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Abstract. We begin a study of mth Chern classes and mth characteristic symbols

for Iwasawa modules which are supported in codimension at least m. This extends

the classical theory of characteristic ideals and their generators for Iwasawa modules

which are torsion, i.e., supported in codimension at least 1. We apply this to an

Iwasawa module constructed from an inverse limit of p-parts of ideal class groups of

abelian extensions of an imaginary quadratic field. When this module is pseudo-null,

which is conjecturally always the case, we determine its second Chern class and show

that it has a characteristic symbol given by the Steinberg symbol of two Katz p-adic

L-functions.
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1. Introduction

The main conjecture of Iwasawa theory in its most classical form asserts the equality

of two ideals in a formal power series ring. The first is defined through the action of
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the abelian Galois group of the p-cyclotomic tower over an abelian base field on a limit

of p-parts of class groups in the tower. The other is generated by a power series that

interpolates values of Dirichlet L-functions. This conjecture was proven by Mazur and

Wiles [29] and has since been generalized in a multitude of ways. It has led to the

development of a wide range of new methods in number theory, arithmetic geometry

and the theory of modular forms: see for example [15], [24], [2] and their references.

As we will explain in Section 3, classical main conjectures pertain to the first Chern

classes of various complexes of modules over Iwasawa algebras. In this paper, we begin

a study of the higher Chern classes of such complexes and their relation to analytic

invariants such as p-adic L-functions. This can be seen as studying the behavior in

higher codimension of the natural complexes.

Higher Chern classes appear implicitly in some of the earliest work of Iwasawa [19].

Let p be an odd prime, and let F∞ denote a Zp-extension of a number field F . Iwasawa

showed that for sufficiently large n, the order of the p-part of the ideal class group of

the cyclic extension of degree pn in F∞ is

(1.1) pµp
n+λn+ν

for some constants µ, λ and ν. Let L be the maximal abelian unramified pro-p extension

of F∞. Iwasawa’s theorem is proved by studying the structure of X = Gal(L/F∞) as a

module for the Iwasawa algebra Λ = Zp[[Γ]] ∼= Zp[[t]] associated to Γ = Gal(F∞/F ) ∼= Zp.
Here, Λ is a dimension two unique factorization domain with a unique codimension two

prime ideal (p, t), which has residue field Fp. The focus of classical Iwasawa theory is

on the invariants µ and λ, which pertain to the support of X in codimension 1 as a

torsion finitely generated Λ-module. More precisely, µ and λ are determined by the

first Chern class of X as a Λ-module, as will be explained in Subsection 2.5. Suppose

now that µ = 0 = λ. Then X is either zero or supported in codimension 2 (i.e., X is

pseudo-null), and

ν ∈ Z = K0(Fp)
may be identified with the (localized) second Chern class of X as a Λ-module. In

general, the relevant Chern class is associated to the codimension of the support of

an Iwasawa module. This class can be thought of as the leading term in the algebraic

description of the module. When one is dealing with complexes of modules, the natural

codimension is that of the support of the cohomology of the complex.

There is a general theory of localized Chern classes due to Fulton-MacPherson [10,

Chapter 18] based on MacPherson’s graph construction (see also [39]). Moreover, Gillet

developed a sophisticated theory of Chern classes in K-cohomology with supports in

[11]. This pertains to suitable complexes of modules over a Noetherian scheme which

are exact off a closed subscheme and required certain assumptions, including Gersten’s

conjecture. In this paper, we will restrict to a special situation that can be examined

by simpler tools. Suppose that R is a local commutative Noetherian ring and that C•
is a bounded complex of finitely generated R-modules which is exact in codimension

less than m. We now describe an mth Chern class which can be associated to C•. In

our applications, R will be an Iwasawa algebra.
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Let Y = Spec(R), and let Y (m) be the set of codimension m points of Y , i.e., height

m prime ideals of R. Denote by Zm(Y ) the group of cycles of codimension m in Y , i.e.

the free abelian group generated by y ∈ Y (m):

Zm(Y ) =
⊕

y∈Y (m)
Z · y.

For y ∈ Y (m), let Ry denote the localization of R at y, and set C•y = C• ⊗R Ry. Under

our condition on C•, the cohomology groups Hi(C•y) = Hi(C•) ⊗R Ry are finite length

Ry-modules. We then define a (localized) Chern class cm(C•) in the group Zm(Y ) by

letting the component at y of cm(C•) be the alternating sum of the lengths∑
i
(−1)ilengthRyH

i(C•y).

If the codimension of the support of some Hi(C•y) is exactly m, the Chern class cm(C•)
is what we referred to earlier as the leading term of C• as a complex of R-modules. This

is a very special case of the construction in [39] and [10, Chapter 18]. In particular, if

M is a finitely generated R-module which is supported in codimension at least m, we

have

cm(M) =
∑

y∈Y (m)

lengthRy(My) · y.

We would now like to relate cm(C•) to analytic invariants. Suppose that R is a

regular integral domain, and let Q be the fraction field of R. When m = 1 one can use

the divisor homomorphism

ν1 : Q× → Z1(Y ) =
⊕

y∈Y (1)
Z · y.

In the language of the classical main conjectures, an element f ∈ Q× such that ν1(f) =

c1(M) is a characteristic power series for M when R is a formal power series ring.

A main conjecture for M posits that there is such an f which can be constructed

analytically, e.g. via p-adic L-functions.

The key to generalizing this is to observe that Q× is the first Quillen K-group K1(Q)

and ν1 is a tame symbol map. To try to relate cm(M) to analytic invariants for arbitrary

m, one can consider elements of Km(Q) which can be described by symbols involving

m-tuples of elements of Q associated to L-functions. The homomorphism ν1 is replaced

by a homomorphism νm involving compositions of tame symbol maps. We now describe

one way to do this.

Suppose that η = (η0, . . . , ηm) is a sequence of points of Y with codim(ηi) = i and

such that ηi+1 lies in the closure ηi of ηi for all i < m. Denote by Pm(Y ) the set of

all such sequences. Let k(ηi) = Q(R/ηi) be the residue field of ηi. Composing suc-

cessive tame symbol maps (i.e., connecting maps of localization sequences), we obtain

homomorphisms

νη : Km(Q) = Km(k(η0))→ Km−1(k(η1))→ · · · → K0(k(ηm)) = Z.
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Here, Ki denotes the ith Quillen K-group. We combine these in the following way to

give a homomorphism

νm :
⊕

η′∈Pm−1(Y )

Km(Q)→ Zm(Y ) =
⊕

y∈Y (m)
Z · y.

Suppose a = (aη′)η′∈Pm−1(Y ). We define the component of νm(a) at y to be the sum of

ν(η′0,η
′
1,...,η

′
m−1,y)(aη′) over all the sequences

η′ = (η′0, η
′
1, . . . , η

′
m−1) ∈ Pm−1(Y )

such that y is in the closure of η′m−1.

If M is a finitely generated R-module supported in codimension at least m as above,

then we refer to any element in
⊕

η′∈Pm−1(Y ) Km(Q) that νm maps to cm(M) as a

characteristic symbol for M . This generalizes the notion of a characteristic power

series of a torsion module in classical Iwasawa theory, which can be reinterpreted as

the case m = 1.

We focus primarily on the case in which m = 2 and R is a formal power series ring

A[[t1, . . . , tr]] over a mixed characteristic complete discrete valuation ring A. In this

case, we show that the symbol map ν2 gives an isomorphism

(1.2)

∏′
η1∈Y (1) K2(Q)

K2(Q)
∏
η1∈Y (1) K2(Rη1)

∼−−→ Z2(Y ).

This uses the fact that Gersten’s conjecture holds for K2 and R. In the numerator

of (1.2), the restricted product
∏′
η1∈Y (1) K2(Q) is the subgroup of the direct product

in which all but a finite number of components belong to K2(Rη1) ⊂ K2(Q). In the

denominator, we have the product of the subgroups
∏
η1∈Y (1) K2(Rη1) and K2(Q), the

second group embedded diagonally in
∏′
η1∈Y (1) K2(Q). The significance of this formula

is that it shows that one can specify elements of Z2(Y ) through a list of elements of

K2(Q), one for each codimension one prime η1 of R, such that the element for η1 lies

in K2(Rη1) for all but finitely many η1.

Returning to Iwasawa theory, an optimistic hope one might have is that under certain

hypotheses, the second Chern class of an Iwasawa module or complex thereof can be

described using (1.2) and Steinberg symbols in K2(Q) with arguments that are p-

adic L-functions. Our main result, Theorem 5.2.5, is of exactly this kind. In it, we

work under the assumption of a conjecture of Greenberg which predicts that certain

Iwasawa modules over multi-variable power series rings are pseudo-null, i.e., that they

have trivial support in codimension 1. We recall this conjecture and some evidence for

it found by various authors in Subsection 3.4.

More precisely, we consider in Subsection 5.2 an imaginary quadratic field E, and

we assume that p is an odd prime that splits into two primes p and p̄ of E. Let Ẽ

denote the compositum of all Zp-extensions of E. Let ψ be a one-dimensional p-adic

character of the absolute Galois group of E of finite order prime to p, and denote by K

the compositum of the fixed field of ψ with Ẽ(µp). We consider the Iwasawa module

X = Gal(L/K), where L is the maximal abelian unramified pro-p extension of K. Set
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G = Gal(K/E), and let ω be its Teichmüller character. For simplicity in this discussion,

we suppose that ψ 6= 1, ω.

The Galois group G has an open maximal pro-p subgroup Γ isomorphic to Z2
p. Green-

berg has conjectured that X is pseudo-null as a module for Λ = Zp[[Γ]] ∼= Zp[[t1, t2]]. Our

goal is to obtain information about X and its eigenspaces Xψ = Oψ ⊗Zp[[G]] X, where

Oψ is the Zp-algebra generated by the values of ψ, and Zp[[G]] → Oψ is the surjection

induced by ψ. When Greenberg’s conjecture is true, the characteristic ideal giving the

first Chern class of Xψ is trivial. It thus makes good sense to consider the second

Chern class, which gives information about the height 2 primes in the support of Xψ.

Consider the Katz p-adic L-functions Lp,ψ and Lp̄,ψ in the fraction field Q of the

ring R = eψ ·W [[G]] ∼= W [[t1, t2]], where eψ ∈ W [[G]] is the idempotent associated to ψ

and W denotes the Witt vectors of an algebraic closure of Fp. We can now define an

analytic element can
2 in the group Z2(Spec(R)) of (1.2) in the following way. Let can

2

be the image of the element on the left-hand side of (1.2) with component at η1 the

Steinberg symbol

{Lp,ψ,Lp̄,ψ} ∈ K2(Q),

if Lp,ψ is not a unit at η1, and with other components trivial. This element can
2 does

not depend on the ordering of p and p̄ (see Remark 2.5.2).

Our main result, Theorem 5.2.5, is that if X is pseudo-null, then

(1.3) can
2 = c2(Xψ

W ) + c2((Xωψ−1

W )ι(1))

where Xψ
W and (Xωψ−1

W )ι(1) are the R-modules defined as follows: Xψ
W is the completed

tensor product W ⊗̂Oψ Xψ, while (Xωψ−1

W )ι(1) is the Tate twist of the module which

results from Xωψ−1

W by letting g ∈ G act by g−1.

In (1.3), one needs to take completed tensor products of Galois modules with W

because the analytic invariant can
2 is only defined over W . Note that the right-hand

side of (1.3) concerns two different components of X, namely those associated to ψ and

ωψ−1. It frequently occurs that exactly one of the two is nontrivial: see Example 5.2.8.

In fact, one consequence of our main result is a codimension two elliptic counterpart

of the Herbrand-Ribet Theorem (see Corollary 5.2.7): the eigenspaces Xψ and Xωψ−1

are both trivial if and only if one of Lp,ψ or Lp̄,ψ is a unit power series.

One can also interpret the right-hand side of (1.3) in the following way. Let Ω =

Zp[[G]] and let ε : Ω → Ω be the involution induced by the map g → χcyc(g)g−1 on

G where χcyc : G → Z×p is the cyclotomic character. Then (Xωψ−1
)ι(1) is canonically

isomorphic to the ψ component (Xε)
ψ of the twist Xε = Ω⊗ε,ΩX of X by ε. Thus Xε is

isomorphic to X as a Zp-module but with the action of Ω resulting from precomposing

with the involution ε : Ω→ Ω. Then (1.3) can be written

(1.4) can
2 = c2(W ⊗̂Oψ (X ⊕Xε)

ψ).

We discuss two extensions of (1.3). In Subsection 5.3, we explain how the algebraic

part of our result for imaginary quadratic fields extends, under certain additional hy-

potheses on E and ψ, to number fields E with at most one complex place. We have no
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counterpart of the analytic class can
2 except when E is imaginary quadratic, however.

In Section 6, we show how when E is imaginary quadratic and K is Galois over Q, we

can obtain information about the X above as a module for the non-commutative Iwa-

sawa algebra Zp[[Gal(K/Q)]]. This involves a “non-commutative second Chern class” in

which, instead of lengths of modules, we consider classes in appropriate Grothendieck

groups. Developing counterparts of our results for more general non-commutative Ga-

lois groups is a natural goal in view of the non-commutative main conjecture concerning

first Chern classes treated in [5].

We now outline the strategy of the proof of (1.3). We first consider the Galois group

X = Gal(N/K), with N the maximal abelian pro-p extension of K that is unramified

outside of p. One has X = X/(Ip + Ip̄) for Ip the subgroup of X generated by inertia

groups of primes of K over p and Ip̄ is defined similarly for the prime p̄.

The reflexive hull of a Λ-module M is M∗∗ = (M∗)∗ for M∗ = HomΛ(M,Λ), and

there is a canonical homomorphism M →M∗∗. Iwasawa-theoretic duality results tell us

that since X is pseudo-null, the map X→ X∗∗ is injective with an explicit pseudo-null

cokernel (in particular, see Proposition 4.1.16). We have a commutative diagram

(1.5) Ip ⊕ Ip̄ //

��

I∗∗p ⊕ I∗∗p̄

��

X // X∗∗.

Taking cokernels of the vertical homomorphisms in (1.5) yields a homomorphism

f : X → X∗∗/(im(I∗∗p ) + im(I∗∗p̄ )),

where im denotes the image. A snake lemma argument then tells us that the cokernel

of f is the Tate twist of an Iwasawa adjoint α(X) of X which has the same class as Xι

in the Grothendieck group of the quotient category of pseudo-null modules by finite

modules. Moreover, the map f is injective in its ψ-eigenspace as ψ 6= ω.

The ψ-eigenspaces of X, Ip and Ip̄ are of rank one over Λψ = Oψ[[Γ]]. They need

not be free, but the key point is that their reflexive hulls are. The main conjecture

for imaginary quadratic fields proven by Rubin [40, 41] (see also [23]) implies that the

p-adic L-function Lp̄,ψ in ΛW = W [[Γ]] generates the image of the map

W ⊗̂Oψ (Iψp )∗∗ →W ⊗̂Oψ (Xψ)∗∗ ∼= ΛW ,

and similarly switching the roles of the two primes. Putting everything together, we

have an exact sequence of ΛW -modules:

0 −→ Xψ
W →

ΛW
Lp,ψΛW + Lp̄,ψΛW

−→ α(Xωψ−1

W )(1) −→ 0.

The second Chern class of the middle term is can
2 , and the second Chern class of the

last term depends only on its class in the Grothendieck group, yielding (1.3).

