ON THE SURJECTIVITY OF ENGEL WORDS ON PSL(2,¢)

TATTANA BANDMAN, SHELLY GARION AND ’FRITZ GRUNEWALD ‘

ABSTRACT. We investigate the surjectivity of the word map defined by the n-th Engel word
on the groups PSL(2, ¢) and SL(2, q). For SL(2, q), we show that this map is surjective onto
the subset SL(2, ¢)\{—id} C SL(2, q) provided that ¢ > go(n) is sufficiently large. Moreover,
we give an estimate for go(n). We also present examples demonstrating that this does not
hold for all q.

We conclude that the n-th Engel word map is surjective for the groups PSL(2, ¢) when
q > qo(n). By using the computer, we sharpen this result and show that for any n < 4, the
corresponding map is surjective for all the groups PSL(2,q). This provides evidence for a
conjecture of Shalev regarding Engel words in finite simple groups.

In addition, we show that the n-th Engel word map is almost measure preserving for the
family of groups PSL(2, ¢), with ¢ odd, answering another question of Shalev.

Our techniques are based on the method developed by Bandman, Grunewald and Kun-
yavskii for verbal dynamical systems in the group SL(2, q).

1. INTRODUCTION

1.1. Word maps in finite simple groups. During the last years there was a great interest
in word maps in groups (for an extensive survey see [Se|). These maps are defined as follows.

Let w = w(xy,...,2q) be a non-trivial group word, namely a non-identity element of the free
group Fy on x1,...,24. Then we may write w = x7'z;” .. x:;’“ where 1 < i; < d, n; € Z,
and we may assume further that w is reduced. Let G be a group. For g1, ..., g; we write

w(g, ..., 94) = 95 9iw - - 9 € G,
and define
w(G) ={w(g1,---,9a) 1 g1,---,9a € G},
as the set of values of w in G. The corresponding map w : G¢ — @ is called a word map.

It is interesting to estimate the size of w(G). Borel [Bo] showed that the word map induced
by w # 1 on simple algebraic groups is a dominant map. Larsen [La] used this result to
show that for every non-trivial word w and e > 0 there exists a number C'(w, €) such that if
G is a finite simple group with |G| > C(w,¢) then |w(G)| > |G|'°. By a celebrated result
of Shalev [Sh09] one has that for every non-trivial word w there exists a constant C'(w) such
that if G is a finite simple group satisfying |G| > C'(w) then w(G)? = G. These results were
substantially improved by Larsen and Shalev [LS] for various families of finite simple groups,
and have recently been generalized by Larsen, Shalev and Tiep [LST].

One can therefore ask whether w(G) = G for any non-trivial word w and all finite simple
non-abelian groups G. The answer to this question is clearly negative. It is easy to see that
if G is a finite group and m is an integer which is not relatively prime to the order of G
then for the word w = z* one has that w(G) # G. Hence, if v € F, is any word, then
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the word map corresponding to w = v™ cannot be surjective. A natural question, suggested
by Shalev, is whether these words are generally the only exceptions for non-surjective word
maps in finite simple non-abelian groups. In particular, the following conjecture was raised:

Conjecture 1.1 (Shalev). [Sh07, Conjectures 2.8 and 2.9]. Let w # 1 be a word which is
not a proper power of another word. Then there exists a number C'(w) such that, if G is
either A, or a finite simple group of Lie type of rank r, where r > C(w), then w(G) = G.

It is now known that for the commutator word w = [z,y] € Fy, one has that w(G) = G
for any finite simple non-abelian group GG. This statement is the well-known Ore Conjecture,
originally posed in 1951 and proved by Ore himself for the alternating groups [Or]. During
the years, this conjecture was proved for various families of finite simple groups (see [LOST)]
and the references therein). Thompson [Th] established it for the groups PSL(n,q), later
Ellers and Gordeev [EG] proved the conjecture for all finite simple groups of Lie type defined
over a field with more than 8 elements, and recently the proof was completed for all finite
simple groups in a celebrated work of Liebeck, O’Brien, Shalev and Tiep [LOST].

There was also an interest in quasisimple groups. By [Th] and [LOST], in every quasisimple
classical group SL(n,q), SU(n,q), Sp(n,q), Q%(n,q), every element is a commutator (a
quasisimple group G is a perfect group such that G/Z(G) is simple). However it is not true
that every element of every quasisimple group is a commutator, see the examples in [BI].

