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1 Introduction

In this paper we consider the following semi-linear elliptic problem with subcritical nonlinearity:

. —Au=|ul> 2%y inQ
L u=20 on 0§,

where ) is a smooth bounded domain in R, n > 3, € is a positive real parameter and 2* =

2n/(n — 2) is the critical Sobolev exponent for the embedding of H} () into L% ().

Problem (1) is related to the limiting problem (when ¢ = 0) which exhibits a lack of com-
pactness and gives rise to solutions of (1) which blow up as e — 0.

In the last decades there have been many works devoted to the study of positive solutions
of problem (1). In sharp contrast to this, very little study has been made concerning the sign-
changing solutions. For details one can see [5] and the references therein.

The existence of sign-changing solutions of (1) for any € € (0,p — 1) has been proved in [4],
[6] and [11]. On the other hand, when e = 0, problem (1) becomes delicate. Pohozaev showed
in [16] that if © is starshaped, problem (1) (with e = 0) has no solutions whereas Clapp and
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Weth proved in [12] that problem (1) (with & = 0) has a solution on domains with small holes
and on some contractible domains with an involution symmetry.

In view of this qualitative change in the situation when € = 0, it is interesting to study the
following question: what happens to the solutions of (1) as ¢ — 07 In this paper, we are mainly
interested in the study of the behavior of low energy sign-changing solutions of (1). The first
part of this paper is devoted to analyze the asymptotic behavior, as ¢ — 0, of sign-changing
solutions of (1) whose energy converges to the value 257/2 S being the Sobolev constant for the
embedding of HZ(Q) into L?" (). We prove that these solutions blow up at two points which
may coincide and which are the limit of the concentration points a. 1 and a.2 of the positive
and negative part of the solutions. Moreover, we make a precise study of the location of these
blow up points. More precisely, we have

Theorem 1.1 Letn > 3 and let (u.) be a family of sign-changing solutions of (1) which satisfies
luclP = [ V0P = 25" ase—o. (L.1)
Q

Then, the set Q\ {x € Q|u.(z) = 0} has exactly two connected components.
Furthermore, there exist two points a1, ae2 in Q (one of them can be chosen to be the global
mazimum point of |uc|) and there exist two positive reals fic 1, fe 2 such that

Hus — P(S(ag,hus,ﬂ + P5(
e id(0e3,09) — 400, |peal" — 1 ase—0, fori e {1,2), (13

[ =0, ase—0, (1.2)

g, 2,Me 2

where Pé(, ) denotes the projection of 6, ) on H(Q), that is,

A
(1+ 2l — af)" 202

AP§ Ab(q,u) 1 Q, Pdgy =0 on 08, and (g, (7) =

ap) =

Here (3, is a constant chosen so that —Ad(, ) = 5((:’:)2)/@_2), (Br, = (n(n — 2))(”—2)/4)_

Note that, for the supercritical case (that is for € < 0), a recent result [9] shows that there
is no sign-changing solution u. with low energy which satisfies (1.2) and (1.3).

Now, our aim is to give a complete classification of the solutions satisfying (1.1). To this aim,
we divide this kind of solutions into two categories: the ones for which the positive and negative
part blow up with the same rate (hypothesis (1.5) below) and the ones for which these rates
are note comparable (hypothesis (1.9) below). In the first case we are able to prove that the
concentration points of the positive and negative part of a solution of this type are distinct and
away from the boundary and we characterize their limits in terms of the Green’s function and
of its regular part. Moreover, when the domain is a ball we prove that the limit concentration
points are antipodal with respect to the center of the ball, the solution is axially symmetric with
respect to the line joining these points and the nodal surface intersects the boundary. In the
second case, i.e. when (1.9) holds, we are able to prove that, if n > 4, the positive and negative
part of the solution concentrate at the same point (i.e. we have “bubble tower solutions”) and
we get a precise estimate of the blow up rates, in terms of the distance of the concentration
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points from the boundary of the domain. Moreover, if n > 6 we prove that the unique limit
of the concentration points is away from the boundary and it is a critical point of the Robin’s
function. As far as we know this is the first time that the phenomenon of different concentration
points converging to the same point is analyzed for critical exponent problems. Indeed this never
happens in the case of positive solutions, see [14].

Note that solutions of both type exist, at least in symmetric domains. Indeed for the first
type of solutions it is enough to take a positive solution in a symmetric cap of the domain and
reflect it by antisymmetry. In the second case “bubble tower” solutions have been recently found
by Pistoia and Weth [15].

To describe more precisely our results, we introduce some notations. We denote by G the
Green’s function of the Laplace operator defined by : Vx € Q

—AG(z,.) =cpd, in Q, G(z,.)=0 on 09,

where 0, is the Dirac mass at = and ¢, = (n —2)w,, with w,, denoting the area of the unit sphere
of R™. We denote by H the regular part of G, that is,

H(zy,29) = |21 — 20> — G(z1,22) for (x1,29) € Q2.
For x = (x1,72) € 2\ T, with I' = {(y,9)/y € Q}, we denote by M (z) the matrix defined by
M(x) = (mij)i<ij<2, where my = H(x,2;), mig = mo1 = G(x1,x2). (1.4)
Then we have

Theorem 1.2 Let n > 3 and let (u:) be a family of sign-changing solutions of (1) satisfying
(1.1) and let az 1, ac2 be the concentration points defined in Theorem 1.1. Assume that there
exists a positive constant 1 such that

n < —maxu,/ minu, <n L. (1.5)

Then, a-1 and a2 are two global extremum points of u. and we have

pei = [uelac:)|? D72 2D for =12, (1.6)
In addition, there exists a positive constant v such that, for e small,
ac1 — acal >,  d(ag;, 0Q) > for i =1, 2. (1.7)
More precisely, we have
(625/61)1/2|U5(a572’)| — Bn/A;, ac; — G; € Q with ay # @z, fori=1,2, (1.8)
where A; is a positive constant,
=t ] ST and ey =" 2 gon/(n-2) /n Log(1+ ICUIQ)W-

Furthermore, (@1, az, A1, A2) is a critical point of the function
1
T:0?\T x (0,00)> = R; (a,A) := (a1, a2, A1, Ay) — itAM(a)A —log(A1As),

where M (a) is the matriz defined by (1.4).
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Remark 1.3 1- The assumption (1.5) allows us to prove that the distance between the concen-
tration points is bounded from below by a positive constant.

2- The low energy positive solutions of (1) have to blow up at a critical point of the Robin’s
function p(z) = H(x,x), see [13] and [18].

