presentation or other
labeled graphon models.

Suppose €2 be a separable atomless probability space with the probability measure pg.
Set WU as the topological space of all bounded (symmetric) measurable functions from
Q x Q to [0,1] (up to almost everywhere equal as the equivalence relation) with respect to
the semi-norm

(2.1) Wllew :=supaxpcaxal [ Wiz, y)dua(z)dualy)
X

with the corresponding metric
(2.2) dewt(V, W) :=1nf, ,||V? — W ||cut

known as cut-distance metric. The infimum in (2.2) is with respect to all measure-preserving
bijections of Q such that V?(z,y) := V(p(z), p(y)), W (z,y) := W(o(x),0o(y)) are versions
of the graphons V, W obtained by the adjacency matrix of a graph in which the vertices are
reordered. It is called relabling process.

Lemma 2.1. For any sequence {W,},>1 of labeled graphons there exists a subsequence
{W,, }i>1 and a labeled graphon W such that de.(W,,, W) converges to 0 when n tends to
infinity. [25, 26]

Relabeling process generates weakly isomorphic graphons and in fact, it defines an equiv-
alence relation & on the space of labeled graphons. Set [I¥] (called unlabeled graphon class)
as the class of all labeled graphons V' which are weakly isomorphic to W. In other words,
V € [W], iff there exist measure-preserving maps o, 7 such that V7 = W7 almost everywhere.
Therefore an unlabeled graphon is a representative of an equivalence class of graphons modulo
relabeling.

Theorem 2.2. The quotient space WB’H with respect to weakly isomorphic relation is a
compact Hausdorff metric space. [25, 26]
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Pixel picture presentations generated by finite simple graphs are the most fundamental
examples of graphons. The theory of graphons developed for dense graphs very fast and
then it has been also developed for the study of sparse graphs under density approximation
methods, different rescaling measure spaces and other metric spaces such as LP. The edge
densities of convergent sequences of sparse graphs tend to zero density graphs (which is al-
most everywhere the same as the 0-graphon) whenever the number of vertices goes to infinity.
If we want to obtain non-zero graphons from these sequences, then we can work on rescaled
or stretched versions of the canonical graphons which is closely related to changing the scale
of the density matrix (by a function of the number of vertices) which in no longer goes to
zero. The application of these methods shows that sequences of sparse graphs without dense
spots can converge to graphons with respect to the cut-distance metric after rescaling. In
this setting, it is possible to characterize sequences of sparse graphs on the basis of their as-
ymptotic densities and their limiting graphons. Therefore two graphs with different densities
may still have similar structure. [3, 4, 5, 6, 7]

Graphons are the key tools for the study of infinite graphs via the theory of random graphs.
A simple random graph G(n,p) is defined by taking n nodes and then connecting any two
of them with the probability p under an independent decision about each pair. Assigning
different probabilities enable us to build different random graph models. For example, the

uniform random graph is the result of inserting m edges in such a way that all possible ((7%))
choices are equally likely. We can use a given graph function as a functional which assigns a
probability value to add an edge for building a random graph.

Lemma 2.3. Each simple (finite) graph generates a random graph.

Proof. For a given simple graph G, we need to consider its graphon representation [Wg]
which is determined by using the adjacency matrix and pixel picture presentation. The
simple random graph R(G) can be defined in terms of adding an edge with probability
equals to its weight which is given by Wg. Now for a finite subset S,, := {s1, ..., s,} in [0, 1],
build a new weighted graph G(S, W¢) with n vertices such that the edge s;s; has the weight
We(si, 5). The graph

(2.3) R(n, We) = R(G(S,, We)
is a simple random graph model. 0

The probability of the graph G with the vertex set [n| and the edge set E(G) is obtained
by integrating over all possible choices of zi,...,z, € [n] and the chosen graphon function
model. In other words,

(2.4) / 11 W (o) [ 1= W] [] des
01" ek (i) £E(G) i€ln]

In general, a random graph model is a sequence of random variables Ry, R, ... such that for
each n, R, could be a graph with vertex set [n] such that its distribution is invariant under
relabeling of the vertices. In other words, isomorphic graphs have the same probability. In
graphon model, the distribution over graphs is determined by graph functions and therefore
a graphon W can be seen as the weight matrix of an infinite graph with the unit interval as
the vertex set while W (x,y) informs the weight of the edge between z,y.
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3. A GRAPHON MODEL APPROACH TO DYSON—SCHWINGER EQUATIONS

A single Feynman diagram presents a finite number of possible interactions among virtual
or elementary particles where its on-shell part obeys the mass-energy equation and conser-
vation of momenta while its off-shell part obeys no special rules or measurements. Feynman
rules allow us to associate an ill-defined iterated integral to each Feynman diagram. Infinite
formal expansions of Feynman diagrams (as polynomials with respect to running coupling
constants) are capable to encode all possible interactions among virtual and elementary parti-
cles in a physical theory. These expansions, which derived originally from Green’s functions,
can be studied on the basis of the self-similar nature of Green’s functions and their fixed
point equations known as Dyson-Schwinger equations. The Connes-Kreimer renormaliza-
tion Hopf algebra Hyc(®) = D, HIE%)(Q)) of Feynman diagrams of a given gauge field
theory @ is a connected graded commutative non-cocommutative Hopf algebra such that for
each n, HIE%)(CD) is the vector space of divergent 1PI n-loop Feynman diagrams and products
of Feynman diagrams with the overall loop number n. It is also possible to apply another
graduation parameter on Feynman diagrams with respect to the number of internal edges to
obtain a finite type graded structure on Feynman diagrams. [1, 9, 40, 42]

Lemma 3.1. For a fized probability space (2, pg), we can identify a unique unlabeled graphon
class with respect to each Feynman diagram I' in a physical theory ®.

