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Abstract. We discuss a number of techniques for determining the Minkowski
dimension of bounded subsets of some Euclidean space of any dimension, in-
cluding: the box-counting dimension and equivalent definitions based on var-
ious box-counting functions; the similarity dimension via the Moran equation
(at least in the case of self-similar sets); the order of the (box-)counting func-
tion; the classic result on compact subsets of the real line due to Besicovitch
and Taylor, as adapted to the theory of fractal strings; and the abscissae of con-
vergence of new classes of zeta functions. Specifically, we define box-counting
zeta functions of infinite bounded subsets of Euclidean space and discuss re-
sults from [12] pertaining to distance and tube zeta functions. Appealing to
an analysis of these zeta functions allows for the development of theories of
complex dimensions for bounded sets in Euclidean space, extending techniques
and results regarding (ordinary) fractal strings obtained by the first author and
van Frankenhuijsen.

1. Introduction

Motivated by the theory of complex dimensions of fractals strings (the main
theme of [14]), we introduce box-counting fractal strings and box-counting zeta
functions which, along with the distance and tube zeta functions of [12], provide
possible foundations for the pursuit of theories of complex dimensions for arbitrary
bounded sets in Euclidean space of any dimension. We also summarize a variety of
well-known techniques for determining the box-counting dimension, or equivalently
the Minkowksi dimension, of such sets. Thus, while new results are presented in
this paper, it is partially expository and also partially tutorial.
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Our main result establishes line (iv) of the following theorem. (See also The-
orem 6.1 below, along with the relevant definitions provided in this paper.) The
other lines have been established elsewhere in the literature, as cited accordingly
throughout the paper.

Theorem 1.1. Let A denote a bounded infinite subset of Rm (equipped with the

usual metric). Then the following quantities are equal:

(i) the upper box-counting dimension of A;
(ii) the upper Minkowski dimension of A;
(iii) the asymptotic order of growth of the counting function of the box-

counting fractal string LB;

(iv) the abscissa of convergence of the box-counting zeta function ζB;
(v) the abscissa of convergence of the distance zeta function ζd.

A summary of the remaining sections of this paper is as follows:
In Section 2, we discuss classical notions of dimension such as similarity dimen-

sion, box-counting dimension, and Minkowski dimension as well as their properties.
(See [1,2,4–12,14,16,17,20–23].)

In Section 3, we summarize but a few of the interesting results on fractal
strings and counting functions regarding, among other things, geometric zeta func-
tions, complex dimensions, the order of a counting function, and connections with
Minkowski measurability. (See [1,11,14,15,21].) The material in Sections 2 and
3 motivates the results presented in Sections 4 and 5.

In Section 4, we introduce box-counting fractal strings and box-counting zeta

functions and, in particular, we show that the abscissa of convergence of the box-
counting zeta function of a bounded infinite set is the upper box-counting dimension
of the set. These topics are the focus of [13].

In Section 5, we share recent results from [12] on distance, tube and relative zeta

functions, including connections between the corresponding complex dimensions
and Minkowski content and measurability.

In Section 6, Theorem 1.1 is restated in Theorem 6.1 using notation and ter-
minology discussed throughout the paper. We also propose several open problems
for future work in this area.

2. Classic notions of dimension

We begin with a brief discussion of a classic method for constructing self-similar
fractals and a famous fractal, the Cantor set C. (See [2,5].)

Definition 2.1. Let N be an integer such that N ≥ 2. An iterated function system

(IFS) Φ = {Φj}Nj=1 is a finite family of contractions on a complete metric space
(X, dX). Thus, for all x, y ∈ X and each j = 1, . . . , N we have

dX(Φj(x),Φj(y)) ≤ rjdX(x, y),(1)

where 0 < rj < 1 is the scaling ratio (or Lipschitz constant) of Φj for each j =
1, . . . , N .

The attractor of Φ is the nonempty compact set F ⊂ X defined as the unique
fixed point of the contraction mapping

Φ(·) :=
N
⋃

j=1

Φj(·)(2)
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Figure 1. The classic “middle-third removal” construction of the
Cantor set C is depicted on the left. The Cantor string LCS is
the nondecreasing sequence comprising the lengths of the removed
intervals which are depicted on the right as a fractal harp.

on the space of compact subsets of X equipped with the Hausdorff metric. That
is, F = Φ(F ). If

dX(Φj(x),Φj(y)) = rjdX(x, y)(3)

for each j = 1, . . . , N (i.e., if the contraction maps Φj are similarities with scaling
ratios rj), then the attractor F is the self-similar set associated with Φ.

Remark 2.2. We focus our attention on Euclidean spaces of the form X = Rm,
where m is a positive integer and dX = dm is the classic m-dimensional Euclidean
distance. Furthermore, we consider only iterated functions systems which satisfy
the open set condition (see [2,5]). Roughly speaking, an IFS Φ satisfies the open
set condition if there is a nonempty open set V ⊂ R

m for which the images Φj(V )
are pairwise disjoint.

Example 2.3 (The dimension of the Cantor set). The Cantor set C can be con-
structed in various ways. For instance, we have the classic “middle-third removal”
construction of C as depicted in Figure 1. A more elegant construction shows C
to be the unique nonempty attractor of the iterated function system ΦC on [0, 1]
given by the two contracting similarities ϕ1(x) = x/3 and ϕ2(x) = x/3 + 2/3.
The box-counting dimension of C is log3 2, a fact which can be established with
any of the myriad of formulas presented in this paper. Notably, log3 2 is equiva-
lently found to be: the order of the geometric counting function (Definition 3.23)
of the box-counting fractal string LB of C (which is related but not equal to the
Cantor string LCS , see Definition 4.1, Equation (16), and [14, Ch.1]); the abscissa

of convergence of either the geometric zeta function of LCS (Definition 3.6), the
box-counting zeta function of C (Definition 4.8), the distance zeta function of C
(Definition 5.1), or the tube zeta function of C (Equation (36) in Section 5.2);
or else the unique real-valued solution of the corresponding Moran equation (cf.
Equation (4)): 2 · 3−s = 1.

2.1. Similarity dimension. The first notion of dimension we consider is the
similarity dimension of a self-similar set.

Definition 2.4. Let Φ be an iterated function system that satisfies the open set
condition with scaling ratios {rj}Nj=1, with N ≥ 2. Then the similarity dimension

of the attractor of Φ (that is, of the self-similar set associated with Φ) is the unique
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real solution DΦ of the equation

N
∑

j=1

rσj = 1, σ ∈ R.(4)

Remark 2.5. Equation (4) is known as Moran’s equation. Moran’s Theorem is a
well-known result which states that the similarity dimensionDΦ is equal to the box-
counting (and Hausdorff) dimension of the attractor of Φ.1 In fact, DΦ is positive,
a fact that can be verified directly from Equation (4). For details regarding iterated
functions systems, the open set condition, and Moran’s Theorem, see [2, Ch.9] as
well as [5] and [17].

2.2. Box-counting dimension. In this section we discuss the central notion
of box-counting dimension and some of its properties.

Definition 2.6. Let A be a subset of Rm. The box-counting function of A is the
function NB(A, ·) : (0,∞) → N ∪ {0}, where (for a given x > 0) NB(A, x) denotes
the maximum number of disjoint closed balls B(a, x−1) with centers a ∈ A of radius
x−1.

Definition 2.7. For a set A ⊂ Rm, the lower and upper box-counting dimensions

of A, denoted dimBA and dimBA, respectively, are given by

(5)

dimBA := lim inf
x→∞

logNB(A, x)

log x
,

dimBA := lim sup
x→∞

logNB(A, x)

log x
.

When dimBA = dimBA, the following limit exists and is called the box-counting
dimension of A, denoted dimB A:

dimB A := lim
x→∞

logNB(A, x)

log x
.

In most applications the set A is such that NB(A, x) � xd as x → ∞, for some
constant d ∈ [0,m] (the relation � is explained at the end of Notation 2.11 below).
It is easy to see that then, dimB A = d.

Remark 2.8. There are many equivalent definitions of the box-counting dimension
(see [2, Ch.3]). For instance, the box-counting functionNB(A, x) given in Definition
2.6 may be replaced by:

(i) the minimum number of sets of diameter at most x−1 required to cover
A;

(ii) the minimum number of closed balls of radius x−1 required to cover A;
(iii) the minimum number of closed cubes with side length x−1 required to

cover A; or
(iv) the number of x−1-mesh cubes that intersect A.

One may also define the box-counting function in terms of ε > 0, where ε
plays the role of x−1.2 Although this may be a more natural way to describe a

1Moran’s original result in [17] was established in R (i.e., for m = 1) but is valid for m ≥ 1;
cf. [2,5].

2Indeed, note that given ε > 0, NB(A, ε−1) is the maximum number of disjoint balls B(a, ε)
with center a ∈ A and radius ε (or any of its counterparts given in (i)–(iv) of Remark 2.8).
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box-counting function, the results relating box-counting functions and geometric

counting functions (see Definition 3.9) presented in Section 4 are stated and ana-
lyzed in terms of x > 0.

