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Abstract

We consider invariant sets A of saddle type, for non-invertible smooth maps f, and equilib-
rium measures f4 associated to Holder potentials ¢ on A. We define a notion of measure-theoretic
asymptotic degree of f|n : A — A, with respect to the measure py on the fractal set A. In our
case, the equilibrium measure p is the unique linear functional in C(A)* tangent to the pressure
function P(-) : C(A) — R at ¢. In particular, for the measure of maximal entropy po of f|a, we
obtain the asymptotic degree of f|a, which represents the average rate of growth of the number
of n-preimages of x that remain in A when n — oo; notice that, in general, A is not totally
invariant for f. To this end, we will obtain first a formula for the Jacobians of the probability 1,
with respect to arbitrary iterates f,m > 2. We then show that a formula for the topological
pressure P(¢) that holds in the expanding case, is no longer true on saddle sets. In the saddle
case we find a new formula for the pressure, involving weighted sums on preimage sets. We
also apply the asymptotic degrees, together with various pressure functionals, in order to obtain
estimates for the Hausdorfl dimension of stable slices through certain sets of full yg-measure in

the fractal A. In the end, we give also some concrete examples on saddle folded sets.
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1 Introduction and outline of main results.

We consider smooth maps f : M — M on a manifold M, which are hyperbolic and non-invertible on
saddle locally maximal sets A, and associated equilibrium (Gibbs) measures p4, of Hélder potentials
¢ on A. We investigate several notions related to them, like the Jacobian of such a measure, and
a new, measure-theoretic notion of "degree” of f|p : A — A, in the case when the number of
f-preimages that remain in A of an arbitrary point z, is not constant, when z varies in A. We
will also look more closely at the pressure functional P(-), on the Banach space C(A) of continuous
real-valued functions on A, when A is such a saddle non-invertible fractal set.

The hyperbolic non-expanding and non-invertible case is very different from the expanding
case, and from the hyperbolic diffeomorphism case (for eg [5], [21], [7], etc). One difficulty is that

branches of inverse iterates do not contract small balls on A, which means that the machinery



from the expanding case cannot be used here; in fact inverse branches dilate on stable directions.
Another difficulty is that, as the fractal set A is not necessarily totally invariant with respect to f,
there may be sudden variations in the number of f-preimages in A of a point z, when x ranges in
A; also, there exist in general many (possibly uncountably) local unstable manifolds through points
in A.

We will obtain first a formula for the Jacobian of the equilibrium measure p, with respect
to an arbitrary iterate f,m > 2, in this saddle case (the Jacobian is in fact a Radon-Nikodym
derivative). Using this, we obtain then a formula for the pressure P(¢) in terms of the preimage
sets of pg-almost all points z, and of the folding entropy of jis. This formula is different from the
one in the expanding case (for eg from [16]).

In general the map f is not constant-to-1 on the saddle fractal A. Thus, we want to determine
a good notion of "degree” for the restriction f|y. We find one such notion of asymptotic degree
with respect to the measure ji4. If we consider in particular the measure of maximal entropy jo on
A, we obtain then the average logarithmic growth of the number of n-preimages that remain in A
(when n — o0), which can be considered as the ”degree” of f over A. By using the above notions
of asymptotic degree with respect to ji4, we will obtain next estimates for the dimension of stable
slices through certain explicitly constructed sets of full ji4-measure in A.

Hence, the asymptotic degrees, the formula for Jacobians of equilibrium states with respect to
arbitrary iterates, and the methods associated to them, are useful in obtaining:

a) the rate of growth of the number of n-preimages remaining in A, when n — oc;
b) a formula for the pressure P(¢) in the saddle non-invertible case, in terms of the n-preimages
of z that remain in A, for pg-a.e point x in A;
c) estimates on the Hausdorff dimension of certain slices through the fractal A.
In Section 3, we shall give also several examples of hyperbolic non-invertible maps on basic sets

and of equilibrium measures, for which the above results apply.

The Jacobian of an invariant measure p with respect to an endomorphism f of a Lebesgue space
X (see Parry, [13]) describes locally the ratio between p(f(A)) and p(A), given that an arbitrary
point in X may have several f-preimages and that u(f(A)) = u(f~'(f(A))). Thus the Jacobian
J¢(p) is a Radon-Nikodym derivative between two absolutely continuous measures.

Here we are concerned with the case when f is a C? endomorphism (i.e a non-invertible map)
on a manifold M, having a compact invariant set A C M. We assume that the non-invertible map
f is hyperbolic on A (see [21]). The map f is not assumed expanding on A, thus we do not have the
machinery from the expanding case here. Hyperbolicity of f on A implies the existence of local
stable manifolds of size r (for some small r > 0), which depend only on their base point and are
denoted by W7 (z),z € A. Hyperbolicity implies the existence of local unstable manifolds W} (&)
which depend on whole past trajectories # € A, where A is the inverse limit of the system (A, fla)-
Through points € A there may pass uncountably many local unstable manifolds of prehistories

of z in A, which is an important difference from the diffeomorphism case.



By basic set (or locally maximal set [6]), we mean a compact f-invariant set A C M, such that
A= nQZ f™(U) for a neighbourhood U of A, and such that f is topologically transitive on A. Such
sets will also be referred to sometimes as folded fractals. The term basic set is not used in the sense
of the Spectral Decomposition Theorem here. The fractal set A may not be totally f-invariant, so
it may happen that some of the f-preimages of x € A do not remain in A. Examples of hyperbolic
basic sets for smooth endomorphisms appeared for instance in [1], [5], [15], [23], [24], [7], etc.