A key question in this work is the extent to which the results we prove over an

imaginary quadratic base field E can be generalized to more general fields, e.g. to CM

fields E, for which one has a theory of Katz p-adic L-functions. A fact essential to
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our work over an imaginary quadratic E is that the p-ramified Iwasawa module X is

rank one over Ω. Over more general CM fields E, the module X will have higher rank,

and the analysis of the unramified Iwasawa module X is more difficult. In this case,

it is plausible that our methods will extend to provide information for the top exterior

power of X and its quotients by submodules associated to inertia groups.

We now describe the organization of the paper. In Section 2, we define Chern

classes and characteristic symbols, and we explain how (1.2) follows from certain proven

cases of Gersten’s conjecture. In Section 3, we recall the formalism of some previous

main conjectures in Iwasawa theory. We also recall properties of Katz’s p-adic L-

functions and Rubin’s results on the main conjecture over imaginary quadratic fields.

In Subsection 3.4, we recall Greenberg’s conjecture and some evidence for it.

In Section 4, we discuss various Iwasawa modules in some generality. The emphasis is

on working out Iwasawa-theoretic consequences of Tate, Poitou-Tate and Grothendieck

duality. This requires the work in the Appendix, which concerns Ext-groups and Iwa-

sawa adjoints of modules over certain completed group rings.

We begin Section 5 with a discussion of reflection theorems of the kind we will

need to discuss Iwasawa theory in codimension two. In Subsection 5.1, we discuss

codimension two phenomena in the most classical case of the cyclotomic Zp-extension

of an abelian extension of Q. Our main result over imaginary quadratic fields is proven

in Subsection 5.2 using the strategy discussed above. The extension of the algebraic

part of the proof to number fields with at most one complex place is given in Subsection

5.3. The non-commutative generalization over imaginary quadratic fields is proved in

Section 6.

Acknowledgements. F. B. and T. C. would like to thank L’Institut des Hautes Études

Scientifiques for support during the Fall of 2015. R. G. would like to thank La Fondation

Sciences Mathématiques de Paris for its support during the Fall of 2015. T. C., R. G.,

M. K. and R. S. would like to thank the Banff International Research Station for hosting

the workshop “Applications of Iwasawa Algebras” in March 2013.

2. Chern classes and characteristic symbols

2.1. Chern classes. We denote by K′m(R) and Km(R), the Quillen K-groups [37]

of a ring R defined using the categories of finitely generated and finitely generated

projective R-modules, respectively. If R is regular and Noetherian, then we can identify

Km(R) = K′m(R).

Suppose that R is a commutative local integral Noetherian ring. Denote by m the

maximal ideal of R. Set Y = Spec(R), and denote by Y (i) the set of points of Y of

codimension i, i.e., of prime ideals of R of height i. Let Q denote the fraction field

Q(R) of R, and denote by η the generic point of Y .

For m ≥ 0, we set

Zm(Y ) =
⊕

y∈Y (m)
Z · y,

the right-hand side being the free abelian group generated by Y (m).
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Consider the Grothendieck group K
′(m)
0 (R) = K

′(m)
0 (Y ) of bounded complexes E• of

finitely generated R-modules which are exact in codimension less than m, as defined for

example in [44, I.3]. This is generated by classes [E•] of such complexes with relations

given by

(i) [E•] = [F•] if there is a quasi-isomorphism E• ∼−→ F•,
(ii) [E•] = [F•] + [G•] if there is an exact sequences of complexes

0→ F• → E• → G• → 0.

If M is a finitely generated R-module with support of codimension at least m, we

regard it as a complex with only nonzero term M at degree 0.

Suppose that C• is a bounded complex of finitely generated R-modules which is exact

in codimension less than m. Then for each y ∈ Y (m), we can consider the complex of

Ry-modules given by the localization C•y = C• ⊗R Ry. The assumption on C• implies

that all the homology groups Hi(C•y) are Ry-modules of finite length and Hi(C•y) = 0

for all but a finite number of y ∈ Y (m). We set

cm(C•)y =
∑
i

(−1)ilengthRyH
i(C•y)

and

cm(C•) =
∑

y∈Y (m)

cm(C•)y · y ∈ Zm(Y ).

We can easily see that cm(C•) only depends on the class [C•] in K
′(m)
0 (Y ) and that

it is additive, which is to say that it gives a group homomorphism

cm : K
′(m)
0 (Y )→ Zm(Y ).

The element cm(C•) can also be thought of as a localized mth Chern class of C•. In

particular, if M is a finitely generated R-module which is supported in codimension

≥ m, then we have

cm(M) =
∑

y∈Y (m)

lengthRy(My) · y.

In [39], the element cm(M) is called the codimension-m cycle associated to M and is

denoted by [M ]dim(R)−m. The class cm can also be given as a very special case of the

construction in [10, Chapter 18].

In what follows, we will show how to produce elements of Zm(Y ) starting from

elements in Km(Q).

2.2. Tame symbols and Parshin chains. Suppose that R is a discrete valuation

ring with maximal ideal m, fraction field Q and residue field k. Then, for all m ≥ 1,

the localization sequence of [37, Theorem 5] produces connecting homomorphisms

∂m : Km(Q)→ Km−1(k).

We will call these homomorphisms ∂m “tame symbols”.
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If m = 1, then ∂1(f) = val(f) ∈ K0(k) = Z. If m = 2, then by Matsumoto’s theorem,

all elements in K2(Q) are finite sums of Steinberg symbols {f, g} with f, g ∈ Q× (see

[32]). We have

(2.1) ∂2({f, g}) = (−1)val(f)val(g) f
val(g)

gval(f)
modm ∈ k×

(see for example [13], Cor. 7.13). In this case, by [7], localization gives a short exact

sequence

(2.2) 1→ K2(R)→ K2(Q)
∂2−→ k× → 1.

This exactness is a special case of Gersten’s conjecture: see Subsection 2.3.

In what follows, we denote by ηi a point in Y (i), i.e., a prime ideal of codimension i.

Suppose that ηi lies in the closure {ηi−1}, so ηi contains ηi−1, and consider R/(ηi−1).

This is a local integral domain with fraction field k(ηi−1), and ηi defines a height 1

prime ideal in R/(ηi−1). The localization Rηi−1,ηi = (R/(ηi−1))ηi is a 1-dimensional

local ring with fraction field k(ηi−1) and residue field k(ηi). The localization sequence

in K′-theory applied to Rηi−1,ηi still gives a connecting homomorphism

∂m(ηi−1, ηi) : Km(k(ηi−1)) −→ Km−1(k(ηi)).

For m = 1, by [37, Lemma 5.16] (see also Remark 5.17 therein), or by [13, Corollary

8.3], the homomorphism ∂1(ηi−1, ηi) : k(ηi−1)× → Z is equal to ordηi : k(ηi−1)× → Z
where ordηi is the unique homomorphism with

ordηi(x) = lengthRηi−1,ηi
(Rηi−1,ηi/(x))

for all x ∈ Rηi−1,ηi − {0}.

Remark 2.2.1. Under the additional assumption that R is excellent, one can calculate

∂2(ηi−1, ηi) using the tame symbol for DVRs as follows. The normalization R[ηi−1,ηi

of the localization Rηi−1,ηi is a DVR with fraction field k(ηi−1); since R is excellent,

R[ηi−1,ηi is a finite Rηi−1,ηi-module. Hence, its residue field is a finite extension k(η, i)

of the residue field k(ηi). We have the tame symbol

∂2 : K2(k(ηi−1))→ k(η, i)×

for the DVR R[ηi−1,ηi . The composition of ∂2 with the norm homomorphism

Normk(η,i)/k(ηi) : k(η, i)× → k(ηi)
×

is equal to ∂2(ηi−1, ηi). We omit the proof of this since we are not going to use it in

this paper.

For any n ≥ 1, we now consider the set Pn(Y ) of ordered sequences of points of Y

of the form η = (η0, η1, . . . , ηn), with codim(ηi) = i and ηi ∈ {ηi−1}, for all i. Such

sequences are examples of “Parshin chains” [36]. For η = (η0, η1, . . . , ηn) ∈ Pn(Y ), we

define a homomorphism

νη : Kn(Q) = Kn(k(η0))→ Z = K0(k(ηn))
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as the composition of successive symbol maps:

νη = ∂1(ηn−1, ηn) ◦ · · · ◦ ∂n−1(η1, η2) ◦ ∂n(η0, η1) :

Kn(k(η0))→ Kn−1(k(η1))→ · · · → K1(k(ηn−1))→ K0(k(ηn)).

Using this, we can define a homomorphism

νm :
⊕

η′∈Pm−1(Y )

Km(Q)→ Zm(Y ) =
⊕

y∈Y (m)

Z · y

by setting the component of νm((aη′)η′) for aη′ ∈ Km(Q) that corresponds to y ∈ Y (m)

to be the sum

(2.3) νm((aη′)η′)y =
∑

η′ | y∈{η′m−1}

νη′∪y(aη).

Here, we set

η′ ∪ y = (η′0, η
′
1, . . . , η

′
m−1) ∪ y = (η′0, η

′
1, . . . , η

′
m−1, y).

Only a finite number of terms in the sum are nonzero.

For the remainder of the section, we assume that R is in addition regular.

For m = 1, the map νm amounts to

ν1 : K1(Q) = Q× −→ Z1(Y ) =
⊕
y∈Y (1)

Z · y

sending f ∈ Q× to its divisor div(f). Since R is regular, it is a UFD, and ν1 gives an

isomorphism

(2.4) div : Q×/R×
∼−→ Z1(Y ).

For m = 2, the map

ν2 :
⊕

η1∈Y (1)

K2(Q)→ Z2(Y ) =
⊕
y∈Y (2)

Z · y,

satisfies

ν2(a) =
∑

η1∈Y (1)

divη1(∂2(aη1)).

for a = (aη1)η1 with aη1 ∈ K2(Q). Here,

divη1(f) =
∑
y∈Y (2)

ordy(f) · y

is the divisor of the function f ∈ k(η1)× on {η1}.
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2.3. Tame symbols and Gersten’s conjecture. In this paragraph we suppose that

Gersten’s conjecture is true for K2 and the integral regular local ring R. By this, we

mean that we assume that the sequence

(2.5) 1→ K2(R)→ K2(Q)
ϑ2−→

⊕
η1∈Y (1)

k(η1)×
ϑ1−→

⊕
η2∈Y (2)

Z→ 0

is exact, where the component of ϑ2 at η1 is the connecting homomorphism

∂2(η0, η1) : K2(Q)→ K1(k(η1)) = k(η1)×,

and ϑ1 has components ∂1(η1, η2) = ordη2 : k(η1)× → Z.

The sequence (2.5) is exact when the integral regular local ringR is a DVR by Dennis-

Stein [7], when R is essentially of finite type over a field by Quillen [37, Theorem 5.11],

when R is essentially of finite type and smooth over a mixed characteristic DVR by

Gillet-Levine [12] and of Bloch [1], and when R = A[[t1, . . . , tr]] is a formal power series

ring over a complete DVR A by work of Reid-Sherman [38]. In these last two cases, by

examining the proof of [12, Corollary 6] (see also [38, Corollary 3]), one sees that the

main theorems of [12] and [38] allow one to reduce the proof to the case of a DVR.

By the result of Dennis and Stein quoted above for the DVR Rη1 , we also have

(2.6) 1→ K2(Rη1)→ K2(Q)
∂2−→ k(η1)× → 1.

Continuing to assume (2.5) is exact, we then obtain that ϑ1 induces an isomorphism

(2.7)

⊕
η1∈Y (1) k(η1)×

ϑ2(K2(Q))

∼−→ Z2(Y ).

Combining this with (2.6), we obtain an isomorphism

(2.8) ν̄2 :

∏′
η1∈Y (1) K2(Q)

K2(Q) ·
∏
η1∈Y (1) K2(Rη1)

∼−−→ Z2(Y ) =
⊕

η2∈Y (2)

Z · η2

where the various terms are as in the following paragraph.

In the numerator, the restricted product
∏′
η1∈Y (1) K2(Q) is the subgroup of the

direct product in which all but a finite number of components belong to K2(Rη1). In

the denominator, we have the product of the subgroups
∏
η1∈Y (1) K2(Rη1) and K2(Q),

the second group embedded diagonally in
∏′
η1∈Y (1) K2(Q). Note that by the description

of elements in K2(Q) as symbols, this diagonal embedding of K2(Q) lies in the restricted

product. The map giving the isomorphism is obtained by

(2.9) ν2 :
′∏

η1∈Y (1)

K2(Q)→ Z2(Y ),

which is defined by summing the maps

ν(η0,η1,η2) = ∂1(η1, η2) ◦ ∂2(η0, η1) : K2(Q)→ Z

as in (2.3). The map ν2 is well-defined on the restricted product since ν(η0,η1,η2) is

trivial on K2(Rη1), and it makes sense independently of assuming that (2.5) is exact.
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2.4. Characteristic symbols. Suppose that R is a local integral Noetherian ring and

that C• is a complex of finitely generated R-modules which is exact on codimension

m − 1. We can then consider the mth localized Chern class, as defined in Subsection

2.1

cm(C•) ∈ Zm(Y ) =
⊕

ηm∈Y (m)

Z · ηm.

Definition 2.4.1. An element (aη′)η′ ∈
⊕

η′∈Pm−1(Y ) Km(Q) such that

νm((aη′)η′) = cm(C•)

in Zm(Y ) will be called an mth characteristic symbol for C•.

If m is the smallest integer such that C• is exact on codimension less than m, we will

simply say that (aη′)η′ as above is a characteristic symbol.

2.5. First and second Chern classes and characteristic symbols. We now as-

sume that the integral Noetherian local ring R is, in addition, regular.

Suppose first that m = 1, and let C• be a complex of finitely generated R-modules

which is exact on codimension 0, which is to say that C• ⊗R Q is exact. We can then

consider the first Chern class c1(C•) ∈ Z1(Y ). By (2.4), we have Z1(Y ) ' Q×/R× given

by the divisor map. In this case, a first characteristic symbol (or characteristic element)

for C• is an element f ∈ Q× such that

div(f) = c1(C•).

This extends the classical notion of a characteristic power series of a torsion module in

Iwasawa theory, considering the module as a complex of modules supported in degree

zero.

In fact, let M be a finitely generated torsion R-module. Let P be a set of repre-

sentatives in R for the equivalence classes of irreducibles under multiplication by units

so that P is in bijection with the set of height 1 primes Y (1). For each π ∈ P, let

nπ(M) be the length of the localization of M at the prime ideal of R generated by

π. Then c1(M) =
∑

π∈P nπ · (π). In the sections that follow, we will also use the

symbol c1(M) to denote the ideal generated by
∏
π∈P πnπ(M); this should not lead to

confusion. Note that, with this notation, M is pseudo-null if and only if c1(M) = R.

If R = Zp[[t]] = Zp[[Zp]], then c1(M) is just the usual characteristic ideal of R. This

explains the statements in the introduction connecting the growth rate in (1.1) to first

Chern classes (e.g., via the proof of Iwasawa’s theorem in [45, Theorem 13.13]).

Suppose now that m = 2. Let C• be a complex of finitely generated R-modules which

is exact on codimension ≤ 1. We can then consider the second localized Chern class

c2(C•) ∈ Z2(Y ). In this case, we can also consider characteristic symbols in a restricted

product of K2-groups. An element (aη1)η1 ∈
∏′
η1∈Y (1) K2(Q) is a second characteristic

symbol for C• when we have

ν2((aη1)η1) = c2(C•).
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Proposition 2.5.1. Suppose that f1, f2 are two prime elements in R. Assume that

f1/f2 is not a unit of R. Then a second characteristic symbol of the R-module R/(f1, f2)

is given by a = (aη1)η1 with

aη1 =

{
{f1, f2}−1, if η1 = (f1),

1, if η1 6= (f1).