If the box-counting function NB(A, x) is given as in Definition 2.6 or one of
the alternatives in Remark 2.8, then the upper and lower box-counting dimensions
have the following properties (cf. [2, Ch. 3] and [3]):

(i) Let V be a bounded n-dimensional submanifold of Rm which is rectifiable
in the sense that V ⊂ f(Rn), where f : Rn → Rm is a Lipschitz function.
Then dimB V = n.

(ii) Both dimB and dimB are monotonic. That is, if A1 ⊂ A2 ⊂ Rm, then

dimBA1 ≤ dimBA2, dimBA1 ≤ dimBA2.

(iii) Let A denote the closure of A (i.e., the smallest closed subset of Rm which
contains A). Then

dimBA = dimBA, dimBA = dimBA.

(iv) For any two sets A1, A2 ⊂ Rm,

dimB(A1 ∪ A2) = max
{

dimBA1, dimBA2

}

.

That is, dimB is finitely stable. On the other hand, dimB is not finitely
stable.

(v) Neither dimB nor dimB is countably stable. That is, neither dimB nor
dimB satisfies the analogue of property (iv) for a countable collection of
subsets of Rm.

A simple way to see why property (v) just above is satisfied is to consider
the countable set A = {1, 1/2, 1/3, . . .} and note that dimB A = 1/2 whereas
dimB{1/j} = 0 for each positive integer j.

The following proposition shows that one need only consider certain discrete
sequences of scales which tend to zero in order to determine the box-counting
dimension of a set.

Proposition 2.9. Let λ > 1 and A ⊂ Rm. Then

dimBA = lim inf
k→∞

logNB(A, λ
k)

logλk
,

dimBA = lim sup
k→∞

logNB(A, λ
k)

logλk
.

Proof. If λk < x ≤ λk+1, then

logNB(A, x)

log x
≤ logNB(A, λ

k+1)

logλk
=

logNB(A, λ
k+1)

log λk+1 − logλ
.

Therefore,

lim sup
x→∞

logNB(A, x)

log x
≤ lim sup

k→∞

logNB(A, λ
k)

logλk
.

The opposite inequality clearly holds and the case for the lower limits follows mu-

tatis mutandis. �
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Example 2.10 (Box-counting dimension of the Cantor set). Let C be the Can-
tor set and n ∈ N. Also, let NB(A, 3

n) denote the minimum number of disjoint
closed intervals with length 3−n required to cover C. Then NB(A, 3

n) = 2n, so by
Proposition 2.9 we have

dimB C = lim
n→∞

log 2n

log 3n
= log3 2.(6)

In the next section, we discuss the Minkowski dimension, which is well known
to be equivalent to the box-counting dimension.

2.3. Minkowski dimension. Minkowski content and Minkowski dimension
require a specific notion of volume and can be stated concisely with the following
notation.

Notation 2.11 (Distance, volume, and Big-O). Let ε > 0 and A ⊂ Rm. Let
d(x,A) denote the distance between a point x ∈ R

m and the set A given by

d(x,A) := inf{|x− a| : a ∈ A},

where | · | denotes the m-dimensional Euclidean norm. The ε-neighborhood of A,
denoted Aε, is the set of points in Rm which are within ε of A. Specifically,

Aε = {x ∈ R
m : d(x,A) < ε}.

In the sequel, we fix the set A and are concerned with the m-dimensional
Lebesgue measure (denoted volm) of its ε-neighborhood Aε for a given ε > 0.
Recall that the m-dimensional Lebesgue measure of a (measurable) set A ⊂ R

m is
given by

volm(A) := inf







∞
∑

n=1

m
∏

j=1

(bn,j − an,j) : A ⊂
∞
⋃

n=1





m
∏

j=1

[an,j , bn,j]











.

In the case of an ordinary fractal string Ω ⊂ R (see the latter part of Definition
3.1), we are interested in the 1-dimensional volume (i.e., length) of the inner ε-
neighborhood of the boundary ∂Ω. Specifically, given an ordinary fractal string Ω
and ε > 0, the volume Vinner(ε) of the inner ε-neighborhood of ∂Ω is defined by

Vinner(ε) := vol1{x ∈ Ω : d(x, ∂Ω) < ε}.(7)

For two functions f and g, with g nonnegative, we write f(x) = O(g(x)) as
x → ∞ if there exists a positive real number c such that for all sufficiently large
x, |f(x)| ≤ cg(x). In addition, if there exists C such that |f(x)| ≤ Cg(x) for all
x sufficiently close to some value a ∈ R ∪ {±∞}, then we write f(x) = O(g(x))
as x → a. If both f(x) = O(g(x)) and g(x) = O(|f(x)|) as x → a, we write
f(x) � g(x) as x → a. Moreover, if limx→a f(x)/g(x) = 1 (or more generally, if
f(x) = g(x)(1 + o(1)) as x → a), then we write f(x) ∼ g(x) as x → a. Analogous
notation will be used for infinite sequences.

Definition 2.12 (Minkowski content). Let r be a given nonnegative real number.
The upper and lower r-dimensional Minkowski contents of a bounded set A ⊂ R

m
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are respectively given by

M
∗r(A) := lim sup

ε→0+

volm(Aε)

εm−r
,

M
r
∗ (A) := lim inf

ε→0+

volm(Aε)

εm−r
.

It is easy to see that if M ∗r(A) < ∞, then M ∗s(A) = 0 for each s > r.
Furthermore, since A is bounded, then clearly M ∗r(A) = 0 for r > m. On the
other hand, if M ∗r(A) > 0, then M ∗s(A) = ∞ for each s < r. Therefore, there
exists a unique point in [0,m] at which the function r 7→ M ∗r(A) jumps from the
value of ∞ to zero. This unique point is called the upper Minkowski dimension of
A. The lower Minkowski dimension of A is defined analogously by using the lower
r-dimensional Minkowski content.

Definition 2.13 (Minkowski dimension). The upper and lower Minkowski dimen-

sions of a bounded set A are defined respectively by

(8)
dimMA := inf{r ≥ 0 : M

r∗(A) = 0} = sup{r ≥ 0 : M
r∗(A) = ∞},

dimMA := inf{r ≥ 0 : M
r
∗ (A) = 0} = sup{r ≥ 0 : M

r
∗ (A) = ∞}.

When dimMA = dimMA, the common value is called the Minkowski dimension of
A, denoted by dimM A.

When we write dimM A, we implicitly assume that the Minkowski dimension
of A exists. In most applications we have that volm(Aε) � εα as ε → 0+, where
α is a number in [0,m]. Then dimM A exists and is equal to m − α (in light of
Definitions 2.12 and 2.13). Note that here

α = lim
ε→0+

log volm(Aε)

log ε
,

and hence,

dimM A = m− lim
ε→0+

log volm(Aε)

log ε
.

It is not difficult to show that the following more general result holds.

Proposition 2.14. The upper and lower Minkowski dimensions of a bounded set

A ⊂ Rm are respectively given by

dimMA = m− lim inf
ε→0+

log volm(Aε)

log ε
,

dimMA = m− lim sup
ε→0+

log volm(Aε)

log ε
.

Remark 2.15. The upper and lower Minkowski dimensions are, of course, indepen-
dent of the ambient dimension m. The upper Minkowski dimension is equivalently
given by

dimMA = inf{α ≥ 0 : volm(Aε) = O(εm−α) as ε → 0+}.
This equivalent form of the upper Minkowski dimension will prove to be useful in
Section 4.

Remark 2.16. It is interesting that there exists a bounded set A in R
m such that

the upper and lower box dimension are different (see, e.g., [20, p. 122]), and even

such that dimMA = m and dimMA = 0 (see [22, Theorem 1.2]).
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Remark 2.17. The upper Minkowski dimension of A is important in the study of
the Lebesgue integrability of the distance function d(x,A)−γ in an ε-neighbourhood
of A, where ε is a fixed positive number:

(9) if γ < m− dimMA, then
∫

Aε
d(x,A)−γdx < ∞.

This nice result is due to Harvey and Polking, and is implicitly stated in [4]; see
also [22] for related results and references. This fact enabled the first and third
authors, along with G. Radunović, to determine the abscissa of convergence of the
so-called distance zeta function of A; see Definition 5.1 below along with Theorem
5.3 and [12] for details.

Definition 2.18 (Minkowski measurability). Let A ⊂ Rm be such that DM =
dimM A exists. The upper and lower Minkowski content of A are respectively
defined as its DM -dimensional upper and lower Minkowski contents, that is,

M
∗ := M

∗DM (A) = lim sup
ε→0+

volm(Aε)

εm−DM
,

M∗ := M
DM
∗ (A) = lim inf

ε→0+

volm(Aε)

εm−DM
.

If the upper and lower Minkowski contents agree and lie in (0,∞), then A is said
to be Minkowski measurable and the Minkowski content of A is given by

M := lim
ε→0+

volm(Aε)

εm−DM
.

For example, if A is such that volm(Aε) ∼ Mεα as ε → 0+, then dimB A =
m− α and M = M .