In our case, the topological pressure is a convex and Lipschitz continuous function P : C(A) — R,
on the Banach space C(A) of continuous real-valued functions on A (see for eg. [3], [6], [25], [26],
etc.) In our hyperbolic case, there exists a unique equilibrium measure (Gibbs state) of a Holder
continuous potential ¢ on A (see for example [6], [25], etc), and this measure will be denoted by j14.
Therefore the probability measure p4 is maximizing in the Variational Principle for the topological

pressure, i.e we have:
P(¢) = sup{h, —I—/ ¢ dp, pis f — invariant probability on A} = hy,, +/ ¢ dpg
A A

Then, the positive linear functional Fy, from the dual space C(A)*, which is represented by the
equilibrium measure g by the Riesz Representation Theorem (for eg [17]), is in fact tangent to
the convex pressure function P at ¢; namely, for every continuous function ¥ € C(A) we have (for
eg. [25], [26]),

pg () + P(¢) < P(¢ + ¢)

In our case the entropy map p — h, associated to f|a, is upper semi-continuous (see [6], [25]).
Hence by using properties of Legendre-Fenchel transforms and a form of Hahn-Banach Theorem, it
follows that conversely, every linear functional F' € C(A)* tangent to P(:) at ¢, is in fact given by
the equilibrium measure 14 (which is the only equilibrium measure of ¢, in our hyperbolic case).
Also, Walters showed that the pressure function P(-) has a unique tangent functional at ¢ if and
only if P(-) is Gateaux differentiable at ¢ (see [26]).

It can be shown, moreover, that the equilibrium measure f4 is mixing on the fractal set A.

If o is an f-invariant probability measure on A, then one can define the folding entropy Fy(p),
as the conditional entropy H,(e|f'e), where € is the single point partition and f~!e is the fiber
partition associated to f on A, see [20]; we may denote it also by F'(u) if no confusion arises.

Many ergodic properties of the measure-preserving transformation f on the probabilistic space
(A, 1), can also be expressed in terms of the spectral properties of the associated Koopman operator
Us: L*(p) — L2(w), Up(x) = xo f, x € L*(n) (see for eg. [25], [17], etc.)

The main results of the paper are the following:

In Theorem 1 we will prove a formula (and definition) for a measure-theoretic asymptotic
degree with respect to the probability js. This degree involves only those n-preimages of x (i.e
preimages with respect to f™) which behave well with respect to j; the number of these well-
behaved n-preimages of z is denoted by d,,(z, i, 7) (see Definition 3). Notice that the dynamics

of f on A is basically the same as that of f™ on A; the iterate f" invariates A and the measure 4.



So in a sense, one may take any iterate of f and study the preimages of points with respect to that

iterate. The map f may not be constant-to-1 on A.

Theorem 1 (Measure-theoretic asymptotic degree for equilibrium states). Let f : M — M be
a C% non-invertible map and A a basic set for f so that f is hyperbolic on A and does not have
critical points in A. Let also ¢ be a Holder continuous potential on A and g be the equilibrium
measure associated to ¢. Then we have the following formula:

1
lim lim /logdn(a:,u¢,7) dug(r) = Fr(pge)
A

T—0n—oco N

In Corollary 1 we will use the formula proved in Theorem 1 in order to calculate the average
value with respect to pg, of the logarithmic growth of the number of n-preimages of = in A.

As A is not necessarily totally invariant, the measurable (but possibly discontinuous) function
dp(z) = Card(f~"(f"(x)) N A), z €A,

may be non-constant on A; see the examples in [7]. It is natural to study the average value of
log d,,(-).

Corollary 1 (Average rate of growth of the number of n-preimages d,(-), when n — 00). In the
setting of Theorem 1, denote by po the unique measure of maximal entropy for f on A. If d,(x)
denotes the cardinality of f~"(f"x) N A forn > 1, then we have:

1 .1
nh_}ngo - logd,(x) = F(po), po—a.a x € A, and nh_{rgo - /Alog dn(x) dpo(z) = Fr(po)
Corollary 1 allows us to make the following:

Definition 1. In the setting of Theorem 1, define the asymptotic logarithmic degree of f|j

(with respect to the measure of maximal entropy y) by: a;(f,A) :==1lim 2 [, log dy,(x)dpo(z). The
n

asymptotic degree of f|, is then defined as the number

doo(f, A) = et

Similarly we define the asymptotic degree with respect to the measure ji4 on A, as

o1
doo(f 1) = exp (lim lim /Alog dn(, pg, 7) dpg(z))

T—=0n—ocon

In particular if f|, is d-to-1, then doo(f, A) = d, and F(uo) = logd.
To prove Theorem 1 we will need Proposition 1 which gives a formula for the Jacobian of an

equilibrium measure 4, with respect to an arbitrary iterate f™; the estimates do not depend on n.



Proposition 1 (Jacobians of equilibrium measures with respect to iterates of endomorphisms).
Let f be a C? hyperbolic endomorphism on a folded basic set A, which has no critical points in A;
let also ¢ be a Holder continuous potential on A and let pg the unique equilibrium measure of ¢ on
A. Then there exists a comparability constant C > 0 independent of m > 2 and of x € A, such that
for py —a.e x € A, the Jacobian of jgs with respect to the iterate f™ satisfies:

cef=m(fm(@))NA cef=m(fm(=))NA
’ eSmo () < Jm (qus)(l') < C- oSmd(@) ) (1)

C—l
Recall now (see [16]) that in the expanding case we have the following formula for pressure:

Theorem (Relation between preimage sets and pressure in the expanding case, [16]). Let f :
X — X a topologically transitive open distance expanding map, then for every Holder continuous

potential ¢ : X — R and every x € X we have the equality

P(¢) = lim llog Z eSnoW)

n—oo N
yef"(z)
In our saddle set setting we obtain however the following different formula for the pressure:

Theorem 2 (Relation between preimage sets and pressure in the saddle non-invertible case). In
the setting of Proposition 1 and for an arbitrary Hélder continuous potential ¢ on A, we have for
fp-a.e T € A,

P(¢) = lim Tlog S 590 _logdu(f, pig) + h,

n—oo N
yef—n(x)

The Remark after the proof of Theorem 2 shows that, in general Fy(j1¢) # hy,,-

Once we have a formula for the pressure on a saddle set for a non-invertible map, we can obtain
the measure-theoretic entropy h, for any f-invariant measure p on A, by a reverse Variational
Principle (see [25]), using the fact that: h, = inf {P(¢) — [, ¥ du, ¥ Holder continuous on A},
as the entropy map is upper semi-continuous in our case.

