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Abstract

Configuration (x-)space renormalization of euclidean Green functions
in a massless quantum field theory is reduced (by generalizing Hörmander’s
approach [H]) to the study of extensions of associate homogeneous distri-
butions. Primitively divergent graphs are renormalized, in particular, by
subtracting the residue of an analytically regularized expression. The
renormalized Green functions are again associate homogeneous distribu-
tions that transform under indecomposable representations of the dilation
group.

∗Preliminary version.
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1 Introduction.

Fourier transform is a prime example of the now fashionable notion of duality. It
maps a problem of integrating large momenta into one of studying the short dis-
tance behaviour of correlation functions. Divergences were first discovered and
renormalization theory was developed for momentum space integration. E.C.G.
Stueckelberg and A. Petermann, followed by N.N. Bogolubov, a mathematician
who set himself to master quantum field theory (QFT), realized that (perturba-
tive) renormalization can be formulated as a problem of extending products of
distributions, originally defined for non-coinciding arguments, and that such an
extension is naturally restricted by locality or micro-causality (a concept intro-
duced in QFT by Ernst Stueckelberg [Stu] and further developed by Bogolubov
and collaborators – for a review and references see [BS]). The idea was taken
up and implemented systematically by H. Epstein and V. Glaser [EG] (see also
parallel work by O. Steinmann [St]). It is conceptually clear and offers a way to
develop perturbative QFT and operator product expansions on a curved back-
ground [DF, BF, BFV, H07, H08, HW, HW08]. It is therefore not surprising that
it attracts more attention now than half a century ago when it was originally
put forward – see e.g. [G-B, G-BL, FG-B, EGP, FHS, K, N, K10, B10] as well
as the recent survey [B] which contains over 80 references. Papers like [BBK]
reflect, surely, later developments in both renormalization theory (Kreimer’s
Hopf algebra structure – see e.g. [Kr] – and Connes-Kreimer’s reduction to the
Riemann-Hilbert’s problem [CK]) and the mathematical study of singularities
in configuration space [FM, DP]. Recent work on Feynman graphs and motives
[BEK, BK] also generated a configuration space development [Ni, N, CM].

A starting point in our work was the observation (cf. [BF], [HW], [G-B],
[DF]) that Hörmander’s treatment of the extension of homogeneous distribu-
tions (Sect. 3.2 of [H]) is tailor-made for treating the ultraviolet (UV) renormal-
ization problem, that is particularly transparent in a massless QFT. In order
to explain the main ideas stripped of technicalities, we begin with the study
of dilation invariant euclidean Green’s functions (the only case considered in
[BBK]). Furthermore, we concentrate on the UV problem excluding integration
in configuration space by considering all vertices as external.The results extend
to Minkowski space causal Green functions as sketched in Sect. 4. It is, on
the other hand, known that the leading UV singularities in a massive QFT are
given by the corresponding massless limit. The full study of the renormalization
problem in the massive case requires, however, additional steps and is relegated
to future work.

We start with a framework that differs from standard QFT (cf. [Ni]). We
separate the renormalization program from concrete (massless) QFT models
and state it as a mathematical problem of extension of a class of distributions.
In Sects. 2 and 4 we formulate general axiomatic conditions for our construction
(corresponding to euclidean and to Minkowski space theories, respectively), such
that when combined with a given Lagrangian model it reproduces the result of
Epstein-Glaser for the renormalized time ordered products. To this end we
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introduce a universal algebra of rational translation invariant functions in RDn,
where n runs in N while D, the space-time dimension, is fixed (D = 4 being
the case of chief interest). We assume that this algebra is generated by 2-point
functions of the type

Gij(xij) =
Pij(xij)
[x2
ij ]µij

, xij = xi − xj , µij ∈ N , (1.1)

where Pij are homogeneous polynomials in the components of the D-vector xij .
We note that the renormalization of any massless QFT can be reduced to the
extension of (a subspace of) rational functions G =

∏
i<j

Gij(xij) of this alge-

bra to globally defined distributions. The correspondence between the rational
functions and the global distributions is called a renormalization map. Each
expression

GΓ =
∏

(ij)∈Γ

Gij(xij) , (1.2)

can be represented by a decorated graph Γ of n vertices and of lines connecting
pairs of different vertices (i, j) whenever there is a (non-constant) factor Gij in
the product (1.2). Each Gij = Gij(xij) appears at most once in this expression,
so that there are no multiple lines in the graph Γ. The presence of different
powers µ and different polynomials P indicates the fact that we give room for
composite fields in our theory such as normal products of derivatives of the basic
fields. (Matrix valued vertices that enter the Feynman rules can be accounted for
by admitting linear combinations of expressions of type (1.2).) A disconnected
graph Γ corresponds to the (tensor) product of the distributions associated to
its connected components. We shall restrict our attention to connected graphs.

We remark that a quantum field theorist would replace in (1.1) the polyno-
mial in x by a polynomial of derivatives acting on the scalar field propagator.
The difference is not accidental: we shall impose the requirement, convenient
for the subsequent analysis, that the renormalization map commutes with mul-
tiplication by polynomials in xij . On the other hand, derivatives typically yield
anomalies independently of the above requirement (see [N], Sect. 8). Using the
renormalization map we achieve the basic property of the time–ordered prod-
uct: causality. Other constraints compatible with causality and power counting
may be imposed - including a description of possible associated anomalies – by
adjustment of additional finite renormalizations. An example of such a phe-
nomenon, concerned with the behaviour of renormalized Feynman amplitudes
under dilations, is considered in Sect. 3.

Thus, to any graph Γ in a given massless QFT there corresponds a bare
Feynman amplitude GΓ. It is a homogeneous rational function of degree −dΓ

which depends on n-1 D-vector differences. We shall denote the arguments of
GΓ by ~x, for short, and will introduce a uniform ordering x1, ..., xN of their com-
ponents, where N = D(n− 1) (for a connected graph). Then, the homogeneity
of GΓ is expressed as

GΓ(λ~x) = λ−dΓGΓ(~x) . (1.3)
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We shall call the difference κ := dΓ − N the index of divergence. It coincides
with (minus) the degree of homogeneity of the density form

GΓ(~x) dx1 ∧ dx2 ∧ . . . ∧ dxN ≡ GΓ(~x) Vol. , (1.4)

(Whenever the orientation is not relevant we shall skip the wedge sign. The use
of densities rather than functions streamlines changes of variables and partial
integration.) We say that GΓ is superficially divergent if κ ≥ 0;GΓ is called
divergent if it is not locally integrable. The following easy to prove statement
justifies the above terminology.

Proposition 1.1. If the indices of divergence of a connected graph Γ and of all
its connected subgraphs are negative then GΓ is locally integrable and admits, as
a consequence, a unique continuation as a distribution on RD(n−1).

The power counting index of divergence of standard renormalization theory
is thus replaced by the degree of homogeneity for a (classically dilation invariant)
massless QFT.

Abusing the terminology we shall also speak of (superficially) divergent
graphs. Each function GΓ defines a tempered distribution (in the sense of
Schwartz [Sc]) on test functions f with support

supp f ⊂ RD(n−1)\∆2 , ∆2 = {~x ; ∃ (i, j) i < j, s.t. xij = 0} . (1.5)

One can, similarly, introduce the partial diagonals ∆k involving k-tuples of coin-
ciding points; we have ∆n := {~x;x1 = . . . = xn} ⊂ ∆n−1 ⊂ . . . ⊂ ∆2. We shall
be mostly using the small or full diagonal ∆n in what follows. The problem of
renormalization consists in extending all distributions GΓ to S(RD(n−1)) in such
a way that a certain recursion relation, which reflects the causality condition, is
satisfied. This condition is known as causal factorization. We give the precise
formulation of its euclidean version in Sect. 2 while the more involved but phys-
ically motivated Minkowski space requirement is relegated to Sect. 4. We use
an x-space counterpart of Speer’s analytic renormalization in [Sp] to define the
notion of residue1 of GΓ adapted, in particular, to primitively divergent graphs.
It is based on the observation that if r = r(xij) is a norm in the (euclidean)
space of coordinate differences and G(~x) is primitively divergent of index κ then
the analytically regularized Feynman amplitude

rκ+εG(~x) (ε > 0) (1.6)

is locally integrable. It will be proven in Sect. 2 that Eq. (1.6) defines a
distribution valued meromorphic function in ε which only has simple poles for
non-positive integer values of ε. This will allow us to define the renormalized
Feynman distribution GR of a primitively divergent graph by just subtracting

1A notion of residue of a Feynman graph has been introduced in the momentum space
approach in terms of the graph polynomial [BEK, BK]. More recently, a notion of Poincaré
residue was considered in the motivic approach to Feynman integrals in configuration space
[CM]. It would be interesting to establish the precise relationship between these notions.
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the pole term for ε = 0. The result will be enforced by one of our main require-
ments (see (MC1) of Sect. 2, below), namely that GR is associate homogeneous
of the same degree as G (its behaviour for small r only differing from G by log
terms). More precisely, we say that G is an associate homogeneous distribution
of degree d and order k if it obeys the (infinitesimal) indecomposable dilation
law

(E + d)k+1G(~x) = 0 where E =
n∑
i=1

xi
∂

∂xi
(x

∂

∂x
=

D∑
α=1

xα
∂

∂xα
). (1.7)

(For a motivation and for a global characterization of associate homogeneous
distributions - see Sect. 3.)