Open Problem 2.19. If A and B are Minkowski measurable in Rm and Rn,

respectively, is their Cartesian product A×B Minkowski measurable in Rm+n? See

also Remark 5.8 below dealing with the so-called normalized Minkowski content, and

its independence of the ambient dimension m.

Remark 2.20. Another question to consider is whether or not the union A ∪ B
of two Minkowski measurable sets is Minkowski measurable. If not, it would be
interesting to find an explicit counter-example. (The answer is clearly affirmative
if A and B are a positive distance apart.)

The Minkowski measurable sets on the real line have been characterized in [11];
see also Theorem 3.19. Some classes of Minkowski measurable sets are known in
the plane in the case of smooth spirals, see [23], and in the case of discrete spirals,
see [16]. It is interesting that in general, bilipschitz C1 mappings do not preserve
Minkowski measurability, even for subsets of the real line; see [16].

We close this section with the following (perhaps surprising) example.

Example 2.21. Let A be a bounded, Lebesgue non-measurable set in Rm. Then
dimB A = m. Indeed, the closure A cannot be of Lebesgue measure zero (i.e., we
cannot have volm(A) = 0) since, in that case, A would also be of Lebesgue measure
zero, implying that A is Lebesgue measurable. But then volm(A) > 0 immediately

implies that dimBA = m, and therefore dimBA = m. Since dimBA ≤ m, this
proves that dimB A exists and dimB A = m.
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3. Fractal strings and zeta functions

In this section we discuss a few of the many results on fractal strings presented
in [14].

3.1. Fractal strings and ordinary fractal strings.

Definition 3.1. A fractal string L is a nonincreasing sequence of positive real
numbers which tends to zero. Hence,

L = (`j)j∈N = {ln : ln has multiplicity mn, n ∈ N},
where (`j)j∈N is nonincreasing, limj→∞ `j = 0, (ln)n∈N is positive and strictly
decreasing, and, for each n ∈ N, mn is the number of lengths `j such that `j = ln.

An ordinary fractal string Ω is a bounded open subset of the real line.

Remark 3.2. In [14], for instance, finite fractal strings (i.e., nonincreasing se-
quences of real numbers with a finite number of positive terms) are allowed. How-
ever, for reasons described in Remark 3.4, the finite case is not considered in this
paper.

If an ordinary fractal string Ω is the union of a countably infinite collection of
disjoint open intervals Ij (necessarily its connected components), then the lengths
`j of the intervals Ij comprise a fractal string L. Moreover, dimM (∂Ω) is given by

dimM (∂Ω) = inf{α ≥ 0 : Vinner(ε) = O(ε1−α) as ε → 0+},(10)

where Vinner(ε) is the 1-dimensional Lebesgue measure of the inner ε-neighborhood
of Ω (see formula (7)) in Notation 2.11). In fact, Equation (10) is used to define
the Minkowski dimension of (the boundary of) an ordinary fractal string in [14].3

Moreover, it is shown in [11] that Vinner(ε), and hence also dimM (∂Ω), depends only
on the fractal string L (but not on the particular rearrangement of the intervals Ij
composing Ω).

Definition 3.3. Let L be a fractal string. The abscissa of convergence of the
Dirichlet series

∑∞

j=1 `
s
j is defined by

σ = inf







α ∈ R :

∞
∑

j=1

`αj < ∞







.(11)

Thus, {s ∈ C : Re(s) > σ} is the largest open half-plane on which this series
converges; see, e.g., [19, §VI.2].
Remark 3.4. If L were allowed to be a finite sequence of positive real numbers
(as in [14]), then we would have σ = −∞ since the corresponding Dirichlet series
would be an entire function. In the context of this paper, we always have that σ ≥ 0
(since

∑∞

j=1 `
α
j is clearly divergent when α = 0). This explains why we consider only

(bounded) infinite sets in the development of box-counting fractal strings in Section
4. Indeed, for clarity of exposition, we only consider fractal strings consisting
of infinitely many positive lengths (or scales), and hence, ordinary fractal strings
comprising infinitely many disjoint intervals.

3More specifically, dimM (∂Ω) should really be denoted by dimM,inner(∂Ω) and called the

inner Minkowski dimension of ∂Ω (or of L).
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Remark 3.5. A key distinction between a fractal string L and an ordinary fractal
string Ω lies in the sum of the corresponding lengths (or scales), denoted (`j)j∈N in
either case. Specifically, since an ordinary fractal string Ω is bounded,

∑∞

j=1 `j is

necessarily convergent. On the other hand, for a fractal string L,
∑∞

j=1 `j may be

divergent. See Example 4.6 for a bounded set in R2 whose box-counting fractal string
is a fractal string whose lengths have an unbounded sum and yet contains pertinent
information regarding the bounded set. (In a somewhat different setting, many
other classes of examples are provided in [14, esp. §13.1 & §13.3] and in [9,10].)

Definition 3.6. Let L be a fractal string. The geometric zeta function of L is
defined by

ζL(s) =

∞
∑

j=1

`sj ,(12)

where s ∈ C and Re(s) > DL := σ. The dimension of L, denoted DL, is defined as
the abscissa of convergence σ of the Dirichlet series which defines ζL.

In order to define the complex dimensions of a fractal string, as in [14], we
assume there exists a meromorphic extension of the geometric zeta function ζL to
a suitable region. First, consider the screen S as the contour

S : S(t) + it (t ∈ R),(13)

where S(t) is a continuous function S : R → [−∞, DL]. Next, consider the window

W as the set

W = {s ∈ C : Re(s) ≥ S(Im(s))}.(14)

By a mild abuse of notation, we denote by ζL both the geometric zeta function
of L and its meromorphic extension to some region.

Definition 3.7. Let W ⊂ C be a window on an open connected neighborhood of
which ζL has a meromorphic extension. The set of (visible) complex dimensions of
L is the set DL = DL(W ) given by

DL = {ω ∈ W : ζL has a pole at ω} .(15)

In the case where ζL has a meromorphic extension to W = C, the set DL is referred
to as the complex dimensions of L. Such is the case for the Cantor string ΩCS .

Example 3.8 (Complex dimensions of the Cantor string). The Cantor string ΩCS

is the ordinary fractal string given by ΩCS = [0, 1] \ C, where C is the Cantor set
(see Example 2.10). The lengths of the Cantor string are given by the fractal string

LCS = {3−n : 3−n has multiplicity 2n−1, n ∈ N}.(16)

The geometric zeta function of the Cantor string, denoted ζCS , is given by

ζCS(s) = ζLCS
(s) =

∞
∑

n=1

2n−13−ns =
3−s

1− 2 · 3−s
.(17)

The closed form on the right-hand side of Equation (17) allows for the meromorphic
continuation of ζCS to all of C. Hence, ζCS = 3−s(1 − 2 · 3−s)−1 for all s ∈ C. It
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follows that the complex dimensions of the Cantor string, denoted DCS, are the
complex roots of the Moran equation 2 · 3−s = 1. Thus,

DCS = DLCS
=

{

log3 2 + i
2π

log 3
z : z ∈ Z

}

.(18)

Note that by Equation (6) the dimension DCS := DLCS
= log3 2 of the Cantor

string coincides with dimB C = dimM C, and this value is the unique real-valued
complex dimension of the Cantor string.

3.2. Geometric counting function of a fractal string. The results in
this section connect the counting function of the lengths of a fractal string to its
dimension and geometric zeta function.

Definition 3.9. The geometric counting function of L, or the counting function of

the reciprocal lengths of L, is given by

NL(x) := #{j ∈ N : `−1
j ≤ x} =

∑

n∈N, l−1
n ≤x

mn

for x > 0.

The following easy proposition is identical to Proposition 1.1 of [14].

Proposition 3.10. Let α ≥ 0 and L be a fractal string. Then NL(x) = O(xα) as

x → ∞ if and only if `j = O(j−1/α) as j → ∞.

Proof. Suppose that for some C > 0 we have

NL(x) ≤ Cxα.

Let x = `−1
j , then j ≤ C`−α

j , which implies that

`j = O(j−1/α).

Conversely, if `j ≤ cj−1/α for j ∈ N and some c > 0, then given x > 0, we have

`−1
j > x for j > (cx)α.

Therefore,
NL(x) ≤ (cx)α.

�

Remark 3.11. Many additional (and harder) results connecting the asymptotic
behavior of the geometric counting function, the spectral counting function, and the
(upper and lower) Minkowski content(s) of a fractal string L are provided in [11].
The simplest one states that NL(x) = O(xα) as x → ∞ (i.e., `j = O(j−1/α) as
j → ∞) if and only if M ∗α(∂Ω) < ∞, where (consistent with our earlier comment)
M ∗α(∂Ω) is given as in Definition 2.12 except with volm(·) replaced with Vinner(·).
Notation 3.12. The infimum of the nonnegative values of α which satisfy Propo-
sition 3.10 plays a key role in our results. Hence, we let DN denote that special
value. That is,

DN := inf{α ≥ 0 : NL(x) = O(xα) as x → ∞}.(19)

The following lemma is a restatement of a portion of Lemma 13.110 of [14].4

4In fact, a stronger result holds in the setting of generalized fractal strings (viewed as mea-
sures) in [14], but it is beyond the scope of this paper.
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Lemma 3.13. Let L be a fractal string. Then

ζL(s) = s

∫ ∞

0

NL(x)x
−s−1dx(20)

and, moreover, the integral converges (and hence, Equation (20) holds) if and only

if
∑∞

j=1 `
s
j converges, i.e., if and only if Re(s) > DL = σ.