1.2. Engel words. After considering the commutator word, it is natural to consider the
Engel words. These words are defined recursively as follows.

Definition 1.2. The n-th Engel word e,(x,y) € Fy is defined recursively by

er(z,y) = [z,y] = zyz 'y,

en(x,y) = len—1,y], for n > 1.
For a group G, the corresponding map e, : G X G — G is called the n-th Engel word map.
Now, the following conjecture is naturally raised.

Conjecture 1.3 (Shalev). Let n € N, then the n-th Engel word map is surjective for any
finite simple non-abelian group G.

For some (small) finite simple non-abelian groups this conjecture was verified by O’Brien
using the MAGMA computer program.

Note that in order to complete the proof of Ore’s Conjecture, Liebeck, O’Brien, Shalev
and Tiep used the classical criterion dating back to Frobenius, characterizing the possibility
of writing an element ¢ in a finite group G as a commutator by the non-vanishing of the
character sum

x(9)
x(1)’

(see [LOST] and the references therein). Unfortunately, it is unknown whether there is an
analogous criterion for the possibility of writing an element as an Engel word e,, n > 1.
Hence, Shalev’s Conjecture seems to be substantially more difficult than Ore’s Conjecture,
even for certain families of finite simple groups, such as PSL(2, q).

x€lrr(G)
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1.3. Engel words in PSL(2,q) and SL(2,q). We consider Engel words in the particular
case of the groups PSL(2,q) and SL(2,¢), in an attempt to prove Conjecture 1.3 for the
group PSL(2, q).

By Thompson [Th], every element of SL(n,q), except when (n,q) = (2,2),(2,3), is a
commutator (including the central elements). Moreover, Blau [Bl] proved that with a few
specified exceptions, every central element of a finite quasisimple group is a commutator. In
particular, if G is a quasisimple group of simply connected Lie type, then every element of
Z(@) is a commutator. Interestingly, such a result fails to hold for Engel words.

Indeed, in the group SL(2,q), where ¢ is odd, if n > ng(q) is large enough then the
central element —id cannot be written as an n-th Engel word, namely e, (z,y) # —id for
any x,y € SL(2,q) (see Proposition 4.7), implying that the n-th Engel word map is not
surjective. This leads us to introduce the following notion of “almost surjectivity”.

Definition 1.4. A word map w : SL(2,q)? — SL(2,q) is almost surjective if w(SL(2,q)) =
A method for investigating verbal dynamical systems in the group SL(2, ¢), using the so-

called trace map, was introduced in [BGK]. We use this method to study the verbal systems
corresponding to Engel words, and obtain the following result.

Theorem A. Let n € N, then the n-th Engel word map is almost surjective for the group
SL(2,q) provided that g > qo(n) is sufficiently large.

We moreover give an estimate for ¢o(n) which, unfortunately, is exponential in n (see
Corollary 5.8).

Theorem A certainly fails to hold for all groups SL(2,¢). Indeed, we give examples for
integers n > 3 and finite fields IF, for which the n-th Engel word map is not almost surjective
for SL(2,q) (see Example 4.1). We moreover show that there is an infinite family of finite
fields F,, such that if n > ng(q) is large enough, then the n-th Engel word map in not almost
surjective on SL(2, q) (see Proposition 4.9).

Considering the group PSL(2,q), we see that Theorem A immediately implies that the
n-th Engel word map is surjective for the group PSL(2,q) provided that ¢ > go(n). Thus,
when n is small, one can verify by computer that the n-th Engel word map is surjective for
the remaining groups PSL(2, ¢) with ¢ < go(n), hence for all the groups PSL(2, q).

Corollary B. Let n < 4 then the n-th Engel word map is surjective for all groups PSL(2, q).

We have moreover shown that there are certain infinite families of finite fields I, for which
the n-th Engel word map in PSL(2, ¢) is always surjective for every n € N. The first family
consists of all finite fields of characteristic 2 (see Proposition 4.10), and the second family
contains infinitely many finite fields of odd characteristic (see Proposition 4.11). Following
Conjecture 1.3 we believe that the surjectivity should in fact hold for all groups PSL(2, q).