The study of divergent graphs with subdivergences is outlined in Sect. 3
(with examples worked out in Appendix B). It is remarkable that in all cases
renormalization is essentially reduced to a 1-dimensional extension problem for
associate homogeneous distributions. A construction that provides the solution
to this problem is outlined in Appendix A.

One objective of our work is to demonstrate in a systematic fashion that
x-space calculations are not only more transparent conceptually but also prac-
tical (especially in the euclidean massless case – something noticed long ago by
Chetyrkin et al. [CKT] (see also [KTV]) but only rarely appreciated afterwards
– cf. [G-B]). To this end we consider (in Sect. 3 and Appendix B) a number of
examples (of 1-, 2- and 3-loop graphs) displaying the basic simplicity of the ar-
gument. A primitively divergent n-loop graph whose residue involves ζ(2n− 3)
is displayed as Example 2.2.

2 The extension problem for primitively diver-
gent graphs. Analytic regularization and residues.

We shall define ultraviolet (i.e. short distance) renormalization by induction
with respect to the number of vertices. Assume that all contributions of dia-
grams with less than n points are renormalized. If then Γ is an arbitrary con-
nected n-point graph its renormalized contribution should satisfy the following
inductive factorization requirement.

Let the index set I(n) = {1, . . . , n} of Γ be split into any two non-empty
non-intersecting subsets

I(n) = I1 ∪ I2 (I1 6= ∅ , I2 6= ∅) , I1 ∩ I2 = ∅ .

Let UI1,I2 be the open subset of RDn ≡ (RD)×n such that (x1, . . . , xn) /∈ UI1,I2
whenever there is a pair (i, j) such that i ∈ I1, j ∈ I2. Let further GR1 and
GR2 be the renormalized distributions associated with the subgraphs whose ver-
tices belong to the subsets I1 and I2, respectively. We demand that for each
such splitting our distribution GRΓ , defined on all partial diagonals, exhibits the
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factorization property (– see [Ni]):

GRΓ = GR1

∏
i∈I1
j∈I2

Gij

GR2 on UI1,I2 , (2.1)

where Gij are factors (of type (1.1)) in the rational function GΓ and are under-
stood as multipliers on UI1,I2 .

We shall add to this basic physical requirement two more mathematical con-
ventions (MC) which will substantially restrict the notion of renormalization
used in this paper.

(MC1) Renormalization maps rational homogeneous functions onto associate
homogeneous distributions of the same degree of homogeneity; it extends asso-
ciate homogeneous distributions defined off the small diagonal to associate ho-
mogeneous distributions of the same degree (but possibly of higher order) defined
everywhere on RN .

(MC2) The renormalization map commutes with multiplication by polyno-
mials. If we extend the class of our distributions by allowing multiplication
with smooth functions of no more than polynomial growth (in the domain of
definition of the corresponding functionals), then this requirement will imply
commutativity of the renormalization map with such multipliers.

The induction is based on the following

Proposition 2.1. The complement C(∆n) of the small diagonal is the union
of all UI1,I2 for all pairs of disjoint I1, I2 with I1 ∪ I2 = {1, . . . , n}, i.e.,

C(∆n) =
⋃

I1∪̇I2 = {1,...,n}

UI1,I2 .

Proof. Let (x1, . . . , xn) ∈ C(∆n). Then there are at least two different points
xi1 6= xj1 . We define I1 as the set of all indices i of I = I(n) for which xi 6= xj1
and I2 := I\I1. Hence, C(∆n) is included in the union of all such pairs. Each
UI1,I2 , on the other hand, is defined to belong to C(∆n). This completes the
proof of our statement.

In order to apply and implement the inductive factorization property (2.1)
one needs two steps:

(i) to renormalize all primitively divergent graphs, i.e. all divergent diagrams
with no proper subdivergences, in particular, to extend all (superficially)
divergent 2-point functions Gij to distributions on S(RD);

(ii) to extend the resulting associate homogeneous distributions defined on the
complement of the full diagonal x1 = x2 = . . . = xn to distributions on
S(RD(n−1)).
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We shall work out the first step in this section leaving (ii) to Sect. 3.
We begin with the renormalization of the general 2-point function (cf. (1.1))

or the corresponding density GVol:

Gmd(x) =
Pm(x)
(x2)d

, Gmd Vol = Gmd(x) dDx , x ∈ RD , d,m ∈ N (2.2)

where Pm(x) is a homogeneous polynomial of degree m. The expression (2.2)
is superficially divergent if its index κ is non-negative:

κ := 2d−m−D ≥ 0 . (2.3)

It follows from Hörmander’s analysis that the extension problem can be
solved by introducing the analytically regularized expression2

Gεmd(x, `) :=
(
x2

`2

)ε
Gmd(x) (2.4)

(the scale parameter ` ensuring that Gε has the same (naive) dimension as G).
According to Theorem 3.2.3 of Hörmander [H] the homogeneous distribution
Gεkd on S(RD\{0}) has a unique homogeneous extension to S(RD) for non-
integer ε. Furthermore, it follows from the analysis in [H] that the resulting
distribution is meromorphic in ε and may only have a simple pole at ε = 0 (or,
more generally, at integer values of ε).

This can be derived directly from (2.2) by observing that Gkd can be re-
stricted to the smooth function Pk(ω) on the unit sphere

SD−1 =

{
ω ∈ RD ; ω2 :=

D∑
α=1

(ωα)2 = 1

}
(2.5)

and thus reducing the problem to one (radial) dimension. In particular, the
density (1.3) becomes

Gεkd(x, `) Vol = Gεkd(x, `) d
Dx = `−2εPk(ω) dD−1ω r2ε−κ−1 dr

for x = rω , r ≥ 0 . (2.6)

Following Hörmander (see [H], Eq. (3.2.17)) we observe that

X a(r) =
ra+

Γ(a+ 1)
, ra+ =

{
ra for r > 0
0 for r < 0 , (2.7)

defines a distribution valued entire analytic function in a, such that

dn

drn
X a(r) = X a−n(r) , rX a(r) = (a+ 1)X a+1(r) . (2.8)

2Similar formulas are used by Keller [K], [K10] under the name of “dimensional regular-
ization in position space”.
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As X 0(r) is the step function,

X 0(r) ≡ θ(r) :=
{

1 for r > 0
0 for r < 0 ,

it follows from the first relation (2.8) that

X−ν−1(r) = δ(ν)(r) , ν = 0, 1, . . .
(∫

δ(ν)(r) f(r) dr = (−1)ν f (ν) (0)
)
. (2.9)

We then deduce (from the known properties of Γ(a)) that r2ε−κ−1 has indeed a
simple pole for ε→ 0, and moreover,

r2ε−κ−1 − (−1)κ

κ!
δ(κ)(r)

2ε
=

(−1)κ

κ!

 dκ+1

drκ+1

(
`n

r

`

)
+

+
κ∑
j=1

1
j
δ(κ)(r)


(

(f(r))+ =
{
f(r) for r > 0

0 for r < 0

)
. (2.10)

The resulting expression is defined as a distribution by what is sometimes called
differential renormalization [FJL], [HL]:

lim
ε→0

(
r2ε−κ−1 − (−1)κ

2εκ!
δ(κ)(r) , f(r)

)

=
1
κ!