Proof. For any given n ∈ N, we have

s

∫ `−1
n

0

NL(x)x
−s−1dx =

n−1
∑

j=1

s

∫ `−1

j+1

`−1

j

NL(x)x
−s−1dx =

n−1
∑

j=0

j(`sj − `sj+1)

since NL(x) = 0 for x < `−1
1 and NL(x) = j for `−1

j ≤ x < `−1
j+1. Furthermore,

s

∫ `−1

j

0

NL(x)x
−s−1dx =

n−1
∑

j=1

j`sj −
n
∑

j=1

(j − 1)`sj =

n
∑

j=1

`sj − n`sn.

Now for s ≥ 0, n`sn ≤ 2
∑n

j=[n/2] `
s
j . Thus, Equation (20) holds if and only if

∑∞

j=1 `
s
j converges. Moreover,

lim
n→∞

s

∫ `−1
n

0

NL(x)x
−s−1dx = ζL(s)

since the tail
∑∞

j=[n/2] `
s
j converges to zero. (Here, [y] denotes the integer part of

the real number y.) �

The following proposition will be used to prove a portion of our main result,
Theorem 6.1 (cf. Theorem 13.111 and Corollary 13.112 of [14], as well as [6, 7],
where this proposition is established in the context of p-adic fractal strings and also
of ordinary (real) fractal strings).

Proposition 3.14. Let L be a fractal string. Then

DL = DN ,

where DL = σ is the dimension of L given by Equation (11) (and Definition 3.6)
and DN is given by Equation (19).

Proof. Suppose Re(s) > DN . Denoting t = Re(s), we choose any fixed
α ∈ (DN , t). Using Lemma 3.13, for x1 = (`1)

−1 we have

|ζL(s)| ≤ |s|
∫ ∞

x1

Cxαx−t−1dx =

[ |s|Cxα−t

α− t

]∞

x1

= 0− |s|Cxα−t
1

α− t
,

since α − t < 0. Hence, |ζL(s)| < ∞. In other words, t > DL for any t > DN .
Letting t ↘ DN , we obtain that DL ≤ DN .

The converse inequality DL ≥ DN follows similarly as in the proof of Theo-
rem 13.111 of [14]. �

For a given fractal string L, Theorem 3.15 (cf. Theorem 5.10 and Theorem
5.18 in [14]) shows that under mild conditions the complex dimensions DL contain
enough information to determine the geometric counting function NL.
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Theorem 3.15. Let L be a fractal string such that DL consists entirely of simple

poles with respect to a window W . Then, under certain mild growth conditions on

ζL,
5 we have

NL(x) =
∑

ω∈DL

xω

ω
res(ζL(s);ω) + {ζL(0)}+R(x),(21)

where R(x) is an error term of small order and the term in braces is included only

if 0 ∈ W\DL.

Remark 3.16. If the poles are not simple, the explicit formula for NL is slightly
more complicated (see [14, Chs. 5,6]). If an ordinary fractal string Ω is strongly lan-

guid (see [14, Def. 5.3]), then by Theorem 5.14 and Theorem 5.22 of [14], Equation
(21) holds with no error term (i.e., W = C and R(x) ≡ 0).

Remark 3.17. Similar (but harder to derive) explicit formulas called fractal tube

formulas are obtained in [14, Ch. 8], which, as described therein, allows for the
expression of Vinner(ε) in terms of the underlying (visible) complex dimensions of
L. (Still in [14], they are used, in particular, to derive the equivalence of (i) and (iii)
in Theorem 3.19 below.) We will return to this topic in Section 6 when discussing
Open Problems 6.2 and 6.3.

Analogous results regarding connections between the structure of the complex
dimensions DL of an ordinary fractal string Ω with lengths L and the (inner)
Minkowski measurability of ∂Ω are presented in the next section.

3.3. Classic results. The following theorem is precisely Theorem 1.10 of [14].
It is actually a classic theorem of Besicovitch and Taylor (see [1]) stated in terms
of ordinary fractal strings.6

Theorem 3.18. Suppose Ω is an ordinary fractal string with infinitely many lengths

denoted by L. Then the abscissa of convergence of ζL coincides with the Minkowski

dimension of ∂Ω. That is, DL = dimM (∂Ω).

The following result is Theorem 8.15 of [14]. For complete details regarding
connections between complex dimensions and Minkowski measurability, see [14,
Ch. 8].

Theorem 3.19 (Criterion for Minkowski measurability). Let Ω be an ordinary

fractal string whose geometric zeta function ζL has a meromorphic extension which

satisfies certain mild growth conditions.7 Then the following are equivalent :

(i) DL is the only complex dimension with real part DL, and it is simple.

(ii) NL(x) = cxDL + o(xDL ) as x → ∞, for some positive constant c.8

5Namely, if ζL is languid (see [14, Def. 5.2]) of a suitable order.
6There is, however, one significant difference with the setting of [1]. Namely, here, as in [14],

we are assuming that we are working with the inner (rather than ordinary) Minkowski dimension
and Minkowski content of ∂Ω; see the statement and the proof of Theorem 1.10 in [14], along
with Equation (7) above. By contrast, in the context of [1], one should assume that Ω is of full
measure in its closed convex hull (i.e., in the smallest compact interval containing it).

7Specifically, ζL is languid for a screen S passing strictly between the vertical line Re(s) = DL

and all the complex dimensions (of the corresponding fractal string) L with real part strictly less
than DL, and not passing through 0.

8In the spirit of Proposition 3.10, condition (ii) is easily seen to be equivalent to

`j = Lj−1/DL + o(j−1/DL) as j → ∞,
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(iii) ∂Ω is Minkowski measurable.

Moreover, if any of these conditions is satisfied, then the Minkowski content M of

∂Ω is given by

M =
c21−DL

1−DL

= 21−DL
res(ζL(s);DL)

DL(1−DL)
.

Remark 3.20. We note that the equivalence of (ii) and (iii) in Theorem 3.19 was
first established in [11] for any ordinary fractal string, without any hypothesis on
the growth of the associated geometric zeta function. As was alluded to in Remark
3.17, however, the equivalence of (i) and (iii) in Theorem 3.19 was proved in [14]
(and in earlier works of the authors of [14]) by using a suitable generalization of
Riemann’s explicit formula that is central to the theory of complex dimensions and
is obtained in [14, Chs. 5 & 8].

Example 3.21 (The Cantor set is not Minkowski measurable). By Equation (18)
in Example 3.8, there is an infinite collection of complex dimensions ω ∈ DCS of the
Cantor string with real part DCS = log3 2. Hence, by Theorem 3.19, the Cantor
set C is not Minkowski measurable. This fact was first established in [11] by using
the equivalence of (ii) and (iii) and showing that (ii) does not hold. Actually, still
in [11], for α = dimB C = DCS, both M α∗ = M ∗ and M α

∗ = M∗ are explicitly
computed and shown to be different (with 0 < M∗ < M ∗ < ∞). This result was
significantly refined in [14, Ch. 10] in the broader context of generalized Cantor
strings.

Remark 3.22. Example 3.21 is indicative of another result from [14] pertaining
to a dichotomy in the properties of self-similar attractors of certain iterated func-
tion systems on compact intervals. Specifically, if an iterated function system on a
compact interval I satisfies the open set condition with at least one gap and there
is some unique 0 < r < 1 and positive integers kj such that the scaling ratios
satisfy rj = rkj for each j = 1, . . . , N , then the complement I \ A of the resulting
attractor A is an ordinary fractal string known as a lattice self-similar string. For
example, the Cantor string ΩCS = [0, 1] \ C is a lattice self-similar string. If no
such r exists, then I \A is a nonlattice self-similar string. The complex dimensions
of a self-similar string are given by (a subset of) the complex roots of the corre-
sponding Moran equation (4). In the lattice case there are countably many complex
dimensions with real part DL = dimB A = dimM A, so by Theorem 3.19, A is not
Minkowski measurable. In the nonlattice case, Theorem 3.19 does not necessar-
ily apply (because its hypotheses need not be satisfied, see [14, Example 5.32]),
however the only complex dimension with real part DL is dimB A = dimM A and
by Theorem 8.36 of [14] we have that A is Minkowski measurable. Therefore,
the boundary of a self-similar string is Minkowski measurable if and only if it is
nonlattice. See [14, Ch. 8] for details.

We conclude the section on classic results with the following definition and
lemma which, in light of the expression for Vinner(ε) obtained in [11] (see also [14,
Eq. (8.1)]), can be be deduced from Lemma 1 in Section 1.4 in [15].9 The lemma
below provides yet another connection between counting functions and dimensions.

for some positive constant L. In that case, c = LDL .
9For convenience, Definition 3.23 and Lemma 3.24 are stated in the language of fractal strings.