Another application will be in the next Corollary, where we compute the jg4-measure of an
arbitrary ball centered on A; for amap f : X — X on a metric space X, we denote by By, (z,¢) :=
{y € X,d(f'y, fiz) <e,i=0,...,n— 1}, € X,e > 0, an arbitrary dynamical (Bowen) ball.

Corollary 2. In the same setting as in Proposition 1, assuming f is conformal on both stable and
unstable local manifolds, there is C > 0 such that the pg-measure of an arbitrary ball is given by:
eSmd(C) ¥ eSmd(C)

1 cef—m(fm@)nA cef—m(fm@)nA
dpg(x) < pg(B(f™z,p) < C
C oo 5 (@) po() < pg(B(f"zp) < o) S (@)

duqﬁ(l'),

where ¢ is fized and m,n are the largest integers s.t e|Df™(2)| > p and e|Df=™(fm2)|~! > p, for
any z € A,p > 0.



We also apply the asymptotic degrees in order to obtain estimates for the Hausdorff dimension
of various slices through A. We recall that from Definition 1, that logdus(f, 1) = F(ug); in
particular log doo (f, A) = F'(uo), where g is the measure of maximal entropy of f|x. If ®%(z) :=
log |Dfs(z)|, € A, then for any fixed number v < hyop(f|a), we have that the function

t > P(LO* — ),

is strictly decreasing and convex, it has a value larger or equal than 0 when ¢ = 0, and converges
to —oo when t — co. Hence this pressure function has a unique zero (called also a solution of the

Bowen-type equation, [2]), which will prove important in dimension estimates.

Theorem 3 (Dimension estimates for certain stable slices). In the setting of Theorem 1, assume
that f is conformal on local stable manifolds over the saddle basic set A, and that jig is the equilib-
rium measure of a Holder continuous potential ¢ on A; denote ®*(y) :=log |Dfs(y)|, y € A. Then
there exists a Borel set KC(py) C A such that py(K(pe)) = 1, and for every x € A we have:

HD(W; (z) N K(1g)) < t3._(£.,)>
where tzoo(f ) is the unique zero of the pressure function t — P(t®° —log doo(f, pig))-

We remark that the set K(f4) is constructed explicitly in the proof of Theorem 3 above; and
that it is not contained necessarily in the generic set of the stable potential ®°. In fact, we obtain
a whole class of sets of type K(uy), according to various conditions.

As we mentioned, in Section 3 we will give several examples of hyperbolic basic fractal sets,
and apply the results above to the equilibrium measures on them. Such examples may be obtained
for example from parametrized families with transversality conditions; from solenoids with self-

intersections; or from perturbations of some known hyperbolic endomorphisms.

2 Main results and proofs.

In the sequel, let a smooth (say C?) non-invertible map f : M — M defined on a compact
Riemannian manifold, and let A be a fixed basic set of f, such that f is hyperbolic on the
compact A. In general, the fractal set A is not totally invariant, i.e we do not always have
f~Y(A) = A. As said before, hyperbolicity is understood here in the sense of endomorphisms
(i.e non-invertible maps), i.e there exists a continuous splitting of the tangent bundle into stable
and unstable directions, over the inverse limit A consisting of sequences of consecutive preimages,
A= {z =(z,x_1,2_9,...,) withx_; € A, f(x_;) = x_;j+1,i > 1}. For any & € A we have a stable
space 5 and an unstable space EY. There is a small 7 > 0 and local stable/unstable manifolds,
W3 (x) and W¥(#), for any & € A. Denote also

Dfy(x) := Df|gs, © € A and Dfy(2) := Df|ps, & € A (2)

The endomorphism f is assumed to have stable directions too, so it is non-expanding. More

about hyperbolicity for endomorphisms can be found for example in [21], [9], etc. When the map is



not invertible, there appear significantly different phenomena and different techniques than in the
case of diffeomorphisms (as for example in [1], [19], [24], [7], etc.)

We will use in the sequel the notions of Jacobian of an invariant measure introduced by Parry
n [13]. Let f: M — M be a continuous endomorphism on the manifold M and p an f-invariant
probability on M; assume also that f is essentially countable-to-one (see [13]). Then as shown by
Rohlin ([18], [13]), there exists a measurable partition & = (Ag, A1,...) so that f is injective on
each A;, and the push-forward measure ((f|4,) 1)/ is absolutely continuous on A; with respect to

u. The respective Radon-Nykodim derivative, will be called the Jacobian of y with respect to f:

du o (f’Az)

Jr(p)(x) = an

(), p—a.eon A;i>0

Notice that from the f-invariance of u, we have J¢(p)(x) > 1,4 — a.e x € M. Consider now in
general f : M — M a C' endomorphism and p an f-invariant probability on the manifold M:;
then the folding entropy Fy(u) of p is the conditional entropy: Fjy(u) := H(e|f'€), where € is
the partition into single points. From [18], we can use the measurable single point partition e
in order to desintegrate p into a canonical family of conditional measures p, on the finite fiber

f~1(z) for p-a.e . Hence the entropy of the conditional measure of y restricted to f~'(z) is
1
Kz (x)’

H(pz) = =Xye p1(2) Mz (y) 10g piz(y). From [13] we have also J¢(u)(z) = i — a.e x, hence

Fy() = [ 1og 7y (@)du(x) 3)

Definition 2. Given two positive functions Q1 (n,z), Q2(n,x), we will say that they are compa-

rable if there exists a positive constant C' so that 1 < ngzz; < C for all n, x.