∫ ∞
0

`n
`

r
f (κ+1)(r) dr + f (κ)(0)

κ∑
j=1

1
j

 (2.11)

(the second term in the right hand side vanishing for κ = 0). The parameter
` (the length scale of the regularized expression (2.4)) labels the ambiguity in
the renormalization. It is the only ambiguity in the 1-dimensional case if we
require, following Hörmander, that the renormalized expression is ”as close to
homogeneous as possible”. It is, in fact, an example of what Gelfand and Shilov
[GS] call an associate homogeneous distribution (a terminology also adopted in
[G-B] and recalled in Sect. 3). The parameter ` remains the only ambiguity in
the D-dimensional 2-point function (the renormalization of (2.2)) provided that
we assume – as we shall – full Euclidean covariance.

We define the (distribution valued) residue as the coefficient to 1
2ε of the

analytically regularized amplitude Gε. For the density (2.6) we find

ResGkd Vol = Pk(ω) dD−1 ω δ(κ)(r) dr . (2.12)

This is a rather unconventional way to write a distribution with support at the
origin. In particular, for a harmonic Pk(x) and k > 0,∫

SD−1
Pk(ω) dD−1 ω = 0, (2.13)
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so that, for κ = 0, the residue of GkD+k actually vanishes (upon integrating
with a test function). For k = 0 (P0 = 1), D = 2m, d = m (a logarithmically
divergent graph in a scalar field theory in an even dimensional space time).
Eq. (2.12) is equivalent to

ResG0m(x)Vol = |S2m−1| δ(x) d2m x (2.14)

where |S2m−1| = 2πm

(m−1)! is the volume of the (2m− 1)-dimensional sphere.

Knowing the residue we can define a renormalized (as we shall see - associate
homogeneous) density

Gkd(rω, `) Vol := lim
ε→0

{(
x2

`2

)ε
Gkd(x) dDx− ResGkd

2ε
Vol
}
. (2.15)

The limit in the right hand can be computed explicitely in terms of the radial
coordinate r of Eq. (2.6) (see Eq. (3.2.5) of [H]; it will appear as a special case
of a more general limit involving associate homogeneous functions displayed in
Appendix A). Here we shall compute it instead in Cartesian coordinates in two
examples of 4-dimensional (4D) scalar field theory.

Example 2.1. The logarithmically divergent 2-point graph shwon on Fig. 1a

Figure 1.
Logarithmically and quadratically divergent 2-point graphs.

is ubiquitous as (sub)divergence in any scalar field theory in 4D: it appears as a
self-energy graph in a ϕ3 model and as a contribution to the 4-particle scattering
amplitude in the ϕ4 theory. The limit (2.15) of this 1-loop graph reads

G1(x, `) = lim
ε→0

[
1

(x2)2

(
x2

`2

)ε
− 2π2

2ε
δ(x)

]
=

1
2

∂

∂xα

[
xα

(x2)2
`n

(
x2

`2

)](
=

1
r2

∂

∂r2

(
`n

r2

`2

)
+

,

(`n ρ)+ =
{
`n ρ for ρ > 0

0 for ρ < 0

)
. (2.16)

The derivatives in (2.16) should be understood in the sense of distribu-
tions (after smearing they should be transferred to the test function – see
Appendix B1). This is another instance of differential renormalization (cf.
Eq. (2.11) and see [FJL], [Pr]). Renormalized expressions of the type ∂

∂xα

[
xα

(x2)2 `n
x2

`2

]
(sum over α) are used systematically in [G-B].
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Remark 2.1. Note that the double and the triple lines in Fig. 1 should both
be viewed as a single line with a different decoration (corresponding to different
powers, µ = 2 and µ = 3, in (1.1)). Thus, the self-energy graph on Fig. 1b,
which displays overlapping divergences in momentum space, is primitively di-
vergent in x-space according to our definition. Its renormalized expression is
additionally restricted by the requirement of full euclidean invariance. (In gen-
eral, we require the presence of as much of the symmetry of the rational function
in the renormalized expression as allowed by the existing anomalies.) Apply-
ing further requirement (MC2) which yields the identity G1(x, `) = x2G2(x, `),
valid for the original rational functions away from the origin, we find

G2(x, `) = lim
ε→0

{
1

(x2)3

(
x2

`2

)ε
− π2

8 ε
∆δ(x)

}
=

3π2

16
∆δ(x) +

∆
8
G1(x, `) . (2.17)

In deriving (2.17) we have used the identities

∆f = 4
∂2

∂ρ2
(ρf) +

1
ρ

∆ω f for ρ = x2(= r2) , x = rω ;

1
ρn+1

( ρ
`2

)ε
=

1
(n− ε)(n− 1− ε)2 . . . (1− ε)2(−ε)

(
∂2

∂ρ2
ρ

)n 1
ρ

( ρ
`2

)ε
=

1
n!(n− 1)!

(
∆
4

)n−1(
π2

ε
δ(x) + π2 sn δ(x) +G2(x, `)

)
+O(ε) ,

where sn is a sum of partial harmonic series (cf. (A.9)):

sn =
n−1∑
j=1

1
j

+
n∑
j=2

1
j

(
s1 = 0 , s2 =

3
2
, s3 =

7
3
, . . .

)
.

We now proceed to define the residue and the renormalized expression for
an arbitrary primitively divergent graph. In this case our rational function GΓ

is locally integrable in the neighbourhood of all partial diagonals and defines a
distribution on S(RD(n−1)\{0}) and we can use the D(n−1)-dimensional radial
coordinate to reduce it to an 1-dimensional problem as in (2.6) and then apply
(2.9) to obtain the residue. Once we have the residue, the counterpart of (2.15)
allows us to compute the renormalized Green function fixed by our requirements
(MC1) and (MC2).

One can use a more general (homogeneous, O(D)-invariant) norm on the
distances x2

ij instead of the (O(D(n − 1))-invariant) radial coordinate in order
to compute both the residue and the renormalized expression of a primitively
divergent graph as illustrated on the following n-loop example.

Example 2.2. We consider the 4D n-loop (n + 1-point) primitively divergent
Feynman amplitude

Gn = (
n∏
i=1

x2
0ix

2
ii+1)−1, xn+1 ≡ x1, (2.18)
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which we shall parametrize by the spherical coordinates of the n independent
4-vectors x0i:

x0i = ri ωi , ri ≥ 0 , ω2
i = 1 , i = 1, 2, ..., n. (2.19)

An important special case is given by the complete 4-point graph

G3 =
1

x2
01 x

2
02 x

2
03 x

2
12 x

2
23 x

2
13

Figure 2.
The tetrahedron graph in the (ϕ4)4-theory.

Setting

Gεn =
(
R2

`2

)ε
Gn, R = max(r1, ..., rn), (2.20)

we shall compute its residue by first integrating the corresponding analytically
regularized density GεnVol over the angles ωi using the identification of the
propagators 1

x2
ij

with the generating functions for the Gegenbauer polynomials.

Having in mind applications to a scalar field theory in D dimensions (see Ex-
ample 3.3 below) we shall write down the corresponding more general formulas.
The propagator (x2

12)−λ of a free massless scalar field in D = 2λ+2 dimensional
space-time is expanded as follows in (hyperspherical) Gegenbauer polynomials:

(x2
ij)
−λ = (r2

i + r2
j − 2rirjωiωj)−λ =

1
R2λ
ij

∞∑
n=0

(
rij
Rij

)n
Cλn(ωi ωj) ,

Rij = max(ri, rj) , rij = min(ri, rj) , i 6= j , i, j = 1, 2, 3. (2.21)

We shall also use the integral formula∫
S2λ+1

dω Cλm(ω1 ω)Cλn(ω2 ω) =
λ|S2λ+1|
n+ λ

δmn C
λ
n(ω1 ω2) , (2.22)

where |S2λ+1| = 2πλ+1

Γ(λ+1) is the volume of the unit hypersphere in D = 2λ + 2
dimensions.

Clearly, the expansion (2.21) requires an ordering of the lengths ri. In gen-
eral, one should consider separately n! sectors, obtained from one of them, say

r1 ≥ r2 ≥ ... ≥ rn (≥ 0) (2.23)

by permutations of the indices. It is, in fact, sufficient to consider just the sector
(2.23) (and multiply the result for the residue by n!). (Because of the symmetry

12



of the tetrahedron graph (Fig. 2) this is obvious for n = 3 but it is actually true
for any n(≥ 3).) The result involves a polylogarithmic function:

G̃εn :=
∫

S3
...