A direct (and independent) proof of Lemma 3.24 can be found in [14].
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Definition 3.23. Let L be a fractal string. The order of the geometric counting

function NL is given by

ρL := lim sup
x→∞

logNL(x)

log x
.(22)

Lemma 3.24. For a fractal string L,
DL = ρL.

Note that, for a given fractal string L, the order of the counting function ρL
given in Equation (22) and the value DN given in Equation (19) provide essentially
the same information regarding the geometric counting function NL. Indeed, it
can be shown directly that ρL = DN , and hence Lemma 3.24 would follow from
Proposition 3.14. This connection is examined further in [13].

In the next section, motivated by the box-counting functionNB and connections
between the geometric counting function NL and dimension DL of a fractal string
L, we define and investigate the properties of box-counting fractal strings.

4. Box-counting fractal strings and zeta functions

In this section we develop the definition of and results pertaining to box-counting
fractal strings. These fractal strings are defined in order to provide a framework in
which one may, perhaps, extend the results on ordinary fractal strings via associated
zeta functions and complex dimensions in [14] to bounded sets. Further exploration
with box-counting fractal strings, such as Minkowski measurability of bounded sets,
is central to the development of the authors’ paper [13]. The box-counting fractal
string and the box-counting zeta function for bounded sets in Euclidean spaces
were introduced by the second author during the First International Meeting of the
Permanent International Session of Research Seminars (PISRS) at the University of
Messina, PISRS Conference 2011: Analysis, Fractal Geometry, Dynamical Systems,
and Economics. The introduction took place after listening to a lecture of the third
author about the results of [12] on distance and tube zeta functions for arbitrary
compact subsets of Rm. Some of these results are also discussed in Section 5 below.

4.1. Definition of box-counting fractal strings. If A ⊂ R
m is bounded,

then the diameter of A, denoted diam(A), is finite. So for nonempty A and all x
small enough, we have NB(A, x) = 1 when NB(A, ·) is given as in Definition 2.6 or
one of the options in Remark 2.8. Indeed, for a given bounded infinite set A, each
such box-counting function uniquely defines a fractal string LB, which is introduced
below and called the box-counting fractal string, by uniquely determining a sequence
of distinct scales (ln)n∈N along with corresponding multiplicities (mn)n∈N.

Given a fixed bounded infinite set A, the range of a chosen box-counting func-
tion NB(A, ·) can be thought of as a strictly increasing sequence of positive integers
(Mn)n∈N. In this context, we can readily define a fractal string LB whose geometric
counting function NLB

essentially coincides with NB(A, ·); see Lemma 4.7 below.
To this end, the key idea is to make the distinct lengths (or rather, scales) ln of the
desired (box-counting) fractal string LB correspond to the scales at which the box-
counting function NB(A, ·) jumps. Furthermore, the multiplicities mn are defined
in order to have the resulting geometric counting function NLB

(nearly) coincide
with the chosen box-counting function NB(A, ·). Such box-counting fractal strings

potentially allow for the development of a theory of complex dimensions of fractal
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strings, as presented in [14], by means of results in Section 3 similar to Theorem
3.15 above. These concepts are central to the development of the paper [13].

Definition 4.1. Let A be a bounded infinite subset of Rm and let NB(A, ·) denote
a box-counting function given by one of the options in Remark 2.8. Denote the
range of NB(A, ·) as a strictly increasing sequence of positive integers (Mn)n∈N.
For each n ∈ N, let ln be the length (or scale) given by

ln := (sup{x ∈ (0,∞) : NB(A, x) = Mn})−1.(23)

Also, let m1 := M2, and for n ≥ 2, let mn := Mn+1−Mn. The box-counting fractal

string of A, denoted LB, is given by

LB := {ln : ln has multiplicity mn, n ∈ N}.

Remark 4.2. Note that the distinct lengths ln and the multiplicities mn are
uniquely defined by the box-counting function NB(A, ·) since NB(A, x) is nonde-
creasing as x → ∞. Also, each ln is equivalently given by

ln = inf{ε ∈ (0,∞) : NB(A, ε
−1) = Mn}.

It remains to show that LB is indeed a fractal string; see Definition 3.1. That
is, since we want to use as many of the results from [14] as possible (some of which
are presented in Section 3), we must verify that LB = (`j)j∈N is a nonincreasing
sequence of positive real numbers which tends to zero. This is accomplished with
the following proposition, in which other behaviors of NB(A, ·) are also determined.

For clarity of exposition and in order to ease the notation used in this section,
in particular in the following proposition, take NB(A, ·) to be defined by option (i)
of Remark 2.8 and let NB(A, 0) := 0. (Completely analogous results hold when
NB(A, ·) is given by Definition 2.6 or one of the other options in Remark 2.8,
mutatis mutandis.) Note that we have NB(A, x) ≤ NB(A, y) whenever 0 < x < y.
Furthermore, let xn := l−1

n for each n ∈ N, and note that we have NB(A, x2) =
m1 = M2 and

NB(A, xn+1)−NB(A, xn) = mn = Mn+1 −Mn, for n ≥ 2.

Proposition 4.3. Let A be a bounded infinite subset of R
m and let ln be given

by Equation (23). Then the sequence (xn)n∈N := (l−1
n )n∈N is a countably infinite,

strictly increasing sequence of positive real numbers such that, for each n ∈ N and

all x where xn−1 < x ≤ xn (letting x0 = 0), we have

NB(A, xn−1) < NB(A, x) = NB(A, xn).(24)

Furthermore,

(i) x1 > 0 and NB(A, x1) = 1,
(ii) xn ↗ ∞ as n → ∞, and

(iii)
⋃

n∈N

NB(A, xn) = range{NB(A, ·)}.

Proof. We have that NB(A, x) is nondecreasing as x → ∞. Further, the
range of NB(A, ·), denoted rangeNB(A, ·) (also denoted by (Mn)n∈N above), is at
most countable since it is a subset of N. In fact, rangeNB(A, ·) is countably infinite
(otherwise A would be finite). Hence, (xn)n∈N is a unique, countably infinite,
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strictly increasing sequence of positive real numbers such that, for each n ∈ N and
all x where xn−1 < x ≤ xn (letting x0 = 0), we have

NB(A, xn−1) < NB(A, x) = NB(A, xn).

Since A is bounded and contains more than two elements, there exists a unique
x′ ∈ (0,∞) such that NB(A, x) = 1 if 0 < x ≤ x′, and NB(A, x) > 1 if x > x′. By
the definition of the sequence (xn)n∈N, we have x′ = x1.

Now, suppose (xn)n∈N has an accumulation point at some x′′ ∈ (0,∞). Then
NB(A, x

′′) = ∞ since NB(A, ·) increases by some positive integer value at xn for
each n ∈ N and since rangeNB(A, ·) ⊂ N. However, this contradicts the bounded-
ness of A. Further, assuming NB(A, ·) is bounded implies that A is finite. Hence,
xn ↗ ∞ as n → ∞.

Lastly, suppose there exists k ∈ rangeNB(A, ·) such that we have k 6= NB(A, xn)
for all n ∈ N. Since xn ↗ ∞ as n → ∞ and NB(A, ·) is nondecreasing, there exists
a unique n0 ∈ N such that xn0−1 < y < xn0

for all y such that NB(A, y) = k. How-
ever, Equation (24) implies NB(A, y) = k = NB(A, xn0

), which is a contradiction.
Therefore,

⋃

n∈N
NB(A, xn) = rangeNB(A, ·). �

Remark 4.4. By line (ii) of Proposition 4.3, ln ↘ 0 as n → ∞ and, hence, LB is
indeed a fractal string in the sense of Definition 3.1.

Example 4.5 (Box-counting fractal string of the Cantor set). Consider the Cantor
set C. For x > 0, let the box-counting function NB(C, x) be the minimum number
of sets of diameter x−1 required to cover C (i.e., as in option (i) of Remark 2.8).
Then the box-counting fractal string LB of C is given by

LB = {l1 = 1 : m1 = 2} ∪ {ln = 3−(n−1) : mn = 2n−1, n ≥ 2}.(25)

Indeed, for each n ∈ N, exactly 2n intervals of diameter 3n are required to cover C.
If x−1 < 3n, then more than 2n intervals of diameter x−1 are required to cover C.

Example 4.6 (Box-counting fractal string of a 1-dimensional fractal). Consider
the self-similar set F which is the attractor of the IFS Φ1 = {Φj}4j=1 on the unit

square [0, 1]2 ⊂ R2 given by

Φ1(x) =
1

4
x, Φ2(x) =

1

4
x+

(

3

4
, 0

)

, Φ3(x) =
1

4
x+

(

3

4
,
3

4

)

, and

Φ4(x) =
1

4
x+

(

0,
3

4

)

.