3- A similar matriz to that involved in the above function ¥ plays also a crucial role in the
characterization of the concentration points for the positive solutions of (1), see [3].

The next result describes the asymptotic behavior, as ¢ — 0, of low energy sign-changing
solutions of (1) satisfying (1.5) outside the limit concentration points.

Theorem 1.4 Let n > 3 and let (u:) be a family of sign-changing solutions of (1) satisfying
(1.1) and (1.5). Then the limit concentration points a1 and a2, defined in Theorem 1.2, are two
isolated simple blow-up points of (uz) (see [14] for definition) and there exist positive constants
mi1 and mo such that

e V2u, —w = miG(ay,.) — meG(as,.) in C2 (Q\ {a,a@}) as &—0.

The second part of this paper is devoted to the study of symmetry properties of low energy
sign-changing solutions of (1) of the first type when Q is a ball. We shall prove the following
results.

Theorem 1.5 Assume that n > 3. Let  be the unit ball and let (u.) be a family of sign-
changing solutions of (1) satisfying (1.1) and (1.5). Then, up to a rotation of Q, the limit
concentration points @;’s and the reals A;’s, defined in Theorem 1.2, satisfy

= a, := (0,...,0,t4),
1/2
( a*7a* —|—G(CL*,— *)) ’

N t 1 t
9lt) = (1— =1 (2t)n-1 " (14 t2)n-1

where t, is the unique solution of

=0, forte(0,1).

The characterization of the points @;’s and the reals A;’s allows us to improve the result of
Theorem 1.4 and therefore we can prove that the nodal surface intersects the boundary. In fact,
we have

Theorem 1.6 Under the assumptions of Theorem 1.5, we have
(a) The constants my and meo defined in Theorem 1.4 are equal.
(b) The nodal surface of u. intersects the boundary OSQ.

Observe that the limit function G(ay,.) — G(az, .), defined in Theorem 1.4 with m; = mg, is
symmetric with respect to any hyperplane passing through the points @; and @,. Furthermore,
it is antisymmetric with respect to the hyperplane passing through the origin and which is
orthogonal to the line passing through the points @; and a2. Moreover, it changes sign once.

Following the idea of [10], we can prove, for € small, that the functions u. satisfy also the
symmetry property. More precisely, we have
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Theorem 1.7 Let n > 3 and let Q be a ball and (uz) be a family of sign-changing solutions of
(1) satisfying (1.1) and (1.5). Then, for € sufficiently small, the concentration points a. 1 and
az2 of uz, given by Theorem 1.1, are far away from the origin and they lay on the same line
passing through the origin and u. is axially symmetry with respect to this line.

Moreover the points a.1 and ac2 lay on different sides with respect to T and all the critical
points of us belong to the symmetry axis and

O
ovr

() >0 Ve e TN,

where T 1s any hyperplane passing through the origin but not containing a.1 and where vy s
the normal to T', oriented towards the half space containing ac .

Concerning the antisymmetric property, it is easy to construct a family of solutions (u.)
which are antisymmetric by reflecting the positive minimizing solution on the half ball and
hence interesting questions arise: Let (u.) be a family of solutions satisfying the assumptions
of our Theorems, are the solutions (u.) antisymmetric? What about the uniqueness? A further
investigation in this direction is in progress.

The last part of this paper is devoted to the study of the case where the assumption (1.5) is
removed, that means the case when we can have sign-changing bubble tower solutions. We recall
that Pistoia and Weth [15] have constructed such solutions in symmetric domains. Without loss
of generality, we can assume, in the case where the assumption (1.5) is removed, that the

following holds:
max Ue

- — —o00 as ¢ —0. (1.9)
min u,

Our main result reads:

Theorem 1.8 Let n > 4 and let (u:) be a family of sign-changing solutions of (1) satisfying
(1.1) and (1.9). Let ac1, ac2 be the concentration points and pe 1, jte2 the speeds of the concen-
tration points defined in Theorem 1.1. Then,

(a) there exists a positive constant ¢ such that, for e small,

1 2 1 1 2
—pe1 < pe2 (tepde)” < cpien,  —€ < g S G, He e 2]ae1 — ac2]” < c,
¢ c (f1e,2dz 2)
Aeq1 — Q d
IU’EQ‘QEI_G'EQ‘_)Ov M—>0, i1—>1 as € —0,
) ) ) da 9 d572

)

where de; = d(ae;, 0Q) fori=1,2.
(b) the nodal surface of u. does not intersect the boundary Of).
Furthermore, if n > 6, we have

e, 1 e 2] e — (1572|2 —0, dei /A0 and a.;—acQ fori=1,2, (1.10)
where a is a critical point of the Robin’s function ¢(x) = H(z,x).

Let us mention that we are not able to extend the results of Theorem 1.8 to the dimension 3
because of serious technical difficulties. Also the restriction to n > 6 to deduce that the unique
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limit concentration point is away from the boundary is due to some technical difficulties but
we think that the same result should be true also in lower dimensions, at least for n = 4,5.
Moreover in the case of the ball since the only critical point of the Robin’s function is the center,
from Theorem 1.8 we deduce, for n > 6, that the bubble tower concentration point is the center,
with negative and positive part blowing up with a prescribed rate. This makes us to conjecture
that this solution should be radial and hence should be the only solution of this type.

The outline of the paper is the following. Section 2 is devoted to the proof of Theorems 1.1
and 1.2. We prove Theorems 1.4, 1.5, 1.6 and 1.7 in Section 3. Finally, Section 4 is devoted to
the proof of Theorem 1.8.

2 Proof of Theorems 1.1 and 1.2

First, we deal with the proof of Theorem 1.1. Regarding the connected components of Q\ {z €
Q| us(z) = 0}, let Q1 be one of them. Multiplying (1) by u. and integrating on 21, we derive
that

/ IVu|? > S"2(1 + o(1)), (2.1)
951

where we have used Holder’s inequality and the Sobolev embedding.

