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Abstract

Configuration (z-)space renormalization of euclidean Green functions
in a massless quantum field theory is reduced (by generalizing Hérmander’s
approach [H]) to the study of extensions of associate homogeneous distri-
butions. Primitively divergent graphs are renormalized, in particular, by
subtracting the residue of an analytically regularized expression. The
renormalized Green functions are again associate homogeneous distribu-
tions that transform under indecomposable representations of the dilation
group.

*Preliminary version.
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1 Introduction.

Fourier transform is a prime example of the now fashionable notion of duality. It
maps a problem of integrating large momenta into one of studying the short dis-
tance behaviour of correlation functions. Divergences were first discovered and
renormalization theory was developed for momentum space integration. E.C.G.
Stueckelberg and A. Petermann, followed by N.N. Bogolubov, a mathematician
who set himself to master quantum field theory (QFT), realized that (perturba-
tive) renormalization can be formulated as a problem of extending products of
distributions, originally defined for non-coinciding arguments, and that such an
extension is naturally restricted by locality or micro-causality (a concept intro-
duced in QFT by Ernst Stueckelberg [Stu] and further developed by Bogolubov
and collaborators — for a review and references see [BS]). The idea was taken
up and implemented systematically by H. Epstein and V. Glaser [EG] (see also
parallel work by O. Steinmann [St]). It is conceptually clear and offers a way to
develop perturbative QFT and operator product expansions on a curved back-
ground [DF, BF, BFV, HO7, HO8, HW, HWO08]. It is therefore not surprising that
it attracts more attention now than half a century ago when it was originally
put forward — see e.g. [G-B, G-BL, FG-B, EGP, FHS, K, N, K10, B10] as well
as the recent survey [B] which contains over 80 references. Papers like [BBK]
reflect, surely, later developments in both renormalization theory (Kreimer’s
Hopf algebra structure — see e.g. [Kr] — and Connes-Kreimer’s reduction to the
Riemann-Hilbert’s problem [CK]) and the mathematical study of singularities
in configuration space [FM, DP]. Recent work on Feynman graphs and motives
[BEK, BK] also generated a configuration space development [Ni, N, CM].

A starting point in our work was the observation (cf. [BF], [HW], [G-B],
[DF]) that Hérmander’s treatment of the extension of homogeneous distribu-
tions (Sect. 3.2 of [H]) is tailor-made for treating the ultraviolet (UV) renormal-
ization problem, that is particularly transparent in a massless QFT. In order
to explain the main ideas stripped of technicalities, we begin with the study
of dilation invariant euclidean Green’s functions (the only case considered in
[BBK]). Furthermore, we concentrate on the UV problem excluding integration
in configuration space by considering all vertices as external.The results extend
to Minkowski space causal Green functions as sketched in Sect. 4. It is, on
the other hand, known that the leading UV singularities in a massive QFT are
given by the corresponding massless limit. The full study of the renormalization
problem in the massive case requires, however, additional steps and is relegated
to future work.

We start with a framework that differs from standard QFT (cf. [Ni]). We
separate the renormalization program from concrete (massless) QFT models
and state it as a mathematical problem of extension of a class of distributions.
In Sects. 2 and 4 we formulate general axiomatic conditions for our construction
(corresponding to euclidean and to Minkowski space theories, respectively), such
that when combined with a given Lagrangian model it reproduces the result of
Epstein-Glaser for the renormalized time ordered products. To this end we



introduce a universal algebra of rational translation invariant functions in RP",
where n runs in N while D, the space-time dimension, is fixed (D = 4 being
the case of chief interest). We assume that this algebra is generated by 2-point
functions of the type
P2
Gij(wij) = [azgj(];]]), Tij =i — i, pi; €N, (L.1)
where P;; are homogeneous polynomials in the components of the D-vector x;;.
We note that the renormalization of any massless QFT can be reduced to the
extension of (a subspace of) rational functions G = [] G;;(x;;) of this alge-
i<j
bra to globally defined distributions. The correspondencje between the rational
functions and the global distributions is called a renormalization map. Each
expression
Gr= ] Gijles), (1.2)
(ig)er
can be represented by a decorated graph I' of n vertices and of lines connecting
pairs of different vertices (4, j) whenever there is a (non-constant) factor G;; in
the product (1.2). Each G;; = G;j(z;;) appears at most once in this expression,
so that there are no multiple lines in the graph I". The presence of different
powers p and different polynomials P indicates the fact that we give room for
composite fields in our theory such as normal products of derivatives of the basic
fields. (Matrix valued vertices that enter the Feynman rules can be accounted for
by admitting linear combinations of expressions of type (1.2).) A disconnected
graph I' corresponds to the (tensor) product of the distributions associated to
its connected components. We shall restrict our attention to connected graphs.

We remark that a quantum field theorist would replace in (1.1) the polyno-
mial in x by a polynomial of derivatives acting on the scalar field propagator.
The difference is not accidental: we shall impose the requirement, convenient
for the subsequent analysis, that the renormalization map commutes with mul-
tiplication by polynomials in x;;. On the other hand, derivatives typically yield
anomalies independently of the above requirement (see [N], Sect. 8). Using the
renormalization map we achieve the basic property of the time—ordered prod-
uct: causality. Other constraints compatible with causality and power counting
may be imposed - including a description of possible associated anomalies — by
adjustment of additional finite renormalizations. An example of such a phe-
nomenon, concerned with the behaviour of renormalized Feynman amplitudes
under dilations, is considered in Sect. 3.

Thus, to any graph I' in a given massless QFT there corresponds a bare
Feynman amplitude Gr. It is a homogeneous rational function of degree —dr
which depends on n-1 D-vector differences. We shall denote the arguments of
Gr by &, for short, and will introduce a uniform ordering ', ..., 2 of their com-
ponents, where N = D(n — 1) (for a connected graph). Then, the homogeneity
of Gr is expressed as

Gr(\ @) =\ Gr(2). (1.3)



We shall call the difference x := dr — N the index of divergence. It coincides
with (minus) the degree of homogeneity of the density form

Gr(Z)de' Adz® A ... AdaN = Gr(F) Vol., (1.4)

(Whenever the orientation is not relevant we shall skip the wedge sign. The use
of densities rather than functions streamlines changes of variables and partial
integration.) We say that Gr is superficially divergent if k > 0;Gp is called
divergent if it is not locally integrable. The following easy to prove statement
justifies the above terminology.

Proposition 1.1. If the indices of divergence of a connected graph I' and of all
its connected subgraphs are negative then Gr is locally integrable and admits, as
a consequence, a unique continuation as a distribution on RPM=1),

The power counting index of divergence of standard renormalization theory
is thus replaced by the degree of homogeneity for a (classically dilation invariant)
massless QFT.