Proof. For simplicity we work on the closed interval [0, 1] as the Lebesgue measure space.
The renormalization Hopf algebra Hpg(®) can be embedded in the Connes—Kreimer Hopf
algebra Hoi of non-planar rooted trees via applying decorations on trees. These decorations
encode some fundamental information of the physical theory ® such as types of particles
and interactions [1, 9]. For each Feynman diagram T, set tr as its corresponding non-planar
decorated rooted tree in Hox(®). We can build the unlabeled graphon class [Wr] in terms
of the pixel picture presentation of the finite simple weighted graph tp. If V (tr) as the set of
all vertices in the tree has n elements, then divide the measure space [0, 1] into subintervals
I, = [%, %) The boxes I; x I; are in one to one correspondence with the boxes in the
pixel picture presentation of tp. Define the labeled graphon Wr(z,y) =1 for (x,y) € I; x I;
whenever there exists an edge between vertices v;, v; in tr and define Wr(z,y) = 0 whenever

there is no edge between v; and v; in tp. O

We name Wt as the Feynman graphon corresponding to I' € Hgg(®P) on the probability
space (€2, ug). The vector space Sg;aphon generated by all this type of graphons can be
equipped with the renormalization Hopf algebraic structure. [34, 35]

Thanks to Feynman graphons, a sequence I'1, 'y, ... of Feynman diagrams is convergent iff
the corresponding sequence Wr,, Wr,, ... of Feynman graphons is cut-distance convergent to a
graphon W, when n tends to infinity. We use the notation I', for the infinite graph with the
corresponding graph function model W,. In other words, Wr_ € [W.] and W, € [Wr_].
We call this type of graphs "large Feynman diagrams”.

Dyson—-Schwinger equations are the main tools in dealing with infinite formal expansions
of Feynman diagrams. The Connes-Kreimer renormalization Hopf algebra is useful to re-
formulate Dyson—Schwinger equations in (strongly coupled) physical theories as recursive
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equations in Hochschild Cohomology Theory such that as the result, recently we have formu-
lated a new non-perturbative renormalization program for these equations in the language
of Noncommutative Geometry and graphons. [1, 24, 32, 40, 41, 42]

Primitive (1PI) Feynman diagrams such as  can determine a particular class of Hochschild
one cocycles Bj with respect to the coboundary operator b defined on the basis of the Kreimer
renormalization coproduct such that we have

<I'®..® Fn+1, bT(F) >i=< pr(Fl, ceey Fn+1), r >, pT(Fla . Fn) = Tt(I’l ®...R Fn)

(31) Le. < pT(Fb ...,FijH, ...,Fn+1),r >=<I"®..® Fn+1’ A](T(F)) > .

This coboundary operator, which can be rewritten by
(32)  bI(D):= (ide T)Ap(l) + Z (0) + ()™ () o I,

contributes to the reformulation of fixed point equations of Green’s functions. For a given
family {v,}n>1 of primitive (1PI) Feynman diagrams, it is possible to reformulate a class of
Dyson—Schwinger equations via the combinatorial equation

(3.3) =1+ (c(g)"wa B, (X™H)

n>1

as a recursive equation in Hpg(®)[c(g)] with respect to any running coupling constant ¢(g)
as a function of the bare coupling constant g. The unique solution of this equation has a
general form

(3.4) X(e(g)) = 3 (el9))" X

n>0
such that for each n > 1, X,, is a graph in Hgg(®) and X is the empty graph. Each X, is a
symbol for those Feynman diagrams which contribute to the order n of the (non-)perturbative
expansion of the Dyson—Schwinger equation (3.3). It is possible to build each X, under a
recursive Hochschild machinery in terms of graphs X; with lower orders. In other words, for
each n > 1, we have

(3.5) X, =Y wB]( > Xy oo Xy o)-
j=1

k1+...+k]'+1:n—j, k; >0

The renormalization Hopf algebra is not enough to encode the infinite object X (c(g)) under
strong couplings and for this reason a new topological enrichment of Hrg(®) has been defined
such that the resulting compact topological Hopf algebra can recover solutions of Dyson—
Schwinger equations as objects of the boundary region [35]. The collection { X, },>o provides
generators for a free commutative graded connected Hopf subalgebra such that the behavior
of running couplings (controlled by the S-function of the physical theory) could change its
(non-)cocommutativity. It can be seen that the amount of ¢(g) has a direct influence on
the behavior of the formal expansion X (c(g)) such that for small enough running couplings,
this expansion can be studied by higher order perturbation theory. In physical theories
with vanishing £ function, we need only deal with linear Dyson—Schwinger equations which
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generate cocommutative Hopf subalgebras however in physical theories with non-zero (-
functions, we need to deal with non-linear Dyson—Schwinger equations which generate non-
cocommutative Hopf subalgebras [1, 22, 23, 24]. We use the notation Hpgg for this type of
Hopf subalgebras.

Theorem 3.2. Thanks to the compactness of the space of graphons, we can interpret the
unique solution of each Dyson—Schwinger equation DSFE as the cut-distance convergent limit
of a sequence of random graphs associated to those Feynman diagrams which contribute to
the equation DSFE.