Since ||ue||? — 25™/2 as e goes to 0, we deduce that there are only two connected components.
The following lemma shows that the energy of the solution u. converges to S™? in each

connected component. In fact we have

Lemma 2.1 Let (u:) be a family of sign-changing solutions of (1) satisfying (1.1). Then

(4) / [Vul? — 5m/2, / IVuZ |2 — 82 ase — 0,
Q Q

(i) / (uf)ie2 — 82, / (uz)"2 — 82 ase 0,
Q Q
(7i1) ue =0 ase — 0,

(iv) M4 := mgxug' — +oo, M, _:= max u, — +o00 ase — 0,

where ul = max(uc,0) and uZ = max(0, —u.).
Proof. The proof is the same as that of Lemma 2.1 of [8], so we omit it. O

Now, we are going to prove Theorem 1.1.
Proof of Theorem 1.1 Arguing as in the proof of Theorem 1.1 of [8], we obtain that there
exist a1, ae 2, pe,1 and p. 2 such that, as e — 0,

Huj - P(S(as’hus’l)H — O, Hua_ — P&( )H — 0, Ms’id(a‘g’i’ GQ) — —i—OO, for i = 1, 2. (2.2)

Qe ,2,Me 2

Next, we will prove that one of the points is the global maximum point of |u.|. Arguing as in
the proof of Lemma 2.2 of [8], we obtain

]\482/(’"0—2)—‘3/%[(@67 0N) »0ase— 0, (2.3)
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where a. satisfies |uc(az)| = |ue|oo = M.. Without loss of generality, we can assume that
ue(agz) > 0. Now, let us define

(X)) := M ug(ae + X/M2/(=272/2) for X € Q. := MY (=2=¢/2(Q — q,).

By Lemma 2.1, the limit domain of ﬁg, denoted by II, has to be the whole space R" or a half
space and by (2.3), it contains the origin. Since . is bounded in )., using the standard elliptic
theory, it converges in C? _(II) to a function u satisfying

—Au=|u/* 2uin I, u0)=1, wuw=0on O, and / IVul? < 2872, (2.4)
I

Observe that, any sign-changing solution w of (2.4) satisfies ||w||> > 25™/2. Thus we derive that

u is positive. It follows that II has to be R™ and u = 5(0 g2/ =)y We deduce that @, > 0 in any

compact subset of Q.. But we have u. = 0 on 9, where 9Q := {z € Q:u.(x) > 0}. Hence

lul — ME‘E("_Q)/QP(F( | — 0 and M2/("=2=2/24(a,, 00, ) — o0 as € — 0, (2.5)

ag nuE) |

M2/ 212 ) 2/(n=2)

where p. 1= . Now, we observe that

ME2RGMA(1+ 0(1)) = ME" 22| P, 0,0l
< luf = METDP P, |+ |
= 5™*(1 4 0(1)). (2.6)
Thus, Lemma 2.1 and (2.6) imply that Mg goes to 1 as € — 0.
The proof of our theorem is thereby completed. O

The goal of the sequel of this section is to prove Theorem 1.2. We start by the following
proposition which gives a parametrization of the function u.. It follows from the corresponding
statements in [2].

Proposition 2.2 Let n > 3 and let (ue) be a family of sign-changing solutions of (1) satisfying
(1.1). Then the following minimization problem

mm{H Ue — alPé(al’)\l) + agPé(aMQ) H, a; >0, 0 >0, a0 € Q}

has a unique solution (a1, ag,a1,as, A1, A2) (up to permutation). In particular, we can write ue
as follows
Ue = alpd(al,/\l) — Odgp(g(ag’/\Q) + v,

where v € HE(Q) such that ||v]] — 0 as ¢ — 0 and
(Vo) : (v,) =0 for p € {Pd(aiw), 8P6(ai7&)/8)\2-, 8P5(ai’,\i)/8a{, i=1,2,1<j<n}, (2.7)

where a{ denotes the j-th component of a;.
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Remark 2.3 For eachi = 1,2, the point a; is close to a; and each parameter \; satisfies \i/ i i
is close to 1, where ac;, pe; are defined in Theorem 1.1 and a;, \; are defined in Proposition

2.2.

As usual in this type of problems, we first deal with the v-part of u., in order to show that
it is negligible with respect to the concentration phenomena. Using the following estimate (see
Subsection 3.1 of [19])

57 (x) = BN D2 L 0 (elog(1+ N2z — i) = 1 4 o(1), (2.8)

7
(since \; — 1 as € — 0) and arguing as in Lemma 3.3 of [8] we derive the following lemma.

Lemma 2.4 The function v defined in Proposition 2.2 satisfies the following estimate

Z W+512(10g512)(" 2)/n if n<6

Z ()\d (n+2)/2 e(n—2) +5§Z+2)/2(n 2)(10g€ )(n+2)/2n Zf n 2 67

[|v]| gce-l—c{

where

A (2—n)/2
612—<>\ +/\+)\1)\2|&1—a2> .

Now, arguing as in the proof of Propositions 3.4, 3.5 and 3.6 of [8] and using (2.8) we obtain
the following results.

Proposition 2.5 Assume thatn > 3 and let «;, a; and A; be the variables defined in Proposition
2.2. We then have

4/(n—2)—¢

o
1-—=——-=0 2.9
BA (= Gy o+ 01 29
n — 2 H(a;,a;) Je12 nm—2 H(ay,az) n—2
@ic1— 7)\?_2 — ajc (A O, t— ()\1>\2)(n72)/2 AT 0f
log(Medi) | n3 ,
<ce?4ec k=12 /\de)k +efy logey  (ifn=4), (2.10)

Zk:1 2 ()\kdk) + 612(10g’512 23 (ifn=3),
where i, j € {1,2} with i # j, and c1, c2 are defined in Theorem 1.2.

Proposition 2.6 Let «;, a; and \; be the variables defined in Proposition 2.2.
(a) For n > 4, we have

1 8H(ai,ai) Oéj 82’512 OH 1
= )

i )\?_1 80,@' 8@2‘ B 8711(&1’ (12) ()\1)\2)(71*2

1 2 n—2 3
= 1 1 n S 2.11
O(kgl : ()\kdk) +eiy oge12 + ee1a( Og€12) + (Aidi)"1>’ ( )
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where i, j € {1,2} with i # j.
(b) For n =3, we assume that a; # az then we have fori € {1,2}

1 BH(ai, az-) 1 8@12 OH 1 1
e - — | = — 2.12
)\12 8(11' + >\z' < 8ai 8@1' (ah (12) (/\1)\2)1/2> 0<k§2 ()\knk)Q >7 ( )

where n1, N2 are two positive parameters chosen such that

B(ai,m)N B(az,n2) =0 and B(a;,n;) CQ, fori=1,2,.

Note that the proof of Propositions 2.5 and 2.6 are based on some integral estimates proved in
[1] and [17].
To deal with dimension 3, we prove the following lemma.

Lemma 2.7 Assume that n = 3 and assume further (1.5) holds. Then there exists a positive
constant ¢y such that
|CL1 - a2| > Co max(dl,dQ),

where the points a;’s are defined in Proposition 2.2 and d; = d(a;, 0S2).