Abusing the terminology we shall also speak of (superficially) divergent
graphs. Each function Gr defines a tempered distribution (in the sense of
Schwartz [Sc]) on test functions f with support

supp f C RD("_l)\Ag, Ay ={Z;3(4,5)i < j, s.t. z;; =0}. (1.5)

One can, similarly, introduce the partial diagonals Ay, involving k-tuples of coin-
ciding points; we have A,, == {#F;21 =... =x,} C Ap_1 C ... C As. We shall
be mostly using the small or full diagonal A,, in what follows. The problem of
renormalization consists in extending all distributions Gt to S(R”(~1)) in such
a way that a certain recursion relation, which reflects the causality condition, is
satisfied. This condition is known as causal factorization. We give the precise
formulation of its euclidean version in Sect. 2 while the more involved but phys-
ically motivated Minkowski space requirement is relegated to Sect. 4. We use
an z-space counterpart of Speer’s analytic renormalization in [Sp] to define the
notion of residue' of Gr adapted, in particular, to primitively divergent graphs.
It is based on the observation that if » = r(z;;) is a norm in the (euclidean)
space of coordinate differences and G(Z) is primitively divergent of index x then
the analytically reqularized Feynman amplitude

TG (T) (e > 0) (1.6)

is locally integrable. It will be proven in Sect. 2 that Eq. (1.6) defines a
distribution valued meromorphic function in € which only has simple poles for
non-positive integer values of €. This will allow us to define the renormalized
Feynman distribution G® of a primitively divergent graph by just subtracting

LA notion of residue of a Feynman graph has been introduced in the momentum space
approach in terms of the graph polynomial [BEK, BK]. More recently, a notion of Poincaré
residue was considered in the motivic approach to Feynman integrals in configuration space
[CM]. It would be interesting to establish the precise relationship between these notions.



the pole term for ¢ = 0. The result will be enforced by one of our main require-
ments (see (MC1) of Sect. 2, below), namely that G is associate homogeneous
of the same degree as G (its behaviour for small r only differing from G by log
terms). More precisely, we say that G is an associate homogeneous distribution
of degree d and order k if it obeys the (infinitesimal) indecomposable dilation
law

- 0 0 0
k+1 2) — — L I o7

(E4+d)"G(Z) =0 where FE= ;x, oz, (xax = z; x 53:0‘)' (1.7)
(For a motivation and for a global characterization of associate homogeneous
distributions - see Sect. 3.)

The study of divergent graphs with subdivergences is outlined in Sect. 3
(with examples worked out in Appendix B). It is remarkable that in all cases
renormalization is essentially reduced to a 1-dimensional extension problem for
associate homogeneous distributions. A construction that provides the solution
to this problem is outlined in Appendix A.

One objective of our work is to demonstrate in a systematic fashion that
z-space calculations are not only more transparent conceptually but also prac-
tical (especially in the euclidean massless case — something noticed long ago by
Chetyrkin et al. [CKT] (see also [KTV]) but only rarely appreciated afterwards
— ¢f. [G-B]). To this end we consider (in Sect. 3 and Appendix B) a number of
examples (of 1-, 2- and 3-loop graphs) displaying the basic simplicity of the ar-
gument. A primitively divergent n-loop graph whose residue involves ¢(2n — 3)
is displayed as Example 2.2.

2 The extension problem for primitively diver-
gent graphs. Analytic regularization and residues.

We shall define ultraviolet (i.e. short distance) renormalization by induction
with respect to the number of vertices. Assume that all contributions of dia-
grams with less than n points are renormalized. If then I' is an arbitrary con-
nected n-point graph its renormalized contribution should satisfy the following
inductive factorization requirement.

Let the index set I(n) = {1,...,n} of T be split into any two non-empty
non-intersecting subsets

Im)=NLUL (L #0, I,#0), L NI, =0.

Let Uy, 1, be the open subset of RP™ = (RP)*™ such that (z1,...,2,) ¢ Ur, 1,
whenever there is a pair (4,j) such that i € I;, j € I. Let further GF and
GT be the renormalized distributions associated with the subgraphs whose ver-
tices belong to the subsets I; and I5, respectively. We demand that for each
such splitting our distribution GE, defined on all partial diagonals, exhibits the



factorization property (— see [Ni]):

GE=G| [] Gij | G on U1, (2.1)
il
jEIy
where G;; are factors (of type (1.1)) in the rational function Gr and are under-
stood as multipliers on U, 1,.

We shall add to this basic physical requirement two more mathematical con-
ventions (MC) which will substantially restrict the notion of renormalization
used in this paper.

(MC1) Renormalization maps rational homogeneous functions onto associate
homogeneous distributions of the same degree of homogeneity; it extends asso-
ciate homogeneous distributions defined off the small diagonal to associate ho-
mogeneous distributions of the same degree (but possibly of higher order) defined
everywhere on RY.

(MC2) The renormalization map commutes with multiplication by polyno-
miaals. If we extend the class of our distributions by allowing multiplication
with smooth functions of no more than polynomial growth (in the domain of
definition of the corresponding functionals), then this requirement will imply
commutativity of the renormalization map with such multipliers.

The induction is based on the following

Proposition 2.1. The complement C(Ay,) of the small diagonal is the union
of all Uy, 1, for all pairs of disjoint I, Iy with I UI, = {1,...,n}, i.e.,

C(A,) = U s

11012 = {1,...,TL}

Proof. Let (z1,...,2,) € C(A,). Then there are at least two different points
xi, # x;,. We define I; as the set of all indices ¢ of I = I(n) for which x; # j,
and I := I\I;. Hence, C(A,) is included in the union of all such pairs. Each
Ur, 1,, on the other hand, is defined to belong to C(A,). This completes the
proof of our statement.

In order to apply and implement the inductive factorization property (2.1)
one needs two steps:

(i) to renormalize all primitively divergent graphs, i.e. all divergent diagrams
with no proper subdivergences, in particular, to extend all (superficially)
divergent 2-point functions G;; to distributions on S(RP);

(ii) to extend the resulting associate homogeneous distributions defined on the

complement of the full diagonal r1 = 2 = ... = x,, to distributions on
S(RD(nfl)).



We shall work out the first step in this section leaving (ii) to Sect. 3.

We begin with the renormalization of the general 2-point function (c¢f. (1.1))
or the corresponding density GVol:
P,
Gmalr) = (2(;) , GmaVol = Gpa(z)dPz, v € RP ) d,m € N (2.2)
x
where P,,(z) is a homogeneous polynomial of degree m. The expression (2.2)
is superficially divergent if its index & is non-negative:

k:=2d—m—-—D>0. (2.3)

It follows from Hormander’s analysis that the extension problem can be
solved by introducing the analytically reqularized expression?

SL‘Q

G oz, 0) = (W)EGmd(a:) (2.4)

(the scale parameter ¢ ensuring that G° has the same (naive) dimension as G).
According to Theorem 3.2.3 of Hormander [H] the homogeneous distribution
G5, on S(RP\{0}) has a unique homogeneous extension to S(R”) for non-
integer . Furthermore, it follows from the analysis in [H] that the resulting
distribution is meromorphic in € and may only have a simple pole at ¢ = 0 (or,
more generally, at integer values of €).