∫
S3
Gεn(r1 ω1, ..., rn ωn) Vol

= (2π2)n
(r1

`

)2ε dr1 ∧ ... ∧ drn
r1 ...rn

Lin−2(
r2
n

r2
1

),

Lin−2(ξ) =
∞∑
m=1

1
mn−2

ξm (ξ =
r2
n

r2
1

) (2.24)

(rn = min(r1, ..., rn), r1 = max(r1, ..., rn)(= R) ). To derive the last equation
we have applied once more (2.22) and used(

C1
m(ω2

1) =
)
C1
m(1) = m+ 1.

The residue distribution corresponding to the (integrated over the angles) den-
sity (2.24) is given by

Res G̃εn = C(n) δ(r1)...δ(rn) dr1 ∧ ... ∧ drn (2.25)

where

C(n) = n! lim
ε→0

2ε
∫ ∞
r1=0

∫ r1

r2=0

...

∫ rn−1

rn=0

G̃εn = n! (2π2)n
∫
Kn−1

...

∫
ω ,

ω := Lin−2(ξ)
r1 dr2 ∧ ... ∧ drn − r2 dr1 ∧ dr3... ∧ drn + ...(−1)n−1rn dr1 ∧ ... ∧ drn−1

r1 ...rn

(dω = 0) . (2.26)

Here ω is a closed homogeneous form on the compact projective cone

Kn−1 =

{
(r1, ..., rn) ∈ Pn−1 ; ri ≥ 0

(
n∑
i=1

ri > 0

)}
. (2.27)

The integration in (2.26) may be performed over any transverse surface. Choos-
ing R(= r1) = 1 we find

C(n) = n! (2π2)n
∫ 1

0

dr2

r2
...

∫ rn−1

0

drn
rn

Lin−2(r2
n)

= n! 2π2n ζ(2n− 3) . (2.28)

In particular, for the tetrahedron graph, n = 3, we reproduce the known result,
C(3) = 12π6ζ(3) - see, for instance, [G-B].
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Remark 2.2. The closed homogeneous form ω (2.26) of maximal degree has a
cohomological interpretation. A prototype of this form appears if we contract
the density GΓVol (1.3) by the Euler vector field E:

E = ~x
∂

∂~x

(
≡

N∑
a=1

xa
∂

∂xa

)
, iE GΓ Vol = GΓ(~x)

N∑
a=1

(−1)a−1 xa dx1∧. . . d̂xa . . .∧dxN .

(2.29)
For κ = 0, – i.e., for a homogeneous (logarithmically divergent) GΓVol the Lie
derivative along E of GΓVol vanishes,

0 = LE GΓ Vol = d iE GΓ Vol , for LE = iE d+ d iE ; (2.30)

hence, iE GΓVol is a closed homogeneous (N − 1)-form. For κ > 0 GΓVol is
expressed in terms of derivatives of a homogeneous form; using (~ξ ~∂+N+κ)GΓ =
0 we find

GΓ =
(−1)κ

κ!
∂a1 . . . ∂aκ(xa1 . . . xaκ GΓ) .

The residue (2.26) is a special case of the so called Wodzicki residue (see [G-B],
[G-BVF] and references therein). It is rewarding to realize that it coincides with
the residue in ε under the analytic regularization. The integration technique
based on the properties of Gegenbauer polynomials has been introduced in the
study of x-space Feynman integrals in [CKT]. The appearance of ζ-values in the
computation of Feynman integrals has been detected in early work of Rosner
and Usyukina [R], [U]. It was related to the non-trivial topology of graphs by
Broadhurst and Kreimer (see [BrK], [Kr]).

3 Dilation anomaly. Extension of associate ho-
mogeneous distributions.

We now ask what is the behaviour under dilations of a renormalized primitively
divergent density G(~x)Vol of index κ (≥ 0). By the definition of GVol the
dilation anomaly

A(~x, λ) := λκG(λ~x) Vol−G(~x) Vol (3.1)

is a distribution valued density with support at the small diagonal, x1 = x2 =
... = xn. Without loss of generality, we can restrict it, following [H], by de-
manding that it is again homogeneous in ~x of degree −κ:

A(~x, λ) =
∑

α,|α|=κ

aα(λ)Dα δ(~x)
n−1∏
i=1

dD xin (3.2)

where δ(~x) is the D(n− 1)-dimensional δ-function,

Dα =
n−1∏
i=1

D∏
ν=1

(∂νi )αiν , |α| =
∑
i,ν

αiν .

14



Repeated application of the dilation law (3.1) yields the cocycle condition

aα(λµ) = aα(λ) + aα(µ) . (3.3)

The general form of aα satisfying (3.3) is

aα(λ) = aα(G) `n λ (3.4)

where aα(G) is a linear functional of the Green function G (or the corresponding
density GVol). It is important to note that the coefficient aα(G) in (3.4) is inde-
pendent of the ambiguity in the definition of the renormalized Green function.
Once the problem of renormalizing a primitively divergent graph is reduced to
a 1-dimensional one (as in Sect. 2) this follows from the simple observation that
the coefficient of `n r in (2.11) is independent of the ambiguity reflected in the
scale parameter `.

In fact, each renormalization of a subdivergence in a given graph increases
by one the maximal power of `n λ in the associate homogeneity law. Since
r ∂
∂r (`n r)j = j(`n r)j−1, a general associate homogeneous renormalized Feyn-

man amplitude G will satisfy Eq. (1.7), (E + d)k+1G(~x) = 0. We can then
characterize G by a (column) vector G = (G0 = G,G1 = (E + d)G0, . . . , Gk =
(E + d)Gk−1) of distributions. It carries an indecomposable representation of
the dilation group3 of degree −d and order k such that

G(~x)→ λdG(λ~x) = e∆`nλG(~x) =
k∑
j=0

(`n λ)j

j!
Gj(~x) (3.5)

where ∆ is a nilpotent Jordan cell with k units above the diagonal:

∆ =


0 1 . . . 0 0
0 0 . . . 0 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . 0 1
0 0 . . . 0 0

 ∆k+1 = 0 . (3.6)

The nilpotency condition ∆k+1 = 0 remains invariant under an arbitrary
non-singular transformation G→ SG,∆→ S−1∆S. We shall encounter in the
examples below a particular case of such a change of basis in which just the
normalization of Gj is altered.

In the case of causal renormalization it follows from the factorization as-
sumption that the dimension of the support of Gj is decreasing with j and

Gk(~x) = (~x ~∂ + d)kG0(~x) =
∑
α

aα (G)Dα δ(~x) . (3.7)

3Representations of this type have been considered back in the 1970’s [FGG] within a study
of a spontaneous breaking of dilation symmetry.
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Following the terminology of Gelfand-Shilov [GS] (see the comment after Eq.
(2.11)) we shall call G (and its components) associate homogeneous distribu-
tions. Our task now is to study the extension – i.e. the renormalization – of
such associate homogeneous distributions. If we assume (as it will be proven in
Theorem 3.1 below) that the inductive procedure allows at each step a reduction
to a 1-dimensional (radial variable) problem, then we can use the result of Ap-
pendix A, that extends Hörmander’s treatment of 1-dimensional homogeneous
distributions to associate homogeneous ones:

Proposition 3.1. For each value ` > 0 of the parameter ` the family of elemen-

tary functions r−a
(`n r

` )
n

+
n! (non-vanishing for r > 0) that are locally integrable

for Re a < 1 admit a continuation to tempered distributions

Ln(r, a; `) ∈ S ′(R) (suppLn ⊂ R≥0)

for all complex values of a that are uniquely determined by the relations

r Ln(r, a+ 1; `) = Ln(r, a; `) , (3.8)

(D + a)Ln(r, a; `) = Ln−1(r, a; `) , D = r
d

dr
(3.9)

and the “boundary condition”

Ln(r, 0; `) =
1
n!

(
`n

r

`

)n
+
, (3.10)

where (f(r))+ = θ(r) f(r) (see (2.10)).