Proof. Arguing by contradiction, we assume that |a; — a2| = o(max(di,ds)). This implies
that di/de — 1 as € — 0. Now, choosing 71 = 12 = |a; — az|/4, we see that

B(alﬂh) N B(a27772) = @ and B(alanz) - Qa for i = 1727

and

1 < © < ce?
< < cety,
(Aimi)? — MAalar — azf? 2

iyaH(ai,ai)|< c 1 _0(2)
/\12 8&1' - ()\ldl)Q - )\1)\2|a1 — a2]2 - f12)>
1 1 0H (a1,a2) c 9

_ < =

>\i ()\1)\2)1/2 80,1' ’ - (Azdz)2 ¢ (512) ’

1

1 %) 1 | 1 _
— SR — = C
>\i ()\1)\2)1/2 8ai |CL1 — a2| )\i()\l)\g)l/2|al - CL2|2 B 12

where we have used the fact that A; and Ay are of the same order. Applying (2.12) and the

above estimates, we derive a contradiction and therefore our lemma follows. O

Next we prove the following crucial lemmas.

Lemma 2.8 Under the assumptions of Theorem 1.2, there exists a positive constant cg > 0
such that the variable a;, defined in Proposition 2.2, satisfy
a1 — as|

d
() o< <qh () <

Scal, fori=1,2,

where d; = d(a;, 082).
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Proof. On one hand, using (2.10), we have

1
£ = O<Z Ood )2 + 512>. (2.13)

On the other hand, using (1.5) an easy computation shows that

! n/(n—2)
i ¢ 2.14
o (MAglar — ag|?)(n=2)/2 +0(ery )s (2.14)
Oy D2 A s n—2 .
% = — 1 =9 _ | )
A o\; 2 €12 ( Ai €12 2 ()\1)\2|a1 _ a2|2)("72)/2 + 0(512) ( 5)

Thus, using (2.9), (2.13) and (2.15), the estimate (2.10) becomes

H(aivai) G(alaa2) C2 1
e = ~ a9 |- 2.1
P2 - (A1 o) (n=2)/2 o o\ * Z (\jd;)"2 (2.16)

Now we claim that

1 0H(a;,a;) 2 0G 1 (n—1)/(n—2) 1
S — — . 2.1
VR I W PG W WG 0<€12 2 oyt ) @

For n > 4, (2.17) follows immediately from (2.9), (2.11) and (2.13).

For n = 3, choosing 7; = min(¢p, 1)d;/4 in (2.12) where ¢; is the positive constant defined in
Lemma 2.7, Claim (2.17) follows from (2.12).

Now we are going to prove Claim (i) . Arguing by contradiction, we assume, for example, that
dy = o(dy). Using (2.16) for i = 1 and i = 2, we get

1

(a2~ 71612 =

Using (2.14), (2.18) and the fact that |0H (a1, a2)/dax| < cd*(d1d2)®~™/2, it is easy to obtain

1
()\1/\2)(n—2)/2

1 0G

n—1)/(n—2
Y > e/ e k=12, (2.19)

(a1,a2)

Clearly, (2.17), (2.18) and (2.19) give a contradiction. Thus, we derive that d; and dy are of
the same order. Hence Claim (7) is proved. Regarding Claim (i7), arguing by contradiction, we
assume that d; = o(Ja; — ag|). In this case, it is easy to obtain

1
()\1)\2)(n—2)/2

oG

87(“((117 az)

< 1 ( c N c >
- ()\1)\2)(n—2)/2 |a1 _ a2’n—1 d1]a1 _ a2‘n—2

= 0<W>. (2.20)

Thus, (2.17) and (2.20) give again a contradiction and we derive that d;/|a; — ag| is bounded
below. Hence, by Lemma 2.7, the proof is completed for n = 3.
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It remains to prove that di/|a; — ag| is bounded above for n > 4. To this aim, we argue by
contradiction and we assume that |a; — ag| = o(d1). Therefore,

1 8H(a17 al) 1 8H(a1, ag)
A?_l 8&1 )\1()\1)\2)(”72)/2 60‘1
c 1
< = . 2.21
N (Aldl)n_l O((/\1)\2|a1 — a2’2)("1)/2> ( )
We now observe that
1 Oeqs > C 1 c (2.22)

)\71 8&1 o )\1()\1A2)(n_2)/2 ’al — a2‘n—1 = ()\1)\2‘@1 — a2’2)(n—1)/2'

Hence, (2.17), (2.21) and (2.22) give a contradiction, and therefore |a; —a2|/d; is bounded below.
Finally, using Claim (7), the proof of Claim (i7) is completed. 0

Now, we will prove that the concentration points are in a compact set of {2 and they are far
away of each other.

Lemma 2.9 There exists a positive constant dy such that
\al—a2|2d0 N diZdo fOTiZl,Q.

Proof. The proof is the same as that of Lemma 3.8 of [8], so we omit it. 0

Now we are ready to prove Theorem 1.2.
Proof of Theorem 1.2 Without loss of generality we can assume that

M, = maxu, > M, _ := —minu,.
Hence (2.5) holds. Now, let b, be such that M. _ := —u.(b:). Using (1.5) and arguing as in the
proof of (2.5) we can prove that
— n—2)/2 2/(n—2)—¢/2
luz — Mé(_ ) Pég. . Il — 0 and ME’/_( )=¢/ d(be, 00_) — o0 as € — 0, (2.23)
where 1o = M2/ n=2) E/2/52/ "2 and Q_ = {z € Q:u(zr) < 0}. Hence a.; and a2 can

be chosen as a. and b. which are two global extremum points of u..
Regarding, Claim (1.7), it follows from Lemma 2.9. Therefore each a; converges to a; € Q2 with

ay # ao.
Now, let us introduce the following change of variable

; A (CQ&‘) 1/2 ‘
)\E"*Q)/Q C1

Note that, (2.16) and (2.17) imply, for i, j = 1,2 with j # i,

Hai, a;)Ai + G(a1,a2)Aj — Ai = o(Ay), (2.24)
OHlai, ai) y5 | GOCHaL02) 5 (p?). (2.25)

Oa; Oa;
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Since each a; converges to a; € 2 with a; # @s, thus the functions H, G and its derivatives are
bounded. Therefore, from (2.24) and (1.5), it is easy to see that for each i = 1,2, A; is bounded
above and below. Hence, each A; converges to A; > 0 (up to a sequence) which implies (1.8)
(see (1.6) and Remark 2.3). Passing to the limit in (2.24) and (2.25), we get

H(m,ai)ﬂi + G(al,ag)xj — Kl_l =0, (2.26)
GRS PSRN o W) (2.27)
oa; oa;

where i, j = 1,2 with j # 1. o o
Equations (2.26) and (2.27) imply that VWU (ay,as, A1, A2) = 0. Hence (a1, a2, A1, A2) is a critical
point of W. 0

3 Proof of Theorems 1.4, 1.5, 1.6 and 1.7

Regarding Theorem 1.5, it follows immediately from Theorem 1.2 and the following lemma.