Proof. The representation of Feynman diagrams via the space of graphons is the key tool to
study Dyson—Schwinger equations in the context of random graph models. Thanks to the
n-adic metric,

(3.6) dadic(T1,Ta) v= 27T val(T) := Max{n € N: T € ) Hyd(®)}

k>n

on Feynman diagrams in Hpg(®), we can build a sequence of random graphs with respect to
the sequence {Y;, },n>1 of partial sums

(3.7) Vi =14+X1+ 0+ X+ o+ Xy, + o+ Xy

of the given equation DSE. A decorated version of the Connes—Kreimer Hopf algebra of non-
planar rooted trees provides a universal toy model for the Hopf algebra Hpgg which allows
us to represent finite formal expansions Y,, of Feynman diagrams via linear combinations of
decorated rooted trees [1, 9]. We build our model based on the rooted tree representation of
these partial sums. For each m, the random graph R,, is given by using vertices of the rooted
tree ty,, which is embedded into the closed interval (via a poset embedding p,,) such that with
the probability dugic(I'k,, ij) there exists an edge between v; and v; whenever pit(v;) € X,
and p;'(v;) € X, in the partial sum Y;,. The cut-distance convergent limit of the sequence
{Ry}m>1 when m tends to infinity is the non-zero Feynman graphon Wx corresponding to
the unique solution X of DSE. U

The next step is to explicitly identify graphon classes corresponding to solutions of Dyson—
Schwinger equations and for this purpose we need to apply rescaling methods in the theory
of graphons.

Theorem 3.3. For a fized probability space (£, ug), we can identify a unique unlabeled
graphon class with respect to each Dyson—Schwinger equation DSE in a (strongly coupled)
gauge field theory ®.

Proof. For simplicity we work on the closed interval [0, 1] as the Lebesgue measure space. The-
orem 3.2 and Proposition 4.6 in [35] tell us that for a given combinatorial Dyson—-Schwinger
equation DSE with the unique solution X and the corresponding sequence {Y;,},,>1 of its
partial sums, the sequence {Y,,}m>1 is cut-distance convergent to X. In other words, the
sequence {Wy, },>1 is convergent to Wx with respect to the cut-distance topology. The
density of the sparse graph X is almost zero while by rescaling of the probability space or
renormalizing the graphon models, we can remove this problem and obtain a non-zero unla-
beled graphon class [W]|. In the rest of the proof we build this non-zero Feynman graphon.
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The n-adic metric (3.6) defines a new function F,q;c,x on the set V(X)) of all vertices of X
as follows

(38) Fadic,X . V(X) X V(X) — R, (Ui,Uj) — dadic(Y;O;Y}O)
such that
(3.9) ig :=Min{s: v, € Y}, jo:=Min{t: v; € Y;}.

The value F,gic x(vi,vj) can be seen as the weight of the edge v;v; in the large Feynman
diagram X. In addition, for every vertex v; € V(X)) define

(310) Ww; = dadic(Y:ioa ]I) € [0, 1]
as the weight of v;. Finite expansions a, := ), ., wy (for each n > 1) determine subinter-
vals I, :== [a,_1, a,) for each n which define a partition for the closed interval [0, 1].

The non-zero Feynman graphon class [Wx] corresponding to the large Feynman diagram
X can be defined by graph functions with the general form

(3.11) Wy :[0,1] x [0,1] = [0,1], Wx(z,v) := dagic(Yio, Vo)

07 = Jo

whenever (z,y) € I;, x Ij,. O

Remark 3.4. 1t is also possible to build other non-zero Feynman graphons with respect to
solutions of Dyson—Schiwnger equations in terms of changing the measure, the probability
space or rescaling methods.

Corollary 3.5. We can describe the unique solution X of a given Dyson—Schwinger equation
DSFE as a sequence of random graphs or non-zero graphons which lead us to characterize the
original equation DSFE in terms of its asymptotic densities or limiting graphons.

Corollary 3.6. The Connes—Kreimer renormalization Hopf algebra Hpg(®) can be topolog-
1cally completed with respect to the cut-distance topology. The distance between Feynman
diagrams can be determined by their corresponding Feynman graphons. In other words,

(3.12) d(T1, 1) := dewe(Wr,, Wr,).
cut

The resulting compact topological Hopf algebra (denoted by HEE(P)) involves all Feynman
diagrams and solutions of Dyson—Schwinger equations under different running couplings c(g)
in the physical theory ®.

Thanks to Theorems 3.2, 3.3 and Corollary 3.6, it is now possible to introduce a distance
between Dyson—Schwinger equations. For given equations DSE; and DSE,, define

(3.13)  d(DSEy, DSEs) := deus(Wixpeg, » Wipsg,) = il codeut (W, (DsEL ), Wy (DSES))-

Theorem 3.7. There exists a non-perturbative generalization of the Connes—Kreimer BPHZ
Hopf algebraic renormalization which works on the unique solution of a given Dyson—Schwinger

equation in a (strongly coupled) gauge field theory ®.
Proof. The dual of the free commutative connected graded Hopf algebra Sg’;aphon

man graphons is the complex infinite dimensional pro-unipotent Lie group Gy, ;,,(C). Set

of Feyn-

Loop(Gg’m)hon(C)7 1) as the space of loops 7, on the infinitesimal punctured disk A* around

the origin in the complex plane with values in Gy, ., (C). The disk A* is determined by the
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dimensional regularization parameter. These loops can encode unrenormalized regularized
characters which act on Feynman graphons. The Hopf-Birkhoff factorization (v_,~y) gives
us the factorization (gzNS_, gz~5+) for the character ¢ such that ¢ is defined via the corresponding
Feynman rules character. For each finite Feynman diagram I, we have

(3.14) o*(Wr) := ¢*(T).

For each large Feynman diagram X as the solution of a given Dyson-Schwinger equation
DSE, ¢*(Wy) is defined as the cut-distance convergent limit of the sequence {¢*(Wy, ) }mso
such that for each m > 0, Wy, is the Feynman graphon corresponding to the partial sum
Y,, of X.

Applying these new regularized Feynman rules characters allows us to make the new se-

quence {Sﬁms(Wym)}mzl of Feynman graphons which is convergent with respect to the cut-
distance topology and we have

S5 (Wx) = limyooSh, (Wy,,) = limse Y Sh (W)

i=1

(3.15) = im0 D (~Run(G(Wx.) = B3 S, (W)0(W, ).

