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Abstract. In this paper we make the analysis of the blow-up of low energy sign-changing solutions of a semi-linear

elliptic problem involving nearly critical exponent. Our results allow to classify these solutions according to the

concentration speeds of the positive and negative part and, in high dimensions, lead to complete classification of

them. Additional qualitative results, such as symmetry or location of the concentration points are obtained when

the domain is a ball.
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1 Introduction

In this paper we consider the following semi-linear elliptic problem with subcritical nonlinearity:

(1)

{
−∆u = |u|2∗−2−εu in Ω

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn, n ≥ 3, ε is a positive real parameter and 2∗ =
2n/(n− 2) is the critical Sobolev exponent for the embedding of H1

0 (Ω) into L2∗(Ω).
Problem (1) is related to the limiting problem (when ε = 0) which exhibits a lack of com-

pactness and gives rise to solutions of (1) which blow up as ε→ 0.
In the last decades there have been many works devoted to the study of positive solutions

of problem (1). In sharp contrast to this, very little study has been made concerning the sign-
changing solutions. For details one can see [5] and the references therein.

The existence of sign-changing solutions of (1) for any ε ∈ (0, p− 1) has been proved in [4],
[6] and [11]. On the other hand, when ε = 0, problem (1) becomes delicate. Pohozaev showed
in [16] that if Ω is starshaped, problem (1) (with ε = 0) has no solutions whereas Clapp and
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Weth proved in [12] that problem (1) (with ε = 0) has a solution on domains with small holes
and on some contractible domains with an involution symmetry.

In view of this qualitative change in the situation when ε = 0, it is interesting to study the
following question: what happens to the solutions of (1) as ε→ 0? In this paper, we are mainly
interested in the study of the behavior of low energy sign-changing solutions of (1). The first
part of this paper is devoted to analyze the asymptotic behavior, as ε → 0, of sign-changing
solutions of (1) whose energy converges to the value 2Sn/2, S being the Sobolev constant for the
embedding of H1

0 (Ω) into L2∗(Ω). We prove that these solutions blow up at two points which
may coincide and which are the limit of the concentration points aε,1 and aε,2 of the positive
and negative part of the solutions. Moreover, we make a precise study of the location of these
blow up points. More precisely, we have

Theorem 1.1 Let n ≥ 3 and let (uε) be a family of sign-changing solutions of (1) which satisfies

||uε||2 :=
∫

Ω
|∇uε|2 → 2Sn/2 as ε→ 0. (1.1)

Then, the set Ω \ {x ∈ Ω |uε(x) = 0} has exactly two connected components.
Furthermore, there exist two points aε,1, aε,2 in Ω (one of them can be chosen to be the global
maximum point of |uε|) and there exist two positive reals µε,1, µε,2 such that

||uε − Pδ(aε,1,µε,1) + Pδ(aε,2,µε,2)|| → 0, as ε→ 0, (1.2)

µε,id(aε,i, ∂Ω) → +∞, |µε,i|ε → 1 as ε→ 0, for i ∈ {1, 2}, (1.3)

where Pδ(a,µ) denotes the projection of δ(a,µ) on H1
0 (Ω), that is,

∆Pδ(a,µ) = ∆δ(a,µ) in Ω, P δ(a,µ) = 0 on ∂Ω, and δ(a,µ)(x) =
βnµ

(n−2)/2

(1 + µ2|x− a|2)(n−2)/2
.

Here βn is a constant chosen so that −∆δ(a,µ) = δ
(n+2)/(n−2)
(a,µ) , (βn = (n(n− 2))(n−2)/4).

Note that, for the supercritical case (that is for ε < 0), a recent result [9] shows that there
is no sign-changing solution uε with low energy which satisfies (1.2) and (1.3).

Now, our aim is to give a complete classification of the solutions satisfying (1.1). To this aim,
we divide this kind of solutions into two categories: the ones for which the positive and negative
part blow up with the same rate (hypothesis (1.5) below) and the ones for which these rates
are note comparable (hypothesis (1.9) below). In the first case we are able to prove that the
concentration points of the positive and negative part of a solution of this type are distinct and
away from the boundary and we characterize their limits in terms of the Green’s function and
of its regular part. Moreover, when the domain is a ball we prove that the limit concentration
points are antipodal with respect to the center of the ball, the solution is axially symmetric with
respect to the line joining these points and the nodal surface intersects the boundary. In the
second case, i.e. when (1.9) holds, we are able to prove that, if n ≥ 4, the positive and negative
part of the solution concentrate at the same point (i.e. we have “bubble tower solutions”) and
we get a precise estimate of the blow up rates, in terms of the distance of the concentration
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points from the boundary of the domain. Moreover, if n ≥ 6 we prove that the unique limit
of the concentration points is away from the boundary and it is a critical point of the Robin’s
function. As far as we know this is the first time that the phenomenon of different concentration
points converging to the same point is analyzed for critical exponent problems. Indeed this never
happens in the case of positive solutions, see [14].

Note that solutions of both type exist, at least in symmetric domains. Indeed for the first
type of solutions it is enough to take a positive solution in a symmetric cap of the domain and
reflect it by antisymmetry. In the second case “bubble tower” solutions have been recently found
by Pistoia and Weth [15].

To describe more precisely our results, we introduce some notations. We denote by G the
Green’s function of the Laplace operator defined by : ∀x ∈ Ω

−∆G(x, .) = cnδx in Ω, G(x, .) = 0 on ∂Ω,

where δx is the Dirac mass at x and cn = (n−2)ωn, with ωn denoting the area of the unit sphere
of Rn. We denote by H the regular part of G, that is,

H(x1, x2) = |x1 − x2|2−n −G(x1, x2) for (x1, x2) ∈ Ω2.

For x = (x1, x2) ∈ Ω2 \ Γ, with Γ = {(y, y)/y ∈ Ω}, we denote by M(x) the matrix defined by

M(x) = (mij)1≤i,j≤2, where mii = H(xi, xi), m12 = m21 = G(x1, x2). (1.4)

Then we have

Theorem 1.2 Let n ≥ 3 and let (uε) be a family of sign-changing solutions of (1) satisfying
(1.1) and let aε,1, aε,2 be the concentration points defined in Theorem 1.1. Assume that there
exists a positive constant η such that

η ≤ −maxuε/minuε ≤ η−1. (1.5)

Then, aε,1 and aε,2 are two global extremum points of uε and we have

µε,i = |uε(aε,i)|2/(n−2)−ε/2/β2/(n−2)
n for i = 1, 2. (1.6)

In addition, there exists a positive constant γ such that, for ε small,

|aε,1 − aε,2| ≥ γ, d(aε,i, ∂Ω) ≥ γ for i = 1, 2. (1.7)

More precisely, we have

(c2ε/c1)1/2|uε(aε,i)| → βn/Λi, aε,i → ai ∈ Ω with a1 6= a2, for i = 1, 2, (1.8)

where Λi is a positive constant,

c1 = βn

∫
Rn

δ
(n+2)/(n−2)
(0,1) and c2 =

n− 2
2

β2n/(n−2)
n

∫
Rn

Log(1 + |x|2) (|x|2 − 1)dx
(1 + |x|2)n+1

.

Furthermore, (a1, a2,Λ1,Λ2) is a critical point of the function

Ψ : Ω2 \ Γ× (0,∞)2 → R; (a,Λ) := (a1, a2,Λ1,Λ2) �
1
2

tΛM(a)Λ− log(Λ1Λ2),

where M(a) is the matrix defined by (1.4).
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Remark 1.3 1- The assumption (1.5) allows us to prove that the distance between the concen-
tration points is bounded from below by a positive constant.
2- The low energy positive solutions of (1) have to blow up at a critical point of the Robin’s
function ϕ(x) = H(x, x), see [13] and [18].
3- A similar matrix to that involved in the above function Ψ plays also a crucial role in the
characterization of the concentration points for the positive solutions of (1), see [3].

The next result describes the asymptotic behavior, as ε → 0, of low energy sign-changing
solutions of (1) satisfying (1.5) outside the limit concentration points.