This can be derived directly from (2.2) by observing that Giq can be re-
stricted to the smooth function Py(w) on the unit sphere

D
sP-1 = {w eRP; W2 = Z(wo‘)z = 1} (2.5)

and thus reducing the problem to one (radial) dimension. In particular, the
density (1.3) becomes
GSy(x, 0) Vol = G5 y(x,0) dPx = 072 P (w) dPtwr* L ar
for z=rw, r>0. (2.6)

Following Hérmander (see [H]|, Eq. (3.2.17)) we observe that

PN ot o Jr® for r>0
X(T)_F(a—i—l)’ TJF_{O for r<0’ (2.7)
defines a distribution valued entire analytic function in a, such that
d’l’b
gy X () = X47(r), rX%(r) = (a+1) XF(r). (2.8)
r

2Similar formulas are used by Keller [K], [K10] under the name of “dimensional regular-
ization in position space”.



As XO(r) is the step function,

1 for r>0
XO(T)EQ(T) = {O for r<0”’

it follows from the first relation (2.8) that
X' ) =6W(r), v=0,1,... </ SO (r) f(r)dr = (=1)Y f) (0)) . (2.9)

We then deduce (from the known properties of I'(a)) that r2~%~! has indeed a
simple pole for € — 0, and moreover,

vemno1  (Z1)F () (=1)F [ att ~1 )
r . 5 = g (€n£)++;j Y (r)

(o= {75 = 120). (2.10)

for

The resulting expression is defined as a distribution by what is sometimes called
differential renormalization [FJL], [HL]:

-~ <r25—fc—1 _ G s (r), f(?“))

c00 2ek!
_ 1 /DO in L f(n-i-l)(r) dr + f(f@)(o) i 1 (2.11)
k! Jo r j=1 J

(the second term in the right hand side vanishing for x = 0). The parameter
¢ (the length scale of the regularized expression (2.4)) labels the ambiguity in
the renormalization. It is the only ambiguity in the 1-dimensional case if we
require, following Hérmander, that the renormalized expression is ”as close to
homogeneous as possible”. It is, in fact, an example of what Gelfand and Shilov
[GS] call an associate homogeneous distribution (a terminology also adopted in
[G-B] and recalled in Sect. 3). The parameter ¢ remains the only ambiguity in
the D-dimensional 2-point function (the renormalization of (2.2)) provided that
we assume — as we shall — full Euclidean covariance.

We define the (distribution valued) residue as the coefficient to = of the

analytically regularized amplitude G¢. For the density (2.6) we find
Res Gq Vol = Py(w) dP~1w 6" (r) dr . (2.12)

This is a rather unconventional way to write a distribution with support at the
origin. In particular, for a harmonic Py (z) and k > 0,

/SM Pi(w)dP~tw =0, (2.13)



so that, for k = 0, the residue of Gyp4k actually vanishes (upon integrating
with a test function). For k =0 (Py = 1), D = 2m, d = m (a logarithmically
divergent graph in a scalar field theory in an even dimensional space time).
Eq. (2.12) is equivalent to

Res Gom (z)Vol = [S*™ 1 §(z) d*™ x (2.14)

S2m-l| = % is the volume of the (2m — 1)-dimensional sphere.

Knowing the residue we can define a renormalized (as we shall see - associate
homogeneous) density

where |

2\ €
Gra(rw, ) Vol := lir% { (Z) Gra(z)dPz — R%fkd Vol} . (2.15)

The limit in the right hand can be computed explicitely in terms of the radial
coordinate r of Eq. (2.6) (see Eq. (3.2.5) of [H]; it will appear as a special case
of a more general limit involving associate homogeneous functions displayed in
Appendix A). Here we shall compute it instead in Cartesian coordinates in two
examples of 4-dimensional (4D) scalar field theory.

Example 2.1. The logarithmically divergent 2-point graph shwon on Fig. 1a

 ® —

la 1b

Figure 1.
Logarithmically and quadratically divergent 2-point graphs.

is ubiquitous as (sub)divergence in any scalar field theory in 4D: it appears as a

self-energy graph in a ¢® model and as a contribution to the 4-particle scattering
amplitude in the ¢* theory. The limit (2.15) of this 1-loop graph reads

. 1 2\° 272

limy {(ﬁ)z <e2> - 255(56)}

_ Lo far  (e\](_ Lo [
2 9z | (22)2 "\ a2 \e +’

_Jtnp for p>0
(€np)+—{ 0 for p<0>' (2.16)

Gl(I,E)

The derivatives in (2.16) should be understood in the sense of distribu-
tions (after smearing they should be transferred to the test function — see
Appendix B1). This is another instance of differential renormalization (cf.

Eq. (2.11) and see [FJL], [Pr]). Renormalized expressions of the type 8% [% In “[f—z]
(sum over «) are used systematically in [G-B].

10



Remark 2.1. Note that the double and the triple lines in Fig. 1 should both
be viewed as a single line with a different decoration (corresponding to different
powers, u = 2 and g = 3, in (1.1)). Thus, the self-energy graph on Fig. 1b,
which displays overlapping divergences in momentum space, is primitively di-
vergent in x-space according to our definition. Its renormalized expression is
additionally restricted by the requirement of full euclidean invariance. (In gen-
eral, we require the presence of as much of the symmetry of the rational function
in the renormalized expression as allowed by the existing anomalies.) Apply-
ing further requirement (MC2) which yields the identity G1(x,f) = 2% Ga(x, ),
valid for the original rational functions away from the origin, we find

. 1 z?\° 72
colent) =y {<> (&) -5}
32 A
In deriving (2.17) we have used the identities
9? 1 3 2
Af*élﬁ(pf)Jr;Awf for p=a°(=r9), x =rw;

€ 52 n €
"1+1 (£p2> :(n—e)(n—l—; (1—¢)2(— )(8/)2p> %(%)

_ m (i)nl (f 8(x) + 1 5, 8() + Galz, z)) 0(e)

where s, is a sum of partial harmonic series (cf. (A.9)):
3
2

g L
3—3,... .

We now proceed to define the residue and the renormalized expression for
an arbitrary primitively divergent graph. In this case our rational function Gr
is locally integrable in the neighbourhood of all partial diagonals and defines a
distribution on S(RP(™~V\{0}) and we can use the D(n — 1)-dimensional radial
coordinate to reduce it to an 1-dimensional problem as in (2.6) and then apply
(2.9) to obtain the residue. Once we have the residue, the counterpart of (2.15)
allows us to compute the renormalized Green function fixed by our requirements
(MC1) and (MC2).

One can use a more general (homogeneous, O(D)-invariant) norm on the
distances z7; instead of the (O(D(n — 1))-invariant) radial coordinate in order
to compute both the residue and the renormalized expression of a primitively
divergent graph as illustrated on the following n-loop example.

n

z_:; Z% <S1:0782=

j=1 J=

Example 2.2. We consider the 4D n-loop (n + 1-point) primitively divergent
Feynman amplitude

= (ngiwzzz#l)ila Tn+1 = X1, (2.18)

11



which we shall parametrize by the spherical coordinates of the n independent
4-vectors xg;:

Toi=riwi, >0, wi=1, i=1,2..n. (2.19)

An important special case is given by the complete 4-point graph

1

2 .2 2 3 .3 .3
Lo1 Loz Loz L12 X23 L13

Figure 2.
The tetrahedron graph in the (p*)4-theory.