1.4. Equidistribution and measure preservation. Another interesting question is the
distribution of a word map. For a word w = w(xy,...,z4) € Fy, a finite group G and some
g € G, we define

Nu(g) ={(g1,---.9a) € G* :wlgn,..., 9a) = g}.
It is therefore interesting to estimate the size of N, (g), and especially to see whether w is
almost equidistributed, namely if | N, (g)| ~ |G|?~! for almost all g € G. More precisely, we
define:
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Definition 1.5. A word map w : G¢ — G is almost equidistributed for a family of finite
groups ¢ if any group G € ¢ contains a subset S = S C G with the following properties:
(1) 5] = |G[(1 = o(1));
(ii) |Nw(9)| = |G]4"1(1 + o(1)) uniformly for all g € S;

where o(1) denotes a real number depending only on G which tends to zero as |G| — oo.

An important consequence (see [GS, §3]) is that any “almost equidistributed” word map
is also “almost measure preserving”, that is:

Definition 1.6. A word map w : G — G is almost measure preserving for a family of finite
groups ¥ if every group G € ¥ satisfies the following:

(i) For every subset Y C G we have

W™ (Y)I/IG)" = [Y]/IG] + o(1);
(11) For every subset X C G we have

w(X)I/IG] = [X]/|G]* = o(1);

(7ii) In particular, if X C G¢ and |X|/|G|?* = 1 — o(1), then almost every element g € G
can be written as g = w(gy, ..., gq) where g1,...,g9q € X;
where o(1) denotes a real number depending only on G which tends to zero as |G| — oc.

The following question was raised by Shalev.

Question 1.7 (Shalev). [Sh07, Problem 2.10]. Which words w induce almost measure
preserving word maps w : G¢ — G on finite simple groups G?

It was proved in [GS] that the commutator word w = [z,y] € F as well as the words
w = [x1,...,24] € Fy, d-fold commutators in any arrangement of brackets, are almost
equidistributed, and hence also almost measure preserving, for the family of finite simple
non-abelian groups.

A natural question, suggested by Shalev, is whether this remains true also for the Engel
words. We prove that this is indeed true for the family of groups PSL(2, q), where ¢ is odd.

Theorem C. Letn € N, then the n-th Engel word map is almost equidistributed, and hence
also almost measure preserving, for the family of groups {PSL(2,q) : ¢ is odd}.

Since it is well-known that almost all pairs of elements in PSL(2, q) are generating pairs
(see [KL]), we deduce that for any n € N, the probability that a randomly chosen element
g € PSL(2,q), where g is odd, can be written as an Engel word e, (z,y) where z,y generate
PSL(2, q), tends to 1 as ¢ — oo.

It was proved in [MW] that when ¢ > 13 is odd, every nontrivial element of PSL(2, q) is
a commutator of a generating pair. One can therefore ask if a similar result also holds for
the Engel words.

1.5. Notation and layout. Throughout the paper we use the following notation:
e G =PSL(2,9);

o G =SL(2,q);
e [F, — the algebraic closure of the finite field F;
e |M| — number of points in a set M;

° A:’zl ..o, — k-dimensional affine space with coordinates 1, ..., z;
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s,u, t) = s% +t* + u? — sut — 2;

X)) — degree of a projective set X;

X)) — geometric genus of a projective curve X;
") stands for n'” iteration of a morphism f.

(
(
(
(

°p
o d
°yg
o f

Some words on the layout of this paper. In Section 2 we recall the general method
developed in [BGK] for investigating verbal systems in the group SL(2,¢q). We apply this
method to Engel words in Section 3. In Section 4 we discuss the surjectivity (and non-
surjectivity) of Engel words in the groups SL(2, ¢) and PSL(2, q) for certain families of finite
fields. The proof of our main theorem, Theorem A, appears in Section 5. In Section 6 we
check the surjectivity of short Engel words for all groups PSL(2, ¢) and prove Corollary B.
The proof of the equidistribution theorem, Theorem C, appears in Section 7. In Section 8
we discuss further questions and conjectures.

2. THE TRACE MAP

The main idea is to use the method which was introduced in [BGK] to investigate ver-
bal dynamical systems. This method is based on the following classical Theorem (see, for
example, [Vo, Fr, FK] or [Ma, Go] for a more modern exposition).

Theorem 2.1 (Trace map). Let F' = (x,y) denote the free group on two generators. Let us
embed F' into SL(2,7Z) and denote by tr the trace character. If w is an arbitrary element of
F, then the character of w can be expressed as a polynomial

tr(w) = P(s,u,t)
with integer coefficients in the three characters s = tr(x),u = tr(zy) and t = tr(y).