Proof. Notice that, under our assumptions, R/(f1, f2) is supported on codimension 2.

We have to calculate the image of the Steinberg symbol {f1, f2} under

K2(Q)
∂2−→ K1(k(η1))

divη2−−−→ Z

for η1 = (f1) and η2 ∈ {η1}. (The rest of the contributions to ν2((aη1)η1) are obviously

trivial.) We have valη1(f1) = 1, valη1(f2) = 0, and so

∂2({f1, f2}) = f−1
2 mod (f1) ∈ k(η1)×.

By definition,

divη2(f2) = lengthR′(R
′/f2R

′),

where R′ is the localization R(f1),η2
= (R/(f1))η2 . We have a surjective homomorphism

of local rings Rη2 → R′. The Rη2-module structure on (R/(f1, f2))η2 = R′/f2R
′ factors

through Rη2 → R′, so

lengthR′(R
′/f2R

′) = lengthRη2 ((R/(f1, f2))η2).

This, taken together with the definition of c2(R/(f1, f2)), completes the proof. �

Remark 2.5.2. The same argument shows that a second characteristic symbol of the R-

module R/(f1, f2) is also given (symmetrically) by a′ = (a′η1
)η1 with a′η1

= {f2, f1}−1 =

{f1, f2} if η1 = (f2), and a′η1
= 1 otherwise. We can actually see directly that the

difference a−a′ ∈
∏′
η1∈Y (1) K2(Q) lies in the denominator of the right-hand side of (2.8).

Indeed, a − a′ is equal modulo
∏
η1∈Y (1) K2(Rη1) to the image of {f1, f2}−1 ∈ K2(Q)

under the diagonal embedding K2(Q)→
∏′
η1∈Y (1) K2(Q).

3. Some conjectures in Iwasawa theory

3.1. Main conjectures. In this subsection, we explain the relationship between the

first Chern class (i.e., the case m = 1 in Section 2) and main conjectures of Iwasawa

theory. First we strip the main conjecture of all its arithmetic content and present an

abstract formulation. To make things concrete, we then give two examples.

For the ring R, we take the Iwasawa algebra Λ = O[[Γ]] of the group Γ = Zrp for

a prime p, where O is the valuation ring of a finite extension of Qp. That is, Λ =

lim←−U O[Γ/U ], where U ranges over the open subgroups of Γ. In this case, Λ is non-

canonically isomorphic to O[[t1, . . . , tr]], the power series ring in r variables over O. We

need two ingredients to formulate a “main conjecture”:

(i) a complex of Λ-modules C• quasi-isomorphic to a bounded complex of finitely

generated free Λ-modules that is exact in codimension zero, and

(ii) a subset {aρ : ρ ∈ Ξ} ⊂ Qp for a dense set Ξ of continuous characters of Γ.
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Note that every continuous ρ : Γ → Q×p induces a homomorphism Λ → Qp that can

be extended to a map Q = Q(Λ) → Qp ∪ {∞}. We denote this by ζ 7→ ζ(ρ) or by

ζ 7→
∫

Γ ρdζ. A main conjecture for the data in (i) and (ii) above is the following

statement.

Main Conjecture for C• and {aρ}. There is an element ζ ∈ Q× such that

(a) ζ(ρ) = aρ for all ρ ∈ Ξ,

(b) ζ is a characteristic element for C•, i.e., c1(C•) = div(ζ).

Here, the Chern class c1 and the divisor div are as defined in Section 2.

3.2. The Iwasawa main conjecture over a totally real field. Let E be a totally

real number field. Let χ be an even one-dimensional character of the absolute Galois

group of E of finite order, and let Eχ denote the fixed field of its kernel. For a prime

p which we take here to be odd, we then set F = Eχ(µp) and ∆ = Gal(F/E). We

assume that the order of ∆ is prime to p. We denote the cyclotomic Zp-extension of

F by K. Then Gal(K/E) ∼= ∆ × Γ, where Γ ∼= Zp. If Leopoldt’s conjecture holds

for E and p, then K is the only Zp-extension of F abelian over E. Let L be the

maximal abelian unramified pro-p extension of K. Then Gal(K/E) acts continuously

on X = Gal(L/K), as there is a short exact sequence

1→ Gal(L/K)→ Gal(L/E)→ Gal(K/E)→ 1.

Thus X becomes a module over the Iwasawa algebra Zp[[Gal(K/F )]]. For a character

ψ of ∆, define Oψ to be the Zp-algebra generated by the values of ψ. The ψ-eigenspace

Xψ = X ⊗Zp[∆] Oψ

is a module over Λψ = Oψ[[Γ]]. By a result of Iwasawa, Xψ is known to be a finitely

generated torsion Λψ-module.

On the other side, we let Ξ = {χkcyc | k even}, where χcyc is the p-adic cyclotomic

character of E. Define

aχkcyc
= L(χω1−k, 1− k)

∏
p∈Sp

(1− χω1−k(p)Npk−1),

where ω is the Teichmüller character, Sp is the set of primes of E above p, Np is the

norm of p, and L(χω1−k, s) is the complex L-function of χω1−k. Then we have the

following Iwasawa main conjecture [46].

Theorem 3.2.1 (Barsky, Cassou-Noguès, Deligne-Ribet, Mazur-Wiles, Wiles). There

is a unique L ∈ Q× such that

(a) L(χkcyc) = aχkcyc
for every even positive integer k,

(b) c1(Xχ−1ω) = div(L).
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3.3. The two-variable main conjecture over an imaginary quadratic field. We

assume that p is an odd prime that splits into two primes p and p̄ in the imaginary

quadratic field E. Fix an abelian extension F of E of order prime to p. Let K be

the unique abelian extension of E such that Gal(K/F ) ∼= Z2
p. Let ∆ = Gal(F/E)

and Γ = Gal(K/F ). Then we have a canonical isomorphism Gal(K/E) ∼= ∆ × Γ. Let

Xp (resp., Xp) be the Galois group over K of the maximal abelian pro-p extension of

K unramified outside p (resp., p). Then, as above, Xp and Xp become modules over

Zp[[∆× Γ]]. It is proven in [40, Theorem 5.3(ii)] that Xp and Xp are finitely generated

torsion Zp[[∆× Γ]]-modules. As in Subsection 3.2, for any character ψ of ∆, we let Oψ
be the extension of Zp obtained by adjoining values of ψ and let

Xψp = Xp ⊗Zp[∆] Oψ, Xψp = Xp ⊗Zp[∆] Oψ.

The other side takes the following analytic data: Let Ξψ,p (resp., Ξψ,p) be the set of

all grossencharacters of E factoring through ∆×Γ of infinity type (k, j), with j < 0 < k

(resp., k < 0 < j) and with restriction to ∆ equal to ψ. Let g be the conductor of ψ.

Let −dE be the discriminant of E. For χ ∈ Ξψ,p (resp., χ ∈ Ξψ,p) of infinity type (k, j),

let

aχ,p =
Ωj−k

Ωj−k
p

(√
dE

2π

)j
G(χ)

(
1− χ(p)

p

)
L∞,gp(χ

−1, 0).

(
resp., aχ,p =

Ωj−k

Ωj−k
p

(√
dE

2π

)j
G(χ)

(
1− χ(p)

p

)
L∞,gp(χ

−1, 0)
)
.

Here, Ω and Ωp are complex and p-adic periods of E, respectively, and G(χ) is a Gauss

sum. Moreover, L∞,f refers to the L-function with the Euler factor at ∞ but without

the Euler factors at the primes dividing f. (For more explanation, see [6, Equation

(36), p. 80].) Let W be the ring of Witt vectors of Fp. Using work of Yager, deShalit

proves in [6, Theorem 4.14] that there are Lp,ψ,Lp,ψ ∈W [[Γ]] such that

Lp,ψ(χ) = aχ,p, for every χ ∈ Ξψ,p, and Lp,ψ(χ) = aχ,p, for every χ ∈ Ξψ,p.

We have the following result of Rubin [40] on the two-variable main conjecture over

E.

Theorem 3.3.1 (Rubin). With the notation as above, we have

div(Lp,ψ) = c1(W [[Γ]] ⊗̂Oψ [[Γ]] X
ψ
p ).

The above is also true with p replaced by p.

Let σ denote the nontrivial element of Gal(E/Q). We obtain an action of σ on ∆×Γ

via conjugation by any lift of σ to Gal(K/Q). We extend this action Zp-linearly to a

map

σ : Zp[[∆× Γ]]→ Zp[[∆× Γ]].

This homomorphism σ maps Oψ[[Γ]] isomorphically to Oψ◦σ[[Γ]].

Lemma 3.3.2. The two Katz p-adic L-functions are related by

(a) Lp,ψ = σ(Lp,ψ◦σ).
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(b) Lp,ψ(χ) = (p-adic unit) · Lp,ψ−1ω(χ−1χ−1
cyc), where χcyc is the p-adic cyclotomic

character.

Proof. Assertion (a) is proven simply by interpolating both sides at all elements in

Ξψ,p. We first note that both σ(Lp,ψ◦σ) and Lp,ψ lie in W ⊗̂Oψ Oψ[[Γ]]. Then

σ(Lp,ψ◦σ)(χ) = Lp,ψ◦σ(χ ◦ σ)

=
Ωj−k

Ωj−k
p

(√
dE

2π

)j
G(χ ◦ σ)

(
1− (χ ◦ σ)(p)

p

)
L∞,gp((χ ◦ σ)−1, 0)

=
Ωj−k

Ωj−k
p

(√
dE

2π

)j
G(χ)

(
1− χ(p)

p

)
L∞,gp(χ

−1, 0)

= Lp,ψ(χ),

where we use the fact that the infinity type of χ ◦ σ is (j, k), and in the third equality

we use the obvious equalities G(χ) = G(χ ◦σ) and L∞,gp((χ ◦σ)−1, 0) = L∞,gp(χ
−1, 0).

To prove (b), we use the functional equation for p-adic L-functions, which says that

Lp,ψ(χ) = (p-adic unit) · L
p,ψ
−1
ω
(χ−1χ−1

cyc),

where we write ψ and χ instead of ψ ◦ σ and χ ◦ σ for convenience (see [6, Equation

(9), p. 93]). Using (i) and the functional equation, we obtain

Lp,ψ(χ) = σ(Lp,ψ)(χ)

= Lp,ψ(χ)

= (p-adic unit) · Lp,ψ−1ω(χ−1χ−1
cyc).

�

3.4. Greenberg’s Conjecture. Let E be an arbitrary number field, and let Ẽ be

the compositum of all Zp-extensions of E. Let Γ = Gal(Ẽ/E) and Λ = Zp[[Γ]]. Then

Γ ∼= Zrp for some r ≥ r2(E) + 1, where r2(E) is the number of complex places of E.

Leopoldt’s Conjecture for E and p is the assertion that r = r2(E) + 1. This is known

to be true if E is abelian over Q or over an imaginary quadratic field [3]. The ring Λ

is isomorphic (non-canonically) to the formal power series ring over Zp in r variables.

Let L be the maximal, abelian, unramified pro-p-extension of Ẽ, and let X =

Gal(L/Ẽ), which is a Λ-module that we will call the unramified Iwasawa module over

Ẽ. The following conjecture was first stated in print in [12, Conjecture 3.5].

Conjecture 3.4.1 (Greenberg). With the above notation, the Λ-module X is pseudo-

null. That is, its localizations at all codimension 1 points of Spec(Λ) are trivial.

Note that if E is totally real, and if Leopoldt’s conjecture for E and p is valid, then

Ẽ is the cyclotomic Zp-extension of E, and the conjecture states that X is finite.

In the case that E is totally complex, we have the following reasonable extension of

the above conjecture. Let K be any finite extension of Ẽ which is abelian over E. Then

Gal(K/E) ∼= ∆ × Γ, where ∆ is a finite group and Γ (as defined above) is identified
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with Gal(K/F ) for some finite extension F of E. Let X be the unramified Iwasawa

module over K. Then Γ acts on X and so we can again regard X as a Λ-module. The

extended conjecture asserts that X is pseudo-null as a Λ-module.

More generally, suppose only that K is a Zrp-extension of an arbitrary number field

F for some r > 1. We actually know of no examples for which the unramified Iwasawa

module X over K is demonstrably not pseudo-null as a Zp[[Gal(K/F )]]-module.

Some evidence for Conjecture 3.4.1 has been given in various special cases. For

instance, in [33], Minardi verifies Conjecture 3.4.1 when E is an imaginary quadratic

field and p is a prime not dividing the class number of E, and also for many imaginary

quadratic fields E when p = 3 and does divide the class number. In [18], Hubbard

verifies the conjecture when p = 3 for a number of biquadratic fields E. In [42], Sharifi

gave a criterion for Conjecture 3.4.1 to hold for Q(µp). By a result of Fukaya-Kato [9,

Theorem 7.2.8] on a conjecture of McCallum-Sharifi and related computations in [31],

the condition holds for E = Q(µp) for all p < 25000. The results of [42] suggest that

X should have an annihilator of very high codimension for E = Q(µp).

Assume that K is a Zrp-extension of a number field F , that K contains µp∞ , and

that r ≥ 2. One can define the class group Cl(K) to be the direct limit (under the

obvious maps) of the ideal class groups of all the finite extensions of F contained in K.

The assertion that X is pseudo-null as a Λ-module turns out to be equivalent to the

assertion that the p-primary subgroup of Cl(K) is actually trivial. This is proved by a

Kummer theory argument by first showing that Hom(Cl(K), µp∞) is isomorphic to a Λ-

submodule of X = Gal(M/K), where M denotes the maximal abelian pro-p extension

of K unramified outside the primes above p, which we call the unramified outside p

Iwasawa module over K. One then uses the result that X has no nontrivial pseudo-null

Λ-submodules [14]. If one assumes in addition that the decomposition subgroups of

Γ = Gal(K/F ) for primes above p are of Zp-rank at least 2, then the assertion that X

is pseudo-null is equivalent to the assertion that X is torsion-free as a Λ-module. (Its

Λ-rank is known to be r2(F ) and so is positive.) Proofs of these equivalences can be

found in [25].

4. Unramified Iwasawa modules

4.1. The general setup. Let p be a prime, E be a number field, F a finite Galois

extension of E, and ∆ = Gal(F/E). Let K be a Galois extension of E that is a

Zrp-extension of F for some r ≥ 1, and set Γ = Gal(K/F ). Set G = Gal(K/E),

Ω = Zp[[G]], and Λ = Zp[[Γ]]. Note that K/F is unramified outside p as a compositum

of Zp-extensions.

Let S be a set of primes of E including those over p and ∞, and let Sf be the set

of finite primes in S. For any algebraic extension F ′ of F , let GF ′,S denote the Galois

group of the maximal extension F ′S of F ′ that is unramified outside the primes over

S. Let Q = Gal(FS/E). For a compact Zp[[Q]]-module T , we consider the Iwasawa

cohomology group

Hi
Iw(K,T ) = lim←−

F ′⊂K
Hi(GF ′,S , T )
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that is the inverse limit of continuous Galois cohomology groups under corestriction

maps, with F ′ running over the finite extensions of F in K. It has the natural structure

of an Ω-module.

We will use the following notation. For a locally compact Λ-module M , let us set

EiΛ(M) = ExtiΛ(M,Λ)

for short. This again has a Λ-module structure with γ ∈ Γ acting on f ∈ E0
Λ(M) by

(γ · f)(m) = γf(γ−1m). We let M∨ denote the Pontryagin dual, to which we give a

module structure by letting γ act by precomposition by γ−1. If M is a (left) Ω-module,

then M∨ is likewise a (left) Ω-module. Moreover, EiΛ(M) ∼= ExtiΩ(M,Ω) as Λ-modules

(since Ω is Λ-projective), through which EiΛ(M) attains an Ω-module structure. We

set M∗ = E0
Λ(M) = HomΛ(M,Λ).