Lemma 3.1 Let Q be a ball and assume that n > 3. Then, up to a rotation of §, the function
U, defined in Theorem 1.2, has only one critical point X := (a,b,x,y). It satisfies

a=—-b=1(0,...,0,t.) with t, >0,

reYE <H(a, a) +1G(a, —a)>1/2’

where t, is the unique solution of

t 1 t

g(t) = A—@n 1 (@] + A3 T =0, forte(0,1).

Proof. Let (a1,az,x1,x2) be a critical point of W. Then, for ¢, j = 1,2 with j # i, we derive

1
H(a;,a;)z; + G(ai,a2)zj; = — (3.1)
T
0H(a,a) 0G(a,aj)
i— 20—~ = 0. 3.2
da la=a; + K da la=a; ( )
Multiplying (3.1) by z;, we get
H(a1,a;)x? = H(a,as)x3. (3.3)
Recall that when € is the unit ball, we have
1 1
G(a,b) = - 3.4
OO = T (PP T 1= 2 )P 4
1
H(a,a) = (3.5)

(1= af?)n=2
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Thus,
0H(a,a 2(n — 2)a
2= @ ’ yay2))n—1 (36)
oG ~ (n—2)(b—a) B (n —2)(b— |b|%a)
9D = T T (PRt 1= 200,87 (3.7)

First, using (3.2), (3.6) and (3.7), it is easy to prove that a; # 0 for i =1, 2.

Without loss of generality, we can assume that a; = (0, ..., 0,71 ), where v; is a constant. Taken
the j-th component (for j = 1,...,n—1) of the vector defined by (3.2), with i = 1, it follows that
az = (0,...,0,72), where 7, is a constant. Hence a; and as lay in the same line passing through
the origin. It remains to prove that v; = —s.

Using (3.2), (3.3), (3.6) and (3.7), we get

i 1/2 Vi — Y i

————(H(ay,a1)H (as,a + - =0, 3.8
— b > Y2 M —Y27)"

(1) e B ) T o~ Gy &

for ¢, j = 1,2 with j # 1.
Adding (3.8) for i = 1 and ¢ = 2, we derive

(71 +72)(1 —7172) _ o mtw
A=) 2L =) (1 =my)"!

(3.9)

Thus, if v1+72 # 0, (3.9) implies that (1—v172)% = (1—77)(1—~2) which implies that 7 = 2 and
therefore a; = ay which is a contradiction. Thus 1 +7v2 = 0, that means a; = —ag = (0, ..., 0, t,),
with £, is the unique solution of

Ao t 1 ¢
9tt) = (1—t2)n=1  (2t)n1 * (1+¢2)n-1

=0, forte(0,1),

where we have used (3.8).
Now using (3.3), (3.5) and the fact that the reals x;’s are positive, it is easy to obtain that
x1 = x2. Using again (3.1) we derive that

1 1/2
pr— p— -].
e (H(alaal) +G(a1,az)> (3.10)

which completes the proof of our lemma. a

Next we are going to prove Theorem 1.4.

Proof of Theorem 1.4 Observe that, by Theorems 1.1 and 1.2, we know that u. can be
written as Pd(a. , y. 1) — PO(a o peo) T 0 With [[v]] — 0, uc(ae,1) = maxue, us(ae2) = minu. and
He,ilae 1 — ae 2| — oo, for i = 1,2. Furthermore, the concentration speeds satisfy (1.8).

Set h. := maxd(z,S)"?/2|u.(z)| where S = {ac 1,a.2}. It is easy to prove that h. is bounded
(if not, we can construct another blow-up point and therefore the energy of u. becomes bigger
than 35™/2 which gives a contradiction).

Let dep = d(az1,004) and d.2 = d(ac2,00_), where Q4 = {z € Q : u.(z) > 0} and Q_ =
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{z € Q: u(z) < 0}. We need to prove that d.; # 0 as ¢ — 0. Arguing by contradiction,
assume that d. 1 < d.2 and d. ;1 — 0. We define the following function

we(X) = dg‘flue(a&l +d.1X) for X € Q’E’Jr = d;%(QJ’_ —Qe1),

where a, = 2(n —2)/(4 —e(n — 2)). An easy computation shows that

)

—Aw, =wl™, w. >0 inQ ., w.=0 ondQ,.

Observe that B(0,1) C Q , and w. > 0 in Qf . Since he is bounded and dgll_Q)ﬂuE(ae’l) — 00
(see (2.5) and (2.23)), we derive that 0 is an isolated blow-up point of (w.). Thus, using [14],
we deduce that 0 is isolated simple blow-up point of (w.). Hence, we have

we(0)we(y) < cly)*™™, forall |y| <1/2. (3.11)

By standard elliptic theories, we derive that w.(0)w. converges in C?_ (II) to a function w
satisfying
—Aw=0 in II\ {0}, w=0 on JII,

where II is the limit domain of ©f .. Since 0 is an isolated simple blow-up point of (w.) we
deduce that 0 is a nonremovable singularity and therefore w = c¢Gpy, where Gy is the Green’s
function and ¢ is a positive constant. Now, using Pohozaev identity in the form of Corollary 1.1
of [14] we obtain

(2

ce(1+ 0(1))/ wP e — / wPt1—F = / B(o,z,ws, Vwe)dz, (3.12)
B(0,0) p+1—¢Jopo,0) 8B(0,0)

where c is a positive constant and

n—2 0w, o 9 Owe 2
B(a,x,wg,ng):ng £y —§|Vw5] +o 5 )