Theorem 1.4 Let n ≥ 3 and let (uε) be a family of sign-changing solutions of (1) satisfying
(1.1) and (1.5). Then the limit concentration points a1 and a2, defined in Theorem 1.2, are two
isolated simple blow-up points of (uε) (see [14] for definition) and there exist positive constants
m1 and m2 such that

ε−1/2uε → u := m1G(a1, .)−m2G(a2, .) in C2
loc(Ω \ {a1, a2}) as ε→ 0.

The second part of this paper is devoted to the study of symmetry properties of low energy
sign-changing solutions of (1) of the first type when Ω is a ball. We shall prove the following
results.

Theorem 1.5 Assume that n ≥ 3. Let Ω be the unit ball and let (uε) be a family of sign-
changing solutions of (1) satisfying (1.1) and (1.5). Then, up to a rotation of Ω, the limit
concentration points ai’s and the reals Λi’s, defined in Theorem 1.2, satisfy

a1 = −a2 = a∗ := (0, ..., 0, t∗),

Λ1 = Λ2 =
(

1
H(a∗, a∗) +G(a∗,−a∗)

)1/2

,

where t∗ is the unique solution of

g(t) =
t

(1− t2)n−1
− 1

(2t)n−1
+

t

(1 + t2)n−1
= 0, for t ∈ (0, 1).

The characterization of the points ai’s and the reals Λi’s allows us to improve the result of
Theorem 1.4 and therefore we can prove that the nodal surface intersects the boundary. In fact,
we have

Theorem 1.6 Under the assumptions of Theorem 1.5, we have
(a) The constants m1 and m2 defined in Theorem 1.4 are equal.
(b) The nodal surface of uε intersects the boundary ∂Ω.

Observe that the limit function G(a1, .)−G(a2, .), defined in Theorem 1.4 with m1 = m2, is
symmetric with respect to any hyperplane passing through the points a1 and a2. Furthermore,
it is antisymmetric with respect to the hyperplane passing through the origin and which is
orthogonal to the line passing through the points a1 and a2. Moreover, it changes sign once.

Following the idea of [10], we can prove, for ε small, that the functions uε satisfy also the
symmetry property. More precisely, we have



An almost critical problem 5

Theorem 1.7 Let n ≥ 3 and let Ω be a ball and (uε) be a family of sign-changing solutions of
(1) satisfying (1.1) and (1.5). Then, for ε sufficiently small, the concentration points aε,1 and
aε,2 of uε, given by Theorem 1.1, are far away from the origin and they lay on the same line
passing through the origin and uε is axially symmetry with respect to this line.
Moreover the points aε,1 and aε,2 lay on different sides with respect to T and all the critical
points of uε belong to the symmetry axis and

∂uε

∂νT
(x) > 0 ∀x ∈ T ∩ Ω,

where T is any hyperplane passing through the origin but not containing aε,1 and where νT is
the normal to T , oriented towards the half space containing aε,1 .

Concerning the antisymmetric property, it is easy to construct a family of solutions (uε)
which are antisymmetric by reflecting the positive minimizing solution on the half ball and
hence interesting questions arise: Let (uε) be a family of solutions satisfying the assumptions
of our Theorems, are the solutions (uε) antisymmetric? What about the uniqueness? A further
investigation in this direction is in progress.

The last part of this paper is devoted to the study of the case where the assumption (1.5) is
removed, that means the case when we can have sign-changing bubble tower solutions. We recall
that Pistoia and Weth [15] have constructed such solutions in symmetric domains. Without loss
of generality, we can assume, in the case where the assumption (1.5) is removed, that the
following holds:

maxuε

minuε
→ −∞ as ε→ 0. (1.9)

Our main result reads:

Theorem 1.8 Let n ≥ 4 and let (uε) be a family of sign-changing solutions of (1) satisfying
(1.1) and (1.9). Let aε,1, aε,2 be the concentration points and µε,1, µε,2 the speeds of the concen-
tration points defined in Theorem 1.1. Then,
(a) there exists a positive constant c such that, for ε small,

1
c
µε,1 ≤ µε,2 (µε,2dε,2)

2 ≤ cµε,1,
1
c
ε ≤ 1

(µε,2dε,2)n−2
≤ cε, µε,1µε,2|aε,1 − aε,2|2 ≤ c,

µε,2|aε,1 − aε,2| → 0,
|aε,1 − aε,2|

dε,2
→ 0,

dε,1

dε,2
→ 1 as ε→ 0,

where dε,i = d(aε,i, ∂Ω) for i = 1, 2.
(b) the nodal surface of uε does not intersect the boundary ∂Ω.
Furthermore, if n ≥ 6, we have

µε,1µε,2|aε,1 − aε,2|2 → 0 , dε,i 6→ 0 and aε,i → ā ∈ Ω for i = 1, 2, (1.10)

where ā is a critical point of the Robin’s function ϕ(x) = H(x, x).

Let us mention that we are not able to extend the results of Theorem 1.8 to the dimension 3
because of serious technical difficulties. Also the restriction to n ≥ 6 to deduce that the unique
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limit concentration point is away from the boundary is due to some technical difficulties but
we think that the same result should be true also in lower dimensions, at least for n = 4, 5.
Moreover in the case of the ball since the only critical point of the Robin’s function is the center,
from Theorem 1.8 we deduce, for n ≥ 6, that the bubble tower concentration point is the center,
with negative and positive part blowing up with a prescribed rate. This makes us to conjecture
that this solution should be radial and hence should be the only solution of this type.

The outline of the paper is the following. Section 2 is devoted to the proof of Theorems 1.1
and 1.2. We prove Theorems 1.4, 1.5, 1.6 and 1.7 in Section 3. Finally, Section 4 is devoted to
the proof of Theorem 1.8.

2 Proof of Theorems 1.1 and 1.2

First, we deal with the proof of Theorem 1.1. Regarding the connected components of Ω \ {x ∈
Ω |uε(x) = 0}, let Ω1 be one of them. Multiplying (1) by uε and integrating on Ω1, we derive
that ∫

Ω1

|∇uε|2 ≥ Sn/2(1 + o(1)), (2.1)

where we have used Holder’s inequality and the Sobolev embedding.
Since ‖uε‖2 → 2Sn/2 as ε goes to 0, we deduce that there are only two connected components.

The following lemma shows that the energy of the solution uε converges to Sn/2 in each
connected component. In fact we have

Lemma 2.1 Let (uε) be a family of sign-changing solutions of (1) satisfying (1.1). Then

(i)
∫

Ω
|∇u+

ε |2 → Sn/2,

∫
Ω
|∇u−ε |2 → Sn/2 as ε→ 0,

(ii)
∫

Ω
(u+

ε )
2n

n−2 → Sn/2,

∫
Ω
(u−ε )

2n
n−2 → Sn/2 as ε→ 0,

(iii) uε ⇀ 0 as ε→ 0,
(iv) Mε,+ := max

Ω
u+

ε → +∞, Mε,− := max
Ω

u−ε → +∞ as ε→ 0,

where u+
ε = max(uε, 0) and u−ε = max(0,−uε).

Proof. The proof is the same as that of Lemma 2.1 of [8], so we omit it. 2

Now, we are going to prove Theorem 1.1.
Proof of Theorem 1.1 Arguing as in the proof of Theorem 1.1 of [8], we obtain that there
exist aε,1, aε,2, µε,1 and µε,2 such that, as ε→ 0,

||u+
ε −Pδ(aε,1,µε,1)|| → 0, ||u−ε −Pδ(aε,2,µε,2)|| → 0, µε,id(aε,i, ∂Ω) → +∞, for i = 1, 2. (2.2)

Next, we will prove that one of the points is the global maximum point of |uε|. Arguing as in
the proof of Lemma 2.2 of [8], we obtain

M2/(n−2)−ε/2
ε d(aε, ∂Ω) 9 0 as ε→ 0, (2.3)
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where aε satisfies |uε(aε)| = |uε|∞ := Mε. Without loss of generality, we can assume that
uε(aε) > 0. Now, let us define

ũε(X) := M−1
ε uε(aε +X/M2/(n−2)−ε/2

ε ), for X ∈ Ω̃ε := M2/(n−2)−ε/2
ε (Ω− aε).