Recall that, given a continuous function f : X — X on a compact metric space X, the topological

pressure P(¢) of a continuous real-valued function ¢ € C(X), is defined by

P(9) = hm lim sup — logmf{z Sné(z) P X such that U B, (z,e) = X},

n
n— 00 2CF

with By,(2,¢) = {y € X,d(f'z, fly) <e,0<i<n—1}and S,0(z) = 3. o(f'2), z€ X,n>1.
0<i<n—1
If f: X — X is a homeomorphism on X having the specification property, then the equilibrium

measure fi4 of the Holder potential ¢ € C(X), is defined as the unique measure which maximizes

in the Variational Principle for topological pressure (see for eg [6], [25], etc.), namely:
P(¢) = sup{h, + /qﬁd,u,, p probability measure on X'}

It was shown (see for eg [3], [6]), that the probability measure p is ergodic and satisfies the esti-
mates A.e5n?@)=nP@) < (B, (z,¢)) < B.e%n¢@nP@) where B, (z,¢) := {y € X,d(f'y, fiz) <
g,1 =0,...,n— 1}, P(¢) denotes the topological pressure of ¢ with respect to f, and where the
positive constants A., B, are independent of x,n.

The general homeomorphism framework above allows us to apply this result to equilibrium

measures on the inverse limit A. If 7: A — A7(2)=2,2 € A is the canonical projection and if ¢



is a Holder potential on A, then p4 is the unique equilibrium measure for ¢ on A if and only if py =
Txfbgor, Where pigor is the unique equilibrium measure of ¢ o 7 on the compact metric space A; here
the homeomorphism f : A — A is the shift map defined by f(z,2_1,2_2,...) = (f(z),z,x_1,...).

So for the non-invertible map f and the measure p4 on A, we obtain the same estimates as above:

A eSno@)—nP(¢) < fig(Bn(z,€)) < B.eSno@)—nP(9)

with positive constants A., B, independent of n,z, where the consecutive sum S, ¢ is defined as
Spp(x) = ¢(x)+...+¢(f"1(x)),for x € A, n € N. In particular, if ¢ = 0, we obtain the measure
of maximal entropy pg.

Let us give now the proof of the formula for the asymptotic logarithmic degree with respect to
g, on the set A; this degree takes into consideration those n-preimages which behave well with
respect to py. We assume for the moment that Proposition 1 is known; its proof is independent of
Theorem 1 and will be given later in the paper. First, for an f-invariant probability g on A, 7 > 0
small, n € N and = € A let us define the finite set:

Gulospe) = (€ S () 0 s (P2A0 [ g <, @

Definition 3. In the above setting, denote by d,,(z, u, 7) := Card G, (z, u, 7),x € A,n > 0,7 > 0.

The function d,, (-, i, 7) is measurable, nonnegative and finite on A.

Proof of Theorem 1. First let us recall formula (3) for an arbitrary f-invariant measure
ws Fe(p) = [ylog Js(p)(x)du(z). From the Chain Rule for Jacobians, we have Jp(p)(z) =
Jr(p) (@) ... Jp(p)(f" (), for p-a.e x € A, for any n > 1. On the other hand, since u is f-
invariant, we know that [log.J;(u)(x)du(z) = [logJs(u)(f(z))du(x) = [logJs(w)(fFz)du(z),
for all £ > 1. These facts imply that for any n > 1,

Fy() =, [ Yog (1) (w)dn(z) (5)

As we saw above, since f is hyperbolic on A, then any Holder continuous potential ¢ on A
has a unique equilibrium measure j4 on A. Therefore from Proposition 1, since the constant C' is

independent of n we obtain that:

eSn #(y)

1 yef—(/(@)nA
Fylus) = Jim = [ 1og (o) (6)

n—oo N

Now since A is compact, each point € A has only finitely many f-preimages in A, i.e there
exists a positive integer d s.t Card(f~'2) < d,r € A. Since e is an ergodic measure (as it is an

equilibrium state) and from Birkhoff Ergodic Theorem we obtain that

o(rent A [ou>np2) 5 o



for any small 7 > 0. Thus for any 1 > 0 there exists a large integer n(n) such that for n > n(n),

ol € A, 220 / bdul > 7/2) < (7)
Let us now take a point z € A with \%(z) — [ ¢du| < 7. From Definition 3 we have
Z GS"(b(y)
n(f ¢du¢fﬂ')dn(x, b T) + ro(x, s T) < yef—m(fra)nA - en(Sf ¢dﬂ¢+‘r)dn(x7 Pps T) + ro(z, Ly T)
n(f ¢dﬂ+7') - esn(b(x) - en(f ¢dﬂ¢_7_)

(8)
where ry,(z, 14, 7) is the remainder > eSn®(W) . In order to simplify notation, we
yEffnf”($)\Gn(.Z’”u,¢77')
will also denote ry,(z, 14, 7) by 7, when no confusion can arise.

Given n large, let us consider now a partition (A7)i<;<x of A (modulo p4) so that for each
0 <1i < K, there exists a point z; € A? so that for any n-preimage &; € f~"(z;) NA, 1 < j < dp,,
we have A? C f™(Bn(&j,€)),1 <j <dp;,1 <i < K. For the above partition, let us denote by A%
the part of the n-preimage of A" which belongs to the Bowen ball B,,(&;5,¢), i.e

AL = AP N Bu(Giy€)s1 < J < dpiy 1 <0< K

Since A} were chosen disjoint, also the pieces of their preimages, A7, 1, 7, are mutually disjoint.

’l_]’

We will decompose the integral in (6) over the sets Aji. Notice that if y, z € A7

7> then since ¢

is Holder continuous and A7, C By(&i5,¢€), it follows that we have

19n¢(y) — Snd(2)| < C(e), (9)
where C(¢) is a positive function with C(e) e 0. So we will obtain:
eSné(y) eSné(v)
/A log Y dus@) =Y / s "’; *;jf;f ——dpg(x)  (10)

0<j<d; 0<i<K

Let us now denote by R, (%, 14, 7) the set of preimages &;; with &; & Gy (&g, i, T), and denote
simply by R, ; the set of indices j, 1 < j < d,,; with &; € R, (4, pg, 7) for every 1 <i < K. Now in
the decomposition from (10) we notice that the integral over those sets A% with j € R, ; will not
matter significantly. Indeed as Card(f 'z NA) < d,r € A and as —M < ¢(x) < M,z € A we have,

1< yef_nf;ﬂ;/(\x) < dne2nM
6 n

Now recall that A} C By, (&;5,¢€) and the sets Af%, i, j are mutually disjoint (w. 1. t pg). Hence