Observe that, using (3.11), we obtain
wQ(O)J/ WPt < cw (0)EPe (D L0 as £ — 0 (3.13)
€ e > e , .
9B(0,0)
e(1+ 0(1))w§(0)/ WPt & ed® ¥ cus(ac ) — 0 as e — 0, (3.14)
B(0,0) ’

where we have used (1.8) and the fact that a. — (n —2)/2 and d.; — 0 as ¢ — 0.
For the last term in (3.12), an easy computation shows

lim B(o, 2, w:(0)we, w:(0)Vw,)dx = ¢Hp1(0,0). (3.15)
€=0,0-0 /5B(0,0)
Clearly, (3.12),...,(3.15) and the fact that IT # R" yield a contradiction. Hence d.; /4 0ase — 0
and therefore a; is an isolated simple blow up point of (u.). The same holds for as.
Now, arguing as in the proof of (4.10) of [7], the result follows. O
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Now, we are going to prove Theorem 1.6.
Proof of Theorem 1.6 We start by proving Claim (a). By Theorem 1.4, the points a;’s are
two isolated simple blow-up points of (u). Thus, as in (3.12), we derive that

ce(1+ 0(1))/ ub e — J/ ub e = / B(o, z,us, Vue)dz,
B(ae,i,0) p+l—e¢ 0B(ac,,0) 0B(ac,;,0)
(3.16)
for i = 1,2, where ¢ is a positive constant independent of 7. As in (3.13), we have
o) [T S eunfan) TG 0 as e 0, ()
0B(ac,;,0)
and using (1.8), we have
2 1- 2 2 210,
eug(agvi)/ w1 ~ 5™ 2%eu, (ac1)? — S —5 as £ —0. (3.18)
Blac.1,0) c2\;

It remains to study the right side integral of (3.16). Using again (1.8) and Theorem 1.4, we
derive that
ue (e i)ue — miG(a;,.) — m;G(aj, .) (3.19)

where j # i and m/, m/, are two positive constants satisfying m}/mb, = mq/ma. Thus
lim B(0, 2, ue (e i) ue, ue(ac i) Vus )dz = ¢ (miH (a;,a;) — m;G(ai,a2)), (3.20)
e—0,0—0 aB(a€7i7U) ’ ’ J

for i,j = 1,2 with ¢ # j and where ¢} is a positive constant independent of i and j.
Using (3.19) and (3.20) and the fact that A; = Ay (see Theorem 1.5), we deduce that

mllH(al,al) — mIQG(al,ag) = TTLIQH(EQ,EQ) - mllG(al,ag).
Hence since a3 = —as, using (3.5), we derive that
(m}y —mp) (H(ay,a1) — G(a, —a)) = 0.

It is easy to verify that H(ai,a1) # G(a1,—a1) and therefore we obtain that m} = m{, which
implies that m; = mg. The proof of Claim (a) is thereby completed.

It remains to prove Claim (b). Arguing by contradiction and assuming that the set {x €
Q,us(x) = 0} does not intersect the boundary 0f2. Thus du./0v does not change sign which
implies that 0u/0v does not change sign also, where @ is defined in Theorem 1.4. Now, since
m1 = my (see Claim (a)), an easy computation shows that

ou 0
—(x)dx = mq — (G(a1,z) — G(ag,x))dx = 0,
| S [ 5 (G@.2) ~ Gla.)
which implies a contradiction. Thus the result follows. O

Now, we are going to prove Theorem 1.7.
Proof of Theorem 1.7 According to Theorem 1.5, we know that, for ¢ close to 0, both points
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ac; are far away from the origin and they lay on different sides with respect to T', where T is
any hyperplane passing through the origin but not containing a. ;. Arguing now as in the proof
of Lemma 4.1 of [8], we see that the points a.; lay on the same line passing through the origin.
Lastly, the proof of the other statements of Theorem 1.7 is exactly the same as that of Theorem
1.5 of [8], so we omit it. This ends the proof of our result. O

4 Proof of Theorem 1.8

Throughout this section, ¢ stands for a generic constant depending only on n and whose value
may change in every step of the computations.

To prove Theorem 1.8, we need a delicate analysis and careful estimates. First, for € suffi-
ciently small, Proposition 2.2 implies that u. can be uniquely written as

Us = aLEP(;(aLE?)\LE) — OQ»EP(S(QQ‘E’)\Q’E) + Ve, (4.1)
where v € H}(2), || ve ||— 0 as € — 0 and v, satisfies (2.7).

To simplify the notations, we write a;, A;; Pd; and v instead of e, Aig, Pd(q, . »;.) and ve
respectively. We will also use the following notations:

di = d(a;,00) and &2 = (;\; + i\\i + M2 [ a1 —ag |2>(2")/2‘
Now, we prove the following crucial lemmas:
Lemma 4.1 Assume that n >4 and
e12 = (MA2 | a1 — as ‘2)(2—71)/2 +o(e12) as e —0. (4.2)

Then, for € small, there exists a positive constant ¢ such that

d A
(i) 71 <dy<cdy and (ii) ?1 < A2 < A1
Proof. On one hand, using (4.2), we derive that (2.15) holds. Thus, using (2.9), (2.10), (2.13)
and (2.15), we see that (2.16) holds. On the other hand, (2.9), (2.11) and (2.13) imply that
(2.17) holds. Now, arguing by contradiction we assume, for example, that Aads = o(A1d1). Using
(2.16) for i =1 and ¢ = 2, we obtain (2.18). Using (4.2) and (2.18), we get

L 1 oG (n—1)/(n~2)
Oug) (272 )\7287@(@1’“2) |> ce1y . (4.3)

Clearly, (2.16) for i = 2, (4.2), (2.18) and (4.3) give a contradiction. Thus, we derive that A\;d;
and Aadsy are of the same order. Assume, for example, that dy = o(dz2). In this case, it is easy
to obtain that | a; — aa |[> d2 — di > d2/2. Thus (2.20) holds. Obviously, (2.16) and (2.20) give
a contradiction and therefore Claims (i) and (ii) are proved. O
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Lemma 4.2 Let n > 4 and assume that (1.9) holds. Then, for ¢ small, we have
| ap — ag |: O(dg) and di =dy + O(dQ).