The Feynman graphon Sﬁms(WX) determines the non-perturbative counterterms generated
by the non-perturbative BPHZ renormalization of X.

In addition, we can also make the sequence {Sﬁms * gg(Wym)}mzl of Feynman graphons
which is cut-distance convergent and we have

(3.16) 4 *S(Wx) = limoSpy % 6(Wy,,) = limuee Y S+ (Wi, ).

i=1

Sﬁms * gE(WX) determines the corresponding renormalized values generated by the non-
perturbative BPHZ renormalization of X. O

Corollary 3.8. The universal Connes—Marcolli category EM of flat equi-singular vector bun-

dles ([10]) encodes the geometric information of the non-perturbative renormalization group
corresponding to the non-perturbative BPHZ renormalization of large Feynman diagrams.

Proof. We consider the category Egraphon of flat equi-singular Ggraphon((C) connections on the

regularization bundle. This category is equivalent to the category Repge,« 5 of finite dimen-
graphon

sional representations of the affine group scheme G* The universality of the category

SCM

graphon
which is a neutral Tannakian category and equivalent to the category Repy-, is applied

to recover £g, 1o, as a subcategory. Therefore we can obtain graded representations

(3.17) 7+ U(C) — Ggraphon(C)

such that the composition map 7 o rg (for rg : G, — U) encapsulates our non-perturbative
renormalization group in terms of objects of the category £°M. U
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The Isham—Doring topos approach does not recognize the impact of the strength of running
couplings in strongly coupled physical systems in the logical foundations of physical theo-
ries. Thanks to our new graphon model approach, cut-distance topological Hopf subalgebras
generated by solutions of Dyson—Schwinger equations can be applied for the construction
of a new topos model (named as non-perturbative topos) for the logical analysis of non-
perturbative parts of strongly coupled gauge field theories. Objects of the base category
of the non-perturbative topos allow us to logically evaluate propositions about topological
regions of Feynman diagrams which contribute to Dyson-Schwinger equations in a given
physical theory under different running couplings in real time process. This new topos model
enables us to logically recognize any change in physical systems during time process in terms
of changing the amount of running couplings. Representations in the non-perturbative topos
model can be applied to modify it for the description of higher-order logics in different gauge
field theories. This new topos model can lead us to understand better the non-locality of
non-perturbative regions. [34]

Theorem 3.9. There exists a topos which encodes the logical information about cut-distance
topological regions of Feynman diagrams which contribute to fized point equations of Green’s
functions in a given (strongly coupled) gauge field theory ®.

Proof. The non-perturbative topos Tg " is the topos of presheaves on a new base category
Cg Y. Objects of this base category are cut-distance compact topological Hopf subalgebras
HB“StE(C(g)) generated by solutions of Dyson—Schwinger equations under different running cou-
plings ¢(g) (with respect to the bare coupling constant g). The subobject classifier of this
topos, which has a natural Heyting algebraic structure, enables us to evaluate truth-values
propositions about topological regions of Feynman diagrams which contribute to Dyson—
Schwinger equations [34]. The structures of the spectral presheaf, the outer presheaf and
other logical properties of this topos have been discussed in another submitted work by the
author where this topos model has also been generalized for physical theories with multiple
bare coupling constants. ([l

4. A GRAPHON MODEL APPROACH TO KONTSEVICH’S DEFORMATION (QUANTIZATION

In this section, we explain a new graph function representation model for Kontsevich ad-
missible graphs to build a new Hopf algebraic formalism which can be topologically enriched
to recover an infinite version of these graphs. We then use these Kontsevich graphons to
formulate a new generalization of the Kontsevich’s x-product. We apply the Hopf algebra of
Kontsevich admissible graphs to address the foundations of a differential Galois theory and a
topos model for Kontsevich’s Deformation Quantization. We also show that non-perturbative
parameters generated by Theorem 3.7 can be computed via the Kontsevich’s x-product. Fi-
nally, we give a modified version of the Kontsevich’s x-product on a class of noncommutative
differential calculi originated from renormalization of Dyson—Schwinger equations.

Definition 4.1. A Kontsevich admissible graph is a simple oriented graph (with no multiple
edges or self-loops) which contains two classes of totally ordered disjoint sets of vertices called
internal vertices and boundary vertices (or leaves). There is also a total order on the set of
all edges. It is possible to present each Kontsevich graph via nodes and geodesics in a closed
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disk such that internal vertices are points inside the disk and boundary vertices are points
on the boundary region of the disk.

The graphical calculus works on Kontsevich admissible graphs to encode actions of poly-
differential operators on smooth functions defined on R%. The number of internal vertices
presents the number of polyvector fields and the number of boundary vertices presents the
number of smooth functions. Set g”¢(R%) as the collection of all Kontsevich admissible graphs
such as K which has ¢ internal vertices while |V (K)| — |[E(K)| — 1 = p and suppose g**(R%)
be the bigraded vector space generated by U, ,~o 874 (R4). A normal subgraph G of K is a
full subgraph such that the quotient graph H = K/G is a graph in g**(R?). It is possible
to rebuild the admissible graph K as an extension of H by G via inserting the subgraph ¢
inside H with respect to the types of vertices. The notation G — K — H is used to present
the normal subgraph and the extension process. The original graph K can be rebuilt by the
insertion of the graph G into a vertex of the quotient graph H. The type of the vertex of GG
which is inserted into determines the type of the extension. [17, 18, 20]

Lemma 4.2. For a fized probability space (€2, pg), we can identify a unique unlabeled graphon
class with respect to the combinatorial information of each Kontsevich admissible graph in
g**(R7).