(We note that the right hand side of (3.10) is locally integrable (and bounded
by r

` ), so it defines a tempered distribution.)
The requirement (3.8) ensures ultimately that we can multiply our renormal-

ized distributions by regular functions – a property needed in the formulation
of the causal factorization requirement (2.1). Proposition 3.1 accounts for a sin-
gle step in the renormalization procedure and thus involves a single parameter
` describing the ambiguity. (This is a property of massless theories with the
additional requirement of associate homogeneity. In a massive theory even the
scalar field 2-point function (our Example 2.1) involves two parameters – the
mass and the wave function renormalization.)

In fact, the reduction to a 1-dimensional (radial) problem requires an ar-
gument. We shall prove at the end of this section a statement (Theorem 3.1)
that extends Hörmander’s treatment of the n-dimensional homogeneous dis-
tributions to associate homogeneous ones. Before that we shall illustrate the
applications of the explicit construction displayed in Proposition 3.1 on some
low order examples.

To see in more detail what is involved in a graph with subdivergences we
consider a simple 3-point graph of this type which displays the role of the fac-
torization condition.
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Example 3.1. Renormalization the 3-point two loop diagram displayed on
Fig. 3.

G∆ =
1

x2
01 x

2
12 [x2

02]2
.

Figure 3.
Logarithmically divergent 3-point graph with a 2-point subdivergence.

We introduce as independent variables the spherical coordinates of the vec-
tors x0i, i = 1, 2

x01 = rω1 , x02 = ρω2 , r, ρ ≥ 0 , ω2
i = 1 (i.e. ωi ∈ S3) i = 1, 2 (3.11)

and set
ω1 · ω2 = cosϑ , x2

12 = r2 + ρ2 − 2r ρ cosϑ . (3.12)

The renormalized 2-point Green function (2.16), corresponding to the subgraph
of vertices (0, 2) is

G2(x02, `) =
1
2

∂

∂ xα02

[
xα02

(x2
02)2

`n
x2

02

`2

]
+

=
1
ρ3

∂

∂ρ

(
`n

ρ

`

)
+
. (3.13)

(The last expression only makes sense as a density after multiplying with the
volume element d4x = ρ3 dρ d3ω that cancels the 1

ρ3 factor and permits to
transfer the derivative to the test function.)

Next we shall write down the density G∆Vol with renormalized subdiver-
gence integrated over the six angular variables ω1 and ω2 (see Appendix B2):

G∆ Vol :=
[∫

d3ω1

∫
d3ω2G∆(rω1, ρ ω2; `)

]
r3 dr ρ3dρ

= 8π3

∫ π

0

sin2 ϑ dϑ

r2 + ρ2 − 2rρ cosϑ
∂

∂ρ

(
`n

ρ

`

)
+
r dr dρ (3.14)

= 4π4 r dr dρ

r2
∨

∂

∂ρ

(
`n

ρ

`

)
+
, r∨ = max(r, ρ) =

r + ρ+ |r − ρ|
2

.

Smearing G∆Vol with a test function f(r, ρ) we find that the leading term,
LT G∆Vol, for r∨ → 0 (the only one that requires overall renormalization)
corresponds to r = ρ (Appendix B2):

(LT GR∆ Vol, f) = −4π4

∫ ∞
0

dr
`n2

(
r
`

)
2

d

dr
f(r, r) . (3.15)

Here we have made use of the renormalized associate homogeneous distribution
L1(r, 1; `) thus illustrating Proposition 3.1.
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Somewhat symbolically we can write

GR∆(r, ρ; `) Vol = 4π4 L1(r, 1; `) δ(ρ−r) dr dρ+G0(r, ρ) VolL0(ρ, 1; `) dρ (3.16)

where G0Vol is the regular part of the homogeneous 1-form 4π4 r dr
r2
∨

(for ρ 6= r).
Its associate homogeneity law is determined by the corresponding single variable
relations:

L0(λ ρ, 1; `) d λ ρ = (L0(ρ, 1; `) + `n λ δ(ρ)) dρ ,
L1(λ r, 1; `) d λ r = (L1(r, 1; `) + `n λL0(ρ, 1; `)

+
1
2

(`n λ)2 δ(r)) dr . (3.17)

We have a manifestation of the general rule: only the coefficient of the highest
log term (`n λ for L0 dρ and (`n λ)2 for L1 dr) is independent of the ambiguity
parametrized here by the scale ` in the renormalized subdivergence.

Remark 3.1. One could be tempted to replace the renormalization parameter
` in the expression (3.14) by the (external to the divergent 2-point subgraph)
variable r for r > ρ. This would amount to subtracting a local in ρ term,
4π4 dr

r `n
r
` δ(ρ) dρ. It is straightforward to observe, however, that neglecting

such a term in (3.14) would violate the causal factorization requirement (2.1).

The techniques developed in Example 3.1 also apply to more complicated
graphs as illustrated in the following example of a 4-point diagram with two
subdivergences.

Example 3.2. Renormalization of subdivergences in the 4-point graph on
Fig. 4.

x0j = rj ωj , rj ≥ 0 , ω2
j = 1 , j = 1, 2, 3

ωi ω3 = cosϑi , i = 1, 2
G4 = (r4

1 r
2
2 x

2
13(x2

23)2)−1

Figure 4.
Logarithmically divergent 4-point graph with two disjoint 2-point subdivergences.

The 4-point density G4Vol, integrated over seven of the nine angular vari-
ables with renormalized 2-point subdivergences is given by (see Appendix B3)

G4 Vol = (2π)4
r2
3 dr3 sin2 ϑ1 dϑ1 d`n

r1
`1

r2
1 + r2

3 − 2 r1 r3 cosϑ1

sinϑ2 dr2 dϑ2

r2
2 + r2

3 − 2 r2 r3 cosϑ2

× ∂

∂ ϑ2

(
`n

r2
2 + r2

3 − 2 r2 r3 cosϑ2

`2

)
+

. (3.18)
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For r = r2+r3
2 > r1 we derive (see Appendix B3) the following (analogous to

the first term in (3.16)) expression for the leading short distance behaviour of
the integrated in the angles renormalized density

LT GR4 Vol = 16π6 δ(r2 − r3)L1(r2, 1; `2)L0(r1, 1; `1) dr1 dr2 dr3

for r2 (= r3) > r1 . (3.19)

Example 3.3. As a last example we consider the graph displayed on Fig. 5

x0j = rj ωj , rj ≥ 0 , ωj ∈ S5

GO = (r2
1 r

2
2 r

2
3 x

2
12 x

2
23)−2

Figure 5.
Quadratically divergent diagram in 6-dimensions.

which exhibits overlapping divergences in 6-dimensional space-time.
Applying the relations (2.21) (2.22) for λ = 2, we find the following expres-

sion for the analytically regularized integrated with respect to the angles Green
function density

G̃ε1 ε2O = π9 r1 r2 r3

(R12R23)4

(
R2

12

`21

)ε1 (R2
23

`22

)ε2
dr1 dr2 dr3 , (3.20)

where Rij = max(ri, rj) (cf. (2.21)). The renormalized expression for GO again
depends, as in the preceding examples (see, in particular, Example 2.2) on the
inequalities satisfied by the radial variables. For

r1 < r2 < r3 (3.21)

(and, similarly, for r3 < r2 < r1) we have a case of nested singularities. One
first renormalizes the logarithmicly divergent triangular subgraph with vertices
(0, 1, 2). Integrating first with respect to r1 in the domain (3.21) we find

lim
ε1→0

(∫ r2

0

G̃ε1 ε2O − π9

4 ε1
δ(r2)

(
r3

`2

)2ε2 dr2 dr3

r3
3

)

=
π9

2
d

(
`n

r2

`1

)(
r3

`2

)2ε2 dr3

r3
3

. (3.22)

The renormalization of the resulting quadratically divergent in r3 associate ho-
mogeneous distribution follows the lines of Example 3.1. The case r1 < r2 > r3,
in which R12 = R23 = r2 and “the divergences overlap”, is actually simpler; it
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is reduced to a single radial renormalization. Setting ε1 + ε2 = ε
2 and `1 `2 = `2

and integrating in r1 and r3, we find

lim
ε→0

(∫ r2

r1=0

∫ r2

r3=0

GεO −
π9

8
δ′′(r2)

2 ε
dr2

)
=
π9

8

(
d3

dr3
`n

r

`
+

3
2
δ′′(r)

)
. (3.23)

We now proceed to the general treatment of the extension (renormalization)
problem for distributions of N = D(n− 1) variables.