By Lemma 2.1, the limit domain of Ω̃ε, denoted by Π, has to be the whole space Rn or a half
space and by (2.3), it contains the origin. Since ũε is bounded in Ω̃ε, using the standard elliptic
theory, it converges in C2

loc(Π) to a function u satisfying

−∆u = |u|2∗−2u in Π, u(0) = 1, u = 0 on ∂Π, and
∫

Π
|∇u|2 ≤ 2Sn/2. (2.4)

Observe that, any sign-changing solution w of (2.4) satisfies ‖w‖2 > 2Sn/2. Thus we derive that
u is positive. It follows that Π has to be Rn and u = δ

(0,β
2/(2−n)
n )

. We deduce that ũε > 0 in any

compact subset of Ω̃ε. But we have uε = 0 on ∂Ω+, where ∂Ω+ := {x ∈ Ω : uε(x) > 0}. Hence

‖u+
ε −M ε(n−2)/2

ε Pδ(aε,µε)‖ → 0 and M2/(n−2)−ε/2
ε d(aε, ∂Ω+) →∞ as ε→ 0, (2.5)

where µε := M
2/(n−2)−ε/2
ε /β

2/(n−2)
n . Now, we observe that

M ε(n−2)/2
ε Sn/4(1 + o(1)) = M ε(n−2)/2

ε ‖Pδ(aε,µε)‖

≤ ‖u+
ε −M ε(n−2)/2

ε Pδ(aε,µε)‖+ ‖u+
ε ‖

= Sn/4(1 + o(1)). (2.6)

Thus, Lemma 2.1 and (2.6) imply that M ε
ε goes to 1 as ε→ 0.

The proof of our theorem is thereby completed. 2

The goal of the sequel of this section is to prove Theorem 1.2. We start by the following
proposition which gives a parametrization of the function uε. It follows from the corresponding
statements in [2].

Proposition 2.2 Let n ≥ 3 and let (uε) be a family of sign-changing solutions of (1) satisfying
(1.1). Then the following minimization problem

min{|| uε − α1Pδ(a1,λ1) + α2Pδ(a2,λ2) ||, αi > 0, λi > 0, ai ∈ Ω}

has a unique solution (α1, α2, a1, a2, λ1, λ2) (up to permutation). In particular, we can write uε

as follows
uε = α1Pδ(a1,λ1) − α2Pδ(a2,λ2) + v,

where v ∈ H1
0 (Ω) such that ||v|| → 0 as ε→ 0 and

(V0) : 〈v, ϕ〉 = 0 for ϕ ∈ {Pδ(ai,λi), ∂Pδ(ai,λi)/∂λi, ∂Pδ(ai,λi)/∂a
j
i , i = 1, 2, 1 ≤ j ≤ n}, (2.7)

where aj
i denotes the j-th component of ai.
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Remark 2.3 For each i = 1, 2, the point ai is close to aε,i and each parameter λi satisfies λi/µε,i

is close to 1, where aε,i, µε,i are defined in Theorem 1.1 and ai, λi are defined in Proposition
2.2.

As usual in this type of problems, we first deal with the v-part of uε, in order to show that
it is negligible with respect to the concentration phenomena. Using the following estimate (see
Subsection 3.1 of [19])

δ−ε
i (x) = β−ε

n λ
−ε(n−2)/2
i +O

(
ε log(1 + λ2

i |x− ai|2)
)

= 1 + o(1), (2.8)

(since λε
i → 1 as ε→ 0) and arguing as in Lemma 3.3 of [8] we derive the following lemma.

Lemma 2.4 The function v defined in Proposition 2.2 satisfies the following estimate

||v|| ≤ cε+ c

{ ∑
i

1
(λidi)n−2 + ε12(log ε−1

12 )(n−2)/n if n < 6∑
i

1
(λidi)(n+2)/2−ε(n−2) + ε

(n+2)/2(n−2)
12 (log ε−1

12 )(n+2)/2n if n ≥ 6,

where

ε12 =
(
λ1

λ2
+
λ2

λ1
+ λ1λ2|a1 − a2|2

)(2−n)/2

.

Now, arguing as in the proof of Propositions 3.4, 3.5 and 3.6 of [8] and using (2.8) we obtain
the following results.

Proposition 2.5 Assume that n ≥ 3 and let αi, ai and λi be the variables defined in Proposition
2.2. We then have

1−
α

4/(n−2)−ε
i

βε
nλ

ε(n−2)/2
i

= O

(
ε+

1
(λidi)n−2

+ ε12 + ‖v‖
)
, (2.9)

αic1
n− 2

2
H(ai, ai)
λn−2

i

− αjc1

(
λi
∂ε12
∂λi

+
n− 2

2
H(a1, a2)

(λ1λ2)(n−2)/2

)
− αi

n− 2
2

c2ε

≤ cε2 + c


∑

k=1,2
log(λkdk)
(λkdk)n + ε

n
n−2

12 log ε−1
12 ( if n ≥ 4),∑

k=1,2
1

(λkdk)2
+ ε212(log ε−1

12 )2/3 ( if n = 3),
(2.10)

where i, j ∈ {1, 2} with i 6= j, and c1, c2 are defined in Theorem 1.2.

Proposition 2.6 Let αi, ai and λi be the variables defined in Proposition 2.2.
(a) For n ≥ 4, we have

αi
1

λn−1
i

∂H(ai, ai)
∂ai

+ 2
αj

λi

(
∂ε12

∂ai
− ∂H

∂ai
(a1, a2)

1
(λ1λ2)(n−2)/2

)
= O

(∑
k=1,2

1
(λkdk)n

+ ε
n

n−2

12 log ε−1
12 + εε12(log ε−1

12 )
n−2

n +
ε

(λidi)n−1

)
, (2.11)
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where i, j ∈ {1, 2} with i 6= j.
(b) For n = 3, we assume that a1 6= a2 then we have for i ∈ {1, 2}

1
λ2

i

∂H(ai, ai)
∂ai

+ 2
1
λi

(
∂ε12

∂ai
− ∂H

∂ai
(a1, a2)

1
(λ1λ2)1/2

)
= o

(∑
k=1,2

1
(λkηk)2

)
, (2.12)

where η1, η2 are two positive parameters chosen such that

B(a1, η1) ∩B(a2, η2) = ∅ and B(ai, ηi) ⊂ Ω, for i = 1, 2, .

Note that the proof of Propositions 2.5 and 2.6 are based on some integral estimates proved in
[1] and [17].
To deal with dimension 3, we prove the following lemma.

Lemma 2.7 Assume that n = 3 and assume further (1.5) holds. Then there exists a positive
constant c0 such that

|a1 − a2| ≥ c0 max(d1, d2),

where the points ai’s are defined in Proposition 2.2 and di = d(ai, ∂Ω).

Proof. Arguing by contradiction, we assume that |a1 − a2| = o(max(d1, d2)). This implies
that d1/d2 → 1 as ε→ 0. Now, choosing η1 = η2 = |a1 − a2|/4, we see that

B(a1, η1) ∩B(a2, η2) = ∅ and B(ai, ηi) ⊂ Ω, for i = 1, 2,

and

1
(λiηi)2

≤ c

λ1λ2|a1 − a2|2
≤ cε212,

1
λ2

i

|∂H(ai, ai)
∂ai

| ≤ c

(λidi)2
= o

(
1

λ1λ2|a1 − a2|2

)
= o

(
ε212
)
,

1
λi

1
(λ1λ2)1/2

|∂H(a1, a2)
∂ai

| ≤ c

(λidi)2
= o

(
ε212
)
,

1
λi

1
(λ1λ2)1/2

| ∂
∂ai

(
1

|a1 − a2|

)
| = 1

λi(λ1λ2)1/2|a1 − a2|2
≥ cε212,

where we have used the fact that λ1 and λ2 are of the same order. Applying (2.12) and the
above estimates, we derive a contradiction and therefore our lemma follows. 2

Next we prove the following crucial lemmas.