Proof. For simplicity we work on the closed interval [0, 1] as the Lebesgue measure space.
For each graph K with n number of internal vertices vy, ..., v, and m number of boundary
vertices v,41, ..., Untm, We can build its corresponding pixel picture presentation by dividing
the unit square into n + m small squares or boxes I; x I;, 1 < 1,5 <n+m. The box I; x I;
is black or white whether there is an edge between corresponding vertices or not. Define the
labeled graphon Vi (z,y) = 1 for (z,y) € I; x I; whenever there is an edge (or geodesic)
between the vertices v; and v; and otherwise define Vi (z,y) = 0. O

We name Vi as the labeled Kontsevich graphon corresponding to the graph K € g**®(R%)
on the probability space (2, uq). The class [Vk] collects all weakly isomorphic graphons with
respect to different relabeling. Set Sggg‘fm(Rd) as the vector space generated by this type of
graphons.

A sequence Ky, Ks, ... of finite Kontsevich admissible graphs is convergent iff the cor-
responding sequence Vi, Vk,,... of Kontsevich graphons is cut-distance convergent to a
graphon V., when n tends to infinity. We use the notation K, for the Kontsevich admissible
graph with the corresponding graph function model V, and call it "large Kontsevich graph”.
In other words, Vik_ € [V and V, € [V ]. It is important to apply rescaling methods to
ignore 0-graphon as the convergent limit of these sparse type graphs.

Remark 4.3. The large Kontsevich graph K, generated by the information of the graphon
V. might contain infinite number of internal or boundary vertices or infinite number of edges.

The renormalization Hopf algebra Hpg(®) has a Lie algebraic source in terms of the inser-
tion operator on Feynman diagrams. The insertion operator can be described by Hochschild—
Kontsevich products e, o. These products, which are defined on the space g**(R?) in terms
of internal and external extensions of Kontsevich admissible graphs, are given by H e G :=
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Y Gk, intermal T a0d Ho G =3 " 1o by undary =K which are (0, —1) degree and bi-
graded products, respectively. We have the quotient graph K/G = H which is the result of
shrinking the normal subgraph G. [9, 18, 19]

We can equip the bigraded vector space g**(R%) with the cut-distance topology to obtain
a new topological vector space presented by g&s (RY).

It is now possible to extend products e, 0 to the level of large Kontsevich graphs which
will be useful to extend the insertion operator to the level of large Feynman diagrams and
find the Lie algebraic origin of the topological Hopf algebra HEg (P).

Lemma 4.4. The products e, 0 are well-defined on large Kontsevich graphs.

Proof. Suppose { K, },>0 be a sequence of Kontsevich admissible graphs which is convergent
to the large Kontsevich graph K, and {G,, },,>0 be another sequence of Kontsevich admissible
graphs such that for each n, G,, is a normal subgraph of K,,. Suppose the sequence {G,, },,>0 is
convergent to the large Kontsevich graph G.. We can consider a new sequence {H,},>0 :=
{K,/G}n>0 of quotient graphs which is cut-distance convergent to the large Kontsevich
graph H,,. Thanks to Kontsevich graphon representations Vi, Vo, and Vi /., we can

show that Vi € [Vk./q..] and therefore Hy, = Ko /Go. Now for each n, we can define
(4.1) H,eG, = > +K,, H,oG, = > +K,,
Gn—K,—H,, internal Gp—Kn—Hy, boundary

which lead us to define H,, @ G, as the cut-distance convergent limit of the sequence {H,, ®
Gn}n>o and define Hy, o G as the cut-distance convergent limit of the sequence {H,, o

Gn}nZO- ]

One important note is that H,, @ G, or Hy, o G, might have infinite terms in their series
where thanks to the compactness of the topology of graphons, these infinite series can be
interpreted as objects in the boundary of the space gos (RY).

Theorem 4.5. There exists a graded Hopf algebra structure on gu(R?) which is compatible
with normal subgraphs and cut-distance topology.

Proof. For a given Kontsevich admissible graph K, define
(4.2) AK)=I®K+K®l+» GoK/G
G

such that the sum is over all normal subgraphs of K and I is the empty graph. Terms in the
above formal expansion are in the one to one correspondence with all possible internal and
boundary extensions of normal subgraphs of the original graph K. The bigraded property of
go (RY) allows us to define a new grading structure

(43) gcut Rd @ gguqc Rd
pt+g=n

and then formulate g2, (R?) as the graded vector space generated by J, -, g% (R?) and
equipped with the cut-distance topology. Thanks to this graduation parameter, we can
obtain the required antipode recursively and achieve the promising Hopf algebra structure.
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Kontsevich graphons (i.e. Lemma 4.2) are useful to topologically complete this Hopf
algebra. For any Kontsevich graphon Vi € Sggg%on(Rd) corresponding to a finite graph K,
define

(4.4) A(Vg) =Vi@ Ve +Vk @ Vi+ Y Vo @ Ve

such that Vj is the O-graphon and the sum is controlled by Kontsevich graphons associated
to normal subgraphs of the original graph K under internal and external extensions. For
any large Kontsevich graph K, with the corresponding Kontsevich graphon Vik__ as the cut-
distance convergent limit of the sequence {K,},>o of finite Kontsevich admissible graphs,
apply this coproduct to define A(Vi_ ) as the cut-distance convergent limit of the sequence
{A(Vk,)}n>0. Thanks to the graduation parameter and using the same idea, we can also
define the antipode for large Kontsevich graphs. In addition, the compactness of the cut-
distance topology shows us that the defined coproduct and antipode (as linear operators) are
bounded which means that they are continuous operators.