We start with an associate homogeneous distribution G0 defined as a linear
functional on the subspace S0 of S(RN ) of test functions vanishing (with their
derivatives) at the origin and satisfying

(~x ~∂ + d)kG0(~x) = 0 on S0 . (3.24)

We will then construct a k-vector G = (G0, G1, . . . , Gk−1) of distributions on
S0. The following theorem describes their simultaneous associate homogeneous
extension to the entire space S(RN ).

Theorem 3.1. Let G = (G0, . . . , Gk−1) be a k-tuple of associate homogeneous
distributions of degree d and order k − 1 on S0 (i.e. Gν ∈ S ′(RN\0)) such that

λdG(λ~x) = L(λ)G(~x) , L(λ) = e∆k`nλ , (∆k)k = 0 , (3.25)

or in components

λdG0(λ~x) =
k−1∑
ν=0

Gν(~x)
(`n λ)ν

ν!
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λdGk−2(λ~x) = Gk−2(~x) + `n λGk−1(~x) ,

λdGk−1(λ~x) = Gk−1(~x) on S0 . (3.26)

For d 6= N + κ, κ = 0, 1, . . ., the Gν admits a unique associate homogeneous
continuation as distributions in S ′(RN ). For the exceptional values d = N +
κ of the scaling dimension they admit an extension as associate homogeneous
distributions of the same degree d and order k. In particular,

Gk(~x) = Dκ δ(~x) (3.27)

where Dκ is a homogeneous polynomial of degree κ in the derivatives ~∂ =
{∂/∂xαi }. Every two extensions of G0 differ by a homogeneous distribution
of type (3.27). The remaining components Gν of G are determined uniquely by
Gν = (d+ ~x ~∂)ν G0 and do not depend on the ambiguity in G0.
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Proof. We first prove the existence of the continuation. Let f = (f0(~x), . . . , fk−1(~x))
be any set of test functions in S(RN ). We define a set of almost homogeneous
functions f̂ = (f0, . . . , fk−1) that are smooth away from the origin:

f̂(~x) = 〈 tL(ρ) ρN−d−1
+ ,f(ρ ~x)〉ρ (3.28)

where tL stands for the transposed of the matrix L and the pairing is defined
as the action of a distribution in a single variable ρ (while ~x appears as a vector
of parameters):

f̂0(~x) = 〈L0(ρ, κ; `), f0(ρ ~x)〉ρ =
∫ ∞

0

`n
`

ρ

∂κ+1

∂ρκ+1
f0(ρ ~x) dρ ,

f̂1(~x) = 〈L1(ρ, κ; `), f0(ρ ~x)〉ρ + 〈L0(ρ, κ; `), f1(ρ ~x)〉ρ, . . .

f̂k−1(~x) =
k−1∑
ν=0

〈Lk−1−ν(ρ, κ; `), fν(ρ ~x)〉ρ , (3.29)

where the tempered distributions Lν(ρ, κ; `) are defined in Proposition 3.1 (and
given by Eq. (A.8)). Let now r = r(~x) be any smooth away from the origin
(say, O(D)-invariant) norm4 in RN . Let χ be a smooth function with compact
support on the positive semiaxis, χ ∈ D(]0,∞[), satisfying∫ ∞

0

χ(r)
r

dr = 1 . (3.30)

Then we define the extension Gχ of G to S(RN ) by

〈Gχ,f〉 := 〈G, χ f̂〉 =
k−1∑
ν=0

〈Gν , χ f̂ν〉 . (3.31)

To prove that this is indeed an extension of G we have to verify that if fν vanish
at the origin together with their derivatives, fν ∈ S0, then 〈Gχ,f〉 = 〈G,f〉.
Indeed, for fν ∈ S0, we have

f̂ν(x) =
ν∑
µ=0

∫ ∞
0

fν−µ(ρ ~x)
(`n ρ)µ

µ!
dρ

ρ1+κ

and hence
n−1∑
ν=0

Gν(~x) f̂ν(~x) dN~x =
n−1∑
σ=0

n−1−σ∑
µ=0

ρ−κGσ+µ(~x)
(`n ρ)µ

µ!
fσ(ρ ~x) dNx

=
n−1∑
σ=0

Gσ(ρ ~x) fσ(ρ ~x) dNρ ~x .

4One may (but is not bound to) think, following Hörmander, of the radial norm r2 =
n−1P
i=1

DP
α=1

(xαi )2.
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Then, it remains to set ρ ~x = ~y and to take into account that∫ ∞
0

χ

(
|~y|
ρ

)
dρ

ρ
=
∫ ∞

0

χ(r)
dr

r
= 1 .

Furthermore, if fκ(~x) ∈ S(RN ) we can also introduce

f̂k(~x) =
k∑
ν=0

〈Lk−ν(ρ, κ; `), fν(ρ ~x)〉ρ (3.32)

and define the (k + 1)-vector of associate homogeneous distributions Gext =
(G0, . . . , Gk) where

Gk = (~x ~∂ + d)Gk−1 = . . . = (~x ~∂ + d)kG0 (3.33)

is a homogeneous distribution of degree −d with support at the origin of RN ;
then

〈Gext,f ext〉 :=
k∑
ν=0

〈Gν , χ f̂ν〉 (3.34)

again coincides with 〈G,f〉 for fν ∈ S0 since then 〈Gk, fk〉 = 0.
The uniqueness part is based on the observation that any distribution with

support at the origin is a linear combination of derivatives of δ(~x) (see, e.g.,
Theorem 3.1.16 of [H]). Its proof uses the assumption that the extension is an
associate homogeneous distribution of the same degree and the fact that

(d+ ~x ~∂)Dκ δ(~x) = 0 for d = N + κ . (3.35)

This completes the proof of the Theorem.

4 Renormalization in Lorentzian signature. Quadratic
configuration space.

The true objects of interest in a relativistic QFT are the Poincaré covariant
Green functions G(x1, . . . , xn) on (the nth Cartesian power of) Minkowski space
M , for all n ∈ N. It is on these correlation functions that one imposes the phys-
ical requirements of causality, stability (or energy positivity) etc. The corre-
sponding (sometimes simpler looking) properties of Euclidean Green functions
have to be derived from these basic assumptions. We shall therefore formulate
the Minkowski space renormalization problem in some detail, albeit we do not
intend to present its full treatment in this paper.

Once we assume that the square distances in the denominators of the ex-
pression (1.1) is indefinite

x2 = x2 − (x0)2 , x2 =
D−1∑
i=1

(xi)2 (4.1)
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and hence vanish on a cone in M , it becomes more natural to start with the
complex Dn dimensional space (CD)×n. We define the quadratic configuration
space as

Cn = {(z1, . . . , zn) ∈ (CD)×n ; z2
ij := (zi − zj)2 6= 0 for i 6= j} . (4.2)

Our objective is to define a map R from the set of rational functions On
spanned by monomials of type (1.2) to the space of (tempered) distributions
on M×n/M (where factoring by M reflects the translation invariance of G),
restricted by a number of conditions which we proceed to formulate.

First, we introduce boundary value operators with respect to tube domains
T~I ⊂ M I

C. Every such tube T~I is defined for a finite ordered set ~I - that is a set
I = {j1, . . . , jn} equipped with a line (total) order j1 ≺ · · · ≺ jn on it, in other
words, ~I is the pair (I,≺). We shall also write it as

~I = (j1, . . . , jn) .

Note that if I ⊂ N then we consider the order ≺ on I as an independent structure
on it, which may not coincide with the order < induced by N. For every ordered
set ~I = (j1, . . . , jn) we have a standard backward tube domain associated to ~I,

T~I :=
{

(xj)j ∈ I ∈ M I + iM I : xjk − xjk+1 ∈ M − iV+ for k = 1, . . . , n
}

(V+ being the open forward light–cone in M) and then we define a boundary
value map with respect to this tube T~I :

b.v.~I : OI → D ′I

where we denote for short

D ′I := D ′
(
M I/M

)
(the space of translation invariant distributions on M I). Hence, for GΓ (1.2)
we have:

b.v.~I GI :=
∏

(j,k)∈Γ

Pjk(xj − xk)(
(xj − xk)2 ± i0(x0

j − x0
k)
)Njk , (±) =

{
(+) if j ≺ k,
(−) if k ≺ j .