Setting
R*\®
G: = <€2> Gr, R=max(ry,....,m), (2.20)
we shall compute its residue by first integrating the corresponding analytically

regularized density G% Vol over the angles w; using the identification of the

propagators I% with the generating functions for the Gegenbauer polynomials.
i

Having in mind applications to a scalar field theory in D dimensions (see Ex-
ample 3.3 below) we shall write down the corresponding more general formulas.
The propagator (v2,)~* of a free massless scalar field in D = 2\ +2 dimensional
space-time is expanded as follows in (hyperspherical) Gegenbauer polynomials:

1 & O\
(23) 7 = (7 47 = 2mirjow;) ™ = 2% > (1?) Cp (wiwj)
iJ n=0 e
Rij = max(m, Tj)7 Tij = min(m,rj) ) { # jv 7’;] = 17 273 (221)

We shall also use the integral formula

)\|S2)\+1|

iy Smn Cor (w1 w2) (2.22)

/ dw ON (w1 w) CMwaw) =
S2A+1

where [S2A 1] = 1%5\7:11) is the volume of the unit hypersphere in D = 2\ + 2

dimensions.
Clearly, the expansion (2.21) requires an ordering of the lengths r;. In gen-
eral, one should consider separately n! sectors, obtained from one of them, say

T >r2 > 2>y (20) (2.23)

by permutations of the indices. It is, in fact, sufficient to consider just the sector
(2.23) (and multiply the result for the residue by n!). (Because of the symmetry

12



of the tetrahedron graph (Fig. 2) this is obvious for n = 3 but it is actually true
for any n(> 3).) The result involves a polylogarithmic function:

// G (r1 Wiy ey Ty wy ) Vol
S3 S3

B ovn (TL\ZE dri A Ndry TR
= (2 (6 ) T1..Tn Lln_Q(r%)’
o0 2
r
Liy, () = & (€=-73) (2.24)
2 le mn— 2 T‘%

(rn = min(ry, ...,rn),r1 = max(ry,...,m)(= R) ). To derive the last equation
we have applied once more (2.22) and used

(CLw) =) CLO) =m+1.

The residue distribution corresponding to the (integrated over the angles) den-
sity (2.24) is given by

Res G5, = C(n) 8(r1)...0(rp) dry A ... Adry (2.25)

where
Tn—1 _
C(n) =n!lim 25/ / / =n! (27r2)"/ /w
e—0 r1=0 Jro= O 7, =0 Kn 1

ridra A .. Adry, —rodry Adrz... Adry + (=1 trydrg A Adr, g

w = Lln,Q(g)

T1...Tn

(dw = 0). (2.26)

Here w is a closed homogeneous form on the compact projective cone

Kn_1= {(rl,...,rn) EPy1; 71 >0 (Z ri > 0)} : (2.27)

i=1

The integration in (2.26) may be performed over any transverse surface. Choos-

ing R(=11) =1 we find
Tn—1
27T / d’r2 / dﬁLG 2(7,2)

= nl27?"((2n — (2.28)

C(n)

In particular, for the tetrahedron graph, n = 3, we reproduce the known result,
C(3) = 1275¢(3) - see, for instance, [G-B].

13



Remark 2.2. The closed homogeneous form w (2.26) of maximal degree has a
cohomological interpretation. A prototype of this form appears if we contract
the density GrVol (1.3) by the Euler vector field E:

—va — a a 9 . = a a—1 _.a 1 TJa N
Ex%,(Zx 8xa>’ZEGFV01GF(I)Z(1) xdz A . dx® . ANdx .

a= a=1

(2.29)
For k = 0, — i.e., for a homogeneous (logarithmically divergent) GrVol the Lie
derivative along E of Gr Vol vanishes,

0= LgGr Vol =dig Gr Vol, for Lg=igd+dig; (2.30)

hence, ig GrVol is a closed homogeneous (N — 1)-form. For x > 0 GrVol is

expressed in terms of derivatives of a homogeneous form; using (E d+N +k)Gr =
0 we find

GF = (_Hl') 8a1 e 8% (Z‘al R A GI‘) .

The residue (2.26) is a special case of the so called Wodzicki residue (see [G-B],
[G-BVF] and references therein). It is rewarding to realize that it coincides with
the residue in € under the analytic regularization. The integration technique
based on the properties of Gegenbauer polynomials has been introduced in the
study of z-space Feynman integrals in [CKT]. The appearance of (-values in the
computation of Feynman integrals has been detected in early work of Rosner
and Usyukina [R], [U]. It was related to the non-trivial topology of graphs by
Broadhurst and Kreimer (see [BrK], [Kr]).

3 Dilation anomaly. Extension of associate ho-
mogeneous distributions.

We now ask what is the behaviour under dilations of a renormalized primitively

divergent density G(Z)Vol of index x (> 0). By the definition of GVol the

dilation anomaly
A(Z,A) := A" G(A ) Vol — G(Z) Vol (3.1)

is a distribution valued density with support at the small diagonal, 1 = x5 =
.. = xp. Without loss of generality, we can restrict it, following [H], by de-
manding that it is again homogeneous in Z of degree —x:

AEN = aa(A)Daé(f)ﬁdem (3.2)
i=1

alal=x

where 6(Z) is the D(n — 1)-dimensional é-function,

n—1 D
Do =[] [T@)*, lal=> aw.
i=1 v=1 i,V
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Repeated application of the dilation law (3.1) yields the cocycle condition
ta (M) = aa(A) + aa(p) - (3.3)
The general form of an satisfying (3.3) is
aa(N) = aa(G) In A (3.4)

where a4(G) is a linear functional of the Green function G (or the corresponding
density G'Vol). It is important to note that the coefficient aq (G) in (3.4) is inde-
pendent of the ambiguity in the definition of the renormalized Green function.
Once the problem of renormalizing a primitively divergent graph is reduced to
a 1-dimensional one (as in Sect. 2) this follows from the simple observation that
the coefficient of fnr in (2.11) is independent of the ambiguity reflected in the
scale parameter /.

In fact, each renormalization of a subdivergence in a given graph increases
by one the maximal power of fn A in the associate homogeneity law. Since
T % (bnr)? = j(fnr)’~1, a general associate homogeneous renormalized Feyn-
man amplitude G will satisfy Eq. (1.7), (E + d)**' G(Z) = 0. We can then
characterize G by a (column) vector G = (G = G,Gy = (E 4+ d) Go,...,Gi =
(E + d) Gi—1) of distributions. It carries an indecomposable representation of
the dilation group® of degree —d and order k such that

G(Z) > N G\ T) = 2" G(T) = Z (tn \)7

k
> Gild) (3.5)

J

where A is a nilpotent Jordan cell with & units above the diagonal:

o 1 ... 0 O
0O o0 ... 0 0
N (A |
o o0 ... 0 O

The nilpotency condition A¥*! = 0 remains invariant under an arbitrary
non-singular transformation G — SG, A — S~'AS. We shall encounter in the
examples below a particular case of such a change of basis in which just the
normalization of G is altered.