Lemma 2.8 Under the assumptions of Theorem 1.2, there exists a positive constant c0 > 0
such that the variable ai, defined in Proposition 2.2, satisfy

(i) c0 ≤
d1

d2
≤ c−1

0 ; (ii) c0 ≤
|a1 − a2|

di
≤ c−1

0 , for i = 1, 2,

where di = d(ai, ∂Ω).
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Proof. On one hand, using (2.10), we have

ε = O

(∑ 1
(λjdj)n−2

+ ε12

)
. (2.13)

On the other hand, using (1.5) an easy computation shows that

ε12 =
1

(λ1λ2|a1 − a2|2)(n−2)/2
+O(εn/(n−2)

12 ), (2.14)

λi
∂ε12

∂λi
:= −n− 2

2
ε12

(
1− 2

λj

λi
ε

2
n−2

12

)
= −n− 2

2
1

(λ1λ2|a1 − a2|2)(n−2)/2
+ o(ε12). (2.15)

Thus, using (2.9), (2.13) and (2.15), the estimate (2.10) becomes

H(ai, ai)
λn−2

i

+
G(a1, a2)

(λ1λ2)(n−2)/2
− c2
c1
ε = o

(
ε12 +

∑ 1
(λjdj)n−2

)
. (2.16)

Now we claim that

1
λn−1

i

∂H(ai, ai)
∂ai

+
2
λi

∂G

∂ai
(a1, a2)

1
(λ1λ2)(n−2)/2

= o

(
ε
(n−1)/(n−2)
12 +

∑ 1
(λjdj)n−1

)
. (2.17)

For n ≥ 4, (2.17) follows immediately from (2.9), (2.11) and (2.13).
For n = 3, choosing ηi = min(c0, 1)di/4 in (2.12) where c0 is the positive constant defined in
Lemma 2.7, Claim (2.17) follows from (2.12).
Now we are going to prove Claim (i) . Arguing by contradiction, we assume, for example, that
d2 = o(d1). Using (2.16) for i = 1 and i = 2, we get

1
(λ2d2)n−2

= o(ε12). (2.18)

Using (2.14), (2.18) and the fact that |∂H(a1, a2)/∂ak| ≤ cd−1
k (d1d2)(2−n)/2, it is easy to obtain

1
(λ1λ2)(n−2)/2

∣∣∣∣ 1
λk

∂G

∂ak
(a1, a2)

∣∣∣∣ ≥ cε
(n−1)/(n−2)
12 for k = 1, 2. (2.19)

Clearly, (2.17), (2.18) and (2.19) give a contradiction. Thus, we derive that d1 and d2 are of
the same order. Hence Claim (i) is proved. Regarding Claim (ii), arguing by contradiction, we
assume that d1 = o(|a1 − a2|). In this case, it is easy to obtain

1
(λ1λ2)(n−2)/2

∣∣∣∣ ∂G∂a1
(a1, a2)

∣∣∣∣ ≤ 1
(λ1λ2)(n−2)/2

(
c

|a1 − a2|n−1
+

c

d1|a1 − a2|n−2

)
= o

(
1

d1(λ1d1)n−2

)
. (2.20)

Thus, (2.17) and (2.20) give again a contradiction and we derive that d1/|a1 − a2| is bounded
below. Hence, by Lemma 2.7, the proof is completed for n = 3.
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It remains to prove that d1/|a1 − a2| is bounded above for n ≥ 4. To this aim, we argue by
contradiction and we assume that |a1 − a2| = o(d1). Therefore,

1
λn−1

1

∣∣∣∣∂H(a1, a1)
∂a1

∣∣∣∣+ 1
λ1(λ1λ2)(n−2)/2

∣∣∣∣∂H(a1, a2)
∂a1

∣∣∣∣
≤ c

(λ1d1)n−1
= o

(
1

(λ1λ2|a1 − a2|2)(n−1)/2

)
. (2.21)

We now observe that

| 1
λ1

∂ε12

∂a1
| ≥ c

λ1(λ1λ2)(n−2)/2

1
|a1 − a2|n−1

≥ c

(λ1λ2|a1 − a2|2)(n−1)/2
. (2.22)

Hence, (2.17), (2.21) and (2.22) give a contradiction, and therefore |a1−a2|/d1 is bounded below.
Finally, using Claim (i), the proof of Claim (ii) is completed. 2

Now, we will prove that the concentration points are in a compact set of Ω and they are far
away of each other.

Lemma 2.9 There exists a positive constant d0 such that

|a1 − a2| ≥ d0 ; di ≥ d0 for i = 1, 2.

Proof. The proof is the same as that of Lemma 3.8 of [8], so we omit it. 2

Now we are ready to prove Theorem 1.2.
Proof of Theorem 1.2 Without loss of generality we can assume that

Mε := maxuε ≥Mε,− := −minuε.

Hence (2.5) holds. Now, let bε be such that Mε,− := −uε(bε). Using (1.5) and arguing as in the
proof of (2.5) we can prove that

‖u−ε −M
ε(n−2)/2
ε,− Pδ(bε,µε,−)‖ → 0 and M2/(n−2)−ε/2

ε,− d(bε, ∂Ω−) →∞ as ε→ 0, (2.23)

where µε,− := M
2/(n−2)−ε/2
ε,− /β

2/(n−2)
n and Ω− := {x ∈ Ω : uε(x) < 0}. Hence aε,1 and aε,2 can

be chosen as aε and bε which are two global extremum points of uε.
Regarding, Claim (1.7), it follows from Lemma 2.9. Therefore each ai converges to ai ∈ Ω with
a1 6= a2.
Now, let us introduce the following change of variable

1

λ
(n−2)/2
i

= Λi

(
c2ε

c1

)1/2

.

Note that, (2.16) and (2.17) imply, for i, j = 1, 2 with j 6= i,

H(ai, ai)Λi +G(a1, a2)Λj −
1
Λi

= o(Λi), (2.24)

∂H(ai, ai)
∂ai

Λ2
i + 2

∂G(a1, a2)
∂ai

Λ1Λ2 = o
(
Λ2

i

)
. (2.25)
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Since each ai converges to ai ∈ Ω with a1 6= a2, thus the functions H, G and its derivatives are
bounded. Therefore, from (2.24) and (1.5), it is easy to see that for each i = 1, 2, Λi is bounded
above and below. Hence, each Λi converges to Λi > 0 (up to a sequence) which implies (1.8)
(see (1.6) and Remark 2.3). Passing to the limit in (2.24) and (2.25), we get

H(ai, ai)Λi +G(a1, a2)Λj − Λ−1
i = 0, (2.26)

∂H(ai, ai)
∂ai

Λ2
i + 2

∂G(a1, a2)
∂ai

Λ1Λ2 = 0, (2.27)

where i, j = 1, 2 with j 6= i.
Equations (2.26) and (2.27) imply that ∇Ψ(a1, a2,Λ1,Λ2) = 0. Hence (a1, a2,Λ1,Λ2) is a critical
point of Ψ. 2

3 Proof of Theorems 1.4, 1.5, 1.6 and 1.7

Regarding Theorem 1.5, it follows immediately from Theorem 1.2 and the following lemma.

Lemma 3.1 Let Ω be a ball and assume that n ≥ 3. Then, up to a rotation of Ω, the function
Ψ, defined in Theorem 1.2, has only one critical point X := (a, b, x, y). It satisfies

a = −b = (0, ..., 0, t∗) with t∗ > 0,

x = y =
(

1
H(a, a) +G(a,−a)

)1/2

,

where t∗ is the unique solution of

g(t) =
t

(1− t2)n−1
− 1

(2t)n−1
+

t

(1 + t2)n−1
= 0, for t ∈ (0, 1).