The first of the following two spectral sequences is due to Jannsen [21, Theorem 1],

and the second to Nekovář [34, Theorem 8.5.6] (though it is assumed there that p is

odd or K has no real places). One can find very general versions that imply these in

[8, 1.6.12] and [27, Theorem 4.5.1].

Theorem 4.1.1 (Jannsen, Nekovář). Let T be a compact Zp[[Q]]-module that is finitely

generated and free over Zp. Set A = T ⊗Zp Qp/Zp. There are convergent spectral

sequences of Ω-modules

Fi,j2 (T ) = EiΛ(Hj(GK,S , A)∨)⇒ Fi+j(T ) = Hi+j
Iw (K,T )

Hi,j
2 (T ) = EiΛ(H2−j

Iw (K,T ))⇒ Hi+j(T ) = H2−i−j(GK,S , A)∨.

We will be interested in the above spectral sequences in the case that T = Zp. We

have a canonical isomorphism

H1(GK,S ,Qp/Zp)∨ ∼= X,

where X denotes the S-ramified Iwasawa module over K (i.e., the Galois group of the

maximal abelian pro-p, unramified outside S extension ofK). We study the relationship

between X and H1
Iw(K,Zp).

The following nearly immediate consequence of Jannsen’s spectral sequence is a mild

extension of earlier unpublished results of McCallum [30, Theorems A and B].

Theorem 4.1.2 (McCallum, Jannsen). There is a canonical exact sequence of Ω-

modules

0→ Zδr,1p → H1
Iw(K,Zp)→ X∗ → Zδr,2p → H2

Iw(K,Zp),

where δj,i = 1 if i = j and δj,i = 0 otherwise. If the weak Leopoldt conjecture holds for

K, which is to say that H2(GK,S ,Qp/Zp) = 0, then this exact sequence extends to

(4.1) 0→ Zδr,1p → H1
Iw(K,Zp)→ X∗ → Zδr,2p → H2

Iw(K,Zp)→ E1
Λ(X)→ Zδr,3p ,

and the last map is surjective if p is odd or K has no real places.



HIGHER CHERN CLASSES IN IWASAWA THEORY 19

Proof. The first sequence is just the five-term exact sequence of base terms in Jannsen’s

spectral sequence for T = Zp. For this, we remark that

Fi,02 (Zp) = EiΛ(Zp) ∼= Zδr,ip

by [21, Lemma 5] or Corollary A.13 below. Under weak Leopoldt, F0,2
2 (Zp) is zero, so

the exact sequence continues as written, the next term being H3
Iw(K,Zp). If p is odd

or K is totally imaginary, then GF ′,S has p-cohomological dimension 2 for some finite

extension F ′ of F in K, so H3
Iw(K,Zp) vanishes. �

Remark 4.1.3. The weak Leopoldt conjecture for K is well-known to hold in the case

that K(µp) contains all p-power roots of unity (see [35, Theorem 10.3.25]).

Remark 4.1.4. For p odd, McCallum proved everything but the exactness at Zδr,2p in

Theorem 4.1.2, supposing both hypotheses listed therein.

Corollary 4.1.5. There is a canonical isomorphism X∗∗ → H1
Iw(K,Zp)∗ of Ω-modules.

Proof. This follows from Theorem 4.1.2, which provides an isomorphism if r ≥ 3, or if

r = 2 and the map X∗ → Zp is zero. If r = 1, then we obtain an exact sequence

0→ X∗∗ → H1
Iw(K,Zp)∗ → E0

Λ(Zp),

and the last term is zero. If r = 2 and the map X∗ → Zp is nonzero, then we obtain an

exact sequence

0→ E0
Λ(Zp)→ X∗∗ → H1

Iw(K,Zp)∗ → E1
Λ(Zp),

and E0
Λ(Zp) = E1

Λ(Zp) = 0 since r = 2. �

Using the second spectral sequence in Theorem 4.1.1, we may use this to obtain the

following.

Corollary 4.1.6. Suppose that p is odd or K is totally imaginary. There is an exact

sequence

0→ E1
Λ(H2

Iw(K,Zp))→ X→ X∗∗ → E2
Λ(H2

Iw(K,Zp))→ Zp
of Ω-modules. In particular, E1

Λ(H2
Iw(K,Zp)) is isomorphic to the Λ-torsion submodule

of X.

Proof. By hypothesis, GF ′,S has p-cohomological dimension 2 for some finite extension

F ′ of F in K. Therefore, Nekovář’s spectral sequence is a first quadrant spectral

sequence for any T . For T = Zp, it provides an exact sequence

(4.2) 0→ E1
Λ(H2

Iw(K,Zp))→ H1(GK,S ,Qp/Zp)∨ → H1
Iw(K,Zp)∗ → E2

Λ(H2
Iw(K,Zp))

→ H0(GK,S ,Qp/Zp)∨ → E1
Λ(H1

Iw(K,Zp))→ E3
Λ(H2

Iw(K,Zp))→ 0

of Ω-modules. In particular, applying Corollary 4.1.5 to get the third term, we have

the exact sequence of the statement. �

Remark 4.1.7. In the case that r = 1, Corollary 4.1.6 is in a sense implicit in the work

of Iwasawa [20] (see Theorem 12 and its proof of Lemma 12). In this case, second

Ext-groups are finite, so the map to Zp in the corollary is zero.
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Remark 4.1.8. In Corollary 4.1.6, the map X → X∗∗ can be taken to be the standard

map from X to its double dual. That is, both the map X → H1
Iw(K,Zp)∗ in (4.2)

and the map H1
Iw(K,Zp)→ X∗ of Theorem 4.1.2 arise in the standard manner from a

Λ-bilinear pairing

X×H1
Iw(K,Zp)→ Λ

defined as follows. Write Λ = lim←−F ′ ΛF ′ , where ΛF ′ = Zp[Gal(F ′/F )] and F ′ runs over

the finite extensions of F in K. Take σ ∈ X and f ∈ H1
Iw(K,Zp). Write f as an inverse

limit of homomorphisms fF ′ ∈ H1(GF ′,S ,Zp). Then our pairing is given by

(σ, f) 7→ lim←−
F ′

∑
τ∈Gal(F ′/F )

fF ′(τ̃
−1στ̃)[τ ]F ′ ,

where τ̃ denotes a lift of τ to GF,S , and [τ ]F ′ denotes the group element of τ in

ΛF ′ . Thus, the composition of X → H1
Iw(K,Zp)∗ with the map H1

Iw(K,Zp)∗ → X∗∗

of Corollary 4.1.5 is the usual map X→ X∗∗.

Definition 4.1.9. For p in the set Sf of finite primes in S, let Gp denote the decom-

position group in G at a place over the prime p in K, and set Kp = Zp[[G/Gp]], which

has the natural structure of a left Ω-module. We then set

K =
⊕
p∈Sf

Kp and K0 = ker(K → Zp),

where the map is the sum of augmentation maps.

Remark 4.1.10. If K contains all p-power roots of unity, then the group H2
Iw(K,Zp) is

the twist by Zp(−1) of H2
Iw(K,Zp(1)). As explained in the proof of [43, Lemma 2.1],

Poitou-Tate duality provides a canonical exact sequence

(4.3) 0→ X ′ → H2
Iw(K,Zp(1))→ K0 → 0,

where X ′ is the completely split Iwasawa module over K (i.e., the Galois group of the

maximal abelian pro-p extension K that is completely split at all places above Sf ).

We next wish to consider local versions of the above results. Let T and A = T ⊗Zp
Qp/Zp be as in Theorem 4.1.1 For p ∈ Sf , let

Hi
Iw,p(K,T ) = lim←−

F ′/E finite
F ′⊂K

⊕
P|p

Hi(GF ′P , T ),

where GF ′P denotes the absolute Galois group of the completion F ′P. If M is a dis-

crete Zp[[Gal(FS/E)]]-module, let Hi(GK,p,M) denote the direct sum of the groups

Hi(GKP
,M) over the primes P in K over p. We have the local spectral sequence

Pi,j2,p(T ) = EiΛ(Hj(GK,p, A)∨)⇒ Pi+jp (T ) = Hi+j
Iw,p(K,T ).

Note that Hj(GK,p, A)∨ ∼= H2−j
Iw,p(K,T (1)) by Tate duality.
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Remark 4.1.11. Tate and Poitou-Tate duality provide maps between the sum of these

local spectral sequences over all p ∈ Sf and the global spectral sequences, supposing

for simplicity that p is odd or K is purely imaginary (in general, for real places, one

uses Tate cohomology). On E2-terms, these have the form

Fi,j2 (T )→
⊕
p∈Sf

Pi,j2,p(T )→ Hi,j
2 (T †)→ Fi,j+1

2 (T ),

where T † = HomZp(T,Zp(1)). These spectral sequences can be seen in the derived cat-

egory of complexes of finitely generated Ω-modules, where they form an exact triangle

(see [27]).

Let Γp = Gp ∩ Γ be the decomposition group in Γ at a prime over p in K, and

let rp = rankZp Γp. For an Ω-module M , we let M ι denote the Ω-module which as a

compact Zp-module is M and on which g ∈ G now acts by g−1.

Lemma 4.1.12. For j ≥ 0, we have isomorphisms EjΛ(Kp) ∼= (Kιp)δrp,j of Ω-modules.

Proof. This is immediate from Corollary A.13. �

Let Dp denote the Galois group of the maximal abelian, pro-p quotient of the absolute

Galois group of the completion Kp of K at a prime over p, and consider the completed

tensor product

Dp = Ω ⊗̂Zp[[Gp]] Dp,

which has the structure of an Ω-module by left multiplication.

Theorem 4.1.13. Suppose that K contains all p-power roots of unity. For each p ∈ Sf ,

we have a commutative diagram of exact sequences

0 // E1
Λ(Kp)(1) //

��

Dp
//

��

D∗∗p //

��

E2
Λ(Kp)(1)

��

// 0

0 // E1
Λ(H2

Iw(K,Zp)) // X // X∗∗ // E2
Λ(H2

Iw(K,Zp)) // Zp,

of Ω-modules in which the vertical maps are the canonical ones.

Proof. We have

H2
Iw,p(K,Zp) ∼= Kp(−1) and H1(GK,p,Qp/Zp)∨ ∼= Dp,

the first using our assumption on K. We also have H2(GK,p,Qp/Zp) = 0. .

The analogue of Theorem 4.1.2 is the exact sequence

(4.4) 0→ E1
Λ(Kp)→ H1

Iw,p(K,Zp)→ D∗p → E2
Λ(Kp)→ H2

Iw,p(K,Zp).

We remark that the map

E2
Λ(Kp) = (Kιp)δrp,2 → H2

Iw,p(K,Zp) ∼= Kp(−1)

is zero since Γp acts trivially on Kιp but not on any nonzero element of Kp(−1). Applying

Lemma 4.1.12 to (4.4), dualizing, and using the fact that rp ≥ 1 by assumption on K,
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we obtain an isomorphism H1
Iw,p(K,Zp)∗

∼−→ D∗∗p compatible with Corollary 4.1.5. The

analogue of Corollary 4.1.6 is then the exact sequence

(4.5) 0→ E1
Λ(Kp)(1)→ Dp → D∗∗p → E2

Λ(Kp)(1)→ Kp.

As above, the map E2
Λ(Kp)(1)→ Kp is zero.

The map of exact sequences follows from Remark 4.1.11. �

One might ask whether or not the map X∗ → Zp in Theorem 4.1.2 is zero in the case

r = 2.

Proposition 4.1.14. Suppose that K contains all p-power roots of unity. If Leopoldt’s

conjecture holds for F , then X ′ has no Λ-quotient or Λ-submodule isomorphic to Zp(1).

Proof. We claim that if M is a finitely generated Λ-module such that the invariant

group MΓ has positive Zp-rank, then the coinvariant group MΓ does as well. To see

this, let I be the augmentation ideal in Λ. The annihilator of MΓ is I, so the annihilator

of M is contained in I. By [16, Proposition 2.1] and its proof, there is an ideal J of

Λ contained in the annihilator of M such that any prime ideal P of Λ containing J

satisfies rankΛ/P M/PM is positive. We then apply this to P = I to obtain the claim.

Applying this to X ′(−1), we may suppose that X ′ has a quotient isomorphic to

Zp(1). Such a quotient is in particular a locally trivial Zp(1)-quotient of the Galois

group of X. In other words, we have a subgroup of H1(GK,S , µp∞) isomorphic to Zp
and which maps trivially to H1(GK,p, µp∞) for all p ∈ Sf .

The maps

H1(GF,S , µp∞)→ H1(GK,S , µp∞)Γ and H1(GF,p, µp∞)→
⊕
p∈Sf

H1(GK,p, µp∞)

have p-torsion kernel and cokernel. For instance, the kernel (resp., cokernel) of the

first map is (resp., is contained in) Hi(Γ, µp∞) for i = 1 (resp., i = 2). If Φ ∼= Zp is

a subgroup of Γ that acts via the cyclotomic character on Zp(1), then the Hochschild-

Serre spectral sequence

Hi(Γ/Φ,Hj(Φ, µp∞))⇒ Hi+j(Γ, µp∞)

gives finiteness of all Hk(Γ, µp∞), as Hj(Φ, µp∞) is finite for every j (and zero for every

j 6= 0).

We may now conclude that H1(GF,S , µp∞) has a subgroup isomorphic to Zp with

finite image under the localization map

H1(GF,S , µp∞)→
⊕
p∈Sf

H1(GF,p, µp∞).

In other words, Leopoldt’s conjecture must fail (see [35, Theorem 10.3.6]). �

Remark 4.1.15. Proposition 4.1.14 also holds for the unramified Iwasawa module X

over K in place of X ′.



HIGHER CHERN CLASSES IN IWASAWA THEORY 23

Proposition 4.1.16. Suppose that r = 2 and K contains all p-power roots of unity.

If Leopoldt’s conjecture holds for F , then the sequences

0→ H1
Iw(K,Zp)→ X∗ → Zp → 0(4.6)

0→ E1
Λ(H2

Iw(K,Zp))→ X→ X∗∗ → E2
Λ(H2

Iw(K,Zp))→ 0(4.7)

of Theorem 4.1.2 and Corollary 4.1.6 are exact.

Proof. Suppose that Leopoldt’s conjecture holds for F . Consider first the map φ : Zp →
H2

Iw(K,Zp) of Theorem 4.1.2. The image of Zp is contained in H2
Iw(K,Zp)Γ. There is

an exact sequence

0→ X ′(−1)Γ → H2
Iw(K,Zp)Γ → K0(−1)Γ.

Let F ′ be the field obtained by adjoining to F all p-power roots of unity. Primes

in Sf are finitely decomposed in the cyclotomic Zp-extension Fcyc, and the action

of the summand Γcyc = Gal(Fcyc/F ) of Γcyc on Zp(−1) is faithful. It follows that

K0(−1)Γ = (KGal(K/Fcyc)
0 (−1))Γcyc is trivial. By Proposition 4.1.14, it follows that φ

must be trivial, and we have the first exact sequence.

By Corollary A.13, E1
Λ(Zp) = 0 and E2

Λ(Zp) ∼= Zp. The long exact sequence of

Ext-groups for (4.6) reads

0→ E1
Λ(X∗)→ E1

Λ(H1
Iw(K,Zp))→ Zp → E2

Λ(X∗).