Proof. Observe that Remark 2.3 implies that A;/As — +o00 as € — 0. Thus, using Lemma
4.1, we derive that there exists a positive constant ¢ such that

A

71 ZC)\l)\Qlalfag ‘2.

A2
Thus A2 | a1 — ag |< e. Now, since A\ady — 400 as € — 0, we derive that | a; — as |= o(d2) and
therefore d; = da + o(da2). O

Remark 4.3 Notice that assumption A\1/\a — +00 as e — 0 and Lemma 4.1 imply that
A (n—2)/2
€12 > ¢ (;) for e small.
1

Lemma 4.4 Let n > 4 and assume that (1.9) holds. Then, there exists a positive constant ¢
such that, for e small,

1 —& &

(Zl) —e<¢epa<ce
C
1

(ZZZ) *)\1 § )\2()\2d2)2 S C)\l.
C

Proof. Using (2.10) for i = 1, we see that

1
C1€12 — C2€ =0 <(/\2d2)”—2 + €12 —|—5> .
Thus X
C1

= N I \n—2 . 4.4
€ o €12+ 0 (()\ng)n_2 + £12> (4.4)

Using (2.13), (2.15) and (2.10) for ¢ = 1 and for i = 2, we derive that

H(az, 25 A H(as,
a2 8) g o7 M (14 o(1)) = 0 (W + qz) : (4.5)
)\2 )\2 )\2

But, by Remark 4.3, we know that there exists ¢ > 0 such that

A 2jn
_X%% <1 (4.6)
2

Clearly, (4.4),(4.5), (4.6) and the fact that ¢ < H(ag,a)dy % < 1 imply Claims (i) and (i).
Now, it follows from Claim (¢) and Lemma 4.1 that the following holds:

n—2

n—2
)\2 2 , 1 )\2 2
S — < < —— < < —
C <)\1> S CE12 S ()\ng)n_Q _C€12_C<)\1) s
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where ¢, ¢/ and ¢” are positive constants.
Therefore Claim (7i7) follows. O

Lemma 4.5 Let n > 4 and assume that (1.9) holds. Then, there exists a positive constant ¢
such that, for e small,

(Z) )\1/\2 ‘ al — ag ‘QS C

(73) Aa]ar—az|< cs%én*2 —0 as €—0.

Proof. Using (2.11) for ¢ = 2 and Lemma 4.4, we obtain

1 OH 3 1 n2
FTQQ(GQ, a2) + 2(n — 2))\1(0/1 — a2)€12 =0 <(A2d2)n_1> =0 <€12 ) . (47)

Now, from (4.6) we deduce that

n—1 _ n—1
c\/ A1 \a ‘ a] — ao ‘ 5{1272 <M\ | a1 — ao | 6?2/(n 2) < VA1 | a1 — ao | 5&72. (4.8)

Arguing by contradiction, assume that A Ag | a; — ag |>— +o0o. Using (4.7), (4.8) and the fact

that
| 1 8H( )< c < n-l
———(as,a —— < ceyy 7,
)\72‘_1 Oas 202 (Aadg)—1 12

we obtain a contradiction and therefore Claim (¢) follows. Finally, Claim (i7) follows from Claim
(¢) and Remark 4.3. O

Now, to deal with the case of n > 6, we need the following crucial proposition which improves
the estimate (2.11).

Proposition 4.6 Let n > 6 and assume that (1.9) holds. Then we have

1 Oz12 (n+1)/(n—2)
e =o (7).

Proof. For sake of simplicity, we will use the following notations:

P(SZ = P(S(ah)\i), 51 = 5((11.’)\2.), 91' = 5@ - P5i7
1 0P 1 96,

’U/E:Oélp(sl—agpé% 901:)\—1876”, 1:)\718704

Multiplying (1) by o1 and integrating on €2, we obtain

ar [ Stor—as [ Bhor = [ JulFucen, (49)
Q Q Q
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where p = (n +2)/(n —2).
For the left-hand side of (4.9), it follows from [1] that

frng o L),
[ g;lai‘jl . Rnap;lgf;+0</ 5?51+/52;1 o0 >
- Acl?;cf o <A2 o= <y ) o ((A1d1>’5‘12(A2d2>3>
_;1%2112+ (/o). (4.11)

where we have used Lemmas 4.2, 4.4 and 4.5. For the other integral in (4.9), an easy expansion
implies that

/‘ua‘plsus@lz/ ‘ﬁe‘pilisa\s%pl +p/ |a€|pilv¢71
Q Q Q

_ 1/2 _1\n=2
O (1w P+ lloll+ 1o 1177 (11 61 1] +15(og ) = ) )

= /Q [ RN er/Q P~ vy + 0 (ggg“)/("*”) , (4.12)

where we have used in the last inequality Lemmas 2.4 and 4.4 and the fact that [|61] <
c(A1d1)®=™/2_ For the last integral in (4.12), arguing as in (323) — (326) in [8], we obtain

o T’Q n+2 log Adi %
Jla g <ol (70 tone) 4 B ) <o (1),

where we have used in the last inequality Lemmas 2.4 and 4.4. It remains to study the first
integral in the right-hand side of (4.12). Denoting f = o101 — agds, we observe that

/ [P i1y = / PP+ (o — ) / P15 (s — asfa)n
Q R™ Q

p—€ _— 1 a91 =202 )
’ </Q / ’ /(91+02)<f| e e ’>
! P D i 001
+0 ((Aldl) WA ) +0 </(0 +0)([ U [+ 1 5~ |)> . (4.14)
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Now, using Lemma 4.4, we can write

1 1 1 1 ntl
JCRT S o — c=o(eh?)
A day (Mdi) 2 (Qadg) 2 | (Aidh)2

[iois [ ey [ g
B(ai,d1) B(ai,d1)°

log /\1d1 Z—fl
<G = (B (426)
T T Ly
B(al,dl) B(al,dl)c
c d c ("*é)
<=z =+ P =z = 0| &1 . (4.17)
d2%2 A2 (Aldl)TQ()\2d2)%2 "

Note that, since p — 2 < 0, we get
p—2002 | 92 P, op 1 391 odl
LfIP72(01 + 63) [ o1 [< [ (67 + 65)(] ¢1!+*| )=0 ey ). (418
2(01+02)<|f]

where we have used (4.15)-(4.17). Now, using Lemmas 4.2 and 4.4, we derive that

.1 06 / e 1 /
pe - p=1-cg <—os [ (V48

1

c nt1
< — =0 (51”22> : (4.19)
(A1) 7 (Aada) "2

Using again Lemmas 4.2 and 4.4, we obtain

1
/lflp1592|s01|</5p02+/5p192|:c—a1|5“ /5p192 oa
1

- (Aldl) ()\2d2) =" (Aldl)% i (A2d2) : (Aldl) (512 > (4.20)

Now, we deal with the first integral in the right-hand side of (4.14). To this aim, we set
02 := O(a;, o). We note that, using Lemma 4.5, we derive that

62:52+O<)\2|a27a1|52). (421)
We now introduce the following sets:
p
Ay :={zeR":§ <E 05} ={z eR":| x —ay |>
1 { 1 12 2} { ‘ 1‘ m}
1
Ay = {z €R": 55 < 14051} = {z € R" —
2= {x 2 <e)’on} ={x | al\_ﬂm}

Az = R™ \ (A1 UAQ),
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where
as ¢ — 0.