In the case of causal renormalization it follows from the factorization as-
sumption that the dimension of the support of G; is decreasing with j and

Gi(&) = (§0+ d)* Go(¥) = D aa (G) Da 8(7). (3.7)

[e 2

3Representations of this type have been considered back in the 1970’s [FGG] within a study
of a spontaneous breaking of dilation symmetry.
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Following the terminology of Gelfand-Shilov [GS] (see the comment after Eq.
(2.11)) we shall call G (and its components) associate homogeneous distribu-
tions. Our task now is to study the extension — i.e. the renormalization — of
such associate homogeneous distributions. If we assume (as it will be proven in
Theorem 3.1 below) that the inductive procedure allows at each step a reduction
to a 1-dimensional (radial variable) problem, then we can use the result of Ap-
pendix A, that extends Hormander’s treatment of 1-dimensional homogeneous
distributions to associate homogeneous ones:

Proposition 3.1. For each value £ > 0 of the parameter £ the family of elemen-

P
tary functions r—¢ (nnif)* (non-vanishing for r > 0) that are locally integrable

for Rea <1 admit a continuation to tempered distributions

L,(r,a;0) € S'(R) (supp L,, C Rxg)

for all complex values of a that are uniquely determined by the relations

rLy(rya+1;0) = L,(r,a;£), (3.8)
d
(D+a)Ly(r,a;f) = Lp_1(r,a;¢), D =T (3.9)
and the “boundary condition”
1 r\"™
Lo(r,0:0) = — (en Z>+ , (3.10)

where (f(r))4 = 0(r) f(r) (see (2.10)).

(We note that the right hand side of (3.10) is locally integrable (and bounded
by 7), so it defines a tempered distribution.)

The requirement (3.8) ensures ultimately that we can multiply our renormal-
ized distributions by regular functions — a property needed in the formulation
of the causal factorization requirement (2.1). Proposition 3.1 accounts for a sin-
gle step in the renormalization procedure and thus involves a single parameter
£ describing the ambiguity. (This is a property of massless theories with the
additional requirement of associate homogeneity. In a massive theory even the
scalar field 2-point function (our Example 2.1) involves two parameters — the
mass and the wave function renormalization.)

In fact, the reduction to a 1-dimensional (radial) problem requires an ar-
gument. We shall prove at the end of this section a statement (Theorem 3.1)
that extends Hormander’s treatment of the n-dimensional homogeneous dis-
tributions to associate homogeneous ones. Before that we shall illustrate the
applications of the explicit construction displayed in Proposition 3.1 on some
low order examples.

To see in more detail what is involved in a graph with subdivergences we
consider a simple 3-point graph of this type which displays the role of the fac-
torization condition.
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Example 3.1. Renormalization the 3-point two loop diagram displayed on
Fig. 3.

1

GA = ———5——.
x(2)1 517%2 [x(z)z]Q

Figure 3.
Logarithmically divergent 3-point graph with a 2-point subdivergence.

We introduce as independent variables the spherical coordinates of the vec-
tors xp;, 1 = 1,2

To1 =Twy, Xgz =pwy, T,p>0, wgzl(i,e,wieSi)’)i:l,Q (3.11)

K2

and set
w1 wy =cosV, a2y =12+ p*—2rpcos?. (3.12)

The renormalized 2-point Green function (2.16), corresponding to the subgraph
of vertices (0,2) is

« 2
Go(gn, £) = + 2 [””02 en%?] _109 (En8)+. (3.13)
+

T 20ag, () 2], P o\l

(The last expression only makes sense as a density after multiplying with the
volume element d*z = p?dpd3w that cancels the p% factor and permits to
transfer the derivative to the test function.)

Next we shall write down the density Ga Vol with renormalized subdiver-
gence integrated over the six angular variables wy and wy (see Appendix B2):

Ga Vol = [/dgwl/dgwg GA(rwl,pwg;ﬁ)} r3dr p3dp
T -2
3 sin” 9 dv 0 p
= — (In = drd 14
s /0 r2 4+ p2 — 2rpcos? 6p(n€)+r rap (3.14)
_ 4ardrdp O ¢, p _ _rt+ptlr—pl
= 47 2 (€n€)+, rv = max(r, p) = 5 .

Smearing GaVol with a test function f(r,p) we find that the leading term,
LT GaVol, for ry — 0 (the only one that requires overall renormalization)
corresponds to r = p (Appendix B2):

n? ()
2

> d
(LT GRVol, f) = 747r4/0 dr %f(r,r). (3.15)

Here we have made use of the renormalized associate homogeneous distribution
Ly(r,1;¢) thus illustrating Proposition 3.1.

17



Somewhat symbolically we can write

GR(r, p;0) Vol = 47* Ly(r,1;0) 6(p—17) dr dp+Go(r, p) VolLo(p, 1;£) dp (3.16)

where G Vol is the regular part of the homogeneous 1-form 4 74 Trg” (for p # r).
\
Its associate homogeneity law is determined by the corresponding single variable

relations:

Lo(Ap, 0)dAp = (Lo(p,1;4) +nAd(p))dp,
Li(Ar,1;0)dAr = (Li(r,1;€) + n X Lo(p, 1;4)
+ % (n N2 6(r)) dr. (3.17)

We have a manifestation of the general rule: only the coefficient of the highest
log term (fn A for Lodp and (¢n \)? for Ly dr) is independent of the ambiguity
parametrized here by the scale £ in the renormalized subdivergence.

Remark 3.1. One could be tempted to replace the renormalization parameter
¢ in the expression (3.14) by the (external to the divergent 2-point subgraph)
variable r for » > p. This would amount to subtracting a local in p term,
474 % In % 6(p)dp. It is straightforward to observe, however, that neglecting
such a term in (3.14) would violate the causal factorization requirement (2.1).

The techniques developed in Example 3.1 also apply to more complicated
graphs as illustrated in the following example of a 4-point diagram with two
subdivergences.

Example 3.2. Renormalization of subdivergences in the 4-point graph on
Fig. 4.

0 I xgy=rjwj, r;>20, w=1, =123
W; W3z = COS’L%‘7 1= 1,2
2 3 Gu=(rir3ats(ads)”) "
Figure 4.

Logarithmically divergent 4-point graph with two disjoint 2-point subdivergences.

The 4-point density G4Vol, integrated over seven of the nine angular vari-
ables with renormalized 2-point subdivergences is given by (see Appendix B3)

. 72 drysin® ¥y diy dén ' sin s drg dig

G4 Vol = (2
4 Vo (27) r? + 12 —2r;r3costy 13413 — 2r9r3cosvs

) enr§+r§—2r2r3cos192
90, 2 L

X (3.18)
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For r = % > r; we derive (see Appendix B3) the following (analogous to
the first term in (3.16)) expression for the leading short distance behaviour of
the integrated in the angles renormalized density

LT GEVol = 16 7° §(ry — 73) L1 (72, 1;£2) Lo(r1, 1; 1) dry dro drs

for ro(=mr3)>11. (3.19)

Example 3.3. As a last example we consider the graph displayed on Fig. 5

2

1 3 I'Oj:Tjo,TjZO,Wj€SS

_2.2.2.2 2 \-2
Go = (1173 T3 T12 x23)

Figure 5.