1,]7 )

by using inequalities (7) and (9) and the fact that &; ¢ G (&g, ite, T) When j € R, ;, we obtain:

) eSné(y)
1 —n fngnA 1
S o lg¥Y e dug(w) < — log(d"e™™) .y = nlogd + 2M) (1)
) - n Jan ern n
0<i<K,jERn; ij

)



But by using the comparison between different parts of the n-preimage of a small set from the

proof of Proposition 1 (see (18)), we deduce that the last term of formula (10) is comparable to

. dn(zis prg, T) e (AT) + T (i by T)
> 1s(A%) 1o T : (12)
i g ( ij)
where 7, (2i, 1, T) 1= > te(A7;). Hence from (18), (11) and (12) we obtain:

& €F ™ (2)NA, &iiEGn (&g otieyT)

1 1 fn(zinudﬁﬂ_) /
= po(A%) log dn (2, pg, T) + — to(A) log(1 + o) — () =nC" <
"ij;:;m —— (i stenT) nij¢ZRm o) lost dn(zz‘,M@T)ﬁ%(Az‘j)) v

1 yef—m franA
< — <
= /A 8T e Hele) <

1 1 Fn(zi,u¢,,7) /
< - E wo (A7) log dy (2, pre, ) + — g pep (A7) log(1 4+ —) + (1) +nC",
" ¢ R o (st " @R oLt loet d"(zi’“qﬁ’T)%(Aij)) o

(13)
with C" = log d+2M being the constant found in (11), and where the positive constant §(7) comes
from the uniformly bounded variation of 25,¢(z) when x is in Af; and when 1 <i < K,j ¢ Ry,

vary; clearly we have 0(7) =, 0.
T—

Now we know that in general log(1 + x) < z, for z > 0. Thus log(1 + (jnézif)‘;;’;()fw)) <
n\2i ) ij
'Fn(ziv/»l'qb:T)

dn(zi b, T)He (AT,

n ’Fn(z’ia/"qﬁ"r) n ’Fn(ziv.uqﬁaT)
Z to(Aj;) log(1 + ) ) < Z 1o (Asy) ) Y =
NET dn(2i> pis, Tk (AG)" — | e An(is 1, 7)1 (Aj) (14)

),i, j and hence in (13) we have, for n large enough that:

= fn(ziwu(f)ﬂ_) <mn,
1<i<K

where we used that by definition, there are d, (2, ug, 7) indices j in {1,...,dy;} \ Ry, for any
1 <4 < K. Therefore from the last displayed inequality and (13) we obtain that, for n > n(n),

eSnd(y)

1 yef—nfrenA 1
o (@)~ . [ togdu (et ()| < 6+, (19)

where §(7) —>0 0. Then by taking n — co and 7 — 0, we will obtain the conclusion of the Theorem
T—
from (6) and (15), namely that Fy(ug) = lim lim L [, logdy(z, pg, 7)dpe(z).

T—0n—o0

0

We give now the proof of the auxilliary Proposition 1, which is independent of Theorem 1.

Proof of Proposition 1.
We know from definition that the Jacobian J¢m (1) is the Radon-Nikodym derivative of fi40 f™

with respect to g on sets of injectivity for f. In order to estimate the Jacobian of 14 with respect
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to f™, we have to compare the measure gy on different components of the preimage set f~™(B),
for a small Borel set B, where m > 1 is fixed.

Let us consider two subsets E1, Ey of A so that f™(FE;) = f™(F2) C B and Ej, E5 belong to
two disjoint balls By, (y1,€), respectively B,,(y2,¢). This happens if diam(B) is small enough, since
f has no critical points in A and thus there exists a positive distance g between any two different
preimages from f~!(y) for y € A. As in [6] since the Borelian sets with boundaries of measure
zero form a sufficient collection, we can assume that each of the sets F;, F5 have boundaries of
po-measure zero. Recall that f™(E1) = f™(E2). As in [6], ue is the weak limit of the sequence of

measures: [, := m . Z @5, where P(f,¢,n) := Z @) p > 1 (see
z€Fix(f7)NA z€Fix(f7)NA
for eg [17] for weak convergence of measures). Thus we have

i 1 .
AnlB) = pygny 2 ezl (16)
e z€Fix(fr)NE;

Consider a periodic point x € Fix(f™) N Ey; it follows that f™(z) € f™(Eh), so there exists a point
y € E5 such that f™(y) = f™(x). However the point y is not necessarily periodic. We will use
now the Specification Property ([6], [3]) on hyperbolic locally maximal sets. If ¢ > 0 is fixed, there
exists a constant M. > 0 such that for all n > M., there is a point z € Fix(f™)NA which e-shadows
the (n — M;)-orbit of y. In particular z € B, (y2, 2¢), since Ea C By (y2,€).

Let now V C By, (y2,¢) be an arbitrary neighbourhood of the set Fy. Take two points z, 2’ €
Fix(f™) N E; and assume the same periodic point z € V N Fix(f™) corresponds to both of them
through the previous shadowing procedure. Thus the (n — M. — m)-orbit of f™(z) e-shadows the
(n — M. —m)-orbit of f™(z) and also the (n — M, —m)-orbit of f™(z’). So the (n — M. —m)-orbit
of f™(x) 2e-shadows the (n — M. — m)-orbit of f™(2’). But we took z,2’ € E; C B, (y1,¢€), so
a2’ € By (x,2¢) and hence from above, 2’ € B,,_ . (z, 2¢).

We partition now the set B, (x,2¢) into smaller Bowen balls of type B, ((,2¢), and let us
denote their number by N.. In each of these (n,2c)-Bowen balls we may have at most one fixed
point for f*. Then if d(f, fi¢) < 2¢,i = 0,...,n — 1 and if ¢ is small enough, we can apply
the Inverse Function Theorem at each step, and thus there exists only one fixed point for f™ in
Bn(C,2¢).