B 1/2 _ —1/2 _ -
ﬁ = (}\1 _ 614(3(71 2))A2) ()\18%(3@ 2)) _ )\2) ~ 6121/(3(n 2))

We will estimate the first integral in the right-hand side of (4.14) on each set A; for i = 1,2, 3.
First, we write

/A P = /A (202 4+ 0 < /A | B |r—a |> 12

Recall that €19 satisfies (4.6). Hence we get
1 2n—2 n—4 _n_ nt2
/5p 6"2|xa1|<56(”2)/ 6572002 |z —ay |
A1 Al

6” 42 n+2 n+1
<l ))\2 N lr—wm |—0<<€12 ), (4.23)

Aq

ey = [ oy — / N
R™ AgUA3

Aq

= / 5p1,b1 + O (6812(10g(512) ) + O ()\2 ‘ a1 — ao | / 51) | Y1 |> R (424)
n AzUA3

where we have used the evenness of do, the oddness of 11, (2.8) and (4.21). Note that, as in
(4.21), we get

- *12 _n+41 n+ 6 *12 n+1 1
[ Bleizel T [ 5T fema |6 < o). (429)
AgUA3 A

Combining (4.22)-(4.25), (ii) of Lemma 4.5 and using the estimate F'11 of [1], we obtain

i _.c Oe ot
1

Secondly, we write

/A2 | fIP7I8 fon = /142(04151)]0%1 —(p—e¢) /Az(al&)plEO@(&%
+O(/AZ(5§51"62|:UQ1|). (4.27)

6 +1 n+1
/ 626772 |z —ay |< 56(" 2)/ dy~ ]:L‘—al |=o (512 ), (4.28)
2

Note that

A

(p — 6) (5{7_1_6(527#1 =Dp 5f_152¢1 —p/ 5{7_152w1 + O <€€12(10g(€1_21))n772> . (4.29)
Ao R™ A1UA3
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Using the evenness of da, the oddness of ¥ and (4.21), we get

/ 5?;_152"(?1 =0 <)\2 | a1 —ag | / 5713_132 | 1 \) : (4.30)
A1UA3 A1UA3

Arguing as in (4.23), we obtain
1 n+1
/ 5p 521/)1 =0 <€12 > . (4.31)
A1UA3

Thus, using the evenness of 1, the oddness of 11, the estimate F'11 of [1] and combining (4.27)-
(4.31), we derive that

1 1 c Oe ntl
[ e e = R o (). 32
2

Lastly, denoting by f =101 — aggg, and using the evenness of f, we obtain

/\f\p-l-ffwlzo(/ Frls—dallo+ | ~5z—521p\¢1\>- (4.33)
Az Az 2|92—02|>| f]

Note that the set {z : 2| 8y — o |>| f |} implies that 8; = d2(1 4 o(1)). Hence it is contained in
F:={z:]z—a |>c(A\A2)""/?}. Therefore, as in (4.23), we get

n+1

~ LJFQ
/ & =& P < e a—as ) /w | z—ay | & —0<512 ) (4.34)
2|62—02]>|f] F

Now, arguing as in (4.25), we find

~ ~ n+l
[ i a s 0o -al [ 6 1>5m—al|5”—o(eu )

A3 A3
(4.35)
Combining (4.33)-(4.35), we obtain
n+4l
[ o (i), (1.3
As
Clearly, our Proposition follows from (4.9)-(4.20), (4.26), (4.32) and (4.36). O

Now, we are ready to prove Theorem 1.8.
Proof of Theorem 1.8 According to Remark 2.3 and Lemmas 4.2, 4.4 and 4.5, Claim (a)
follows. Now we will prove (1.10) in the case where n > 6. On one hand, observe that Proposition
4.6 and Remark 4.3 imply

1 Oe19 A1 1 Oepo "—:é
= —— |= " ) 4.37
‘ /\2 Bag ‘ ‘ )\2 )\1 8(12 o\ ( )
On the other hand, Remark 4.3 implies that

1 8812

| ’_ C)\l | a]; — ag | 612 C\/ )\1)\2 | a] — a9 5?2 2. (4.38)
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Clearly, from (4.37), (4.38) and Remark 2.3, we get the first claim of (1.10). Now, using (4.37),
Lemma 4.4 and (2.11) for i = 2, we derive that

1 8H( ) ( 1 )
————(ag,a3) =0 ———— ).
At dag 202 (Aadg)n—1
This implies that

H
dy #+0 and 8—(@2,@)%0 as & — 0.
8a2

This completes the proof of (1.10).
It remains to prove Claim (b). Observe that, by Theorem 1.1 and assumption (1.9), we have

e = Pbae sy — Plappun) + with o] =0 and u.(ay) = max|u.  (439)
First we claim that
Idm>0 st he:= max |z — ac 1|2 u (2)] < m. (4.40)
re

In fact, if h. — +o00, then, using the method of R. Schoen [14], we can construct a concentration

point b, with a concentration speed c|u(b.)|*(*~2)~%/2 and the function u. becomes close to
P(ac i) = POo. chuc bo) 2/ (n-2)-e/2).

Observe that, since hy — +00, we derive that

C’us(b5)|2/(n_2)_8/2|ba - a5,1| — 00,

which contradicts the conclusions of Theorem 1.8. Hence our claim is proved.
Now, let
—2)/4—1
Ql = Q\B(G/éﬂ?,u;(;l )/ )7

and we introduce the following function

1

—F U
n—2)/2
Mi,Q )/

1—e(n—2)/4

w(X) = c(aee + uly X)) for X € QL= pl (2 — ac.).

The function w, satisfies

* .
—Aw, = |we|?> 727w, in QL,
we =0 on 0.

Observe that, using (4.40) we derive that
lwe(x)] <m  for each z € Q1 := QL \ B(0,1).
Hence w. converges in C7 (R™\ B(0,1)) to a function w satisfying

—Aw = |w|* 2w in R™\ B(0,1).
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But from (4.39), we deduce that w has to be —5(0’52/(71_2)) (where 3, is defined in Theorem 1.1).
Thus w < —c¢ < 0 in 0B(0,2) which implies that w. < 0 in the same set. Hence u. < 0 in
0B. = 0B(ac 2, 2,11;(;72)/471). Now since pie 2d(az 2,0Q) — oo (see Theorem 1.1) we derive that
B. is contained in a compact set of €. Finally, using the fact that u. (as1) >0, a1 € B (since
fe2l|ac2 —ae 1| — 0) and Q\ {x : u.(z) = 0} has exactly two connected components, we deduce
that the nodal surface does not intersect the boundary of Q2. Hence Claim (b) follows.

This completes the proof of our Theorem. a
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