Quadratically divergent diagram in 6-dimensions.

which exhibits overlapping divergences in 6-dimensional space-time.

Applying the relations (2.21) (2.22) for A = 2, we find the following expres-
sion for the analytically regularized integrated with respect to the angles Green
function density

_ R2,\“' [ R%,\ ™
Gerez — 9 _mrers (It 23 drydre d 3.20
o ™ (R12 R23)4 K% E% T1argars, ( )

where R;; = max(r;,r;) (¢f. (2.21)). The renormalized expression for Gg again
depends, as in the preceding examples (see, in particular, Example 2.2) on the
inequalities satisfied by the radial variables. For

rE <re<rs3 (321)

(and, similarly, for r3 < r9 < r1) we have a case of nested singularities. One
first renormalizes the logarithmicly divergent triangular subgraph with vertices
(0,1,2). Integrating first with respect to r; in the domain (3.21) we find

"2 71'9 T3 2e2 d?"g dTg
li ce2 15 3
511210 (/0 G@ 461 (T2) (fg) ’I”g

’/T9 T2 T3 262 d’f‘g
= —d|in—||-= —. 3.22
2 < ! £1> (fz) r3 (352
The renormalization of the resulting quadratically divergent in r3 associate ho-

mogeneous distribution follows the lines of Example 3.1. The case r; < ro > r3,
in which Rij2 = Ra3 = ro and “the divergences overlap”, is actually simpler; it
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is reduced to a single radial renormalization. Setting €1 +¢e2 = 5 and /1 {3 = 02
and integrating in r; and rs, we find

T () (A v 3,
ggl%) (/”:Io/rg)oGQS 2¢ dr2> == 3 (ngn£+25 (T)) (323)

We now proceed to the general treatment of the extension (renormalization)
problem for distributions of N = D(n — 1) variables.

We start with an associate homogeneous distribution Gg defined as a linear
functional on the subspace Sy of S(RY) of test functions vanishing (with their
derivatives) at the origin and satisfying

(ZI+d) Go(®) =0 on 8. (3.24)

We will then construct a k-vector G = (Go, Gq,...,Gi—1) of distributions on
So. The following theorem describes their simultaneous associate homogeneous
extension to the entire space S(RY).

Theorem 3.1. Let G = (Gy,...,Gr—1) be a k-tuple of associate homogeneous
distributions of degree d and order k —1 on Sy (i.e. G, € S8'(RN\0)) such that

MGAT) =L\ G(E), L) =2 (A)F =0, (3.25)
or in components
k—1
d 2\ _ (nA)”
A Go(AF) = ;GV@) T

N Gr_o(ANT) = Gr_o(T) + In A Gp_1(T),
MG (A\T) = Gp 1 (Z) on Sp. (3.26)

Ford # N+ k, k =0,1,..., the G, admits a unique associate homogeneous
continuation as distributions in S'(RY). For the exceptional values d = N +
k of the scaling dimension they admit an extension as associate homogeneous
distributions of the same degree d and order k. In particular,

Gi(@) = D, §(7) (3.27)

where D, is a homogeneous polynomial of degree k in the derivatives J =
{0/0x%}. Every two extensions of Gq differ by a homogeneous distribution
of type (3.27). The remaining components G, of G are determined uniquely by

-,

G, = (d+ Z0) Gy and do not depend on the ambiguity in Gy.
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Proof. We first prove the existence of the continuation. Let f = (fo(Z),..., fr—1(Z))
be any set of test functions in S(RY). We define a set of almost homogeneous
functions f = (fo,..., fk—1) that are smooth away from the origin:

F@ = ("Llp) X1 0@, (3.28)

where 'L stands for the transposed of the matrix L and the pairing is defined
as the action of a distribution in a single variable p (while Z appears as a vector
of parameters):

s . 0 Vi w41 .
fol@) = (Lalprit), folp @y = [ 0% o (o) dp.
[@) = (Lalp.wi ), folp @)y + (Lo(ps 5; €), filp@))p,
k—1
fier(@ = Y (Lir-u(pi i 0), fulp @)y, (3.29)
v=0

where the tempered distributions L, (p, k; £) are defined in Proposition 3.1 (and
given by Eq. (A.8)). Let now r = r(&) be any smooth away from the origin
(say, O(D)-invariant) norm* in RY. Let y be a smooth function with compact
support on the positive semiaxis, x € D(]0, oo[), satisfying

/wwdrzl. (3.30)
0

r

Then we define the extension GX of G to S(RY) by

k—

<GX,f>I 7X.f Z uaXfy . (331)

To prove that this is indeed an extension of G we have to verify that if f, vanish
at the origin together with their derivatives, f, € S, then (GX, f) = (G, f).
Indeed, for f, € Sy, we have

/o ptoop
and hence
n—1 n—1ln—-1—o
P N = e _\ (Inp)H .
S G (@) f (@) dVE = o Cor(@) L2 g (07 ¥
v=0 =0 p=0 K
n—1
= Golpd) fo(pF)d"pi
o=0

40ne may (but is not bound to) think, following Hérmander, of the radial norm 72 =

n—1 D
IC

i=1 a=1
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Then, it remains to set p& = ¢ and to take into account that

[ (2% [t

Furthermore, if £, (%) € S(RY) we can also introduce

k

fk(f) = Z<kau(paﬁ;£)7 fu(pf»ﬁ (332)

v=0

and define the (k + 1)-vector of associate homogeneous distributions G** =
(Go, . ..,G)) where

Gr=(ZI+d) Gy =...= (ZI+d)* Gy (3.33)

is a homogeneous distribution of degree —d with support at the origin of RY;

then
k

(G, F™) =) (Guox fo) (3.34)
v=0
again coincides with (G, f) for f, € Sy since then (G, fi) = 0.

The uniqueness part is based on the observation that any distribution with
support at the origin is a linear combination of derivatives of (%) (see, e.g.,
Theorem 3.1.16 of [H]). Its proof uses the assumption that the extension is an
associate homogeneous distribution of the same degree and the fact that

-,

(d+Z0)D,6(%) =0 for d=N+k. (3.35)

This completes the proof of the Theorem.

4 Renormalization in Lorentzian signature. Quadratic
configuration space.

The true objects of interest in a relativistic QFT are the Poincaré covariant
Green functions G(z1, ..., x,) on (the n'® Cartesian power of ) Minkowski space
M, for all n € N. It is on these correlation functions that one imposes the phys-
ical requirements of causality, stability (or energy positivity) etc. The corre-
sponding (sometimes simpler looking) properties of Euclidean Green functions
have to be derived from these basic assumptions. We shall therefore formulate
the Minkowski space renormalization problem in some detail, albeit we do not
intend to present its full treatment in this paper.

Once we assume that the square distances in the denominators of the ex-
pression (1.1) is indefinite

=22 — (29?%, z?= (z%)? (4.1)
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and hence vanish on a cone in M, it becomes more natural to start with the
complex Dn dimensional space (CP)*™. We define the quadratic configuration
space as

Cp={(21,-..,20) € (CP)Y*™: 22 = (2 —2))> #0 for i#j}. (4.2)

)

Our objective is to define a map R from the set of rational functions O,
spanned by monomials of type (1.2) to the space of (tempered) distributions
on M*™/M (where factoring by M reflects the translation invariance of G),
restricted by a number of conditions which we proceed to formulate.