We use the notation HZ® (R?) for the resulting topological Hopf algebra of Kontsevich
admissible graphs corresponding to Deformation Quantization program in C*°(R?) which is
generated by g2, (R?) at the vector space level. It is a graded connected free commutative
non-cocommutative Hopf algebra. The correspondences K +— Vi and {K,, },>0 — Vi make
Hopf algebraic homomorphism between Hopf algebras H (R?) and SKont —(R9). O

graphon

Remark 4.6. The distance between Kontsevich admissible graphs Ki, K3 can be defined by
their corresponding Kontsevich graphons. In other words,

(45) d(K17K2) = dcut<VK17VKg)'

The cocycle equation in Deformation Quantization informs us the existence of a fundamen-
tal relation between the Kreimer renormalization coproduct on Feynman diagrams (which
decomposes each Feynman diagram based on disjoint unions of (1PI) divergent Feynman sub-
diagrams) and normal subgraphs of Kontsevich admissible graphs [18, 19, 30]. Therefore the
Connes—Kreimer Hopf algebra of non-planar rooted trees (equipped with a particular class

of decorations) can provide a universal model for Hopf algebras Hi, (R?) and SEon | (R?).

Lemma 4.7. (i) A sequence of Kontsevich admissible graphs is convergent if it is a cut-
distance Cauchy sequence.

(ii) Each large Kontsevich graph K., determines a cut-distance convergent sequence of
finite random graphs.

Proof. (i) It is a direct result of the definition.

(i) Let Vi be the corresponding Kontsevich graphon. For each n, we can define a finite
random graph G(S,, Vi_ ) which contains n nodes S, := {s1,...,$,} in [0, 1] such that the
existence of an edge between s; and s; is determined by the probability Vi_ (s;,s;). Thanks
to [25, 35], the sequence {R(n,Vk_)}n>1 (such that R(n, Vi) = R(G(S,, Vk.)) is cut-

distance convergent to Vi . U

Corollary 4.8. The non-perturbative parameters generated by Theorem 3.7 can be reformu-
lated in terms of the Kontsevich’s x-product.



GRAPHON MODELS IN QUANTUM PHYSICS 17

Proof. Thanks to Lemma 3.1, Theorem 3.7 and Section 6 in [31], Kontsevich graphons in the
sequences {Sf%m (Wy,,) }m>1 and {Sﬁms % (Wy,,) }m>1 can be rewritten in terms of the Baker-

s

Campbell-Hausdorff formula for the Hausdorff series. This enables us to view the Hopf-
Birkhoff factorization Sﬁms *gzg = q~5+ via the deformation star product Sﬁms*gg of the pointwise

multiplication of the exponential functions Sﬁms and ¢. Now thanks to Theorem 4.5, Sfims *

¢(Wx) can be determined as the convergent limit of the sequence {ngs * O(Wy, ) yms1. O

It is possible to equip gt (R?) with the Lie algebra structure defined by the commutator
[.,.J]o which gives us the degree (1,0) differential operator d; on large Kontsevich graphs.
We can also extend the Kontsevich’s vertical differential operator on g2 (R?) to define the
differential operator d, on large Kontsevich graphs. For a given large Kontsevich graph
K, corresponding to the Kontsevich graphon [Vi_ ], the (0,1) degree differential operator
dy(Ky) is defined as the cut-distance convergent limit of the sequence {ds(K,)},>0 such
that for each n, we have do(K,) == > ..,1 k. internal £Ln = K @ e which is expanding the
internal vertices of K,, by the insertion of an additional edge.

Corollary 4.9. The cut-distance topological space of Kontsevich graphons can be equipped
with the Hochschild—Kontsevich differential graded Lie algebra structure.

Proof. We work on the graded topological vector space g¢,(R?) such that the differential
operators dy,d, commute on the total complex g;{;t(Rd). Therefore d := d; £+ dy is a total
differential operator which is compatible with the graded Lie bracket [.,.]o. Thanks to Lemma
4.4, we can lift the differential operators di, ds onto the level of Kontsevich graphons. We
have

(4.6) Vic o Vi = Viger, Vi o Vi :=Vgor, di(Vk):= Vi), da(Vk) = Vi)
0

Thanks to the built Hopf algebraic formalism, it is now possible to give a new geometric
description for Deformation Quantization in the context of differential systems and Riemann-
Hilbert correspondence. This alternative geometric setting improves our knowledge about the
relation between Connes—Kreimer—Marcolli approach to perturbative Quantum Field Theory
and Kontsevich’s Deformation Quantization.

Theorem 4.10. The collection of all Kontsevich admissible graphs which contribute to Defor-
mation Quantization in C°(R?) determines a subcategory of the Connes—Marcolli universal
category EM.

Proof. We work on the graded connected free commutative Hopf algebra Hgon (R?) and con-
sider the category of flat equi-singular Gk ge(C)-connections on the regularization bundle
such that the complex Lie group Ggonre(C) is the space of characters of Hyont (RY). This

category is equivalent to the category Repg- . of finite dimensional representations of the
Kont,R

affine group scheme Gj, . ... Now thanks to the universal property of the neutral Tannakian
category EM of flat equi-singular vector bundles with respect to commutative Hopf algebras

([10]), we can embed Repg- , inside £ M t0 identify the subcategory Exonra on the basis
Kont,R

of a new class of graded representations such as v : U(C) — Gggyere Which encode flat
equi-singular Gy g (C)-connections. O
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Thanks to Kontsevich graphons, it is possible to build a new topos model (originated from
non-perturbative topos) which encodes the logical foundations of (non-)local Kontsevich’s
Deformation Quantization.

Theorem 4.11. The non-perturbative topos provides a topos model which can evaluate logical
propositions about Kontsevich admissible graphs and large Kontsevich graphs which contribute
to Deformation Quantization in C*°(R?).

Proof. We need to change the base category of the non-perturbative topos in the way that
it could recover Kontsevich admissible graphs. For this purpose we define the base category
Cron o as the category which contains HZ (R?) and its all topological Hopf subalgebras as
objeéts. Then we can build TrIl{?)nt,Rd as the topos of presheaves on Irg())l;llt,Rd' The subobject
classifier of T%";mw, which has the Heyting algebraic structure, can evaluate logical propo-
sitions about compact cut-distance topological regions of Kontsevich admissible graphs and

also large Kontsevich graphs which live in the boundary regions. O

n

In the final step of this section, we are going to apply this graphon model to formulate the
Kontsevich’s deformation star product in a non-perturbative setting.