Proof. Let (a1, a2, x1, x2) be a critical point of Ψ. Then, for i, j = 1, 2 with j 6= i, we derive

H(ai, ai)xi +G(a1, a2)xj =
1
xi

(3.1)

xi
∂H(a, a)

∂a |a=ai

+ 2xj
∂G(a, aj)

∂a |a=ai

= 0. (3.2)

Multiplying (3.1) by xi, we get

H(a1, a1)x2
1 = H(a2, a2)x2

2. (3.3)

Recall that when Ω is the unit ball, we have

G(a, b) =
1

|a− b|n−2
− 1

(|a|2|b|2 + 1− 2〈a, b〉)(n−2)/2
(3.4)

H(a, a) =
1

(1− |a|2)n−2
. (3.5)
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Thus,

∂H(a, a)
∂a

=
2(n− 2)a

(1− |a|2)n−1
(3.6)

∂G

∂a
(a, b) =

(n− 2)(b− a)
|a− b|n

− (n− 2)(b− |b|2a)
(|a|2|b|2 + 1− 2〈a, b〉)n/2

. (3.7)

First, using (3.2), (3.6) and (3.7), it is easy to prove that ai 6= 0 for i = 1, 2.
Without loss of generality, we can assume that a1 = (0, ..., 0, γ1), where γ1 is a constant. Taken
the j-th component (for j = 1, ..., n−1) of the vector defined by (3.2), with i = 1, it follows that
a2 = (0, ..., 0, γ2), where γ2 is a constant. Hence a1 and a2 lay in the same line passing through
the origin. It remains to prove that γ1 = −γ2.
Using (3.2), (3.3), (3.6) and (3.7), we get

γi

(1− γ2
i )
(
H(a1, a1)H(a2, a2)

)1/2 +
γj − γi

|γ2 − γ1|n
− γj

(1− γ2γ1)n−1
= 0, (3.8)

for i, j = 1, 2 with j 6= i.
Adding (3.8) for i = 1 and i = 2, we derive

(γ1 + γ2)(1− γ1γ2)
(1− γ2

1)n/2(1− γ2
2)n/2

=
γ1 + γ2

(1− γ1γ2)n−1
. (3.9)

Thus, if γ1+γ2 6= 0, (3.9) implies that (1−γ1γ2)2 = (1−γ2
1)(1−γ2

2) which implies that γ1 = γ2 and
therefore a1 = a2 which is a contradiction. Thus γ1+γ2 = 0, that means a1 = −a2 = (0, ..., 0, t∗),
with t∗ is the unique solution of

g(t) =
t

(1− t2)n−1
− 1

(2t)n−1
+

t

(1 + t2)n−1
= 0, for t ∈ (0, 1),

where we have used (3.8).
Now using (3.3), (3.5) and the fact that the reals xi’s are positive, it is easy to obtain that
x1 = x2. Using again (3.1) we derive that

x1 = x2 =
(

1
H(a1, a1) +G(a1, a2)

)1/2

(3.10)

which completes the proof of our lemma. 2

Next we are going to prove Theorem 1.4.
Proof of Theorem 1.4 Observe that, by Theorems 1.1 and 1.2, we know that uε can be
written as Pδ(aε,1,µε,1) − Pδ(aε,2,µε,2) + v with ‖v‖ → 0, uε(aε,1) = maxuε, uε(aε,2) = minuε and
µε,i|aε,1 − aε,2| → ∞, for i = 1, 2. Furthermore, the concentration speeds satisfy (1.8).
Set hε := max d(x,S)(n−2)/2|uε(x)| where S = {aε,1, aε,2}. It is easy to prove that hε is bounded
(if not, we can construct another blow-up point and therefore the energy of uε becomes bigger
than 3Sn/2 which gives a contradiction).
Let dε,1 = d(aε,1, ∂Ω+) and dε,2 = d(aε,2, ∂Ω−), where Ω+ = {x ∈ Ω : uε(x) > 0} and Ω− =
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{x ∈ Ω : uε(x) < 0}. We need to prove that dε,i 6→ 0 as ε → 0. Arguing by contradiction,
assume that dε,1 ≤ dε,2 and dε,1 → 0. We define the following function

wε(X) := dαε
ε,1uε(aε,1 + dε,1X) for X ∈ Ω′

ε,+ := d−1
ε,1(Ω+ − aε,1),

where αε = 2(n− 2)/(4− ε(n− 2)). An easy computation shows that

−∆wε = wp−ε
ε , wε > 0 in Ω′

ε,+, wε = 0 on ∂Ω′
ε,+.

Observe that B(0, 1) ⊂ Ω′
ε,+ and wε > 0 in Ω′

ε,+. Since hε is bounded and d(n−2)/2
ε,1 uε(aε,1) →∞

(see (2.5) and (2.23)), we derive that 0 is an isolated blow-up point of (wε). Thus, using [14],
we deduce that 0 is isolated simple blow-up point of (wε). Hence, we have

wε(0)wε(y) ≤ c|y|2−n, for all |y| ≤ 1/2. (3.11)

By standard elliptic theories, we derive that wε(0)wε converges in C2
loc(Π) to a function w

satisfying
−∆w = 0 in Π \ {0}, w = 0 on ∂Π,

where Π is the limit domain of Ω′
ε,+. Since 0 is an isolated simple blow-up point of (wε) we

deduce that 0 is a nonremovable singularity and therefore w = cGΠ, where GΠ is the Green’s
function and c is a positive constant. Now, using Pohozaev identity in the form of Corollary 1.1
of [14] we obtain

cε(1 + o(1))
∫

B(0,σ)
wp+1−ε

ε − σ

p+ 1− ε

∫
∂B(0,σ)

wp+1−ε
ε =

∫
∂B(0,σ)

B(σ, x, wε,∇wε)dx, (3.12)

where c is a positive constant and

B(σ, x, wε,∇wε) =
n− 2

2
wε
∂wε

∂ν
− σ

2
|∇wε|2 + σ

(
∂wε

∂ν

)2

.

Observe that, using (3.11), we obtain

w2
ε(0)σ

∫
∂B(0,σ)

wp+1−ε
ε ≤ cwε(0)1+ε−pσε(n−2)−n → 0 as ε→ 0, (3.13)

ε(1 + o(1))w2
ε(0)

∫
B(0,σ)

wp+1−ε
ε ∼ cd2αε

ε,1 εuε(aε,1)2 → 0 as ε→ 0, (3.14)

where we have used (1.8) and the fact that αε → (n− 2)/2 and dε,1 → 0 as ε→ 0.
For the last term in (3.12), an easy computation shows

lim
ε→0,σ→0

∫
∂B(0,σ)

B(σ, x, wε(0)wε, wε(0)∇wε)dx = cHΠ(0, 0). (3.15)

Clearly, (3.12),...,(3.15) and the fact that Π 6= Rn yield a contradiction. Hence dε,1 6→ 0 as ε→ 0
and therefore ā1 is an isolated simple blow up point of (uε). The same holds for ā2.
Now, arguing as in the proof of (4.10) of [7], the result follows. 2
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Now, we are going to prove Theorem 1.6.
Proof of Theorem 1.6 We start by proving Claim (a). By Theorem 1.4, the points ai’s are
two isolated simple blow-up points of (uε). Thus, as in (3.12), we derive that

cε(1 + o(1))
∫

B(aε,i,σ)
up+1−ε

ε − σ

p+ 1− ε

∫
∂B(aε,i,σ)

up+1−ε
ε =

∫
∂B(aε,i,σ)

B(σ, x, uε,∇uε)dx,

(3.16)
for i = 1, 2, where c is a positive constant independent of i. As in (3.13), we have

σu2
ε(aε,i)

∫
∂B(aε,i,σ)

up+1−ε
ε ≤ cuε(aε,i)1+ε−pσε(n−2)−n → 0 as ε→ 0, (3.17)

and using (1.8), we have

εu2
ε(aε,i)

∫
B(aε,i,σ)

up+1−ε
ε ∼ Sn/2εuε(aε,1)2 → Sn/2 c1β

2
n

c2Λ
2
i

as ε→ 0. (3.18)

It remains to study the right side integral of (3.16). Using again (1.8) and Theorem 1.4, we
derive that

uε(aε,i)uε → m′
iG(ai, .)−m′

jG(aj , .) (3.19)

where j 6= i and m′
1, m

′
2 are two positive constants satisfying m′

1/m
′
2 = m1/m2. Thus

lim
ε→0,σ→0

∫
∂B(aε,i,σ)

B(σ, x, uε(aε,i)uε, uε(aε,i)∇uε)dx = c′1
(
m′

iH(ai, ai)−m′
jG(a1, a2)

)
, (3.20)

for i, j = 1, 2 with i 6= j and where c′1 is a positive constant independent of i and j.
Using (3.19) and (3.20) and the fact that Λ1 = Λ2 (see Theorem 1.5), we deduce that

m′
1H(a1, a1)−m′

2G(a1, a2) = m′
2H(a2, a2)−m′

1G(a1, a2).