By Corollary A.9(b), this implies that E1
Λ(H1

Iw(K,Zp)) → Zp is surjective with finite

kernel. The map Zp → E1
Λ(H1

Iw(K,Zp)) of (4.2) is then also forced to be injective, being

that it is of finite (i.e., codimension at least 3) cokernel E3
Λ(H2

Iw(K,Zp)), for instance

by Proposition A.8. Therefore, the map E2
Λ(H2

Iw(K,Zp)) → Zp in (4.2) is trivial, and

(4.7) is exact. �

4.2. Useful lemmas. It is necessary for our purposes to account for discrepancies

between decomposition and inertia groups, and the unramified Iwasawa module X

and H2
Iw(K,Zp(1)). The following lemmas are designed for this purpose. For a prime

p ∈ Sf , we set

Ip = Ω ⊗̂Zp[[Gp]] Ip,

where Ip denotes the inertia subgroup of Dp. Then Ip is an Ω-submodule of Dp.

Remark 4.2.1. The unramified Iwasawa module X over K is the cokernel of the map⊕
p∈Sf Ip → X, independent of S containing the primes over p. Its completely split-at-

Sf quotient is the cokernel of
⊕

p∈Sf Dp → X. The latter Ω-module is the completely

split Iwasawa module X ′ if K contains the cyclotomic Zp-extension of F .

In the following, we suppose that primes over p do not split completely in K/F ,

which occurs, for instance, if p lies over p or K contains the cyclotomic Zp-extension

of F .
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Lemma 4.2.2. Suppose that Γp 6= 0. Let εp = 0 (resp., 1) if the completion Kp at a

prime over p contains (resp., does not contain) the unramified Zp-extension of Ep. Let

ε′p = εpδrp,1, and if ε′p = 1, suppose that K contains all p-power roots of unity. We have

a commutative diagram

(4.8) 0 // Ip //

��

Dp
//

��

Kεpp //

��

0

0 // I∗∗p // D∗∗p // Kε
′
p
p

// 0

where the right-hand vertical map is the identity if ε′p = 1.

Proof. We have exact sequences 0 → Ip → Dp → Zεpp → 0 by the theory of local

fields. These yield the upper exact sequence upon taking the tensor product with Ω

over Zp[[Gp]]. Since Γp 6= 0, we have that Kp is a torsion Λ-module. Taking Ext-groups,

we obtain an exact sequence

(4.9) 0→ D∗p → I∗p → E1
Λ(Kεpp )→ E1

Λ(Dp).

If rp > 1 or εp = 0, then we are done by Lemma 4.1.12 after taking a dual.

Suppose that rp = ε′p = 1. We claim that the last map in (4.9) is trivial. This map

is, by Lemma A.12, just the map of Ω-modules

Ωι ⊗Zp[[Gp]] Ext1
Λp

(Zp,Λp)→ Ωι ⊗Zp[[Gp]] Ext1
Λp

(Dp,Λp),

where Λp = Zp[[Γp]]. For the claim, we may then assume that r = 1 and K is the

cyclotomic Zp-extension of F . We then have an exact sequence

0→ Kιp(1)→ Dp → D∗∗p → 0

from Theorem 4.1.13 and Lemma 4.1.12. Taking Ext-groups yields an exact sequence

0→ E1
Λ(D∗∗p )→ E1

Λ(Dp)→ Kp(−1)→ E2
Λ(D∗∗p ),

and the first and last term are trivial by Corollary A.9. As there is no nonzero Λ-module

homomorphism Zp → Zp(−1), there is no nonzero homomorphism Kιp → Kp(−1), hence

the claim. Finally, taking Ext-groups once again, we have an exact sequence

0→ I∗∗p → D∗∗p → Kp → E1
Λ(I∗p ).

By Corollary A.9, E1
Λ(I∗p ) = 0, so we have shown the exactness of the second row of

(4.8). �

Using Lemma 4.2.2, one can derive exact sequences as in Theorem 4.1.13 with Ip in

place of Dp if we suppose that K contains all p-power roots of unity. When F contains

µp, this hypothesis is equivalent to K containing the cyclotomic Zp-extension Fcyc of

F .

Lemma 4.2.3.

(a) If Kp contains a Z2
p-extension of Ep for all p ∈ Sf lying over p, then the kernel

of the quotient map X → X ′ is pseudo-null.
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(b) If Kp contains the unramified Zp-extension of Ep for all p ∈ Sf lying over p,

the the quotient map X → X ′ is an isomorphism.

Proof. Take S to be the set of primes over p and ∞. We have a canonical surjection⊕
p∈Sf

(Ω ⊗̂Zp[[Gp]] Dp/Ip)→ ker(X → X ′)

and Dp/Ip is zero or Zp according as to whether Kp does or does not contain the

unramified Zp-extension of Ep, respectively. This implies part (b) immediately. It

also implies part (a), since Ω ⊗̂Zp[[Gp]] Dp/Ip is of finite Zp[[G/Gp]]-rank and Zp[[G/Gp]] is

pseudo-null in case (a). �

The following lemma describes the structure of the Ext-groups of K0 in terms of

those of K.

Lemma 4.2.4. Let p ∈ Sf .

(a) For 0 ≤ j < r − 1, we have EjΛ(K0) ∼= EjΛ(K). For j ≥ r + 1, we have

EjΛ(K) = EjΛ(K0) = 0.

(b) If r 6= rp for all p ∈ Sf , then ErΛ(K) = ErΛ(K0) = 0, and we have an exact

sequence

0→ Er−1
Λ (K)→ Er−1

Λ (K0)→ Zp → 0.

(c) If r = rp for some p ∈ Sf , then Er−1
Λ (K0) ∼= Er−1

Λ (K), and we have an exact

sequence

0→ Zp → ErΛ(K)→ ErΛ(K0)→ 0.

Proof. Note that

EjΛ(K) ∼=
⊕
p∈Sf

(Kιp)δj,rp

by Lemma 4.1.12. Moreover, Corollary A.13 tells us that EjΛ(Zp) ∼= Zδr,jp . We are

quickly reduced to the case that r = rp for some p. The map ErΛ(Zp) → ErΛ(Kp) for

such a p is the map Zp → Kιp that takes 1 to the norm element, hence is injective. �

If K contains all p-power roots of unity, then from (4.3) we have an exact sequence

(4.10) · · · → EjΛ(K0)(1)→ EjΛ(H2
Iw(K,Zp))→ EjΛ(X ′)(1)→ Ej+1

Λ (K0)(1)→ · · ·

for all j. Lemmas 4.2.3 and 4.2.4 then allow one to study the relationship between the

higher Ext-groups of H2
Iw(K,Zp) occuring in Theorem 4.1.13 and the higher Ext-groups

of X.

4.3. Eigenspaces. We end with a discussion of the rank of the ∆-eigenspaces of the

global and local Iwasawa modules X and Dp. Let us suppose now that G = Γ×∆, and

for simplicity, that ∆ is abelian. Without loss of generality, we shall suppose here that

F contains Q(µp), and we let ω : ∆→ Z×p denote the Teichmüller character.

Let ψ be a Q̄×p -valued character of ∆. For a Zp[∆]-module M , we let

Mψ = M ⊗Zp[∆] Oψ,
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where Oψ is the Zp-algebra generated by the values of ψ, and Zp[∆] → Oψ is the

surjection induced by ψ. We set Λ = Zp[[Γ]] and Λψ = Oψ[[Γ]]. Note that Ωψ ∼= Λψ as

compact Oψ-algebras, but Ωψ has the extra structure of an Ω-module on which ∆ acts

by ψ.

Let r2(E) denote the number of complex places of E and rψ1 (E) the number of real

places of E at which ψ is odd. We have the following consequence of Iwasawa-theoretic

global and local Euler-Poincaré characteristic formulas, as found in [34, 5.2.11, 5.3.6].

Lemma 4.3.1.

(a) If weak Leopoldt holds for K, then rankΛψ X
ψ = r2(E) + rψ1 (E).

(b) If either Γp 6= 0 or ψ|∆p 6= 1, then rankΛψ D
ψ
p = [Ep : Qp].

Proof. Let Σ be the union of S and the primes that ramify in F/E. Since the primes in

Σ \ S can ramify at most tamely in K/F , the Λψ-modules Xψ and XψΣ (the Σ-ramified

Iwasawa module over K) have the same rank. Endow Oψ−1 (which equals Oψ as a Zp-
module) with a GE,Σ-action through ψ−1. Let Bψ = (Ωψ−1

)∨ ∼= HomZp,cont(Λ,O∨ψ−1),

which is a discrete Λψ[[GE,Σ]]-module. Restriction and Shapiro’s lemma (see [34, 8.3.3]

and [26, 5.2.2, 5.3.1]) provide Λψ-module homomorphisms

H1(GE,Σ, Bψ)
Res−−→ H1(GF,Σ, Bψ)∆ ∼−→ H1(GK,Σ,O∨ψ−1)∆ ∼−→ (XψΣ)∨,

restriction having cotorsion kernel and cokernel. (The last step passes through the

intermediate module HomZp[∆](XΣ ⊗Zp Oψ−1 ,Qp/Zp).) We are therefore reduced to

computing the Λψ-corank of H1(GE,Σ, Bψ). The global Euler characteristic formula

tells us that

2∑
j=0

(−1)j−1 rankΛψ Hj(GE,Σ, Bψ)∨ =
∑

v∈S−Sf

rankΛψ(Ωψ(1))GEv ,

and Hj(GE,Σ, Bψ) is Λψ-cotorsion for j = 0 and j = 2, the latter by weak Leopoldt for

K.

Recall that Dp = H1(GK,p,Qp/Zp)∨. Restriction and Shapiro’s lemma [26, 5.3.2]

again reduce the computation of the Λψ-corank of H1(GE,p, Bψ), and the local Euler

characterstic formula tells us that

2∑
j=0

(−1)j rankΛψ Hj(GEp , Bψ)∨ = [Ep : Qp] · rankΛψ Ωψ = [Ep : Qp].

As H2(GEp , Bψ)∨ is trivial, and H0(GEp , Bψ)∨ ∼= (Ωψ)GEp is trivial as well by virtue of

the fact that either Γp or ψ|∆p is nontrivial, we are done. �

Let us suppose in the following three lemmas that ψ has order prime to p. These fol-

lowing lemmas are variants of the lemmas of the previous section in “good eigenspaces”.

The proofs are straightforward from what has already been done and as such are left
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to the reader. For the second lemma, one can use the following simple fact: for an

Ω-module M , we have

(4.11) (EjΛ(M)(1))ψ ∼= EjΛ(Mωψ−1
)(1).

Lemma 4.3.2. We have Kψp = 0 if ψ|∆p 6= 1. We have Kψ ∼= Kψ0 if ψ 6= 1.

Lemma 4.3.3. Suppose that K contains the cyclotomic Zp-extension Fcyc of F . If

ψ|∆p 6= 1 (resp., ωψ−1|∆p 6= 1), then Iψp → Dψ
p (resp., Dψ

p → (Dψ
p )∗∗) is an isomor-

phism.

Lemma 4.3.4. Suppose that K contains Fcyc. Then the maps Xψ � (X ′)ψ ↪→
H2(K,Zp(1))ψ are isomorphisms if ψ|∆p 6= 1 for all p lying over p.

5. Reflection-type theorems for Iwasawa modules

In this section, we prove results that relate an Iwasawa module in a given eigenspace

with another Iwasawa module in a “reflected” eigenspace. These modules typically

appear on opposite sides of a short exact sequence, with the middle term being mea-

sured by p-adic L-functions. The method in all cases is the same: we take a sum of

the maps of exact sequences at primes over p found in Theorem 4.1.13 and apply the

snake lemma to the resulting diagram. Here, we focus especially on cases in which

eigenspaces of the unramified outside p Iwasawa modules X have rank 1, in order that

the corresponding eigenspace of the double dual is free of rank one. Our main result

is a symmetric exact sequence for an unramified Iwasawa module and its reflection in

the case of an imaginary quadratic field. This sequence gives rise to a computation of

second Chern classes (see Subsection 5.2).

We maintain the notation of Section 4. We suppose in this section that p is odd, and

we let S be the set of primes of E over p and ∞. We let ψ denote a one-dimensional

character of the absolute Galois group of E of finite order prime to p, and let Eψ denote

the fixed field of its kernel. We then set F = Eψ(µp) and ∆ = Gal(F/E). Let ω denote

the Teichmüller character of ∆.

We now take Ẽ to be the compositum of all Zp-extensions of E, and we set r =

rankZp Gal(Ẽ/E). If Leopoldt’s conjecture holds for E, then r = r2(E) + 1. We set

K = FẼ. As before, we take G = Gal(K/E) and Γ = Gal(K/F ) and set Ω = Zp[[G]]

and Λ = Zp[[Γ]].

For a subset Σ of Sf , let us set KΣ =
⊕

p∈ΣKp. We set HΣ = ker(H2
Iw(K,Zp(1))→

KSf−Σ), which for Σ 6= ∅ fits in an exact sequence

(5.1) 0→ X ′ → HΣ → KΣ → Zp → 0.

For Σ = ∅, we have HΣ
∼= X ′. We shall study the diagram that arises from the sum of

exact sequences in Theorem 4.1.13 over primes in T = Sf −Σ. Setting DT =
⊕

p∈T Dp,
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it reads

(5.2)

0 // E1
Λ(KT )(1) //

��

DT
//

��

D∗∗T
//

φT
��

E2
Λ(KT )(1)

��

// 0

0 // E1
Λ(H2

Iw(K,Zp)) // X // X∗∗ // E2
Λ(H2

Iw(K,Zp)) // Zp,

where φT =
∑

p∈T φp is the sum of maps φp : D∗∗p → X∗∗. We take ψ-eigenspaces, on

which the map to Zp in the diagram will vanish if ψ 6= 1, r = 1, or r = 2 and Leopoldt’s

conjecture holds for F , the latter by Proposition 4.1.16. The cokernel of DT → X is the

Iwasawa module XΣ,T which is the Galois group over K of the maximal pro-p abelian

extension of K which is unramified outside of Σ and totally split over T = Sf −Σ. The

group IT =
⊕

p∈T Ip has the property that the cokernel of IT → X is the unramified

outside of Σ-Iwasawa module XΣ.

In this section, we focus on examples for which rankΛψ X
ψ = 1, which forces r ≤ 2

under Leopoldt’s conjecture by Lemma 4.3.1. We have that (Xψ)∗∗ is free of rank one

over Λψ, by Lemma A.1. If p is split in E, then (Dψ
p )∗∗ is also isomorphic to Λψ, so

φψp : (Dψ
p )∗∗ → (Xψ)∗∗

is identified with multiplication by an element of Λψ, well-defined up to unit. We shall

exploit this fact throughout. At times, we will have to distinguish between decompo-

sition and inertia groups, which we will deal with below as the need arises. In our

examples, T is always a set of degree one primes, so rp = 1 for p ∈ T . The assumptions

on ψ and T make most results cleaner and do well to illustrate the role of second Chern

classes, but the methods can be applied for any Zrp-extension containing the cyclotomic

Zp-extension and any set of primes over p.

As in Definition A.6, for an Ω-module M that is finitely generated over Λ with

annihilator of height at least r, we define the adjoint α(M) of M to be ErΛ(M).

5.1. The rational setting. Let us demonstrate the application of the results of Sub-

section 4.1 in the setting of the classical Iwasawa main conjecture. Suppose that E = Q
and that ψ is odd. For simplicity, we assume ψ 6= ω. We study the unramified Iwasawa

module X over K.

Theorem 5.1.1. If (X ′)ωψ
−1

is finite, then there is an exact sequence of Ω-modules

0→ Xψ → Ωψ/(Lψ)→ ((X ′)ωψ
−1

)∨(1)→ 0

with Lψ interpolating the p-adic L-function for χ = ωψ−1 as in Theorem 3.2.1.