The Moran equation of F is simply 4·4−s = 1, hence DΦ1
= dimB F = dimM F = 1

and F is a 1-dimensional self-similar set which is totally disconnected.
Let NB(F, x) be the minimum number of closed cubes with side x−1 required

to cover F (as in option (iii) of Remark 2.8). Then NB(F, x) = 1 when 0 < x ≤ 1
and NB(F, x) = 4n when 4n < x ≤ 4n+1 for all n ∈ N. Hence,

range NB(F, ·) = {4n : n ∈ N ∪ {0}}.
Thus, the box-counting fractal string of F is given by

LB = {l1 = 1 : m1 = 4} ∪ {ln = 4−(n−1) : mn = 3 · 4n−1, n ≥ 2}.(26)

Examples 4.5 and 4.6 will be revisited and expanded upon in the following
subsection.
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4.2. Box-counting zeta functions. Suppose A is a bounded infinite subset
of Rm. Each length (or rather, scale) ln ∈ LB is distinct and, for n ≥ 2, counted
according to the multiplicity mn := NB(A, xn+1)−NB(A, xn). It will help to note
that we can also consider LB to be given by the nonincreasing sequence (`j)j∈N

where the distinct values among the `j repeat the ln according to the multiplici-
ties mn. (The convention of distinguishing the notation `j and ln in this way is
established in [14] and its predecessors, where the distinction allows for various
results therein to be obtained.) In this setting, we immediately have the following
connection between NLB

, the counting function of the reciprocal lengths of LB,
and the box-counting function NB(A, x).

Lemma 4.7. For x ∈ (x1,∞) \ (xn)n∈N,

NLB
(x) = NB(A, x).

Proof. The result follows immediately from Definitions 2.6 and 4.1. �

Moreover, for a bounded infinite set A, the geometric zeta function of the box-
counting fractal string LB is

ζLB
(s) = NB(A, l

−1
2 )ls1 +

∞
∑

n=2

(NB(A, l
−1
n+1)−NB(A, l

−1
n ))lsn =

∞
∑

j=1

`sj ,

for Re(s) > DLB
. We take this zeta function to be our box-counting zeta function

for a bounded infinite set A in Definition 4.8.

Definition 4.8. Let A be a bounded infinite subset of Rm. The box-counting zeta

function of A, denoted ζB , is the geometric zeta function of the box-counting fractal
string LB. That is,

ζB(s) := ζLB
(s) =

∞
∑

n=1

mnl
s
n,

for Re(s) > DB := DLB
. The value DB is the abscissa of convergence of ζB . The

set of box-counting complex dimensions of A, denoted DB, is the set of complex
dimensions DLB

of the box-counting fractal string LB .

Remark 4.9. Note that we do not consider the case when A is finite. One may, of
course, define the box-counting fractal string LB for such a set as a finite sequence
of positive real numbers. In that case, however, the box-counting zeta function
would comprise a finite sum, which would yield an abscissa of convergence −∞ and
no complex dimensions; see Remark 3.4. That is, in the context of the theory of
complex dimensions of fractal strings, the case of finite sets are not very interesting.

Example 4.10 (Box-counting zeta function of the Cantor set). By Example 4.5,
the box-counting fractal string LB of the Cantor set C is given by Equation (25).
It follows that for Re(s) > log3 2, the box-counting zeta function of C is given by

ζB(s) = 2 +
∞
∑

n=2

2n−1 · 3−(n−1)s = 1 +
1

1− 2 · 3−s
.

Thus, DB = dimB C = dimM C = log3 2 and ζB has a meromorphic extension to
all of C given by the last expression in the above equation. Moreover, we have

DB = DCS = DLCS
=

{

log3 2 + i
2π

log 3
z : z ∈ Z

}

.
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Example 4.11. By Example 4.6, the box-counting fractal string of the 1-dimensional
self-similar set F , the attractor of the IFS Φ1, is given by Equation (26). Hence,
the box-counting zeta function of F is given (for Re(s) > 1) by

ζB(s) = 4 +

∞
∑

n=2

3 · 4n−1 · 4−(n−1)s = 1 +
3

1− 4 · 4−s
.(27)

Thus, DB = dimB F = dimM F = 1 and ζB has a meromorphic extension to all of
C given by the last expression in the above equation. Moreover, we have

DB =

{

1 + i
2π

log 4
z : z ∈ Z

}

.(28)

Note that the series corresponding to ζB(1) is divergent. Hence, the fractal string
LB does not correspond to an ordinary fractal string (which, by definition, requires
ζL(1) =

∑∞

j=1 `j to be convergent).

Remark 4.12. The Cantor set C and the 1-dimensional self-similar set F are each
the attractor of a lattice iterated function system; see [14, §13.1] as well as [8–10].
Essentially, an IFS is lattice if there is a unique scaling ratio 0 < r < 1 and positive
integers kj where rj = rkj for each j = 1, . . . , N . Note that in each case, the box-
counting complex dimensions comprise a set of complex numbers with a unique
real part (equal to the box-counting dimension) and a vertical (and arithmetic)
progression, in both directions, of imaginary parts.

In the case of the Cantor set C, the box-counting complex dimensions DB

coincide with the usual complex dimensions DCS . Moreover, the structure of DCS

allows for the application of Theorem 3.19 and, hence, we conclude that C is not
Minkowski measurable.

In the case of the 1-dimensional self-similar set F of Examples 4.6 and 4.11,
the set of complex dimensions DB has no counterpart in the context of usual com-
plex dimensions since F is not the complement of an ordinary fractal string. As
such, Theorem 3.19 does not apply. Moreover, since dimM F = 1, the correspond-
ing results in [14, §13.1] do not apply, either. (Fractals with nonnegative integer
Minkowski dimension are not considered therein.) This provides motivation for de-
veloping a theory of complex dimensions which can take such examples, and many
others, into account. The box-counting fractal strings defined in this paper, and
investigated further in [13], provide a first step in developing one such theory. Anal-
ogous comments regarding the further development of a higher-dimensional theory
of complex dimensions can be made about the results of [12] to be discussed in
Section 5.

The following corollary follows readily from Lemma 4.7 and Proposition 3.14.
It establishes the equivalence of the box-counting zeta function ζB and an integral
transform of the (appropriately truncated) box-counting function NB(A, x).

Corollary 4.13. Let A be a bounded set. Then

ζB(s) = ζLB
(s) = s

∫ ∞

x1

x−s−1NB(A, x)dx,

for Re(s) > DB.

We close this subsection with a theorem which is a partial statement of our
main result, Theorem 6.1. Specifically, the upper box-counting dimension of a
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bounded infinite set is equal to the abscissa of convergence of the corresponding
box-counting zeta function.

Theorem 4.14. Let A be a bounded infinite subset of Rm. Then dimBA = DB.

Proof. The proof follows from a connection made throughDN , the asypmtotic
growth rate of the geometric counting functionNL(x) given by Equation (19), where
L := LB. The equality DB = DN follows from Proposition 3.14 and Corollary 4.13.
The equality dimMA = DB = DN follows with the addition of Remark 2.15. �

4.3. Tessellation fractal strings and zeta functions. In this subsection,
we loosely discuss another type of fractal string defined for a given bounded infinite
subset A of Rm. Unlike the box-counting fractal string LB , which is completely
determined by the set A and the box-counting function NB(A, ·), the tessellation

fractal string defined here depends on the set A, a chosen parameter, and a chosen
family of tessellations of Rm.

First, choose a scaling parameter λ ∈ (0, 1). For any n ∈ N, consider the
n-th tessellation of Rm defined by the family of cubes of length λn (obtained by
taking translates of the cube [0, λn]m in Rm). The number of cubes of the n-
th tessellation that intersect A is denoted by mn(λ). Let the scale ln(λ) := λn

be of multiplicity mn(λ). This defines the box-counting fractal string L(A, λ) =
(`j)j∈N, where (`j)j∈N is the sequence starting with l1 with multiplicity m1, l2 with
multiplicity m2, and so on. The geometric counting function NL(A,λ)(x) = #{j ∈
N : `−1

j ≥ x} of the fractal string is then well defined.
A more general, but equivalent, definition of the tessellation fractal string starts

again with a prescribed scaling factor λ ∈ (0, 1), and additionally with a basic shape

U which contains A. Assume that U is a closed set of nonempty interior which can
be used to tessellate the whole space Rm (using isometries from U into Rm). In
the applications, U usually contains A, so that it suffices to tessellate the set U
only. For each fixed n, we perform tessellations of Rm (or U) with λnU (n-th
tessellation). Define mn(A,U, λ) analogously as above, by counting the number of
elements of the n-th tessellation which intersect A. The tessellation fractal string

L(A,U, λ) of the set A is then the fractal string defined by

L(A,U, λ) := {ln(λ) = λn : ln(λ) has multiplicity mn(λ), n ∈ N} = (`j)j∈N.

The middle set is in fact a multiset, by that we mean that its elements repeat
with prescribed multiplicity. The geometric zeta function of the tessellation fractal
string L(A,U, λ), called the tessellation fractal string, is then given by

ζL(A,U,λ)(s) =

∞
∑

j=1

`sj =

∞
∑

n=1

mn(λ)λ
ns(29)

for Re(s) large enough. Also, when defined accordingly, the set of complex di-
mensions DL(A,U,λ) of the tessellation fractal string L(A,U, λ) is called the set of
tessellation complex dimensions.