Hence since a1 = −a2, using (3.5), we derive that

(m′
1 −m′

2) (H(a1, a1)−G(a1,−a1)) = 0.

It is easy to verify that H(a1, a1) 6= G(a1,−a1) and therefore we obtain that m′
1 = m′

2 which
implies that m1 = m2. The proof of Claim (a) is thereby completed.

It remains to prove Claim (b). Arguing by contradiction and assuming that the set {x ∈
Ω, uε(x) = 0} does not intersect the boundary ∂Ω. Thus ∂uε/∂ν does not change sign which
implies that ∂u/∂ν does not change sign also, where u is defined in Theorem 1.4. Now, since
m1 = m2 (see Claim (a)), an easy computation shows that∫

∂Ω

∂u

∂ν
(x)dx = m1

∫
∂Ω

∂

∂ν
(G(a1, x)−G(a2, x)) dx = 0,

which implies a contradiction. Thus the result follows. 2

Now, we are going to prove Theorem 1.7.
Proof of Theorem 1.7 According to Theorem 1.5, we know that, for ε close to 0, both points
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aε,i are far away from the origin and they lay on different sides with respect to T , where T is
any hyperplane passing through the origin but not containing aε,1. Arguing now as in the proof
of Lemma 4.1 of [8], we see that the points aε,i lay on the same line passing through the origin.
Lastly, the proof of the other statements of Theorem 1.7 is exactly the same as that of Theorem
1.5 of [8], so we omit it. This ends the proof of our result. 2

4 Proof of Theorem 1.8

Throughout this section, c stands for a generic constant depending only on n and whose value
may change in every step of the computations.

To prove Theorem 1.8, we need a delicate analysis and careful estimates. First, for ε suffi-
ciently small, Proposition 2.2 implies that uε can be uniquely written as

uε = α1,εPδ(a1,ε,λ1,ε) − α2,εPδ(a2,ε,λ2,ε) + vε, (4.1)

where vε ∈ H1
0 (Ω), || vε ||→ 0 as ε→ 0 and vε satisfies (2.7).

To simplify the notations, we write αi, λi, Pδi and v instead of αi,ε, λi,ε, Pδ(ai,ε,λi,ε) and vε

respectively. We will also use the following notations:

di = d(ai, ∂Ω) and ε12 =
(
λ1

λ2
+
λ2

λ1
+ λ1λ2 | a1 − a2 |2

)(2−n)/2

.

Now, we prove the following crucial lemmas:

Lemma 4.1 Assume that n ≥ 4 and

ε12 =
(
λ1λ2 | a1 − a2 |2

)(2−n)/2 + o(ε12) as ε→ 0. (4.2)

Then, for ε small, there exists a positive constant c such that

(i)
d1

c
≤ d2 ≤ cd1 and (ii)

λ1

c
≤ λ2 ≤ cλ1.

Proof. On one hand, using (4.2), we derive that (2.15) holds. Thus, using (2.9), (2.10), (2.13)
and (2.15), we see that (2.16) holds. On the other hand, (2.9), (2.11) and (2.13) imply that
(2.17) holds. Now, arguing by contradiction we assume, for example, that λ2d2 = o(λ1d1). Using
(2.16) for i = 1 and i = 2, we obtain (2.18). Using (4.2) and (2.18), we get

1
(λ1λ2)(n−2)/2

| 1
λ2

∂G

∂a2
(a1, a2) |≥ cε

(n−1)/(n−2)
12 . (4.3)

Clearly, (2.16) for i = 2, (4.2), (2.18) and (4.3) give a contradiction. Thus, we derive that λ1d1

and λ2d2 are of the same order. Assume, for example, that d1 = o(d2). In this case, it is easy
to obtain that | a1 − a2 |≥ d2 − d1 ≥ d2/2. Thus (2.20) holds. Obviously, (2.16) and (2.20) give
a contradiction and therefore Claims (i) and (ii) are proved. 2
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Lemma 4.2 Let n ≥ 4 and assume that (1.9) holds. Then, for ε small, we have

| a1 − a2 |= o(d2) and d1 = d2 + o(d2).

Proof. Observe that Remark 2.3 implies that λ1/λ2 → +∞ as ε → 0. Thus, using Lemma
4.1, we derive that there exists a positive constant c such that

λ1

λ2
≥ cλ1λ2 | a1 − a2 |2 .

Thus λ2 | a1 − a2 |≤ c. Now, since λ2d2 → +∞ as ε→ 0, we derive that | a1 − a2 |= o(d2) and
therefore d1 = d2 + o(d2). 2

Remark 4.3 Notice that assumption λ1/λ2 → +∞ as ε→ 0 and Lemma 4.1 imply that

ε12 ≥ c

(
λ2

λ1

)(n−2)/2

for ε small.

Lemma 4.4 Let n ≥ 4 and assume that (1.9) holds. Then, there exists a positive constant c
such that, for ε small,

(i)
1
c
ε12 ≤

1
(λ2d2)n−2

≤ cε12

(ii)
1
c
ε ≤ ε12 ≤ cε

(iii)
1
c
λ1 ≤ λ2(λ2d2)2 ≤ cλ1.

Proof. Using (2.10) for i = 1, we see that

c1ε12 − c2ε = o

(
1

(λ2d2)n−2
+ ε12 + ε

)
.

Thus

ε =
c1
c2
ε12 + o

(
1

(λ2d2)n−2
+ ε12

)
. (4.4)

Using (2.13), (2.15) and (2.10) for i = 1 and for i = 2, we derive that

c1
H(a2, a2)
λn−2

2

− 2c1ε12ε
2

n−2

12

λ1

λ2
(1 + o(1)) = o

(
H(a2, a2)
λn−2

2

+ ε12

)
. (4.5)

But, by Remark 4.3, we know that there exists c > 0 such that

c ≤ λ1

λ2
ε
2/n−2
12 ≤ 1. (4.6)

Clearly, (4.4),(4.5), (4.6) and the fact that c ≤ H(a2, a2)dn−2
2 ≤ 1 imply Claims (i) and (ii).

Now, it follows from Claim (i) and Lemma 4.1 that the following holds:

c”
(
λ2

λ1

)n−2
2

≤ c′ε12 ≤
1

(λ2d2)n−2
≤ cε12 ≤ c

(
λ2

λ1

)n−2
2

,



18 Ben Ayed, El Mehdi & Pacella

where c, c′ and c” are positive constants.
Therefore Claim (iii) follows. 2

Lemma 4.5 Let n ≥ 4 and assume that (1.9) holds. Then, there exists a positive constant c
such that, for ε small,

(i) λ1λ2 | a1 − a2 |2≤ c

(ii) λ2 | a1 − a2 |≤ cε
1/n−2
12 → 0 as ε→ 0.

Proof. Using (2.11) for i = 2 and Lemma 4.4, we obtain

1
λn−1

2

∂H

∂a2
(a2, a2) + 2(n− 2)λ1(a1 − a2)ε

n
n−2

12 = o

(
1

(λ2d2)n−1

)
= o

(
ε

n−1
n−2

12

)
. (4.7)

Now, from (4.6) we deduce that

c
√
λ1λ2 | a1 − a2 | ε

n−1
n−2

12 ≤ λ1 | a1 − a2 | εn/(n−2)
12 ≤

√
λ1λ2 | a1 − a2 | ε

n−1
n−2

12 . (4.8)

Arguing by contradiction, assume that λ1λ2 | a1 − a2 |2→ +∞. Using (4.7), (4.8) and the fact
that

| 1
λn−1

2

∂H

∂a2
(a2, a2) |≤

c

(λ2d2)n−1
≤ cε

n−1
n−2

12 ,

we obtain a contradiction and therefore Claim (i) follows. Finally, Claim (ii) follows from Claim
(i) and Remark 4.3. 2

Now, to deal with the case of n ≥ 6, we need the following crucial proposition which improves
the estimate (2.11).

Proposition 4.6 Let n ≥ 6 and assume that (1.9) holds. Then we have

1
λ1

∂ε12
∂a1

= o
(
ε
(n+1)/(n−2)
12

)
.