For a given Poisson structure «a, the Kontsevich star product (1.2) with the general form
[ *a g == P(a)(f ® g) is an associative product on C*°(R?)[[h]] as a deformation quanti-
zation of the commutative pointwise product with respect to o [21]. For finite dimensional
configuration spaces, the Poisson tensor is a section of the vector bundle A*(T'(M)) which
defines a skew-symmetric form on each contangent space T (M). For infinite dimensional
configuration spaces, it is possible to define the Poisson structure on a unital subalgebra
of C*°(M) (or the class of admissible differentials) with respect to the given locally convex
manifold M. [17, 29]

Thanks to Kontsevich graphons, it is now possible to define the star product deformation
for the level of infinite dimensional configuration spaces (such as R*) which are equipped
with weak Poisson structures.

Lemma 4.12. The Kontsevich’s x-product is well-defined for R*.

Proof. We present locally the (weak) Poisson structure « in an open subset ¢ of R* via the
infinite formal expansion

(47) a = Z oz”(x)@z VAN aj

ij=1
with respect to local coordinates x', 22, .... Kontsevich graphons are useful to describe the
space of polydifferential operators which act on real valued smooth functions on R*. For
each n, let Py, . ..) be the orthogonal projection map which projects the points (x1, 5, ...)
in R* into the n-dimensional subspace generated by the components (z1, ...,x,). For each

f € C>(U), we can identify f:,..x) as the smooth function on an open subspace of R™ such
that

(48) f = f(m,...,xn) o P(atl,...,:r:n)-
Thanks to Remark 4.6, for each f,g € C*(U), define f %, g as the cut-distance convergent
limit of the sequence {fz, . o) *ST i (2)0A0; Y1 2n) fn>0- O
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Corollary 4.13. The Kontsevich’s x-product is well-defined for the topological Hopf algebra
Hig (RY).

Proof. The unital noncommutative associative convolution algebra (L(Hiyon(R?), C), *) con-
tains the Lie algebra Liek,p ge(C) of the complex Lie group Gyepnri(C) of characters. This
Lie algebra is generated by infinitesimal characters (or complex derivations) Zx indexed by
Kontsevich admissible graphs K and defined by Zx (L) = k. The exponential map

(49) LleKont,Rd (C) - GKont,Rd ((C)v €xXp (ZK) = Z nﬂ(

n>0

gives the bijection between this Lie algebra and its Lie group. Thanks to the associative
property of the convolution product, we can consider the commutator [.,.], (with respect to
the convolution product *) as the Poisson structure on L(Hgon(R?), C) such that infinitesimal
characters Zx can be considered as Hamiltonian derivations.

We can modify Kontsevich admissible graphs for the space of (infinitesimal) characters and
polyderivations defined with respect to the exponential map exp*. Internal vertices are sym-
bols for polyvector fields. Boundary vertices are symbols for characters. The multiplication
of m characters is represented by the graph with no internal vertices and m boundary ver-
tices. The identification of m-vector fields with polyderivations is represented by the graph
with one internal vertex, m boundary vertices and m edges.

Thanks to the graduation parameter of the Hopf algebra of (large) Kontsevich admissible
graphs, for each character ¢, define ¢, as its projection into the subalgebra generated by
Hl(g)nt(]Rd). Now define the star product ¢ ), ¢ on the space of characters as the cut-distance
convergent limit of the sequence {@w) *[,1. Y(n) }n>0-

In addition, for a given large Kontsevich graph K, as the convergent limit of the sequence
K1, Ko, ... of finite Kontsevich admissible graphs such that for each n, K, € Hl(gl)m(Rd), we
have

This extends the star product %|_j, on the topological Hopf algebra Ht (R?). O

*

Remark 4.14. For any large Kontsevich graph K., as the convergent limit of the sequence
{K, }n>0, there exists an infinitesimal character Zx_ which can be added as a new generator
to the Lie algebra Liek,u ge(C) to provide a topological enrichment of this Lie algebra with
respect to the cut-distance topology.

In [38] a new class of noncommutative differential calculi has been built with respect to
the BPHZ renormalization of Dyson—Schwinger equations. They are equipped with a family
of Poisson structures originated from renormalization or regularization schemes.

Consider a given Dyson—Schwinger equation DSE(c¢(g)) in a strongly coupled gauge field
theory ® with the corresponding non-cocommutative Hopf subalgebra Hpgg(c(g)). The renor-
malization program given by Theorem 3.7 is on the basis of dimensional regularization (with
the regularization algebra Ag, of Laurent series with finite pole parts) and minimal sub-
traction (with the renormalization map Ry, : Aqr — Agr which projects each series into its
pole parts). We can deform the convolution algebra L(Hpgg(c(g)); Adr) of linear maps by the
Rota—Baxter algebra (Aqy, Rus). For this purpose we first lift the map R,,s onto the space
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L(Hpsk(c(g)), Aar) (presented by R(¢) := Rps 0 ¢) and then for each real number A we define
a class of Nljenhu1s maps on L(Hpsg(c(g)), Aar) given by

(4.11) Ry:=R-)R st. R:=Id—R.