(4.3)
Note that b.v.~I : OI → D ′I is an injection. This is because of a theorem

stating that if a boundary value of an analytic function vanishes on some open
set then the function is zero everywhere. For the same reason the b.v.~I maps
commute with the action of the differential operators with polynomial coeffi-
cients. Another property of the boundary value maps is that they preserve the
multiplication,

b.v.~I
(
G′G′′

)
= b.v.~I

(
G′
)

b.v.~I
(
G′′
)
,

which includes the statement that distributions, which are b.v.~I –values (for a
fixed ~I) can be multiplied.
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The renormalization R is another linear map R : OI → D ′I (where D ′I is the
space of distributions with arguments labelled by the index set I). It is assumed
to satisfy the axioms listed below.

R1. The image ROI ⊂ D ′I of a homogeneous rational function GΓ of degree
dI is an associate homogeneous distributions of the same degree (but, in general,
of a higher order).

Remark 4.1. In a massive theory one uses, more generally, the Steinman
scaling degree and preservation of filtration (see [St, BF]). One may hope to
use the homogeneity degree of the leading short distance singularity, viewing
the mass as a perturbation, also in the general case.

R2. R commutes with permutations σ of vertices in I : R ◦ σ = σ ◦ R.

R3. Causality: for every disjoint union I = I ′ ∪̇ I ′′ we have

R(GI) |I′&I′′= R(GI′)GI′,I′′ R(GI′′) (4.4)

where
I ′ & I ′′ ⇔ xij /∈ V −(= −V +) for i ∈ I ′ , j ∈ I ′′ , (4.5)

GI′I′′ = bI′&I′′
∏
i∈I′
j∈I′′

Gij (4.6)

where bi′&I′′ is the boundary value operator and V − is the closure of V−. The
product (4.4) exists as a distribution for GI′I′′ given by the boundary value
(4.6). This can be seen by examining the wave front sets of the various terms.
These are restricted by translation invariance and by the convexity of the light-
cone which characterizes the wave fronts of the Gij ’s. The statement follows
by a straightforward application of Hörmander’s argument in Chapter VIII of
[H]. We stress that while the euclidean factorization property only required the
existence of the distribution (2.1) on the domain S12 here the distribution (4.4)
is found to exist everywhere.

R4. R commutes with multiplication by (homogeneous, and hence, because
of linearity, by any) polynomial p :

R(pG) = pR(G) . (4.7)

R5. R intertwines the natural action of the Lorentz group (and hence also
of the Poincaré group, with dilations) on OI and on S ′I .

We assert that a renormalization map satisfying conditions R1–5 exists and
can be constructed inductively (as in the euclidean case). Rather than present-
ing the full argument we shall formulate and prove a lemma that serves to state
the induction in the number of vertices (and whose counterpart in the euclidean
case is given by Proposition 2.1).
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Proposition 4.1. Fix a (unordered) set I of n (decorated) indices (1, 2, . . . , n).
The complement C(∆n) of the small diagonal

∆n = {x1 = x2 = . . . = xn} (4.8)

is the union of all configurations I = I ′ ∪̇ I ′′ (with non empty I ′ and I ′′) entering
the causality condition R4.

Proof. Let (x1, . . . , xn) ∈ C(∆n). Then there are at least two different points,
say xi 6= xj . Given such a pair, there exists a Lorentz frame in which the time
components of xi and xj are different, say x0

i > x0
j . Let then I ′ be the set

of indices k such that x0
k ≥ x0

i , and let I ′′ be its complement in I. Clearly,
I = I ′ ∪̇ I ′′ is a splitting of the type entering R4 (and neither set is empty as
i ∈ I ′ and j ∈ I ′′). This completes (the non-trivial part of) the proof of our
proposition.

Postulate R3 also explains the connection of Eq. (2.1) (in the euclidean case)
with causality.
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sevich and Dirk Kreimer for stimulating discussions. N.M.N. and I.T. acknowl-
edge partial support by grant DO 02-257 of the Bulgarian National Science
Foundation. I.T. thanks the Theory division of CERN and IHÉS for hospitality
during the course of this work.

Appendix A. Radial associate homogeneous dis-
tributions

The family of elementary functions

Ln(r, a; `) =
r−a

n!

(
`n

r

`

)n
+
, (f(r))+ =

{
f(r) r > 0

0 r < 0 , (A.1)

n = 0, 1, 2, . . ., a ∈ C satisfies the system of coupled ordinary differential equa-
tions

(D + a)Ln(r, a; `) = Ln−1(r, a; `) for r > 0 , D := r
d

dr
, (A.2)

which provides a differential form of its associate homogeneity property. For
Re a < 1 Ln(r, a; `) is locally integrable and defines a (tempered) distribution
– a continuous functional on Schwartz space S(R) – with support on the positive
(real) semiaxis. For a different from a positive integer (a 6= 1, 2, . . .) the functions
Ln again admit a unique continuation as associate homogeneous distributions
satisfying, by definition, Eqs. (A.2) and (3.8),

r Ln(r, a; `) = Ln(r, a− 1; `) . (A.3)
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For Re a ≤ κ + 1, κ = 0, 1, . . ., they are defined as linear functionals on the
subspace Sκ of S(R) of test functions vanishing at the origin together with
their first κ derivatives. The functional Ln(r, a; `) is an associate homogeneous
distribution of order n and degree −a on Sκ. In fact, it satisfies

Ln(λ r, a; `) =
n∑
ν=0

Lν(λ, a; `)Ln−ν(r, a; `) on Sκ , (A.4)

which implies

(D + a)n+1 Ln(r, a; `) = 0 on Sκ
(
D = r

d

dr

)
. (A.5)

It admits a unique extension to S(R) at the exceptional points a = ν + 1,
ν = 0, 1, . . . , κ as an associate homogeneous distribution of order n+1, satisfying
the “boundary conditions” (3.10),

Ln(r, 0; `) =
1
n!

(
`n

r

`

)n
+

=
θ(r)
n!

(
`n

r

`

)n
. (A.6)

The distributions Ln(r, k; `) are related for different n by (A.2) assumed valid
for n = 0, 1, 2, . . ., and k = ν + 1 ν = 0, . . . , κ where L−1(r, k; `) ≡ L−1(r, k)
has support at r = 0:

(D + κ+ 1)n+1 Ln(r, κ+ 1; `) = L−1(r, κ+ 1) :=
δ(κ)(−r)

κ!
(A.7)

(δ(κ)(−r) = (−1)κ δ(κ)(r)). This is the assertion of Proposition 3.1 which we
proceed to prove.

We first give an explicit construction of the family of distributions {Ln(r, κ+
1; `)} on the real axis that extends the elementary functions (A.1) preserving
the properties (A.2) (A.3) (A.6) and (A.7). To this end we shall differentiate
in ε Hörmander’s relation (2.10) (or, equivalently, (2.11) – see the unnumbered
relation between (3.2.4) and (3.2.5) in [H]):

Ln(r, κ+ 1; `) = lim
ε→0

{
dn

dεn

(
rε−κ−1 − 1

ε

δ(κ)(−r)
κ!

)}
=

(−1)κ

κ!

(
d

dr

)κ+1 n+1∑
ν=0

σνκ Ln+1−ν(r, 0; `) , (A.8)

where Lm(r, 0; `) are (integrable) powers of log (see (A.6)) and the constants
σνκ are, in fact, determined by (A.3) and (A.6):

σ0κ = 1 , σνκ =
∑

1≤j1≤...≤jν≤κ

1
j1 . . . jν

for κ = 1, 2, . . . ,

(σν0 = 0) ν = 1, . . . , n+ 1 . (A.9)

26



(Eq. (A.8) should again be understood in terms of “differential renormalization”
– just as the meaning of (2.10) is spelled out by (2.11).)

Before proceeding to the proof that the expression (A.8) indeed satisfies the
above constraints we note that the last term in the sum is a derivative of the
δ-function (that is independent of `):

(−1)κ

κ!
σn+1κ

dκ+1

drκ+1
θ(r) = σn+1κ

δ(κ)(−r)
κ!

. (A.10)

In verifying (A.3) we use the identities

r
dκ+1

drκ+1
=
(
d

dr

)κ
(D − κ) , D

(
`n r

`

)k+1

(k + 1)!
=

(
`n r

`

)k
k!