The main result regarding this zeta function is the following theorem.

Theorem 4.15. Let U be a closed and bounded set which tessellates Rm. The

upper box-counting dimension of a bounded infinite set A in Rm is equal to the

abscissa of convergence DL(A,U,λ) of the geometric zeta function of its tessellation
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fractal string. That is,

dimBA = DL(A,U,λ).

Proof. We provide the proof in the case of cubic tessellations, that is, when
U = [0, λ]m. (The proof is similar in the case of general tessellations.) We can
assume without loss of generality that A ⊂ U . It suffices to exploit a version of
Proposition 2.9 above (note that here mn(λ) = NB(A, λ

−n), where NB(A, x) is
defined by (iv) in Remark 2.8). In the current setting, we have:

(30) dimBA = lim sup
n→∞

logmn(λ)

logλ−n
.

(Also, see [2, p. 41] or [20, p. 24]).
On the other hand, using Cauchy’s criterion for convergence, we obtain that

the series (29) converges for all s ∈ C such that

lim sup
n→∞

mn(λ)
1/nλRe(s) < 1,

that is,

Re(s) >
log(lim supn→∞ mn(λ)

1/n)

logλ−1
.

The series (29) diverges if we have the opposite inequality. Therefore, the abscissa
of convergence of (29) is

(31) DL(A,U,λ) =
log(lim supn→∞ mn(λ)

1/n)

logλ−1
= lim sup

n→∞

logmn(λ)

logλ−n
.

From (30) and (31) we see that dimBA = DL(A,U,λ). �

Example 4.16. Let F be the 1-dimensional self-similar set from Examples 4.6
and 4.11. We define U as the unit square [0, 1]2 and λ = 1/4. Here, the scale
ln(1/4) = 1/4n occurs with multiplicity mn(1/4) = 4n, defining the corresponding
tessellation fractal string L(F,U, 1/4). For Re(s) > log4 4 = 1, the tessellation zeta
function is given by ζL(F,U,1/4)(s) =

∑∞

n=1 4
n ·4−ns = 4(4s−4)−1 (cf. Equation (27)

in Example 4.11). The dimension is DL(F,U,1/4) = log4 4 = 1 which (by Theorem
4.15) is equal to the box-counting dimension of F . It follows that ζL(F,U,1/4)(s) has

a meromorphic extension to all of C given by 4(4s − 4)−1. Furthermore, the set
of tessellation complex dimensions is equal to the set DB of box-counting complex
dimensions given in Equation (28). That is,

DL(F,U,1/4) = DB =

{

1 + i
2π

log 4
z : z ∈ Z

}

.

Note that the tessellation fractal string L(F,U, 1/4) is unbounded in the sense that
the series given by ζL(F,U,1/4)(1) is divergent.

Analogous results hold regarding the Cantor set C and its (classical and box-
counting) fractal strings, zeta functions, and complex dimensions. Further (higher-
dimensional) examples will be studied in [13].
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5. Distance and tube zeta functions

In this section we deal with a class of zeta functions introduced by the first au-
thor during the 2009 ISAAC Conference at the University of Catania in Sicily, Italy.
More generally, the main results of this section are obtained in the forthcoming pa-
per [12], written by the first and third author, along with Goran Radunović. We
state here only some of the basic results, without attempting to work at the great-
est level of generality. We refer to [12] for more general statements and additional
results and illustrative examples.

The following definition can be found in [12].

Definition 5.1. Let A ⊂ Rm. The distance zeta function of A, denoted ζd, is
defined by

ζd(s) :=

∫

Aε

d(x,A)s−mdx(32)

for Re(s) > Dd, where Dd denotes the abscissa of convergence of the distance zeta
function ζd and ε is a fixed positive number.

Remark 5.2. It is shown in [12] that changing the value of ε modifies the distance
zeta function by adding an entire function to ζd. Hence, the main properties of
ζd do not depend on the choice of ε > 0. Such is the case for Dd, the abscissa of
covergence of ζd (cf. Theorem 5.3), and res(ζd;Dd), the residue of ζd at s = Dd (cf.
Theorem 5.5).

The distance zeta function can be used as an effective tool in the computation of
the box-counting dimensions of various subsets A of some Euclidean space; see [12].
Indeed, one of the basic results concerning the distance zeta function is given in
the following theorem, which is Theorem 1 in [12]. Note: unlike in Theorem 4.14
above, we allow A to be finite here.

Theorem 5.3. Let A be a bounded subset of Rm. Then Dd = dimBA.

Remark 5.4. We do not know if the value of the lower box-counting dimension
dimBA can be computed from the distance zeta function ζd.

It is shown in [12] that the distance zeta function represents a natural extension
of the geometric zeta function ζL of a bounded (i.e., summable) fractal string L =
(`j)j∈N. Indeed, we can identify the string with an ordinary fractal string of the
form Ω = ∪∞

j=1Ij , where Ij := (aj+1, aj) and aj :=
∑

k≥j `k. Note that |Ij | =
`j. Defining A = {aj}∞j=1, it is easy to see that ζd(s) = a(s)ζL(s) + b(s), where

a(s) vanishes nowhere and a(s) and b(s) are explicit meromorphic functions in the
complex plane with poles at the origin. Hence, both zeta functions have the same
abscissa of convergence.

5.1. Minkowski content and residue of the distance zeta function. A
remarkable property of the distance zeta function is that its residue computed at
s = Dd is closely related to the Dd-dimensional Minkowski content of A; see [12].

Theorem 5.5. Let A be a nonempty bounded set in Rm. Assuming that the distance

zeta function can be meromorphically extended to a neighborhood of s = Dd and

Dd < m, then for its residue at s = Dd we have that

(m−Dd)M
Dd
∗ ≤ res(ζd(s);Dd) ≤ (m−Dd)M

∗Dd .(33)
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If, in addition, A is Minkowski measurable, it then follows that

res(ζd(s);Dd) = (m−Dd)M
Dd .(34)

The last part of this result (namely, Equation (34)) generalizes the correspond-
ing one obtained in [14] in the context of ordinary fractal strings to the case of
arbitrary bounded sets in Euclidean spaces; see [12].

Example 5.6. It can be shown that, in the case of the Cantor set C, we have strict
inequalities in Equation (33). Indeed, in this case m = 1, Dd = log3 2, and

res(ζd(s);Dd) =
2

log 2
6−Dd ,

whereas the values of the lower and upper Dd-dimensional Minkowski contents have
been computed in [14, Theorem 2.16] (as well as earlier in [11]):

M
Dd
∗ (A) =

1

Dd

(

2Dd

1−Dd

)1−Dd

, M
∗Dd(A) = 22−Dd .

This is a special case of an example in [12] dealing with generalized Cantor sets.
Generalized Cantor strings, which are a certain type of generalized fractal strings,
and their (geometric and spectral) oscillations are studied in [14, Ch. 10].

Remark 5.7. An open problem is to determine whether there exists a set A such
that one of the inequalities in Equation (33) is strict and the other is an equality.

Remark 5.8. According to a recent result due to Maja Resman in [18], we know
that if A is Minkowski measurable, then the value of the normalized Dd-dimensional

Minkowski content of a bounded set A ⊂ Rm,10 defined by

MDd(A)

ω(m−Dd)
,(35)

is independent of the ambient dimension m. Here, for t > 0, we let

ω(t) := 2πt/2t−1Γ(t/2)−1,

where Γ is the classic Gamma function. For any positive integer k, ω(k) is equal
to the k-dimensional Lebesgue measure of the unit ball in Rk. In other words, the
value given in Equation (35) is intrinsic to the set A and hence independent of
the embedding of A in Rk. Therefore, we may ask if the value of the normalized
residue,

res(ζd(s);Dd)

(m−Dd)ω(m−Dd)
,

is also independent of m. Combining the preceding two results (namely, Theorems
5.3 and 5.5), we immediately obtain that if A is Minkowski measurable, then the
answer is positive.

10This choice of normalized Minkowski content is well known in the literature; see, e.g., [3].
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5.2. Tube zeta function. Given ε > 0, it is also natural to introduce the
following zeta function of a bounded set A in Rm, involving the tube around A
(which we view as the mapping t 7→ volm(At), for 0 ≤ t ≤ ε):

ζ̃A(s) =

∫ ε

0

ts−m−1volm(At) dt,(36)

for Re(s) sufficiently large, where ε is a fixed positive number. Hence, ζ̃A is called
the tube zeta function of A. Assuming dimBA < m, its abscissa of convergence
is equal to dimBA, which follows immediately from Theorems 5.3 above and 5.9
below. Tube zeta functions are closely related to distance zeta functions, as shown
by the following result; see [12].

Theorem 5.9. If dimBA < m, then for any ε > 0,

(37) ζd(s) = εs−mvolm(Aε) + (m− s)ζ̃A(s).