Proof. For sake of simplicity, we will use the following notations:

Pδi = Pδ(ai,λi), δi = δ(ai,λi), θi = δi − Pδi,

ūε = α1Pδ1 − α2Pδ2, ϕ1 =
1
λ1

∂Pδ1
∂a1

, ψ1 =
1
λ1

∂δ1
∂a1

.

Multiplying (1) by ϕ1 and integrating on Ω, we obtain

α1

∫
Ω
δp
1ϕ1 − α2

∫
Ω
δp
2ϕ1 =

∫
Ω
|uε|p−1−εuεϕ1, (4.9)



An almost critical problem 19

where p = (n+ 2)/(n− 2).
For the left-hand side of (4.9), it follows from [1] that

∫
Ω
δp
1

1
λ1

∂Pδ1
∂a1

= −1
2

c1

λn−1
1

∂H(a1, a1)
∂a1

+O

(
1

(λ1d1)n

)
, (4.10)∫

Ω
δp
2

1
λ1

∂Pδ1
∂a1

=
∫

Rn

δp
2

1
λ1

∂δ1
∂a1

+O

(∫
Ωc

δp
2δ1 +

∫
Ω
δp
2

1
λ1

| ∂θ1
∂a1

|
)

=
c

λ1

∂ε12

∂a1
+O

(
λ2 | a1 − a2 | ε

n+1
n−2

12

)
+ o

(
1

(λ1d1)
n−2

2 (λ2d2)
n
2

)

=
c

λ1

∂ε12

∂a1
+ o

(
ε
(n+1)/(n−2)
12

)
, (4.11)

where we have used Lemmas 4.2, 4.4 and 4.5. For the other integral in (4.9), an easy expansion
implies that

∫
Ω
|uε|p−1−εuεϕ1 =

∫
Ω
|ūε|p−1−εūεϕ1 + p

∫
Ω
|ūε|p−1vϕ1

+O
(
|| v ||2 +ε || v || + || v ||p−ε

(
|| θ1 || +ε1/2

12 (log ε−1
12 )

n−2
2n

))
=
∫

Ω
|ūε|p−1−εūεϕ1 + p

∫
Ω
|ūε|p−1−εvϕ1 + o

(
ε
(n+1)/(n−2)
12

)
, (4.12)

where we have used in the last inequality Lemmas 2.4 and 4.4 and the fact that ‖θ1‖ ≤
c(λ1d1)(2−n)/2. For the last integral in (4.12), arguing as in (323)− (326) in [8], we obtain

∫
Ω
|ūε|p−1vϕ1 ≤ c || v ||

(
ε

n+2
2(n−2)

12 (log ε−1
12 )

n+2
2n +

log(λ1d1)
(λ1d1)(n+2)/2

)
= o

(
ε

n+1
n−2

12

)
, (4.13)

where we have used in the last inequality Lemmas 2.4 and 4.4. It remains to study the first
integral in the right-hand side of (4.12). Denoting f = α1δ1 − α2δ2, we observe that

∫
Ω
|ūε|p−1−εūεϕ1 =

∫
Rn

|f |p−1−εfψ1 + (p− ε)
∫

Ω
|f |p−1−ε(α1θ1 − α2θ2)ϕ1

+O

(∫
Ω
|f |p−ε 1

λ1
| ∂θ1
∂a1

| +
∫

2(θ1+θ2)≤|f |
|f |p−2(θ2

1 + θ2
2) | ϕ1 |

)

+O

(
1

(λ1d1)
n−2

2 (λ2d2)
n+2

2

)
+O

(∫
(θp

1 + θp
2)(| ψ1 | +

1
λ1

| ∂θ1
∂a1

|)
)
. (4.14)
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Now, using Lemma 4.4, we can write∫
(θp

1 + θp
2)

1
λ1

| ∂θ1
∂a1

| ≤

[
1

(λ1d1)
n+2

2

+
1

(λ2d2)
n+2

2

]
1

(λ1d1)
n
2

= o

(
ε

n+1
n−2

12

)
; (4.15)∫

θp
1 | ψ1 | ≤

∫
B(a1,d1)

θ
n/(n−2)
1 δ

n/(n−2)
1 +

∫
B(a1,d1)c

δp+1
1

≤ c
log(λ1d1)
(λ1d1)n

= o

(
ε

n+1
n−2

12

)
; (4.16)∫

θp
2 | ψ1 | ≤

∫
B(a1,d1)

θ
p/2
2 δ

p/2
2 | x− a1 | δn/(n−2)

1 +
∫

B(a1,d1)c

θp
2δ1

≤ c

d
n+2

2
2

d1

λ
n
2
1

+
c

(λ1d1)
n−2

2 (λ2d2)
n+2

2

= o

(
ε

n+1
n−2

12

)
. (4.17)

Note that, since p− 2 ≤ 0, we get∫
2(θ1+θ2)≤|f |

|f |p−2(θ2
1 + θ2

2) | ϕ1 |≤
∫

(θp
1 + θp

2)(| ψ1 | +
1
λ1

| ∂θ1
∂a1

|) = o

(
ε

n+1
n−2

12

)
. (4.18)

where we have used (4.15)-(4.17). Now, using Lemmas 4.2 and 4.4, we derive that∫
Ω
|f |p−ε 1

λ1
| ∂θ1
∂a1

|+
∫

Ω
|f |p−1−εθ1 | ϕ1 |≤

1

(λ1d2
1)

n−2
2

∫
(δp

1 + δp
2)

≤ c

(λ1d1)
n−2

2 (λ2d2)
n−2

2

= o

(
ε

n+1
n−2

12

)
. (4.19)

Using again Lemmas 4.2 and 4.4, we obtain∫
Ω
|f |p−1−εθ2 | ϕ1 |≤

∫
δp
1θ2 +

∫
δp−1
2 θ2 | x− a1 | δ

n
n−2

1 +
∫

Ω
δp−1
2 θ2

1
λ1
|∂θ1
∂a1

|

≤ 1

(λ1d1)
n−2

2

1

(λ2d2)
n−2

2

+
c

(λ1d1)
n
2

+
c

(λ2d2)
n−2

2

1
(λ1d1)

n
2

= o

(
ε

n+1
n−2

12

)
. (4.20)

Now, we deal with the first integral in the right-hand side of (4.14). To this aim, we set
δ̃2 := δ(a1,λ2). We note that, using Lemma 4.5, we derive that

δ2 = δ̃2 +O
(
λ2 | a2 − a1 | δ̃2

)
. (4.21)

We now introduce the following sets:

A1 := {x ∈ Rn : δ1 ≤ ε
1/6
12 δ̃2} = {x ∈ Rn :| x− a1 |≥

β√
λ1λ2

}

A2 := {x ∈ Rn : δ̃2 ≤ ε
1/6
12 δ1} = {x ∈ Rn :| x− a1 |≤

1
β
√
λ1λ2

}

A3 := Rn \ (A1 ∪A2) ,
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where

β :=
(
λ1 − ε

1/(3(n−2))
12 λ2

)1/2 (
λ1ε

1/(3(n−2))
12 − λ2

)−1/2
∼ ε

−1/(3(n−2))
12 as ε→ 0.