Note that the same remains true for the group G = SL(2,q). The general case, SL(2, R),
where R is a commutative ring, can be found in [CMS].

The construction used below is described in detail in [BGK]. In this construction, SL(2,F,)
is considered as an affine variety, which we shall denote by G as well, since no confusion may
arise. We will also consider SL(2,F,) as a special fiber at g of a Z-scheme SL(2,Z).

For any z,y € G denote s = tr(z), t = tr(y) and u = tr(zy), and define a morphism
m GxG— A3 by

s,u,t
m(z,y) = (s,u,t).

Theorem 2.2. [BGK, Theorem 3.4]. For every Fy-rational point Q = (so,uo,t0) € A2,

the fiber H = 7=%(Q) has an F,-rational point.

Let w(z,y) be a word in two variables and let ¢ : G x G — G be a morphism, defined as

p(2,y) = wlz,y).
The Trace map Theorem implies that there exists a morphism ¢: A2, — A2, such that

S, Ut
U(m(z,y)) = 7(@(2,9),y). (2.1)
This map is called the “trace map”, and it satisfies
W(s,u,t) = (fils, u,t), fas, 4, 1), ), (2.2)

where fi(s,u,t) =tr(@¢(x,y)) and fo(s,u,t) = tr(@(z, y)y).
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Define ¢ = (3,id): G x G — G x G by ¢(z,y) = (¢(x,y),y). Then, according to (2.1)
and (2.2), the following diagram commutes:

GxG 25 GxQG

gl | (2.3)

A%, L A3

s,u,t s,u,t
Therefore, the main idea is to study the properties of the morphism 1 instead of the
corresponding word map w.
As it will be shown later, the morphism v corresponding to Engel words is much simpler.
Moreover, it follows from Theorem 2.2 that the surjectivity of ¢ implies the surjectivity of
¢ (see Proposition 3.6).

3. TRACE MAPS OF ENGEL WORDS

Let e, = en(z,y) : G x G — G be the n-th Engel word map, and let s, = tr(en(z,y)).
Then

s1 = tr(ei(w,y)) = tr([z,y]) = s* + 7 +u® — ust — 2 = p(s,u,t). (3.1)
Moreover, for n > 1,
tr(en(w, y)y) = trenrye, 1y y) = tr(en—1ye,ty) = tr(y) =t. (3.2)
Therefore, for n > 1,
Syt = tr(ens1) = D(Sp, t, 1) = 52 — s,t% + 2% — 2. (3.3)
In the notation of diagram (2.3) we have
U(s,u,t) = (p(s,u,t),t,t). (3.4)
This yields a corresponding map ¢4 : A3, — A3 which satisfies

Vpsr(s,u,t) = P (s 0, ) = Y(sp, u,t) = ((5n, 1, 1), 1,1) = (Sppa, 1, 1). (3.5)
Remark 3.1. If n > 1 and tr(y) # 0 then e, (z,y) # —id, since tr((—id)y) = — tr(y) # tr(y)
in contradiction to (3.2).

Define H = {(2,y) € G x G|tr(xy) = tr(y)} and A = {(s,u,t) € A3, | u =t} =2 A?,, then

s,t)
m(H) C A. Equation (3.5) now shows that in order to find the image of ¥, : A3, — A3

S,u,t S,u,t?
one may consider its restriction p™ : A2, — A2, where u(s,t) = (s* — st? 4+ 2t* — 2,t).

Definition 3.2. Let us introduce the following morphisms:

¢ 0, GxG—GxG, gulw,y) = (enrr(@.9).9), ealz,y) = o8 (@, y);

oQ:Gxé—>G, O(x,y) = z;
o 7:G — Al 7(x)=tr(z);

o Mt AZ — AL (s, t) =s;
o Nt A, — AL No(s,u,t) = (s,1);

o AL, — A2, p(s,t) = (s* — st® + 267 — 2,1);
b pn:Ait_’Aia pn:Alo,un;
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These morphisms determine the following commutative digram:

(n) ~

GxG 2% n, H Y @
™ ™ i |
PR LA | (3.6)

)\Ql )\Ql Tl

2 HBn a2 A1 1
As,t —>As,t - As

Remark 3.3. 6 0 ¢, (z,y) = ent1(z,y) and ¢na1(s,u,t) = (pn 0 Xao(¥(s,u, 1)), t,1).