It follows from Equation (37) that the abscissae of convergence of the zeta

functions ζd and ζ̃A are the same. This identity extends the analogous one obtained
in [12] in the case of fractal strings. Using this result and Theorem 5.5, it is easy
to derive the following consequence; see [12].

Corollary 5.10. If D = dimB A exists, D < m, and there exists a meromorphic

extension of ζ̃A(s) to a neighborhood of s = D, then

M
D
∗ ≤ res(ζ̃A(s);D) ≤ M

∗D.

In particular, if A is Minkowski measurable, then

res(ζ̃A(s);D) = M
D.

As we can see, the tube zeta function is ideally suited to study the Minkowski
content.

Example 5.11 (Minkowski measurable discrete spiral in the plane). We consider
a discrete spiral A constructed in [16]. Let p be a fixed positive number, and
define A to be the union of the vertices of the sequence of regular polygons Pn

of circumradius n−p, with common center at the origin, n ≥ 3, such that the
distance between any two consecutive vertices of Pn is asymptotically the same as
n−p−(n+1)−p; see [16, p. 462]. (Note that this implies that the number of vertices
on Pn is asymptotically equal to n,11 so that we can assume that Pn is the regular
n-gon of circumradius n−p.) Then A is Minkowski measurable, with box dimension
D = 2/(p+1); see [16, Theorem 2]. The corresponding Minkowski content is equal
to

M
D(A) =

π2

p

(p

2

)
2

p+1

+ p

(√
2

p

)
2p

p+1

+ Cp
2πp

2
p+1

−1

p+ 1

(see [16, Lemmas 1 to 4]), where the constant Cp is given in [16, §2.1.1 and §2.1.2].
According to Corollary 5.10, assuming the existence of a meromorphic extension of
the tube zeta function ζ̃A(s) to a neighborhood of s = D (which is expected, but

11Indeed, since the circumradius of Pn is asymptotically n−p as n → ∞, its circumference
is asymptotically equal to 2πn−p. On the other hand, if Nn is the number of vertices of Pn,
then since the length of each side is n−p − (n + 1)−p ∼ pn−p−1 as n → ∞, we conclude that
the circumference of Pn is asymptotically equal to Nppn−p−1. From 2πn−p ∼ Npp n−p−1, we

deduce that Nn ∼ (2π/p)n as n → ∞.
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not proved, at this stage), it follows that the residue of ζ̃A(s) at s = D is equal to
the indicated value of MD(A).

The question of the existence of a meromorphic extension of ζ̃A (for the above
example and especially for more general bounded sets A ⊂ Rm) will be the subject
of a sequel to [12]. It is interesting to note that the discrete spiral A has the
same Minkowski dimension as the union B of the sequence of circles of radii n−p

with a common center at the origin, n ∈ N; see [23, Corollary 2]. However, the
corresponding Minkowski contents are different, and clearly, MD(A) < MD(B).

Remark 5.12. The box-counting zeta function ζB of a set A ⊂ Rm given by
Definition 4.8 is closely related to the tube zeta function ζ̃A. To see this, it suf-
fices to perform the change of variables x = t−1 in Equation (36) and compare
with Corollary 4.13. Note that for x > 0, we have (under suitable hypotheses)
volm(A1/x) � x−mNB(A, x) as x → ∞. Here, NB(A, x) is defined as the number

of x−1-mesh cubes that intersect A; see (4) in Remark 2.8. It is clear, however,
that these two zeta functions are in general not equal to each other. Moreover, we
do not know if the related two sets of complex dimensions of A, corresponding to
these two zeta functions, coincide.

Various generalizations of the notion of distance zeta function are possible.
One of them, which is especially interesting, deals with zeta functions associated to
relative fractal drums. By a relative fractal drum, introduced in [12], we mean an
ordered pair (A,Ω), where A is an arbitrary nonempty subset of Rm, and Ω an open
subset such that Aε contains Ω for some positive ε and the m-dimensional Lebesgue
measure of Ω is finite. The corresponding relative zeta function (or the distance
zeta function of the relative fractal drum), also introduced in [12], is defined much
as in Equation (32):

ζd(s;A,Ω) :=

∫

Ω

d(x,A)s−mdx.

It is possible to show that the abscissa of convergence of the relative zeta
function is equal to the relative box dimension dimB(A,Ω); see [12] for details and
illustrative examples. Note that the sets A and Ω may even be unbounded.

Remark 5.13. It is easy to see that the notion of relative fractal drum (A,Ω)
is a natural extension of the notion of fractal string L = {`j}. Indeed, for a
given (standard) fractal string L = {`j}, it suffices to define A = {aj}, where
aj :=

∑

k≥j `k and Ω is the ε-neighborhood of ∪k≥1(ak+1, ak), with ε being any
fixed positive number. We warn the reader that the notion of generalized fractal
string already exists and does not coincide with the notion of relative fractal drum.
Specifically, in [14, Ch. 4], a generalized fractal string is defined to be a locally
positive or locally complex measure on (0,∞) supported on a subset of (x0,∞), for
some positive real number x0.

6. Summary of results and open problems

For a bounded infinite set A, recall that dimBA denotes the upper box-counting
dimension of A given by Equation (5), dimMA denotes the upper Minkowski di-
mension of A given by Equation (8), DB denotes the abscissa of convergence of the
box-counting zeta function ζB of A given in Definition 4.8, ρL denotes the order
of the geometric counting function NL given by Equation (22) where L = LB, DN
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denotes the value corresponding to the (asymptotic) growth rate of NL given by
Equation (19), and Dd is the abscissa of convergence of the distance zeta function
ζd given in Definition 5.1.

The following theorem summarizes our main result (as stated in Theorem 1.1 of
the introduction), which pertains to the determination of the box-counting dimen-
sion of a bounded infinite set. (Recall that the equality dimBA = Dd is established
in [12]; see Theorem 5.3 above.)

Theorem 6.1. Let A be a bounded infinite subset of Rm and let L = LB be the

corresponding box-counting fractal string. Then the following equalities hold :

dimBA = dimMA = DB = ρL = DN = Dd.

Proof. The classic equality dimBA = dimMA is established in [2]. The equal-

ity dimMA = DB = DN follows from Theorem 4.14. The equality ρL = DN is
then the result of Lemma 3.24. Finally, as was recalled just above, the equality
dimMA = Dd is established in [12]; see Theorem 5.3. �

Recall that, as stated in Definition 2.6, NB(A, x) denotes the maximum number
of disjoint balls of radius x−1 centered in A. In this setting and for ε > 0 we have

BmεmNB(A, ε
−1) ≤ volm(Aε),(38)

where Aε is the ε-neighborhood of A, Bm is the m-dimensional volume of a ball in
Rm with unit radius, and 0 < ε < x−1

1 , where x−1
1 is given by Proposition 4.3.

Motivated by Equation (38) and Theorem 3.15, we propose the following open
problem (which is stated rather roughly here).

Open Problem 6.2. Let A be a bounded infinite subset of Rm with box-counting

fractal string LB. Assume suitable growth conditions on ζB (such as the languidity

of ζB on an appropriate window, see [14, Chs. 5 & 8]) and assume for simplicity

that all of the complex dimensions are simple (i.e., are simple poles of ζB). Then,

as ε → 0+, compare the quantities

volm(Aε), εmNLB
(ε−1), and εm

(

∑

ω∈DB

ε−ω

ω
res(ζB(s);ω) +R(ε−1)

)

,(39)

where R(ε−1) is an error term of small order.

If one were to provide a more precise version of the above open problem and
solve it, one might consider pursuing a generalization of Theorem 3.19 in the spirit
of the theory of complex dimensions of fractal strings, as described in [14], and
of its higher-dimensional counterpart in [8–10]. Naturally, the clarified version of
this open problem would consist of replacing the implicit ‘approximate equalities’
in Equation (39) with true equalities, modulo suitable modifications and under
appropriate hypotheses.

Analogously (but possibly more accurately), in light of the results from [12]
discussed in Section 5, as well as from the results about fractal tube formulas
obtained in [14, Ch. 8] for fractal strings and in [8, 9] and especially [10] in the
higher-dimensional case (for fractal sprays and self-similar tilings),12 we propose
the following open problem. (A similar problem can be posed for the tube zeta

function ζ̃A discussed in Section 5.2.)

12A survey of the results of [8–10] can be found in [14, §13.1].
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Open Problem 6.3. Let A be a bounded subset of Rm with distance zeta function

ζd. Under suitable growth assumptions on ζd (such as the languidity of ζB on an

appropriate window, see [14, Chs. 5 & 8]), and assuming for simplicity that all

of the corresponding complex dimensions are simple, calculate the volume of the

tubular neighborhood of A in terms of the complex dimensions of A (defined here

as the poles of the meromorphic continuation of ζd union the ‘integer dimensions’

{0,1,. . . ,m}) and the associated residues.

Moreover, even without assuming that the complex dimensions are simple, ex-

press the resulting fractal tube formula as a sum of residues of an appropriately

defined ‘tubular zeta function’ (in the sense of [8–10]).
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