So there exist at most N, periodic points in A from Fix(f™) N E; having the same point
z € VNFix(f™) associated to them by the above procedure. Notice also that if z, 2’ € Fix(f™)NF;
have the same point z € V attached to them, then 2’ € B, (z,2¢) and then, from the Holder
continuity of ¢ it follows |S,é(z) — Spo(z’)| < C., for some positive constant C. depending on ¢
(but independent of n,m,z). This can be used then in the estimate for fi,,(E1) from (16). Notice
also that if z € B, (y,¢€), then f™(z) € Bp_pr.—m(f™(x),€). Thus from the Holder continuity
of ¢ and since x € Fy C By,(y1,¢), it follows that there exists a positive constant C’é satisfying:
15,0(2) — Snd(z)| < |Smd(y1) — Smd(y2)| + CL, for n > n(e,m). Then using also (16), and since
there are at most N, points z € Fix(f™) N E; having the same z € V N Fix(f™) N A corresponding

11



to them, we obtain that there exists a constant C. > 0 s.t:

€Sm¢(yl)

fin(En) < Cefin(V) - 5505

(17)

where we recall that Fy C By, (y1,€), F2 C Bi(y2,¢) and f™(E;) = f™(Es). But 0E,0Ey were
Smfﬁ(yl)
Zsm¢(y2) .

a neighbourhood of Fs, and by applying the same procedure for £y we obtain:

assumed of pg-measure zero, hence: pg(E1) < Cepg(V) -

But V was chosen arbitrarily as
1 eSmd(y1) eSmd(y1)
o B2) 5y < HelBr) < Cuo(B2) 5y (18)

where C > 0 does not depend on m, F1, Fs.
Now, the Jacobian Jgm (p14) is the Radon-Nikodym derivative of p14 o f™ with respect to p4 on

sets of injectivity for f™, hence

Ho(f™(D)) = /D Ty (1) (@) dpo(),

for any Borelian set D on which f™ is injective. Hence from the Lebesgue Density Theorem, we

have that, by putting D = B(x,r) for small r > 0, we obtain:

=y 4D

) (19)

for pg-a.e x € A. On the other hand from the invariance of uy, we have for any Borel set D that:

po(f™ (D)) = pe(f~"(f"D)) (20)

Thus if D is a small ball around z, one has to consider the m-preimages y of x, belonging to
A. If ¢ € Bpu(y,e) then, from the Hélder continuity of ¢ we have that [S,,¢(¢) — Smo(y)| < C-,
where the constant C’e does not depend on m > 0,y € A. So in the comparison inequlities of (18),
we can take instead of y1, yo, the respective m-preimages of x belonging to A.

Therefore from (19), the invariance in (20), and the comparison between different pieces of the

m-preimage from (18), it follows that the Jacobian of ;14 with respect to f™, satisfies:

3 eSmé(¢)

Cef~m(fm(=))nA
Jpm(pg)(x) = e . He —aex €A,

where the comparability constant C' > 0 is independent of m > 1,z € A.
O
Let us recall now that in the expanding case we have a formula relating P(¢) to the preimage
sets of f™,m > 1 (given in Section 1, see [16]); however the proof for that result does not work in
the saddle case.
We give then, in our saddle case, the proof of the formula for P(¢) in terms of the folding

entropy and the preimage sets, announced in Theorem 2 in Section 1:
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Proof of Theorem 2.
First recall that ¢ is a Holder continuous function on the hyperbolic basic set A, so its unique
equilibrium measure 4 is ergodic. From the properties of the Jacobian, we know that it satisfies

the Chain Rule, i.e Jroq(pg)(x) = J¢(pe)(g(x)) - Jg(pe)(x) for pg-a.e x € A. Hence pg-a.e we have,

log Jgm (p1g)(x) = log J¢(pe) () + ... +1og J¢(pe) (f™ ()

This means that we can apply Birkhoff Ergodic Theorem and obtain that

log Jgm (1
08 (o) o 11 (us)dig = Fy (1)

m m—0o0 A

We apply now Proposition 1 to get j4-a.e the convergence

log Z eSm¢(y) —_ log eSm¢(m)
yef~m(fmx)

~ = Erlug) (21)
But again from Birkhoff Ergodic Theorem, Sm%m — [ ¢dug for py-a.e € A. Thus from (21) and

the definition of equilibrium measure P(¢) = [ ¢ dugs + hy, »» We obtain the required formula:

log 3 eSmé(y)
yef—m(fmx) N Ff (Iu¢) n P((;S) B hud)

m m—00

0

Remark 1. In general Fy(uy) # hy,. Indeed consider the inverse SRB measure ;= introduced on
a d-to-1 hyperbolic repeller A in [8]. Then this measure p~ satisfies

By (f) = logd - /A ST Nl w)miu, 2)du (w),

1A (/’L_ ,$)<0

where \;(u~, z) are the Lyapunov exponents of u~ at x and m; (", x) their respective multiplicities.
So if there are negative Lyapunov exponents on A, as for the hyperbolic repellers introduced in [8]

and explained below in Example 3), then Fy(u~) = logd, whereas h,- > logd.

O
We obtain then directly from Theorem 1 the proof for Corollary 1, thus giving the asymptotic
degree of f|a in terms of the folding entropy of the measure of maximal entropy po on A. Corollary
1 expresses the average value of the logarithmic growth of the preimage counting function
of f™|Aa; as A is not necessarily totally invariant, d,(-) may be non-constant and it is difficult to
obtain the number of preimages of z in A; see the examples from [7] which are not constant-to-one
on their respective basic sets, and the effect of preimages on the hyperbolic dynamics and on the
stable dimension; one can see [10], [11], etc.
A useful consequence of Proposition 1 is Corollary 2, which gives the measure pg of an ar-

bitrary ball in A. It can be proved by writing an arbitrary ball B(y,p) as a certain iterate

13



f™(Bn(z,€)) of some Bowen ball, in such a way that the iterate f"(B,(z,¢) has roughly the same
sides in the stable and unstable directions; here y = f™(z) and p > 0 is arbitrary.