First, we introduce boundary value operators with respect to tube domains
T; C M{. Every such tube 77 is defined for a finite ordered set I - that is a set
I ={j1,...,Jn} equipped with a line (total) order j; < --- < j, on it, in other
words, I is the pair (I, <). We shall also write it as

I'= (1, jn).

Note that if I C N then we consider the order < on I as an independent structure
on it, which may not coincide with the order < induced by N. For every ordered
set I = (j1,...,Jn) we have a standard backward tube domain associated to I,

Ty = {(xj)jej € M'+iM' : x5, —zj,,, € M —iV, forkzl,...,n}

(Vi being the open forward light—cone in M) and then we define a boundary
value map with respect to this tube 7;:

b.V.f: ﬁ] — 9}
where we denote for short
9; = 9'(M'/M)

(the space of translation invariant distributions on M7). Hence, for Gr (1.2)
we have:

b.V.f G[ = H ij(xj xk) N (:l:) = {(j) li‘;{:—< k.7 .
(kyer ((x] — )2+ iO(x? — x%)) I (—)ifk <

(4.3)

Note that b.v.; : O — Z; is an injection. This is because of a theorem

stating that if a boundary value of an analytic function vanishes on some open

set then the function is zero everywhere. For the same reason the b.v.; maps

commute with the action of the differential operators with polynomial coeffi-

cients. Another property of the boundary value maps is that they preserve the
multiplication,

b.V.f(G/GH) = be(G/) b.V.f(GH) 5

which includes the statement that distributions, which are b.v.y-values (for a

=

fixed I) can be multiplied.
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The renormalization R is another linear map R : 01 — %} (where Z; is the
space of distributions with arguments labelled by the index set I). It is assumed
to satisfy the axioms listed below.

R1. The image R O C 2} of a homogeneous rational function Gr of degree
dy is an associate homogeneous distributions of the same degree (but, in general,
of a higher order).

Remark 4.1. In a massive theory one uses, more generally, the Steinman
scaling degree and preservation of filtration (see [St, BF]). One may hope to
use the homogeneity degree of the leading short distance singularity, viewing
the mass as a perturbation, also in the general case.

R2. R commutes with permutations o of verticesin [ : Roo =00 R.

R3. Causality: for every disjoint union I = I’ UI" we have

R(Gr) |I/ZI//: R(Gr)Gr v R(Grr) (4.4)
where - -
I'>1"sx,;¢V_(=-Vy) for iel,jel”, (4.5)
G]/[// - b[’z]” H Gl] (46)
Rt

where b; > is the boundary value operator and V _ is the closure of V_. The
product (N4.4) exists as a distribution for G~ given by the boundary value
(4.6). This can be seen by examining the wave front sets of the various terms.
These are restricted by translation invariance and by the convexity of the light-
cone which characterizes the wave fronts of the G;;’s. The statement follows
by a straightforward application of Hérmander’s argument in Chapter VIII of
[H]. We stress that while the euclidean factorization property only required the
existence of the distribution (2.1) on the domain S;o here the distribution (4.4)
is found to exist everywhere.

R4. R commutes with multiplication by (homogeneous, and hence, because
of linearity, by any) polynomial p :

R(pG) =pR(G). (4.7)

R5. R intertwines the natural action of the Lorentz group (and hence also
of the Poincaré group, with dilations) on O; and on Sj.

We assert that a renormalization map satisfying conditions R1-5 exists and
can be constructed inductively (as in the euclidean case). Rather than present-
ing the full argument we shall formulate and prove a lemma that serves to state
the induction in the number of vertices (and whose counterpart in the euclidean
case is given by Proposition 2.1).
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Proposition 4.1. Fiz a (unordered) set I of n (decorated) indices (1,2,...,n).
The complement C(A,,) of the small diagonal

Ap={r1=22=... =2y} (4.8)

is the union of all configurations I = I' U I" (with non empty I' and I"") entering
the causality condition R4.

Proof. Let (x1,...,2,) € C(A,). Then there are at least two different points,
say x; # xj. Given such a pair, there exists a Lorentz frame in which the time
components of z; and x; are different, say ) > x?. Let then I’ be the set
of indices k such that ) > 2%, and let I” be its complement in I. Clearly,
I =TI'UI" is a splitting of the type entering R4 (and neither set is empty as
i € I'" and j € I"). This completes (the non-trivial part of) the proof of our
proposition.

Postulate R3 also explains the connection of Eq. (2.1) (in the euclidean case)
with causality.
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Appendix A. Radial associate homogeneous dis-
tributions

The family of elementary functions

Larai) =" ()" gy ={I 120 @

/ + r<0’
n=20,1,2,..., a € C satisfies the system of coupled ordinary differential equa-
tions

d
(D+a)L,(r,a;0) = Lyp_1(r,a;¢) for r>0, D:=r . (A.2)
r

which provides a differential form of its associate homogeneity property. For
Rea <1 L,(r,a;¥) is locally integrable and defines a (tempered) distribution
— a continuous functional on Schwartz space S(R) — with support on the positive
(real) semiaxis. For a different from a positive integer (a # 1,2, ...) the functions
L,, again admit a unique continuation as associate homogeneous distributions
satisfying, by definition, Egs. (A.2) and (3.8),

7 Lyp(r,a;¢) = Ly(r,a — 1;€) . (A.3)
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For Rea < k+ 1, Kk = 0,1,..., they are defined as linear functionals on the
subspace S,; of S(R) of test functions vanishing at the origin together with
their first x derivatives. The functional L, (r,a; ) is an associate homogeneous
distribution of order n and degree —a on S,. In fact, it satisfies

Lo(Ar,aif) =Y Ly(Aa;0) Ly_y(r,a;t) on Sy, (A.4)
v=0

which implies

d
(D4 a)" ™ Ly(r,a;£) =0 on S, <D =r d) . (A.5)
r
It admits a unique extension to S(R) at the exceptional points a = v + 1,
v =0,1,...,k as an associate homogeneous distribution of order n+1, satisfying
the “boundary conditions” (3.10),
1 r\  O(r) T\

The distributions L, (r, k; ) are related for different n by (A.2) assumed valid
forn=0,1,2,...,and k=v+1 v=0,...,k where L_1(r,k;£) = L_1(r, k)
has support at r = 0:

5 (—r)

(D4 r+ )" Ly(rm+ 1:0) = Loa(rm 1) = ——

(A.7)
(60 (—r) = (=1)*6*)(r)). This is the assertion of Proposition 3.1 which we
proceed to prove.