We will estimate the first integral in the right-hand side of (4.14) on each set Ai for i = 1, 2, 3.
First, we write∫

A1

| f |p−1−ε fψ1 = −
∫

A1

(α2δ2)p−εψ1 +O

(∫
A1

δp−1
2 δ

2n−2
n−2

1 | x− a1 |
)
. (4.22)

Recall that ε12 satisfies (4.6). Hence we get∫
A1

δp−1
2 δ

2n−2
n−2

1 | x− a1 | ≤ ε
n−4

6(n−2)

12

∫
A1

δ
n

n−2

2 δ
n+2
n−2

1 | x− a1 |

≤ ε
n−4

6(n−2)

12 λ
n
2
2

∫
A1

δ
n+2
n−2

1 | x− a1 |= o

(
ε

n+1
n−2

12

)
, (4.23)

∫
A1

δp−ε
2 ψ1 =

∫
Rn

δp−ε
2 ψ1 −

∫
A2∪A3

δp−ε
2 ψ1

=
∫

Rn

δp
2ψ1 +O

(
εε12(log(ε−1

12 )
n−2

n

)
+O

(
λ2 | a1 − a2 |

∫
A2∪A3

δ̃p
2 | ψ1 |

)
, (4.24)

where we have used the evenness of δ̃2, the oddness of ψ1, (2.8) and (4.21). Note that, as in
(4.21), we get∫

A2∪A3

δ̃p
2 | ψ1 |≤ ε

−1
6(n−2)

12

∫
A2∪A3

δ̃
n+1
n−2

2 | x− a1 | δ
n+1
n−2

1 ≤ ε
−1

6(n−2)

12 ε
n+1
n−2

12 log(ε−1
12 ). (4.25)

Combining (4.22)-(4.25), (ii) of Lemma 4.5 and using the estimate F11 of [1], we obtain∫
A1

| f |p−1−ε fψ1 = αp−ε
2

c

λ1

∂ε12
∂a1

+ o

(
ε

n+1
n−2

12

)
. (4.26)

Secondly, we write∫
A2

| f |p−1−ε fψ1 =
∫

A2

(α1δ1)p−εψ1 − (p− ε)
∫

A2

(α1δ1)p−1−εα2δ2ψ1

+O

(∫
A2

δ22δ
6

n−2

1 | x− a1 |
)
. (4.27)

Note that ∫
A2

δ22δ
6

n−2

1 | x− a1 |≤ ε
n−5

6(n−2)

12

∫
A2

δ
n+1
n−2

2 δ
n+1
n−2

1 | x− a1 |= o

(
ε

n+1
n−2

12

)
, (4.28)

(p− ε)
∫

A2

δp−1−ε
1 δ2ψ1 = p

∫
Rn

δp−1
1 δ2ψ1 − p

∫
A1∪A3

δp−1
1 δ2ψ1 +O

(
εε12(log(ε−1

12 ))
n−2

n

)
. (4.29)
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Using the evenness of δ̃2, the oddness of ψ1 and (4.21), we get∫
A1∪A3

δp−1
1 δ2ψ1 = O

(
λ2 | a1 − a2 |

∫
A1∪A3

δp−1
1 δ̃2 | ψ1 |

)
. (4.30)

Arguing as in (4.23), we obtain ∫
A1∪A3

δp−1
1 δ2ψ1 = o

(
ε

n+1
n−2

12

)
. (4.31)

Thus, using the evenness of δ1, the oddness of ψ1, the estimate F11 of [1] and combining (4.27)-
(4.31), we derive that∫

A2

| f |p−1−ε fψ1 = −αp−1−ε
1 α2

c

λ1

∂ε12
∂a1

+ o

(
ε

n+1
n−2

12

)
. (4.32)

Lastly, denoting by f̃ = α1δ1 − α2δ̃2, and using the evenness of f̃ , we obtain∫
A3

| f |p−1−ε fψ1 = O

(∫
A3

| f̃ |p−1| δ2 − δ̃2 || ψ1 | +
∫

2|δ2−δ̃2|≥|f̃ |
| δ2 − δ̃2 |p| ψ1 |

)
. (4.33)

Note that the set {x : 2 | δ2 − δ̃2 |≥| f̃ |} implies that δ1 = δ̃2(1 + o(1)). Hence it is contained in
F := {x :| x− a1 |≥ c(λ1λ2)−1/2}. Therefore, as in (4.23), we get∫

2|δ2−δ̃2|≥|f̃ |
| δ2 − δ̃2 |p| ψ1 |≤ c (λ2 | a1 − a2 |)

n+2
n−2

∫
F
δ̃

n
n−2

2 | x− a1 | δp
1 = o

(
ε

n+1
n−2

12

)
. (4.34)

Now, arguing as in (4.25), we find∫
A3

| f̃ |p−1| δ2 − δ̃2 || ψ1 |≤ c (λ2 | a1 − a2 |)
∫

A3

(δp−1
1 + δ̃p−1

2 )δ̃2 | x− a1 | δ
n

n−2

1 = o

(
ε

n+1
n−2

12

)
.

(4.35)
Combining (4.33)-(4.35), we obtain∫

A3

| f |p−1−ε fψ1 = o

(
ε

n+1
n−2

12

)
. (4.36)

Clearly, our Proposition follows from (4.9)-(4.20), (4.26), (4.32) and (4.36). 2

Now, we are ready to prove Theorem 1.8.
Proof of Theorem 1.8 According to Remark 2.3 and Lemmas 4.2, 4.4 and 4.5, Claim (a)
follows. Now we will prove (1.10) in the case where n ≥ 6. On one hand, observe that Proposition
4.6 and Remark 4.3 imply

| 1
λ2

∂ε12

∂a2
|=| λ1

λ2

1
λ1

∂ε12
∂a2

|= o

(
ε

n−1
n−2

12

)
. (4.37)

On the other hand, Remark 4.3 implies that

| 1
λ2

∂ε12

∂a2
|= cλ1 | a1 − a2 | ε

n
n−2

12 ≥ c
√
λ1λ2 | a1 − a2 | ε

n−1
n−2

12 . (4.38)
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Clearly, from (4.37), (4.38) and Remark 2.3, we get the first claim of (1.10). Now, using (4.37),
Lemma 4.4 and (2.11) for i = 2, we derive that

1
λn−1

2

∂H

∂a2
(a2, a2) = o

(
1

(λ2d2)n−1

)
.

This implies that

d2 6→ 0 and
∂H

∂a2
(a2, a2) → 0 as ε→ 0.

This completes the proof of (1.10).
It remains to prove Claim (b). Observe that, by Theorem 1.1 and assumption (1.9), we have

uε = Pδ(aε,1,µε,1) − Pδ(aε,2,µε,2) + v with ‖v‖ → 0 and uε(aε,1) = max |uε|. (4.39)

First we claim that

∃ m > 0 s.t. hε := max
x∈Ω

|x− aε,1|(n−2)/2|uε(x)| ≤ m. (4.40)

In fact, if hε → +∞, then, using the method of R. Schoen [14], we can construct a concentration
point bε with a concentration speed c|uε(bε)|2/(n−2)−ε/2 and the function uε becomes close to

Pδ(aε,1,µε,1) − Pδ(bε,c|uε(bε)|2/(n−2)−ε/2).

Observe that, since hε → +∞, we derive that

c|uε(bε)|2/(n−2)−ε/2|bε − aε,1| → ∞,

which contradicts the conclusions of Theorem 1.8. Hence our claim is proved.
Now, let

Ω1 := Ω \B(aε,2, µ
ε(n−2)/4−1
ε,2 ),

and we introduce the following function

wε(X) :=
1

µ
(n−2)/2
ε,2

uε(aε,2 + µ
ε(n−2)/4−1
ε,2 X) for X ∈ Ω′

ε := µ
1−ε(n−2)/4
ε,2 (Ω− aε,2).

The function wε satisfies {
−∆wε = |wε|2

∗−2−εwε in Ω′
ε,

wε = 0 on ∂Ω′
ε.

Observe that, using (4.40) we derive that

|wε(x)| ≤ m for each x ∈ Ω̃1 := Ω′
ε \B(0, 1).

Hence wε converges in C2
loc(Rn \B(0, 1)) to a function w satisfying

−∆w = |w|2∗−2w in Rn \B(0, 1).
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But from (4.39), we deduce that w has to be −δ
(0,β

2/(n−2)
n )

(where βn is defined in Theorem 1.1).
Thus w < −c < 0 in ∂B(0, 2) which implies that wε < 0 in the same set. Hence uε < 0 in
∂Bε := ∂B(aε,2, 2µ

ε(n−2)/4−1
ε,2 ). Now since µε,2d(aε,2, ∂Ω) →∞ (see Theorem 1.1) we derive that

Bε is contained in a compact set of Ω. Finally, using the fact that uε(aε,1) > 0, aε,1 ∈ Bε (since
µε,2|aε,2 − aε,1| → 0) and Ω \ {x : uε(x) = 0} has exactly two connected components, we deduce
that the nodal surface does not intersect the boundary of Ω. Hence Claim (b) follows.
This completes the proof of our Theorem. 2
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