Asymptotic degrees are useful also in order to obtain estimates for the Hausdorff dimension of
various slices through the fractal A. In [11] we obtained that, if the number of f-preimages of any
point x € A is at least d, then the stable dimension 6°(x) :== HD(W2(x) N A) is less or equal than
the unique zero ¢} of the pressure ¢t — P(t®* —log d). However in general, the number of preimages
of points varies discontinuously in A. Since the Hausdorff dimension of stable slices is not changed
by taking iterates f™, we will use the asymptotic degrees to obtain estimates for the dimension of

certain stable slices.

Proof of Theorem 3.

We want to prove an upper estimate for the dimension of a certain slice through A, by using
the asymptotic degree with respect to the equilibrium measure pg of a Holder continuous function
¢ on A. Let us denote by G(uy) == {y € A, LlogJp(pg)(y) = F(ug)}. As we showed above,
pe(G(ng)) = 1. Let us recall also from Proposition 1 that there exists a positive constant C
independent of m, such that for j4-almost all y € A we have:

> oSnd(2)

e/ " (fry)nA
Tpn(ug)(y) = C- €SZ¢(y) > C" - dn(y, 1, 7), (22)

with C’ also a positive constant independent of n. For y € G(u), we have lim Llog Jpn (1s)(y) =
n—o0
F(). On the other hand, from Theorem 1 and from (22), it follows that:

IOg dn(y7 Heps 7-)

}1_% nhﬁ\lgo A - dpg(y) = F(pg), and also,
Ipn (1) ()
log dn(y, p1g, T log =522
/ P8 a0 110:7) g1, ) < / ——C— duy(y)
A n A n

Hence from (22) and the last displayed formulas, it follows that for any integer n and 7 > 0, there
exists a Borel set A, (14, 7) C A so that for any point y € A, (g, 7),

1
dn(y, thg, T) = o Jpn(g)(y),

and
pop(An(pig, 7)) > 1 —w(n, ), where w(n,7) = 0 when n — oo, 7 — 0

Now, from the fact that M — F(pg) for pg-a.e y € A, it follows that, for any positive

n—0o0

integer N and § > 0, there ex1sts a Borel set
G (g, 0) == {y € A, e"FHe)=0) < Jp (ug)(y) < " FUa)0) > N},

and that py(Gn(pe,6)) > 1—p(6, N), where p(d, N) v 0 for any fixed § > 0. Moreover, we have
—00
in general that d,,(y) > dn(y, e, 7), y € A, 7 > 0.
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Therefore, it follows from the above that there exists a Borel set K, (j4,0) C A such that

Md’(Kn(:U’(é’(S)) >1- Xn(5)7

where for any ¢ > 0 fixed, x»(6) \, 0, and such that for any point y € K, (p4,9) we have:

n—oo
1 _
dn(y) > dn(y,uqs,T) > a.erz(F(u¢) 5) (23)

Also, from the f-invariance of the measure p, it follows that:

1o EKon(16,6)) > pig(Koa(j1,6)) 2 1= xa(6), ¥ > 1 (24)

Now, for any integer n > 1, let us consider a strictly increasing sequence of integers (pi(n))Dl,

such that p;(n) = n, and such that the following condition is satisfied:

> Xpi(m)(8) < 3xn(6) (25)

i>1

For a sequence (p;(n)); of integers as above, let us define the following Borel subsets of A:
Kn(pg,d) == igl fpi(n)[(pi(n)(u¢,6), and K(pg,0) = nLZJl KCn (e, 0)

Let us cover now the set /Cp, (114, 6) with open sets, in order to estimate their Hausdorff dimension.
First of all, notice that if z € K, (g,0), then any other point 2z’ from f~"(f"z) belongs also to
K, (pg,0). Notice also that if € < e¢, then the set f~"(y) is (n,e)-separated for any point y € A,
due to Cy N A = 0. Also, for any point y € IC,,(ug,6) and for any integer ¢ > 1, we know that:

; 1 (n)- _
oy (y) > o ePi(n) (Fps)=0) (26)

where d} (y) := Card{f"(y) N A} is the number of n-preimages in A of y € A, n > 1. Let us take

next an arbitrary number ¢ > fSF( )67 where ¢°

o F(ug)—3 is the unique zero of the pressure function:

t s P(t®° — F(pg) + )

It is clear that such a zero exists and is unique since F'(jg) < hiop(f|a); and, from notations, we
have t~f/ =13, V. Therefore, P(t®° — F'(ug)+0) < 0. Now, since for all i > 1, fpi(”)(Kpi(n) (g, 6))
covers Ky (fig,0), it follows that we can find a cover Y®i) of W N Kn(pe,0), with sets of type
fpi(”)(Bpi(n)(g,s)), where § ranges in a (p;(n),e)-spanning set F), () of A, and n,i > 1. Clearly
from the conformality of f on local stable manifolds, it follows that the diameter of any ball in W
of type W N fpi(”)(Bpi(n) (&,€)), converges to 0 when i — oo (and n is fixed).

Now, we will use (26) and the procedure of succesive elimination of covers from the proof of
Theorem 1.2 of [11], plus the fact that t > fﬁ,(%)ié. Hence it follows that for any n,i > 1, we
can extract from the above very rich cover V(™% some finite "optimal” open subcover U9 =

(U;mi))jef(nvi) of the set W N Ky, (g, 9), such that we have:

DN |

Z diam(U;n’i))t <
j€I(n,i)
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Hence, as the diameters of the sets in U™ decrease to 0 when i — oo, we conclude that
HD(WNK,(pg,0)) < t, and since t was chosen arbitrary larger than st(%)fé, we obtain HD(W N
Kn(pg,0)) < E;(%)—d’ Therefore using the fact that K(ug,d) = UK, (g, d), and also the properties

n

of the Hausdorff dimension of a countable union, it follows that
Moreover, from (24) and (25), we obtain that

16 (Kn(16,6)) 2 1= (1= p1g(Kp ) (165 8)) = 1= Xy () (6) = 1 = 3xn (9)
i>1 i>1
Hence as xy,(6) = 0, it implies that 114(K(11g,6)) = pe(UKn(1te,6)) = 1. Let us define now the
following Borel subset of A,
Kps) = 0 Ko, )