Proof. Note that K = Kp. By Lemma 4.1.12, we have E1
Λ(K) ∼= Kι and E2

Λ(K) = 0.

Since ψ 6= ω, Lemma 4.3.2 tells us that Kωψ−1 ∼= Kωψ
−1

0 . By (4.10) and Lemma 4.2.4

and our assumption of pseudo-nullity of Xωψ−1
, we have that the natural maps

E1
Λ(K)(1)ψ

∼−→ E1
Λ(H2

Iw(K,Zp))ψ and E2
Λ(H2

Iw(K,Zp))ψ
∼−→ E2

Λ(X ′)(1)ψ
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are isomorphisms. By (4.11) and Proposition A.4(a), E2
Λ(X ′)(1)ψ ∼= ((X ′)ωψ

−1
)∨(1).

The diagram of Theorem 4.1.13 with p = p reads

0 // E1
Λ(Kp)(1)ψ //

o
��

Dψ
p

//

��

(Dψ
p )∗∗ //

��

0

0 // E1
Λ(H2

Iw(K,Zp))ψ // Xψ // (Xψ)∗∗ // ((X ′)ωψ
−1

)∨(1) // 0.

It follows from Lemma 4.2.2 and the fact that there is no nonzero map Kιp(1)→ Kp of

Ω-modules that we can replace Dp by Ip in the diagram. By applying the snake lemma

to the resulting diagram, we obtain an exact sequence

(5.3) 0→ Xψ → coker θ → ((X ′)ωψ
−1

)∨(1)→ 0,

where θ : (Iψp )∗∗ → (Xψ)∗∗ is the canonical map (restricting φψp ). The map θ is of free

rank one Λψ-modules by Lemmas 4.3.1 and A.1, and it is nonzero, hence injective, as X

is torsion. We may identify its image with a nonzero submodule of Ωψ. Since (X ′)ωψ
−1

is pseudo-null, (5.3) tells us that

c1(Xψ) = c1(Ωψ/ im θ),

and this forces the image of θ to be c1(Xψ). By the main conjecture of Theorem 3.2.1,

we have c1(Xψ) = (Lψ). �

Remark 5.1.2. If we do not assume that (X ′)ωψ
−1

is finite, one may still derive an exact

sequence of Λψ-modules

0→ α(Xωψ−1
)(1)→ Xψ → Ωψ/(M)→ ((X ′fin)ωψ

−1
)∨(1)→ 0

for some M∈ Ωψ such that (M)c1(Xωψ−1
) = (Lψ).

5.2. The imaginary quadratic setting. In this subsection, we take our base field

E to be imaginary quadratic. Let p be an odd prime that splits into two primes

p and p̄ in E, so Sf = {p, p̄}. Since Leopoldt’s conjecture holds for E, we have

Γ = Gal(K/F ) ∼= Z2
p. We let Xp denote the p-ramified (i.e., unramified outside of the

primes over p) Iwasawa module over K, and similarly for p̄.

We will prove the following result and derive some consequences of it.

Theorem 5.2.1. Suppose that E is imaginary quadratic and p splits in E. If Xωψ−1

is pseudo-null as a Λψ-module, then there is a canonical exact sequence of Ω-modules

(5.4) 0→ (X/Xfin)ψ → Ωψ

c1(Xψp ) + c1(Xψp̄ )
→ α(Xωψ−1

)(1)→ 0.

Moreover, we have Xψ
fin = 0 unless ψ = ω, and Xω

fin is cyclic.

We require some lemmas.

Lemma 5.2.2. The completely split Iwasawa module X ′ over K is equal to the unram-

ified Iwasawa module X over K, and the map Ip → Dp is an isomorphism. Moreover,

we have E1
Λ(Kp) = 0 and E2

Λ(Kp) ∼= Kιp.



30 BLEHER, CHINBURG, GREENBERG, KAKDE, PAPPAS, SHARIFI, AND TAYLOR

Proof. The prime p is infinitely ramified and has infinite residue field extension in Ẽ, so

rp = 2. The statements follow from Lemma 4.2.3(b), Lemma 4.2.2, and Lemma 4.1.12

respectively. �

Note that K = Kp ⊕Kp̄ and K0 = ker(K → Zp) by the definition of Remark 4.1.10.

Lemma 5.2.3. If Xωψ−1
is pseudo-null as a Λψ-module, then so is H2

Iw(K,Zp)ωψ
−1

,

and we have an exact sequence of Ω-modules

0→ Zp(1)ψ → (Kωψ−1
)ι(1)→ E2

Λ(H2
Iw(K,Zp))ψ → E2

Λ(Xωψ−1
)(1)→ 0.

Proof. Lemmas 5.2.2 and 4.2.4 tell us that EiΛ(K0)(1) = 0 for i 6= 2 and provide an

exact sequence

(5.5) 0→ Zp(1)→ Kι(1)→ E2
Λ(K0)(1)→ 0.

The exact sequence (4.10) has the form

0→ E1
Λ(H2

Iw(K,Zp))→ E1
Λ(X)(1)→ E2

Λ(K0)(1)→ E2
Λ(H2

Iw(K,Zp))→ E2
Λ(X)(1)→ 0,

noting that X = X ′ by Lemma 5.2.2. The ψ-eigenspaces of the first two terms are

zero by (4.11) and the pseudo-nullity of Xωψ−1
, yielding the first assertion and leaving

us with a short exact sequence. Splicing this together with the ψ-eigenspace of the

sequence (5.5) and applying (4.11) to the last term, we obtain the exact sequence of

the statement. �

The main conjecture for imaginary quadratic fields is concerned with the unramified

outside p Iwasawa module Xp over K. For it, we have the following result on first Chern

classes.

Proposition 5.2.4. If Xωψ−1
is pseudo-null as a Λψ-module, then there is an injective

pseudo-isomorphism Xψp → Ωψ/c1(Xψp ) of Ω-modules.

Proof. We apply the snake lemma to the ψ-eigenspaces of the diagram of Theorem

4.1.13. By Lemma 5.2.2 and the pseudo-nullity in Lemma 5.2.3, one has a commutative

diagram

(5.6) 0 // Iψp̄
//

��

(Iψp̄ )∗∗ //

φψp̄
��

E2
Λ(Kωψ

−1

p̄ )(1) //

��

0

0 // Xψ // (Xψ)∗∗ // E2
Λ(H2

Iw(K,Zp))ψ // 0,

the right exactness of the bottom row following from Proposition 4.1.16. We immedi-

ately obtain an exact sequence

0→ Xψp → coker(φψp̄ )→ C → 0

for φψp̄ defined to be as in the diagram (5.6), with C a pseudo-null Ω-module that by

Lemmas 4.1.12 and 5.2.3 fits in an exact sequence

0→ Zp(1)ψ → (Kωψ
−1

p )ι(1)→ C → α(Xωψ−1
)(1)→ 0.
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The map φψp̄ : (Iψp̄ )∗∗ → (Xψ)∗∗ is an injective homomorphism of free rank one Λψ-

modules. Since C is pseudo-null, the image of φψp̄ is c1(Xψp ), as required. �

We now prove our main result.

Proof of Theorem 5.2.1. Consider (5.2) for T = {p, p̄}. From (5.6) one has

(5.7) 0 // Iψp ⊕ I
ψ
p̄

//

��

(Iψp )∗∗ ⊕ (Iψp̄ )∗∗ //

φp+φψp̄
��

E2
Λ(Kωψ−1

)(1)

��

// 0

0 // Xψ // (Xψ)∗∗ // E2
Λ(H2

Iw(K,Zp))ψ // 0.

The snake lemma applied to (5.7) produces an exact sequence

(5.8) Zp(1)ψ → Xψ → (Xψ)∗∗

(Iψp )∗∗ + (Iψp̄ )∗∗
→ α(Xωψ−1

)(1)→ 0,

where the first and last terms follow from the exact sequence of Lemma 5.2.3. In the

proof of Proposition 5.2.4, we showed that φψp̄ is injective with image c1(Xψp ) in the free

rank one Ωψ-module (Xψ)∗∗, and similarly upon switching p and p̄. Thus, we have an

isomorphism

(5.9)
(Xψ)∗∗

(Iψp )∗∗ + (Iψp̄ )∗∗
∼=

Ωψ

c1(Xψp ) + c1(Xψp̄ )
.

If ψ 6= ω, then Zp(1)ψ = 0. For ψ = ω, we claim that the image of the map

Zp(1) → Xω of (5.8) is finite cyclic. Since Ωψ/(c1(Xψp ) + c1(Xψp̄ )) has no nontrivial

finite submodule by Lemma A.3, the result then follows from (5.8) and (5.9).

To prove the claim, we identify Iωp and Iωp̄ with their isomorphic images in Xω, so

the kernel of Iωp ⊕ Iωp̄ → Xω is identified with (Ip ∩ Ip̄)ω, and similarly with the double

duals. By the exact sequence

0→ Iωp → (Iωp )∗∗ → Zp[[Γ/Γp]]
ι(1)→ 0

that follows from (4.5), we see that Iωp is contained in the ideal I of Λ ∼= (I∗∗p )ω with

Λ/I ∼= Zp(1). This means that the intersection (Ip∩Ip̄)ω is contained in I times the free

rank one Λ-submodule (I∗∗p ∩I∗∗p̄ )ω of (Xω)∗∗. As the kernel of Zp(1)→ Xω is isomorphic

to (I∗∗p ∩ I∗∗p̄ )ω/(Ip ∩ Ip̄)ω, which has Zp(1) as a quotient, the claim follows. �

Let ΩW = W [[G]] and ΛW = W [[Γ]], where W denotes the Witt vectors of F̄p. Let Lp,ψ
denote the element of ΛW ∼= Ωψ

W that determines the two-variable p-adic L-function

for p and ωψ−1. Let Xψ
W denote the completed tensor product of Xψ with W over Oψ.

Together with the Iwasawa main conjecture for K, Theorem 5.2.1 implies the following

result.
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Theorem 5.2.5. Suppose that E is imaginary quadratic and p splits in E. If both

Xψ and Xωψ−1
are pseudo-null Λψ-modules, then there is an equality of second Chern

classes

(5.10) c2

(
ΛW

(Lp,ψ,Lp̄,ψ)

)
= c2(Xψ

W ) + c2((Xωψ−1

W )ι(1)).

These Chern classes have a characteristic symbol with component at a codimension one

prime P of ΛW equal to the Steinberg symbol {Lp,ψ,Lp̄,ψ} if Lp̄,ψ is not a unit at P ,

and with other components trivial.

Proof. By [6, Corollary III.1.11], the main conjecture as proven in [41, Theorem 2(i)]

implies that that Lp,ψ generates c1(Xψp )ΛW . We have

c2(α(Xωψ−1

W )) = c2((Xωψ−1

W )ι(1))

by Proposition A.11. We then apply Proposition 2.5.1. �

Remark 5.2.6. Supposing that both Xψ and Xωψ−1
are pseudo-null, the Tate twist of

the result of applying ι to the sequence (5.4) reads exactly as the analogous sequence

for the character ωψ−1 in place of ψ. The functional equation of Lemma 3.3.2(b) yields

an isomorphism

(Ωψ
W /(Lp,ψ,Lp̄,ψ))ι(1) ∼= Ωωψ−1

W /(Lp̄,ωψ−1 ,Lp,ωψ−1),

of the middle terms of these sequences.

This implies the following codimension two Iwasawa-theoretic analog of the Herbrand-

Ribet theorem in the imaginary quadratic setting, as mentioned in the introduction.

Note that in this analog we must treat the eigenspaces Xψ and Xωψ−1
together.

Corollary 5.2.7. Suppose that ψ 6= 1, ω. The Iwasawa modules Xψ and Xωψ−1
are

both trivial if and only if at least one of Lp,ψ or Lp̄,ψ is a unit in ΛW .

Proof. IfXψ is not pseudo-null, then so are both Xψp and Xψp̄ . So, by the main conjecture

proven by Rubin (see Theorem 3.3.1), neither Lp,ψ nor Lp̄,ψ are units. If Xωψ−1
is

not pseudo-null, then Lp,ωψ−1 and Lp̄,ωψ−1 are similarly not units. By the functional

equation of Lemma 3.3.2(b), this implies that Lp̄,ψ nor Lp,ψ are non-units as well.

If Xψ and Xωψ−1
are both pseudo-null, then the exact sequence (5.4) of Theorem

5.2.5 shows that Xψ and Xωψ−1
are both finite if and only if the quotient Ωψ/(c1(Xψp )+

c1(Xψp̄ )) is finite, which cannot happen unless it is trivial by Lemma A.3. Since ψ 6= ω,

again noting (5.4), this happens if and only if both Xψ and Xωψ−1
are trivial as well.

By the main conjecture, the quotient is trivial if and only at least one of Lp,ψ and Lp̄,ψ
is a unit in ΛW . �

Example 5.2.8. Suppose that ψ is cyclotomic, so extends to an abelian character of

∆̃ = Gal(F/Q), and ψ 6= 1, ω. Then Xψ is nontrivial if and only if the ψ-eigenspace

under ∆ of the unramified Iwasawa module Xcyc over the cyclotomic Zp-extension Fcyc

of F is nontrivial. That is, since all primes over p are unramified in K/Fcyc, the map
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from the Gal(K/Fcyc)-coinvariants of X to Xcyc is injective with cokernel isomorphic

to Gal(K/Fcyc), which has trivial ∆-action. We extend ψ and ω in a unique way to

odd characters ψ̃ and ω̃ of ∆̃. Identify the quadratic character κ of Gal(E/Q) with a

character of ∆̃ that is trivial on ∆.

The ψ-eigenspace of Xcyc under ∆ is the direct sum of the two eigenspaces X ψ̃
cyc

and X ψ̃κ
cyc under ∆̃. By the cyclotomic main conjecture (Theorem 3.2.1), the Iwasawa

module X ψ̃
cyc is nontrivial if and only if the appropriate Kubota-Leopoldt p-adic L-

function is not a unit. This in turn occurs if and only if p divides the Kubota-Leopoldt

p-adic L-value

Lp(ω̃ψ̃
−1, 0) = (1− ψ̃−1(p))L(ψ̃−1, 0).

The value L(ψ̃−1, 0) is the negative of the generalized Bernoulli number B1,ψ̃−1 . We

have ψ̃−1(p) = 1 if and only if ψ̃ is locally trivial at p, in which case the p-adic L-

function is said to have an exceptional zero. By the usual reflection principle (see also

Remark 5.1.2), if X ψ̃κ
cyc is nonzero, then so is X ω̃ψ̃−1κ

cyc .

Similarly, the unique extension of ωψ−1 to an odd character of ∆̃ is ω̃ψ̃−1κ, and

X ω̃ψ̃−1κ
cyc is nontrivial if and only if Lω̃ψ̃−1κ is not a unit, which is to say that p divides

Lp(ψ̃κ, 0), or equivalently that either p | B1,ω̃−1ψ̃κ or ω̃ψ̃−1κ is locally trivial at p. If

X ω̃ψ̃−1

cyc 6= 0, then X ψ̃
cyc 6= 0.

Typically, when X ψ̃
cyc is nonzero, X ω̃ψ̃−1

cyc and X ω̃ψ̃−1κ
cyc are trivial. For example, if

p = 37, then 37 | B1,ω̃31 (and X ω̃31

cyc = 0), but 37 - B1,ω̃5κ for κ the quadratic character

of Gal(Q(i)/Q). However, it can occur, though relatively infrequently, that both B1,ψ̃−1

and B1,ω̃−1ψ̃κ are divisible by p. A cursory computer search revealed many examples

in the case one of the p-adic L-functions has an exceptional zero, e.g., for p = 5 and ψ̃

a character of conductor 28 and order 6, and other examples in the cases that neither

does, e.g., with p = 5 and ψ̃ a character of conductor 555 and order 4.