We first give an explicit construction of the family of distributions { L, (r, k+
1;¢)} on the real axis that extends the elementary functions (A.1) preserving
the properties (A.2) (A.3) (A.6) and (A.7). To this end we shall differentiate
in ¢ Hérmander’s relation (2.10) (or, equivalently, (2.11) — see the unnumbered
relation between (3.2.4) and (3.2.5) in [H]):

. o fd ey 10W(r)

1) d k+1 n+l
= (-1) (dr) ZJV” Lyi1-0,(r,050), (A.8)
v=0

k!

where L,,(r,0;¢) are (integrable) powers of log (see (A.6)) and the constants
oy, are, in fact, determined by (A.3) and (A.6):

oo =1, Oux= Z . — for k=1,2,...,
1< < <go<n I TV
(ov0 =0) v=1,....,n+1. (A.9)



(Eq. (A.8) should again be understood in terms of “differential renormalization”
— just as the meaning of (2.10) is spelled out by (2.11).)

Before proceeding to the proof that the expression (A.8) indeed satisfies the
above constraints we note that the last term in the sum is a derivative of the
d-function (that is independent of ¢):

GV 5 (=r)
ol On+41k W 9(’/") = On+1k T . (AlO)

In verifying (A.3) we use the identities

() 0w, p D) _ ()

"are 1 T \ar CES

Ou = Oyl — Tv—in (A.11)
K

To check (A.2) we use in addition

penin(4) "2 ()b a2

To prove the uniqueness of the distributions satisfying (A.2) (A.3) (A.6)
we assume that there are two such families, L, and L/ and consider their
differences,

A = Ba(r,€) = L(ry i +150) = Ly (o + 130) (A.13)

These differences obey the same linear homogeneous equations (A.2) (A.3) as
the L,. The boundary condition (A.6), on the other hand, implies

rApo(r,€) =0. (A.14)
The general solution of (A.14) in D/'(R)(D S'(R)) is [Sc]
Apo(r,€) = Cré(r).

Combining this with (A.2), (D+1) Ay = A,—_19 we deduce that C,, = 0 = A,y.
The equations (A.3), implying successively

rApet(r,f) =0, k=0,1,..., (A.15)

have, on the other hand, no non-trivial homogeneous solutions of degree x + 2
(k > 0). This completes the (uniqueness part of the) proof of Proposition 3.1.
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Appendix B. Calculating renormalized densities
in configuration space

B1. The one-loop scalar 2-point function

We shall prove Eq. (2.16) for the renormalized expression of the logarithmically
divergent 2-point function corresponding to the graph on Fig. la by applying
both sides to a test function f(r) € S(R*). Introducing spherical coordinates

d'z = r¥dr dw, dPw =272 (B.1)
s3

we can write

[t (%) - S} so =2 [(Tma(5) - 10} @2

where we have set

Fr) = —

- 271'2 s3

flrw) d’w (= £(0) = £(0)). (B.3)

Integrating by parts and using the relation

1 r2\° r?
we find

f{/omf(r)d(gy—f(o)}:WQ/om (gnfz> gdr+0(a). (B.4)

This yields the following expression for the renormalized 2-point density

3
/ G1(r, 0) Vol ::[ d%Gl(rw,E)] P dr
S s®

r dr? 02
Finally we prove that the same density is reproduced from the right hand side
of (2.16). To this end we apply the identity

5oz a0) = (735 +4) 9tr) = 75 51 (07 alr)

2
— 272 di (en %) dr=n2dr2 L <€n T) . (B.5)

or

2

to g(r) = 21 ¢n % (for r > 0) with the result

a 2 2
/d?’w% % [<;2)2€n ;2} r3dr = n? % (En ;2) dr = 27r2d£n%. (B.6)
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B2. Three-point graph with a 2-point subdivergence

In order to perform the first five angular integrations in the 3-point density

corresponding to the graph on Fig. 3 (yielding the first equation (3.14)) we set

wy =wycost +nsind, ni(=wi)=1, win=0 (B.7)

and integrate in w; over the 3-sphere (with |S3| = 272) and n over S? (|S?| =

4 7). To derive the last formula (3.14) we have used the expansion (2.21) of the
propagator

(215) = (r* + p* —27rpcos?) ! (B.8)

into Gegenbauer polynomials and their orthogonality (2.22) as well as the rela-
tions .
Ca(cosd) =1, / sinzﬁdﬁ:g.
0
In order to find the leading term LT G A Vol of the density G a Vol for small r
and p we first smear it with a fo(r, p) belonging to the subspace of test functions
So C S(R?) vanishing at the origin, fo(0,0) = 0. We split the double integral
(Ga, fo)Vol into two parts p > r and r > p

(Ga, fo) Vol = 47* /000 dp <€n i) (% {plz /Op Jo(r, p)rdr}
+

pant [TT 0 (en ﬁ)+dp§pw<r—p> Jolr, )] (B.9)

It is easy to verify (expanding fo(r, p) in a Taylor series in r around r = 0)
that the first (double) integral converges even without the assumption that
f0(0,0) = 0. The same is true for the part of the second integral in the right
hand side of (B.9) involving %—f;. The leading term that is singular at small

distances is the one proportional to

which gives
4 [ dr r
(LT Ga, fo) Vol =47t [ & <€n Z) folr,r) . (B.10)
0 T
The extension of this term to general test functions f yields the renormalized
expression (3.15) in accord with Proposition 3.1.

This calculation illustrates the fact that whenever using a nonsmooth norm,
like max(r, p), one should take into account the singular contribution of its
derivatives.
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B3. Renormalization of a 3-loop 4-point graph with two
subdivergences

We shall compute the renormalized density corresponding to the graph on Fig. 4.

In order to reproduce the expression (3.18) valid in the domain

ry = max <r1, 2 —;—r3> >0 (B.11)

(i.e. away of the origin in the 12-dimensional space of coordinate differences
xoj, j = 1,2,3) we set
Toj =rjwi, J=12,3; wi=costiws+sindin;, i=1,2
wsn; =0, n?=1(= w?) (B.12)
and integrate over the 3-sphere w3 = 1 and the 2-spheres n? = 1, n;wz = 0
(in general, [So,—1| = %, ISo| = 4m, |Sy| = 2% |Sn—2|). Next we use the
substitutions (B.8) (B.9) for the variables rq,r3 (and vz):

ro=r(l1+t), rsg=7r(1-1t) (r:r2+r3 t—r2_r3>

2 ’ _T2+T3

drs drs sin vy scdrdt . U P (B.13)
= §=sin—, c=cos—. .
724+ 13 —2rar3cosde (s +c2t2)’ 2 2

As suggested by our analysis of the renormalized 3-point function (3.16)

the leading ((én %)2 —) term at small distances is the one, coming from 8%92

[(ﬁn ;—j) J f(sin¥s), proportional to

scdiq dt

21 o 0(02) = m(t) 6(J2) dt dda . (B.14)

(Here §(02) = 8%92 0(sin¥2) is the periodic d-function of period 27.) It allows to
integrate the leading contribution, LT G4 Vol of (3.18) (B.13) in ¥, t and ¥;:

T 1 T T 2
Yy d
/dﬁl/dt/dﬁgLTG4V01:(27r)5/ L =) rdrdem
0 1 Jo o T{ +7r%—2rrycost 2 i /q

=167° % (En 7‘) drd (En Tl) ,  rv =max(r,r). (B.15)
by ), b))

v 2 1

(Here we again used the expansion in C} (cosd) as in the derivation of the last
equation (3.14).) Eq. (3.19) is now a consequence of (B.14) and (B.15).
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