Then, we obtain from above that py(K(1y)) = 1. Now we let § — 0, and employ (27), the continuity

of the pressure function, and the definition of do(f, 114), in order to obtain the required bound:

3 Some examples of folded saddle-type systems.

1) Let us consider an iterated function system in the unit interval I, ¢ : [ U...U I, — I for
some p > 2, such that g is C2-smooth, and injective and expanding each I; to I, i.e g(I;) = I =
[0,1], 1 < j < p. We define the compact space

X={xcehvu...Ul, ¢"(z) e [ U...UIL,,n >0}

Consider now parameters A = (Ay,...,\,) € RP, with ||A|| < n for some small n > 0, i.e XA €
B,(0,7) C RP. Consider also the Lipschitz continuous functions ¢1,...,¢, defined on X* :=
X x [0,1] x Bp(0,m), and assume that ¢1(z,,-),...,¢p(x,-,-) are C? differentiable functions of
(y, ), with derivatives in (y, A) depending Lipschitz continuously on (z,y, \), and that there exist
constants o, @’ > 0 with 0 < o/ < ]8%@-] <%on X* foralli=1,...,pand |3i,\j¢z" < o on X*, for
allg,j=1,...,p. f ¢ <P on X* fori=1,...,p, then we assume also that n+ g < 1.

We define now the parametrized maps F) : X x [0,1] — X x (0,1) by the formula

F,\(:c,y) = (f(%), Ai + ¢Z(xa Y, )‘))7

if v € X;,i=1,...,p. From the conditions on ¢1,...,¢,, we see that I\ is well defined and it is a

hyperbolic fiberwise conformal skew product endomorphism. We see that 0 < o/ < |(¢2)'| < .,z €
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X, X € B4(0,n), so condition (af) from the definition of a transversal family in [12], is satisfied for
the parametrized family (F))y. For z € X N I;, let us denote by:

If z € X, then define the contraction W7 , := Wy x o Wyn-1(;) x...0 ¥, 5, where Vo) =Vi(z, -, ),
forz€ XN1I;,; 1 <i<pand A€ By(0,n). We define then the following fibered invariant fractal,
M= Y0, reo (@) zall)

From [12], it follows that the stable dimension over the saddle set Ay of F}, is given by a Bowen
type equation on the natural extension Ay, for Lebesgue-almost all parameters A\. However, F) is

not a homeomorphism on Ay in general.

We can also estimate the asymptotic degree of the measure of maximal entropy pg  for F)
on Ay. The topological entropy hip(Fi|a,) = logp, since the Bowen balls in Ay are determined
only by the dilation of ¢ in the base. Also from our assumptions above, we see that the negative
Lyapunov exponent 5\1(,u0, ) is larger than loga/. We now use an inequality due to Ruelle ([20]),

namely Ao, < Fuox) — > mij\i(mL A), where m; is the multiplicity of the Lyapunov exponent
5\i<0

5‘1‘(#0, ). Consequently, since in our case we have only one negative Lyapunov exponent Aq(f ),

and since hop(F)|a,) = logp, we obtain thus an estimate on the average rate of growth of the

number of n-preimages remaining in the basic set Ay. Namely, from Definition 1 and Theorem 1,

doo(F\, A\) = exp(F (o)) > p- o

Hence doo(F), Ay) > 1, if pa’ > 1. However, F may not be constant-to-1 on the fractal Ay. Using
Proposition 1 and Theorem 2, we can infer also the Jacobian of uy with respect to an arbitrary

iterate of F)\, and the pressure P(¢) for any Holder continuous potential ¢ on Aj.

2) Examples of hyperbolic attractors for endomorphisms can be obtained from solenoids with
self-intersections, by the method of Bothe ([1]). We consider f : D? x S' — D? x S* given by:

f(@y,t) == (Aa(t) - @+ 21(), Aa(t) -y + 22(t), ¥ (1)),

where 9(+), 0 < \i(t) < 1 and z;(-),i = 1,2 are C! functions, and where /(t) > 1. We obtain then
the hyperbolic saddle-type fractal attractor,

A= N f(D? xSshH

For certain choices of ¢, \;, z;, the map f is non-invertible and not constant-to-1 on A. Then, for
an arbitrary Holder potential ¢ on A, one obtains the measure p4 associated to ¢. The negative
Lyapunov exponents are given by the average values with respect to pg, of log A;,7 = 1,2 and the

positive exponent is given by the average value of log [¢|.
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We can then estimate as before the asymptotic degree of f|r as do(f,A), using Corollary 1;
and more generally, we obtain the asymptotic degree duoo(f, ptg), With respect to the equilibrium
measure jis of ¢. From Proposition 1, we obtain also the Jacobian Jgn(je) of p14, with respect to
an arbitrary iterate f™,n > 1. In the case when A\; = Ay, we can also estimate the pg-measure of

an arbitrary ball in A, by applying Corollary 2.

3) Another class of examples are given by hyperbolic toral (linear) endomorphisms f4 : T™ —
T™ and their perturbations; they are Anosov endomorphisms. Notice that a small C? perturbation
g of fa, is not necessarily conjugated to f4 if fa is not invertible ([15]). Also notice that f4 is
|det(A)|-to-1 on T™, and that the same is true also for g.

However, given an equilibrium measure p4 of a Holder continuous potential ¢ for g, not nec-
essarily all the g-preimages are well behaved with respect to pg. Then by using Theorem 1 and
Proposition 1, we obtain the Jacobians J¢n (1) of ps with respect to interates f", and the asymp-
totic logarithmic degree with respect to pg. Moreover, by applying Corollary 2 to the smooth
perturbation ¢ of a hyperbolic toral endomorphism f4 : T2 — T2, we can obtain the [g-measure
of any ball in T2, In particular since htop(g9) = hiop(fa) = log Ae, it follows that the measure of

maximal entropy jio 4 of g, is given on any ball by:
Ho.g(B(y', p)) = |det(A)| e~ ior@) & [det(A)|" A",

where \o is the eigenvalue of A bigger than 1, and where 3 = g™ (y) € T?, p > 0, with the integers
m,n being given by Corollary 2.
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