5.3. Two further rank one cases. We will briefly indicate generalizations of Theo-

rem 5.2.1 which can be proved in the remaining two cases when rankΛψ X
ψ = 1. Our

field E will have at most one complex place, but it will not be Q or imaginary qua-

dratic. In view of Lemma 4.3.1, the two cases to consider are when (i) E has exactly

one complex place and the character ψ is even at all real places, and (ii) E is totally

real and ψ is odd at exactly one real place.

For any set of primes T of E, we let XT denote the T -ramified Iwasawa module over

K. If T = {p}, we set Xp = XT . Suppose that we are given n degree one primes

p1, . . . , pn of E over p, and set T = {p1, . . . , pn}, Σ = Sf − T and Σi = Sf − {pi} for

i ∈ {1, . . . , n}.

Theorem 5.3.1. Let E be a number field with exactly one complex place and at least

one real place, and suppose that ψ is even at all real places of E. Assume that Leopoldt’s

conjecture holds for E, so r = 2. Furthermore, suppose that XψΣi is Λψ-torsion for all

i ∈ {1, . . . , n}. Assume that rp = 2 for all p ∈ Sf . If Xωψ−1
is pseudo-null, then there
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is an exact sequence of Ω-modules

0→ XψΣ →
Ωψ∑n

i=1 c1(XψΣi)
→ α(Hωψ

−1

Σ )(1)→ 0

where HΣ is as in (5.1).

Proof. As in the imaginary quadratic case, the strategy is to control the terms and

vertical homomorphisms of the diagram (5.2). The three steps needed to do this are

(i) show that decomposition groups can be replaced by inertia groups, (ii) show that

the appropriate eigenspaces of the E1
Λ groups in (5.2) are trivial, and (iii) use Iwasawa

cohomology groups to relate the E2
Λ groups in (5.2) to HΣ, which is an extension of an

unramified Iwasawa module.

Note that Zp(1)ψ = 0 since ψ is even at a real place. For p ∈ T , the field Kp

contains the unramified Zp-extension of Qp because p has degree 1 and rp = 2 = r. By

assumption and Lemmas 4.2.3(a), 4.2.2, and 4.1.12, the map X → X ′ has pseudo-null

kernel, IT = DT and EiΛ(KT ) = 0 for i 6= 2. By our pseudo-nullity assumption, we have

E1
Λ(Xωψ−1

) = 0. It follows from Lemma 4.2.4 and (4.10) that E1
Λ(H2

Iw(K,Zp))ψ = 0.

Since Hωψ
−1

Σ is a submodule of the pseudo-null module H2
Iw(K,Zp(1))ωψ

−1
, we have

E1
Λ(Hωψ

−1

Σ ) = 0 as well.

As Zp(1)ψ = 0, we have (KT )ωψ
−1

0 = Kωψ
−1

T . Hence, we have an exact sequence

0→ (E2
Λ(KT )(1))ψ → (E2

Λ(H2
Iw(K,Zp)))ψ → (E2

Λ(HΣ)(1))ψ → 0.

Taking ψ-eigenspaces of the terms of diagram (5.2) and applying the snake lemma, we

obtain an exact sequence

0→ XψT → cokerφψT → E2
Λ(Hωψ

−1

Σ )(1)→ 0.

As Xψ and Dψ
p for all p ∈ T have Λψ-rank one by Lemma 4.3.1, the argument is now

just as before, the assumption on XψΣi insuring the injectivity of φψpi . �

This yields the following statement on second Chern classes.

Corollary 5.3.2. Let the notation and hypotheses be as in Theorem 5.3.1. Suppose

in addition that n = 2 and XψΣ is pseudo-null. Let fi be a generator for the ideal

c1((XΣi)
ψ) of Λψ. Then the sum of second Chern classes

c2(XψΣ) + c2((Kωψ
−1

Σ )ι(1)) + c2(((X ′)ωψ
−1

)ι(1))

has a characteristic symbol with component at a codimension one prime P of Λψ the

Steinberg symbol {f1, f2} if f2 is not a unit at P , and trivial otherwise.

Proof. By the exact sequence (5.1) for HΣ, Lemma A.7, and the fact that Zωψ
−1

p = 0,

we have

c2(α(Hωψ
−1

Σ )(1)) = c2(α(Kωψ
−1

Σ )(1)) + c2(α((X ′)ωψ
−1

)(1)).

The result then follows from Theorem 5.3.1, as in the proof of Theorem 5.2.5. �



HIGHER CHERN CLASSES IN IWASAWA THEORY 35

In the following, it is not necessary to suppose Leopoldt’s conjecture, if one simply

allows K to be the cyclotomic Zp-extension of F .

Theorem 5.3.3. Let E be a totally real field other than Q, and let ψ be odd at exactly

one real place of E. Assume that Leopoldt’s conjecture holds, so r = 1. Furthermore,

suppose that XψΣi is Λψ-torsion for all i ∈ {1, . . . , n}. If (X ′)ωψ
−1

is finite, then there

is an exact sequence of Ω-modules

(Kωψ
−1

Σ )ι(1)→ XψΣ →
Ωψ∑n

i=1 c1(XψΣi)
→ ((X ′)ωψ

−1
)∨(1)→ 0.

Proof. The argument is much as before: we take the ψ-eigenspace of the terms of

diagram (5.2) with T = {p1, . . . , pn}. We have E2
Λ(K) = 0 and E1

Λ(K) ∼= Kι. The map

DT → D∗∗T in the diagram can be replaced by IT → I∗∗T , as in the proof of Theorem

5.1.1. Applying the snake lemma gives the stated sequence. �

Although this is somewhat less strong than our other results in general (when

ωψ−1|∆p = 1 for some p ∈ Σ), we have the following interesting corollary.

Corollary 5.3.4. Suppose that E is real quadratic, p is split in E into two primes p1

and p2, and the character ψ is odd at exactly one place of E. If Xψ and (X ′)ωψ
−1

are

finite, then there is an exact sequence of finite Ω-modules

0→ Xψ → Ωψ

c1(Xψp1
) + c1(Xψp2

)
→ ((X ′)ωψ

−1
)∨(1)→ 0.

We can make this even more symmetric, replacing X by X ′ on the left, if we also

replace Xψpi by its maximal split-at-p3−i quotient for i ∈ {1, 2}, and supposing only

that (X ′)ψ is finite. We of course have the corresponding statement on second Chern

classes.

6. A non-commutative generalization

The study of non-commutative generalizations of the first Chern class main con-

jectures discussed in Section 3 has been very fruitful. See [5], for example, and its

references. We now indicate briefly a non-commutative generalization of Theorems

5.2.1 and 5.2.5 concerning second Chern classes.

We make the same assumptions as in Subsection 5.2. Namely, E is imaginary qua-

dratic, and p is an odd prime that splits into two primes p and p̄ in E. Let ψ be a

one-dimensional p-adic character of the absolute Galois group of E of finite order prime

to p with fixed field of its kernel Eψ. Let F = Eψ(µp). Let ω denote the Teichmüller

character of ∆ = Gal(F/E). Let Ẽ denote the compositum of all Zp-extensions of E,

and let K be the compositum of Ẽ with F . Let S be the set of primes of E above p

and ∞, so Sf = {p, p̄}.
We suppose in addition that F is Galois over Q. Let σ be a complex conjugation

in Gal(F/Q), and let H = {e, σ}. Then ∆̃ = Gal(F/Q) is a semi-direct product

of the abelian group ∆ with H. The group H acts on ∆ and Γ = Gal(K/F ) ∼=
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Z2
p by conjugation. Let τ be the character of an n-dimensional irreducible p-adic

representation of ∆̃. Then n ∈ {1, 2}. If n = 1, then τ restricts to a one-dimensional

character ψ of ∆. If n = 2, then the representation corresponding to τ restricts to a

direct sum of two one-dimensional representations ψ and ψ ◦ σ of ∆. So, the orbit of

ψ under the action of σ has order n.

Let Aτ denote the direct factor of Oψ ⊗Zp Ω = Oψ[[G]] obtained by applying the

idempotent in Oψ[∆̃]-attached to τ , where Oψ is as before. Then Aτ = Ωψ if n = 1

and Aτ = Ωψ × Ωψ◦σ if n = 2. The H-action on Aτ is compatible with the Ω-module

structure and the action of H on Ω. Thus, Aτ is a module over the twisted group ring

Bτ = Aτ 〈H〉, which itself is a direct factor of Oψ[[Gal(K/Q)]].

The following non-commutative generalization of Theorem 5.2.1 follows from the

compatibility with the H-action of the arguments used in the proof of said theorem.

Proposition 6.1. Suppose that Xωψ−1
is pseudo-null as a Λψ-module. If n = 1, then

the sequence (5.4) for ψ is an exact sequence of modules for the non-commutative ring

Bτ . If n = 2, then the direct sum of the sequences (5.4) for ψ and ψ ◦ σ is an exact

sequence of Bτ -modules.

To generalize Theorem 5.2.5, we first extend the approach to Chern classes used in

Subsection 2.1 to the context of non-commutative algebras which are finite over their

centers. (For related work on non-commutative Chern classes, see [4].)

The twisted group algebra Bτ is a free rank four module over its center Zτ = AHτ .

Suppose that M is a finitely generated module for Bτ with support as a Zτ -module of

codimension at least 2. Let Y = Spec(Zτ ), and let Y (2) be the set of codimension two

primes in Y . The localization My = (Zτ )y⊗ZτM of M at y ∈ Y (2) has finite length over

the localization (Bτ )y. Let k(y) be the residue field of y, and let Bτ (y) = k(y)⊗Zτ Bτ .

Then Bτ (y) has dimension 4 as a k(y)-algebra. From a composition series for My as a

Bτ (y)-module, we can define a class [My] in the Grothendieck group K′0(Bτ (y)) of all

finitely generated Bτ (y)-modules. This leads to a second Chern class

(6.1) c2,Bτ (M) =
∑
y∈Y (2)

[My] · y.

in the group

Z2(Bτ ) =
⊕
y∈Y (2)

K′0(Bτ (y)).

For y ∈ Y (2), note that Aτ (y) = k(y) ⊗Zτ Aτ is a k(y)-algebra of dimension 2 with

an action of H over k(y), and Bτ (y) is the twisted group algebra Aτ (y)〈H〉. Moreover,

we have

k(y)⊗Zτ Zτ [H] ∼= k(y)[H],

and in this way, both Aτ (y) and k(y)[H] are commutative k(y)-subalgebras of Bτ (y).
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Lemma 6.2. For y ∈ Y (2), the forgetful functors on finitely generated module categories

induce injections

K′0(Bτ (y))→ K′0(Aτ (y)) if n = 2, and(6.2)

K′0(Bτ (y))→ K′0(k(y)[H]) if n = 1.(6.3)

Proof. If Aτ (y) is a Galois étale H-algebra over k(y), then the homomorphism in (6.2)

is already injective by descent. This is always the case if n = 2, since then H permutes

the two algebra components of Aτ . Otherwise Aτ (y) is isomorphic to the dual numbers

k(y)[ε]/(ε2) over k(y), and all simple Bτ (y)-modules are annihilated by ε, so the map

(6.3) is injective. �

As in Theorem 5.2.5, we must take completed tensor products over Oψ with the

Witt vectors W over Fp. In what follows, we abuse notation and omit this W from

the notation of the completed tensor products. That is, from now on we let Zτ denote

W ⊗̂Oψ Zτ , and similarly with Aτ and Bτ . We then let Y = Spec(Zτ ), and we use

k(y) to denote the residue field of Zτ at y ∈ Y , and we define Aτ (y) and Bτ (y) as

before. Note that the analogue of Lemma 6.2 holds for y ∈ Y (2), with Y (2) the subset

of codimension 2 primes in Y .

We suppose for the remainder of this section that Xψ and Xωψ−1
are pseudo-null

as Λψ-modules. In view of Proposition 6.1, we have by Theorem 5.2.5 the following

identity among non-commutative second Chern classes

(6.4) c2,Bτ

⊕
χ∈T

Ωχ
W

(Lp,χ,Lp̄,χ)

 = c2,Bτ

(⊕
χ∈T

Xχ
W

)
+ c2,Bτ

(⊕
χ∈T

(Xωχ−1

W )ι(1)

)
,

where T denotes the orbit of ψ (of order 1 or 2). In view of Lemma 6.2, to compute

(6.4) in terms of p-adic L-functions, it suffices to compute the analogous abelian second

Chern classes via L-functions when Bτ is replaced by Aτ and by Zτ [H] and we view

the latter two as quadratic algebras over Zτ .

In the case that n = 2, a prime y ∈ Y (2) gives rise to one prime in each of the two

factors of Aτ = Ωψ
W × Ωψ◦σ

W by projection. Note that we can identify Ωψ
W and Ωψ◦σ

W

with ΛW so that Zτ is identified with the diagonal in Λ2
W , and these two primes of ΛW

are then equal. We have

(6.5) K′0(Aτ (y)) ∼= Z⊕ Z,

the terms being K′0 of the residue fields of Ωψ
W and Ωψ◦σ

W for y, respectively.

Proposition 6.3. If n = 2, then under the injective map⊕
y∈Y (2)

K′0(Bτ (y))→
⊕
y∈Y (2)

(Z⊕ Z)

induced by (6.2) and (6.5), the class in (6.4) is sent to an element with both components

having a characteristic symbol which at P ∈ Y (1) is equal to the Steinberg symbol

{Lp,ψ,Lp̄,ψ} ∈ K2(Frac(ΛW )) if Lp̄,ψ is not a unit at P ,
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and is zero otherwise.

Proof. This is immediate from Theorem 5.2.5 in the first coordinate. The second

coordinate is the same by Lemma 3.3.2(a) and the above identification of Ωψ◦σ
W with

ΛW , recalling Remark 2.5.2. �

In the case that n = 1, so ψ = τ |∆, we have an algebra decomposition

(6.6) Zτ [H] = Z+
τ × Z−τ

with the summands corresponding to the trivial and nontrivial one-dimensional char-

acters of H. These summands are isomorphic to Zτ as Zτ -algebras. We then have a

decomposition

(6.7) K′0(k(y)[H]) ∼= Z⊕ Z

with the terms being K′0 of the residue fields of Z+
τ and Z−τ , respectively, for the images

of y.

There are pro-generators γ1, γ2 ∈ Gal(K/F ) such that σ(γ1) = γ1 and σ(γ2) = γ−1
2 .

The ring Aτ = Ωψ is Zτ [λ], where λ = γ2 − γ−1
2 . Note that σ(λ) = −λ and λ2 ∈ Zτ .

It follows that we have an isomorphism Zτ [H]
∼−→ Ωψ of Zτ [H]-modules taking 1 to

(1 + λ)/2 and σ to (1− λ)/2.

The element σ permutes the p-adic L-functions Lp,ψ and Lp̄,ψ. Define

L+
τ = Lp,ψ + Lp̄,ψ and L−τ = Lp,ψ − Lp̄,ψ.

Proposition 6.4. If n = 1, then under the injective map⊕
y∈Y (2)

K′0(Bτ (y))→
⊕
y∈Y (2)

(Z⊕ Z)

induced by (6.3) and (6.7), the class in (6.4) is sent to an element that in the first and

second components, respectively, has a characteristic symbol which at P ∈ Y (1) is equal

to

{λL−τ ,L+
τ } ∈ K2(Frac(Z+

τ )) if L+
τ is not a unit at P ,

{L−τ , λL+
τ } ∈ K2(Frac(Z−τ )) if λL+

τ is not a unit at P ,

and is zero otherwise.