These Nijenhuis maps enable us to define a new class of noncommutative associative products
on L(Hpsg(c(g)), Aar) given by

(4.12) ¢1 0 Q2 1= R(¢1) * P2 + ¢1 * Ra(d2) — Ry * ¢2).
The commutator with respect to these products can be given by the relation
(4.13) (@1, da]x = [Ra(1), da] + [¢1, Ra(2)] — Ra[¢1, ¢2]

which leads us to define new Lie algebraic structures. We use the notation C’/I\DSE(C(‘(])) for

this class of noncommutative associative unital deformed (Lie) algebras. Thanks to the
Dubois-Violette approach to noncommutative differential geometry via Hamiltonian deriva-
tions ([11]), we can build a class of differential graded Lie algebras (Q'(C?SE(C(g))), dy) such
that their corresponding noncommutative deRham complexes could determine Poisson struc-
tures {., .} and related noncommutative symplectic geometries [34, 38]. If we use Kontsevich
graphons, then we can define the Kontsevich’s x-product with respect to deformed Poisson
structures {., .}, which can be defined weakly on the space L(Hpsg(c(g)): Adr)-

Corollary 4.15. For a given Dyson—Schwinger equation DSE(c(g)) in a strongly coupled
physical theory, the Kontsevich’s *-product is well-defined for the topological Hopf algebra

HESk(c(g))-

Proof. Consider the subspace Ochar) Hpgg(c(g)) of the noncommutative associative unital de-

formed algebra C’DSE ) which is the Lie algebra of infinitesimal characters or derivations

into Ag;. ObJects of this Lie algebra are linear maps in L(Hpsg(c(g)), Aar) Which obeys the
Leibniz rule with respect to the deformed product oy. This space 1s generated by infinites-
imal characters Zr indexed by graphs I' € Hpgg(e(g)) and defined by Zp(I') := opr. The
exponential map

ZO/\TL
n!

(414) 8char,\HDSE(C(g)) — Char,\HDSE(C(g)), eXpOA(Z> = Z

n>0

gives the bijection between this Lie algebra and its corresponding Lie group. The associative

property of the algebra CDSE ) shows that the commutator [.,.]n (with respect to the

DSE©(9) guich that infinitesimal characters Zr can

product o)) is the Poisson structure on C|
be considered as Hamiltonian derivations.
Thanks to the cut-distance topological completion of the graded Hopf algebra Hpgg(c(g))s
namely, H]guStE(c(g)), we can now formulate the star product ¢ ;, ¢ on the space of characters
of the Hopf algebra Hpgg((g). For each character ¢ € charyHpgg((g)), define ¢, as the
projection of the character ¢ into the subalgebra generated by the generators Xy, Xn
of the unique solution of the equation DSE with the corresponding infinitesimal characters
Zx,y .., Lx, . For each ¢, w € CharAHDSE( , define ¢ %[, j, ¥ as the cut-distance convergent

limit of the sequence {¢(n) %1, V) fn>0- For the large Feynman diagram X (as the unique
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solution of DSE) which is cut-distance convergent limit of the sequence {Y;,} >0 of its partial
sums, we have

O

Corollary 4.16. For a given Dyson—-Schwinger equation DSE(c(g)) in a strongly coupled
physical theory, the Kontsevich’s x-product is well-defined in the differential graded Lie algebra
(Qo(C;\DSE(C(Q))), d)\).

Proof. Thanks to [38], the symplectic structure generated by noncommutative deRham com-

C?SE(C(Q ) could determine the required Pois-

son structure {.,.},. The graduation parameter enables us to define x{ 3, on Qe (CD5F9)y

as the cut-distance convergent limit of star products on the components Q”(C?SE(C(Q ))). O

plex on the space of Hamiltonian derivations of

5. CONCLUSION

This research work was trying to show some new applications of graphon models to fun-
damental topics in Quantum Physics. On the one hand, Feynman graphons have been
concerned to describe a non-perturbative topological Hopf algebraic renormalization pro-
gram for solutions of Dyson—Schwinger equations. On the other hand, Kontsevich graphons
have been introduced to obtain a new topological Hopf algebraic formalism for the study
of Kontsevich’s *-product in a non-local setting. On the third hand, these graphon mod-
els have been applied to show some new interconnections between Kontsevich’s Deformation
Quantization and Hopf algebraic approach to Quantum Field Theory under perturbative and
non-perturbative settings.

Generally speaking, we can classify non-perturbative quantum physical systems in terms of
the behavior of running coupling constants which can be encoded by S-functions. In one class
we have physical theories with negative g-functions such as high energy QCD, in another
class we have physical theories with zero Sg-function such as Conformal Field Theory and
in other class we have physical theories with positive S-functions such as low energy QCD,
gauge field theories beyond Standard Model with multi-flavors. Dyson—Schwinger equations
in physical theories with zero [-function can be reduced to linear versions such that lat-
tice models, Borel resummation, large N limits, numerical methods, theory of instantons
and AdS/CFT correspondence are useful tools in dealing with these equations to compute
physical parameters. However these methods can not provide a complete understanding
of Dyson—Schwinger equations under strong running coupling constants in physical theories
with non-zero g-functions. The Hopf algebraic approach to Quantum Field Theory together
with graphon models enable us to reformulate Dyson—Schwinger equations in the context
of new mathematical settings where now we can describe these non-perturbative equations
as objects of the boundary of a compact topological space of finite graphs. This graphon
model approach gives us the opportunity to compute non-perturbative parameters generated
by renormalization of Dyson—Schwinger equations under new algebraic and geometric set-
tings. In addition, it provides a new topos model for the analysis of the logical differences in
non-perturbative physical systems under changing running coupling constants during time
process. Furthermore, graph function theory of sparse graphs has been applied to formulate
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a new Hopf algebraic formalism for Kontsevich’s Deformation Quantization program which
already led us to find some new interrelationships between this fundamental theory in Quan-
tum Physics and mathematical foundations of non-perturbative Quantum Field Theory. The
achievements of this research effort can also be useful to present a non-local generalization
of Kontsevich’s Deformation Quantization program.

Acknowledgement. The author is grateful to Institut des Hautes Etudes Scientifiques
for the support and hospitality.
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