σνκ = σνκ−1 −
σν−1κ

κ
. (A.11)

To check (A.2) we use in addition

(D + κ+ 1)
(
d

dr

)κ+1

=
(
d

dr

)κ+1

D . (A.12)

To prove the uniqueness of the distributions satisfying (A.2) (A.3) (A.6)
we assume that there are two such families, Ln and L′n and consider their
differences,

∆nκ ≡ ∆nκ(r, `) = Ln(r, κ+ 1; `)− Ln(r, κ+ 1; `) . (A.13)

These differences obey the same linear homogeneous equations (A.2) (A.3) as
the Ln. The boundary condition (A.6), on the other hand, implies

r∆n0(r, `) = 0 . (A.14)

The general solution of (A.14) in D′(R)(⊃ S ′(R)) is [Sc]

∆n0(r, `) = Cn δ(r) .

Combining this with (A.2), (D+1) ∆n0 = ∆n−10 we deduce that Cn = 0 = ∆n0.
The equations (A.3), implying successively

r∆nκ+1(r, `) = 0 , κ = 0, 1, . . . , (A.15)

have, on the other hand, no non-trivial homogeneous solutions of degree κ + 2
(κ ≥ 0). This completes the (uniqueness part of the) proof of Proposition 3.1.
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Appendix B. Calculating renormalized densities
in configuration space

B1. The one-loop scalar 2-point function

We shall prove Eq. (2.16) for the renormalized expression of the logarithmically
divergent 2-point function corresponding to the graph on Fig. 1a by applying
both sides to a test function f(x) ∈ S(R4). Introducing spherical coordinates

d4x = r3dr d3ω ,

∫
S3
d3ω = 2π2 (B.1)

we can write∫
d4x

{
1

(x2)2

(
x2

`2

)ε
− π2

ε
δ(x)

}
f(x) =

π2

ε

{∫ ∞
0

f(r) d
(
r2

`2

)ε
− f(0)

}
(B.2)

where we have set

f(r) =
1

2π2

∫
S3
f(rω) d3ω (⇒ f(0) = f(0)) . (B.3)

Integrating by parts and using the relation

1
ε

[(
r2

`2

)ε
− 1
]

= `n
r2

`2
+O(ε)

we find

π2

ε

{∫ ∞
0

f(r) d
(
r2

`2

)ε
− f(0)

}
= π2

∫ ∞
0

(
`n

`2

r2

)
df

dr
dr +O(ε) . (B.4)

This yields the following expression for the renormalized 2-point density∫ 3

S
G1(r, `) Vol :=

[∫
S3
d3ωG1(rω, `)

]
r3 dr

= 2π2 d

dr

(
`n

r

`

)
dr = π2 dr2 d

dr2

(
`n

r2

`2

)
. (B.5)

Finally we prove that the same density is reproduced from the right hand side
of (2.16). To this end we apply the identity

∂

∂xα
(xα g(r)) =

(
r
∂

∂r
+ 4
)
g(r) =

1
r3

∂

∂r
(r4 g(r))

to g(r) = 1
r4 `n

r2

`2 (for r > 0) with the result∫
d3ω

1
2

∂

∂xα

[
xα

(x2)2
`n

x2

`2

]
r3dr = π2 ∂

∂r

(
`n

r2

`2

)
dr = 2π2 d `n

r

`
. (B.6)
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B2. Three-point graph with a 2-point subdivergence

In order to perform the first five angular integrations in the 3-point density
corresponding to the graph on Fig. 3 (yielding the first equation (3.14)) we set

ω2 = ω1 cosϑ+ n sinϑ , n2(= ω2
i ) = 1 , ω1 n = 0 (B.7)

and integrate in ω1 over the 3-sphere (with |S3| = 2π2) and n over S2 (|S2| =
4π). To derive the last formula (3.14) we have used the expansion (2.21) of the
propagator

(x2
12)−1 = (r2 + ρ2 − 2 rρ cosϑ)−1 (B.8)

into Gegenbauer polynomials and their orthogonality (2.22) as well as the rela-
tions

C1
0 (cosϑ) = 1 ,

∫ π

0

sin2 ϑ dϑ =
π

2
.

In order to find the leading term LT G∆Vol of the density G∆Vol for small r
and ρ we first smear it with a f0(r, ρ) belonging to the subspace of test functions
S0 ⊂ S(R2) vanishing at the origin, f0(0, 0) = 0. We split the double integral
(G∆, f0)Vol into two parts ρ > r and r ≥ ρ

(G∆, f0) Vol = 4π4

∫ ∞
0

dρ

(
`n

`

ρ

)
+

∂

∂ρ

{
1
ρ2

∫ ρ

0

f0(r, ρ) r dr
}

+ 4π4

∫ ∞
0

∫ ∞
0

dr

r

(
`n

`

ρ

)
+

dρ
∂

∂ρ
[θ(r − ρ) f0(r, ρ)] . (B.9)

It is easy to verify (expanding f0(r, ρ) in a Taylor series in r around r = 0)
that the first (double) integral converges even without the assumption that
f0(0, 0) = 0. The same is true for the part of the second integral in the right
hand side of (B.9) involving ∂f0

∂ρ . The leading term that is singular at small
distances is the one proportional to

∂

∂ρ
θ(r − ρ) = −δ(r − ρ)

which gives

(LT G∆, f0) Vol = 4π4

∫ ∞
0

dr

r

(
`n

r

`

)
f0(r, r) . (B.10)

The extension of this term to general test functions f yields the renormalized
expression (3.15) in accord with Proposition 3.1.

This calculation illustrates the fact that whenever using a nonsmooth norm,
like max(r, ρ), one should take into account the singular contribution of its
derivatives.
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B3. Renormalization of a 3-loop 4-point graph with two
subdivergences

We shall compute the renormalized density corresponding to the graph on Fig. 4.
In order to reproduce the expression (3.18) valid in the domain

r∨ := max
(
r1,

r2 + r3

2

)
> 0 (B.11)

(i.e. away of the origin in the 12-dimensional space of coordinate differences
x0j , j = 1, 2, 3) we set

x0j = rj ωj , j = 1, 2, 3 ; ωi = cosϑi ω3 + sinϑi ni , i = 1, 2

ω3 ni = 0 , n2
i = 1(= ω2

j ) (B.12)

and integrate over the 3-sphere ω2
3 = 1 and the 2-spheres n2

i = 1, ni ω3 = 0
(in general, |S2n−1| = 2πn

(n−1)! , |S2| = 4π, |SN | = 2π
N−1 |SN−2|). Next we use the

substitutions (B.8) (B.9) for the variables r2, r3 (and ϑ2):

r2 = r(1 + t) , r3 = r(1− t)
(
r =

r2 + r3

2
, t =

r2 − r3

r2 + r3

)
,

dr2 dr3 sinϑ2

r2
2 + r2

3 − 2 r2 r3 cosϑ2
=

sc dr dt

r(s2 + c2t2)
, s = sin

ϑ2

2
, c = cos

ϑ2

2
. (B.13)

As suggested by our analysis of the renormalized 3-point function (3.16)
the leading

((
`n r

`

)2−) term at small distances is the one, coming from ∂
∂ ϑ2[(

`n r2

`2

)
+

]
θ(sinϑ2), proportional to

sc dϑ2 dt

s2 + c2t2
δ(ϑ2) = π δ(t) δ(ϑ2) dt dϑ2 . (B.14)

(Here δ(ϑ2) = ∂
∂ ϑ2

θ(sinϑ2) is the periodic δ-function of period 2π.) It allows to
integrate the leading contribution, LT G4Vol of (3.18) (B.13) in ϑ2, t and ϑ1:∫ π

0

dϑ1

∫ 1

−1

dt

∫ π

0

dϑ2 LT G4 Vol = (2π)5

∫ π

0

sin2 ϑ1 dϑ1

r2
1 + r2 − 2 rr1 cosϑ1

(
`n

r

`2

)
+

r dr d`n
r1

`1

= 16π6 r

r2
∨

(
`n

r

`2

)
+

dr d

(
`n

r1

`1

)
+

, r∨ = max(r, r1) . (B.15)

(Here we again used the expansion in C1
n(cosϑ1) as in the derivation of the last

equation (3.14).) Eq. (3.19) is now a consequence of (B.14) and (B.15).
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