Proof. The decomposition (6.6) and the isomorphism Ωψ ∼= Zτ [H] induce an isomor-

phism

Ωψ

(Lp,ψ,Lp̄,ψ)
∼=

Z+
τ

(L+
τ , λL−τ )

⊕ Z−τ
(λL+

τ ,L−τ )
.

From the two summands on the right, together with Proposition 2.5.1, we arrive at

the two components of the non-commutative second Chern class of (6.4), as in the

statement of the proposition. �
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Appendix A. Results on Ext-groups

In this appendix, we derive some facts about modules over power series rings. For

our purposes, let O be the valuation ring of a finite extension of Qp. Let Γ = Zrp for

some r ≥ 1, and denote its standard topological generators by γi for 1 ≤ i ≤ r. Set

Λ = O[[Γ]] = O[[t1, . . . , tr]], where ti = γi − 1.

As in Subsection 4.1, we use the following notation for a finitely generated Λ-module

M . We set EiΛ(M) = ExtiΛ(M,Λ), and we set M∗ = E0
Λ(M) = HomΛ(M,Λ). Moreover,

M∨ denotes the Pontryagin dual, and Mtor denotes the Λ-torsion submodule of M .

We will be particularly concerned with Λ-modules of large codimension, but we first

recall a known result on much larger modules.

Lemma A.1. Let M be a Λ-module of rank one. Then M∗∗ is free.

Proof. The canonical map (M/Mtor)
∗ →M∗ is an isomorphism, so we may assume that

Mtor = 0. We may then identify M with a nonzero ideal of Λ. The dual of a finitely

generated module is reflexive, so we are reduced to showing that a reflexive ideal I of

Λ is principal. For each height one ideal P of Λ, let πP be a uniformizer of ΛP , and

let nP ≥ 0 be such that πnPP generates IP . Let s be the finite product of the πnPP .

Then the principal ideal J = sΛ is obviously reflexive and has the same localizations

at height one primes as I. As I and J are reflexive, they are the intersections of their

localizations at height one primes, so I = J . �

For a finitely generated Λ-module M , we have EiΛ(M) = 0 for all i > r+ 1. Since Λ

is Cohen-Macaulay (in fact, regular), the minimal j = j(M) such that EjΛ(M) 6= 0 is

also the height of the annihilator of M . (We take j =∞ for M = 0.) In particular, M

is torsion (resp., pseudo-null) if j ≥ 1 (resp., j ≥ 2), and M is finite if j = r + 1.

The next lemma is easily proved.

Lemma A.2. For j ≥ 0, the Grothendieck group of the quotient category of the category

of finitely generated Λ-modules M with j(M) ≥ j by the category of finitely generated

Λ-modules M with j(M) ≥ j + 1 is generated by modules of the form Λ/P with P a

prime ideal of height j.

We also have the following.

Lemma A.3. Let 1 ≤ d ≤ r, and let fi for 1 ≤ i ≤ d be elements of Λ such that

(f1, . . . , fd) has height d. Then M = Λ/(f1, . . . , fd) has no nonzero Λ-submodule N

with j(N) ≥ d+ 1.

Proof. Since Λ is a Cohen-Macaulay local ring, we know from [28, Theorem 17.4(iii)]

that the ideal (f1, . . . , fd) has height d if and only if f1, . . . , fd form a regular sequence

in Λ. Then M is a Cohen-Macaulay module by [28, Theorem 17.3(ii)], and it has no

embedded prime ideals by [28, Theorem 17.3(i)]. If M has a nonzero Λ-submodule N

with j(N) ≥ d + 1, then a prime ideal of Λ of height strictly greater than d will be

the annihilator of a nonzero element of M . This contradicts the fact that M has no

embedded primes. �
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Let G be a profinite group containing Γ as an open normal subgroup, and set Ω =

O[[G]]. For a left (resp., right) Ω-module M , the groups EiΛ(M) have the structure of

right (resp., left) Ω-modules (see [27, Proposition 2.1.2], for instance).

We will say that a finitely generated Ω-module M is small if j(M) ≥ r as a (finitely

generated) Λ-module. We use the notation (finite) to denote an unspecified finite

module occurring in an exact sequence, and the notation Mfin to denote the maximal

finite Λ-submodule of M . Let M † = (M ⊗Zp
∧r Γ)∨, which is isomorphic to M∨ if G

is abelian.

We derive the following from the general study of Jannsen [21]. In [22, Lemma 5],

a form of this is proven for modules finitely generated over Zp. Its part (b) gives an

explicit description of the Iwasawa adjoint of a small Ω-module M in the case that

Ω has sufficiently large center. We do not use this in the rest of the paper, but for

comparison with the classical theory, the explicit description appears to be of interest.

Proposition A.4. Let M be a small (left) Ω-module.

(a) There exist canonical Ω-module isomorphisms Er+1
Λ (M) ∼= M †fin, and these are

natural in M .

(b) Given a non-unit f ∈ Λ that is central in Ω and not contained in any height r

prime ideal in the support of M , there exists a canonical Ω-module homomor-

phism

ErΛ(M) ∼= lim←−
n

(M/fnM)†,

the inverse limit taken with respect to maps (M/fn+1M)∨ → (M/fnM)∨ in-

duced by multiplication by f . The maximal finite submodule of ErΛ(M) is zero.

Proof. For i ≥ 0 and a locally compact Ω-module A, set

Di(A) = lim−→
U

Hi
cont(U,A)∨,

where the direct limit is with respect to duals of restriction maps over all open subgroups

U of finite index in Γ. The group Γ is a duality group (see [35, Theorem 3.4.4]) of strict

cohomological dimension r, and its dualizing module is the Ω-module

Dr(Zp) ∼= lim−→U
HomZp(Λ

rU,Zp)∨ ∼=
∧r Γ⊗Zp Qp/Zp.

We have Di(M
∨) = 0 for i > r and, by duality, we have the first isomorphism in

Dr(M
∨) ∼= HomΓ(M∨,Dr(Zp)) ∼= (lim−→U

MU )⊗Zp
∧r Γ.

By [21, Theorem 2.1], we then have canonical and natural isomorphisms

(A.1) Er+1
Λ (M) ∼= (Dr(M

∨)[p∞])∨ ∼= ((lim−→
U

MU )[p∞])†.

Moreover, by [21, Corollary 2.6b], we have that EiΛ(M) = 0 for i 6= r+ 1 if M happens

to be finite.

We claim that

(A.2) (lim−→
U

MU )[p∞] = Mfin
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which will finish the proof of part (a). As Γ acts continuously on M , the left-hand side

contains Mfin, so it suffices to show that (lim−→U
MU )[p∞] is finite. As M is compact,

there exist an open subgroup V and k ≥ 1 such that MV [pk] = lim−→U
MU [p∞]. As

V ∼= Γ, it suffices to show that MΓ[p] is finite.

By Lemma A.2 and the right exactness of Er+1
Λ , we are recursively reduced to con-

sidering M of the form Λ/P with P a prime ideal of height r. If p /∈ P , then M has no

p-power torsion and (A.2) is clear. If p ∈ P , then Λ/P is isomorphic to Fq[[t1, . . . , tr]]/P ′
for a prime ideal P ′ of height r−1 and some finite field Fq of characteristic p, where the

ti are the images of the ti = γi − 1 for topological generators γi of Γ. The Γ-invariants

of (Λ/P )Γ are annihilated by all ti. If this invariant group had a nonzero element, it

would be annihilated by all ti. The primality of P ′ would then force P ′ to contain all

ti. Since P ′ is not maximal, this proves the claim, and hence part (a).

Suppose we are given an element f ∈ Λ which is not a unit in Λ and is central in Ω

but is not in any prime ideal of codimension r in the support of M . As M/fnM and

M [fn] are supported in codimension r + 1, these Λ-modules are finite. It follows that

we have Ω-module isomorphisms ErΛ(M/M [fn]) ∼= ErΛ(M) and then exact sequences

0→ ErΛ(M)
fn−→ ErΛ(M)→ Er+1

Λ (M/fnM)→ 0.

We write

ErΛ(M) ∼= lim←−
n

ErΛ(M)/fnErΛ(M) ∼= lim←−
n

Er+1
Λ (M/fnM) ∼= lim←−

n

(M/fnM)†,

where multiplication by f induces the map (M/fn+1M)† → (M/fnM)†, which is the

twist by
∧r Γ of M∨[fn+1] → M∨[fn]. It is clear from the latter description that

ErΛ(M) can have no nonzero finite submodule (and for this, it suffices to prove the

statement as a Λ-module, in which case the existence of f is guaranteed), so we have

part (b). �

Remark A.5. A non-unit f ∈ Λ as in Proposition A.4(b) always exists. That is, consider

the finite set of height r prime ideals conjugate under G to a prime ideal in the support

of M . The union of these primes is not the maximal ideal of Λ, so we may always find

a non-unit b ∈ Λ not contained in any prime in the set. The product of the distinct

G-conjugates of b is the desired f . Given a morphism M → N of small Ω-modules, we

obtain a canonical morphism between the isomorphisms of Proposition A.4(b) for M

and N by choosing f to be the same element for both modules.

For a small Ω-module M and an f as in Proposition A.4(b), the quotient M/fM is

finite, M itself is finitely generated and torsion over Zp[[f ]]. The description of ErΛ(M)

in Proposition A.4(b) then coincides (up to choice of a Zp-generator of
∧r Γ) with the

usual definition of the Iwasawa adjoint as a Zp[[f ]]-module. In view of this, we make

the following definition.

Definition A.6. The Iwasawa adjoint α(M) of a small Ω-module M is ErΛ(M).

We then have the following simple lemma (cf. [45, Proposition 15.29]).
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Lemma A.7. Let 0→M1 →M2 →M3 → 0 be an exact sequence of small Ω-modules.

The long exact sequence of Ext-groups yields an exact sequence

0→ α(M3)→ α(M2)→ α(M1)→ (finite)

of right Ω-modules, where (finite) is the zero module if (M3)fin = 0.

We recall the following consequence of Grothendieck duality [17, Chapter V], noting

that Λ is its own dualizing module in that Λ is regular (and that Ω is a finitely generated,

free Λ-module).

Proposition A.8. For a finitely generated Ω-module M , there is a convergent spectral

sequence

(A.3) EpΛ(Er+1−q
Λ (M))⇒M δp+q,r+1 ,

natural in M , of right Ω-modules, where δi,j = 1 if i = j and δi,j = 0 if i 6= j. Moreover,

EiΛ(EjΛ(M)) = 0 for i < j and for i > r + 1.

This implies the following.

Corollary A.9. Let M be a finitely generated Ω-module.

(a) For r = 1, one has EiΛ(M∗) = 0 for all i ≥ 1. Hence, M∗ is Λ-free for any M .

(b) For r = 2, one has E2
Λ(M∗) = 0 and E1

Λ(M∗) ∼= E3
Λ(E1

Λ(M)), so E1
Λ(M∗) is

finite.

(c) If M is small, then there is an exact sequence of Ω-modules

0→ Er+1
Λ (Er+1

Λ (M))→M → ErΛ(ErΛ(M))→ 0.

That is, α(α(M)) ∼= M/Mfin as Ω-modules.

For a left (resp., right) Ω-module M , we let M ι denote the right (resp., left) Ω-

module that is M as an O-module and on which g ∈ G acts as g−1 does on M . The

following is a consequence of the theory of Iwasawa adjoints for r = 1 (see [21, Lemma

3.1]), in which case Λ-small means Λ-torsion.

Lemma A.10. Let d ≥ 1, and let fi for 1 ≤ i ≤ d be elements of Λ such that

(f1, . . . , fd) has height d. Set M = Λ/(f1, . . . , fd). Then EiΛ(M) ∼= (M ι)δi,d for all

i ≥ 0.

Proof. This is clearly true for d = 0. Let d ≥ 1, and set N = Λ/(f1, . . . , fd−1) so that

M = N/(fd). The exact sequence

0→ N
fd−→ N →M → 0

that is a consequence of Lemma A.3 gives rise to a long exact sequence of Ext-groups.

By induction on d, the only nonzero terms of that sequence form a short exact sequence

0→ N ι (fd)ι−−−→ N ι → EdΛ(M)→ 0,

and the result follows. �

For more general Ω-modules, we can for instance prove the following.
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Proposition A.11. Suppose that G ∼= Γ × ∆, where ∆ is abelian of order prime to

p. Let M be a small Ω-module. Then (M/Mfin)ι and α(M) have the same class in the

Grothendieck group of the quotient category of the category of small right Ω-modules by

the category of finite modules. In particular, as Λ-modules, their rth localized Chern

classes agree.

Proof. By taking ∆-eigenspaces of M (passing to a coefficient ring containing |∆|th
roots of unity), we can reduce to the case that ∆ is trivial. It then suffices by Lemmas

A.2 and A.7 to show the first statement for M = Λ/P , where P is a height r prime.

Let ι : Λ → Λ be the involution determined by inversion of group elements. We can

compute α(M) = ErΛ(M) = ExtrΛ(M,Λ) by an injective resolution of Λ by Λ-modules.

Every group in the resulting complex of homomorphism groups will be killed by ι(P ),

so α(M) will be annihilated by ι(P ). Clearly, ι(P ) is the only codimension r prime

possibly in the support of ErΛ(M), and it is in the support since α(α(M)) ∼= M/Mfin

by Corollary A.9(c). �

The following particular computation is of interest to us. Let G′ be a closed subgroup

of G, and let M be a finitely generated left Ω′ = Zp[[G′]]-module. Set Γ′ = G′ ∩ Γ, and

let Λ′ = Zp[[Γ′]]. For i = 0 we have a right action of g ∈ Γ′ on f ∈ E0
Λ′(M) =

HomΛ′(M,Λ′) given by setting (fg)(m) = f(gm) and a left action of g on f given

by (gf)(m) = f(g−1m). This extends functorially to right and left actions of Γ′ on

EiΛ′(M) for all i.

Lemma A.12. With the above notation, we have for all i ≥ 0 an isomorphism of right

Ω-modules

EiΛ(Ω⊗Ω′ M) ∼= EiΛ′(M)⊗Ω′ Ω

and an isomorphism of left Ω-modules

EiΛ(Ω⊗Ω′ M) ∼= Ωι ⊗Ω′ E
i
Λ′(M).

Proof. As right Ω-modules, we have

ExtiΩ(Ω⊗Ω′ M,Ω) ∼= ExtiΩ′(M,Ω) ∼= ExtiΩ′(M,Ω′)⊗Ω′ Ω,

where the first equality follows from [27, Lemma 2.1.6] and the second from [27, Lemma

2.1.7] by the flatness of Ω over Ω′. The first isomorphism follows, as the first term is

EiΛ(Ω ⊗Ω′ M) and the last EiΛ′(M) ⊗Ω′ Ω. The second isomorphism follows from the

first. �

Corollary A.13. Let G′ be a closed subgroup of G, and let N denote the left Ω-module

Zp[[G/G′]]. Let r′ = rankZp(G′ ∩ Γ). Then EiΛ(N) ∼= (N ι)δi,r′ as right Ω-modules.

Proof. Let Ω′ = Zp[[G′]]. Note that N ∼= Ω⊗Ω′Zp, so N ι ∼= Zp⊗Ω′Ω as right Ω-modules.

By Lemmas A.12 and A.4, we have

EiΛ(N) ∼= EiΛ′(Zp)⊗Ω′ Ω ∼= (Zp ⊗Ω′ Ω)δi,r′ .

�
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