Thus, the trace map 1 of the first Engel word e;(z,y) = [z, y] maps the three-dimensional
affine space A3 into a plane A = {u = t}. One can consider the trace maps of the following
Engel words e, .1 as the compositions of this map 1 with the endomorphism g, of A.

First, in Proposition 3.4, we find the image ¥ (A3) C A and then in Proposition 3.6 we
establish the connection between the image of u,, and the range of the corresponding Engel
word e, 1. In the next section we shall study the properties of p,,.

Proposition 3.4. The image ¥, = (A2,
(1) A(F,), if q is even;
(2) A(F,) \ Z, C A(F,), if q is odd, where

Z,=1{(s,t,t) € A| t* =4 and s — 2 is not a square in F,}.
Proof. A point (s,t,t) € ¥, if Cs4(F,) # 0, where
Csr = {(s,u,t)| p(s',u, t) = s}.

(F,)) is equal to:

Now,
p(s' u,t) —s=8?+u* +1* —us't —2 —s.
Case 1. q is even. Then the equation
p(s ut) —s=8?+u?+1t* —us't —2—5=0
has an obvious solution s’ = 0,u? = ¢* + s, since every number in F, is a square.
Case 2. ¢ > 3 is odd. Then

t t?—4
p(shut)—s=s*+uP+t* —us't —2—s= (S/—%)Q—UZ(T)-}-tQ—Q—S.

Thus, Cy; for a fixed ¢, is a smooth conic if * — 2 — s # 0 and ¢* # 4, with at most two
points at infinity. If > —2 — s = 0 then (s, 1s a union of two lines
t t
{(s - %) - gW —d=0}u{(s - %) +%\/—t2 —1=0}
which have a point (s’ = 0,u = 0) defined over any field, provided t* — 4 # 0.
If 2 — 4 = 0, then the equation
t
p(s' u,t)—s= (s — %)24—2—3 =0
has a solution if and only if s — 2 is a full square. 0

Definition 3.5. Let us define the following sets:
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e Epyy=00¢,(GxG)={z¢€q: thereexist (z,y) € G x G s.t. enp1(z,y) = 2}
° Y, = )‘2(\Ijq)§
o V= (Vo) \{(s,) : t = 0}
o T(F,) = palY,):
o T, (Fy) = pn(Yy).
Proposition 3.6.
(A) If ¢ > 2 is even and a € F,, then the following two statements are equivalent:
(1) a € To(Fq) = pn(ra(A(Fy)));
(ii) Any element z € G with tr(z) = a belongs to Fy 1.
(B) [fg > 3 1s odd and a € Fy, a # —2, then the following two statements are equivalent:
(i) a € To(Fy) = /)n()‘g(\pq));
(i) Any element z € G with tr(z) = a belongs to Eniq.
(C) If ¢ > 3 is odd and —2 € T} (F,) then any element z € G, z # —id, with tr(z) = —2
belongs to Fp 1.

Proof. 1t is obvious that if z = e, 1(z,y), then a = tr(z) = p, o Ao (V(tr(z), tr(zy), tr(y)).
Thus we need to prove the implications (z) = (7).

Assume that a = p,(s,t) for some (s,t) € Y, = A (¥,). Since ¢ is surjective onto VU,
there exists a point (s, u,t) € A3(F,) such that (s,t,¢) = ¢(s',u,t). Since the morphism 7
is surjective for any field, one can find (2/,y') € G x G such that 7(2,y’) = (s',u,t). Let
v =en1(2,y), then tr(v) = a (see digram (3.6)).

Case 1. FEither q is even and a # 0, or q is odd and a # +2.

In this case, @ = tr(z) = tr(v) implies that v is conjugate to z, i.e. z = gvg™! for some g €
G. Therefore e,41(g2'g™", gy'g™) = gug™ = z, and so one can take z = ga/g™,y = gy/'g "

Case 2. FEither q is even and a = 0, or q is odd and a = 2.

Observe that 2 always belongs to T,,(F,) since 2 — 2 = 0 is a full square and (2,7) is a
fixed point of p,.

It suffices to prove that all matrices w = ((1) T), c € F,, are in the image £,. Since

(6 1)-G D)6 "),

one can take some 0 # a € F, with a? # 1 and b = Ty

Case 3. ¢q is odd and a = —2.
if -2 € T)(F,) then v # —id by Remark 3.1. Choose a € F2 \ F, such that o* € F,. Let

a 0

Then mvm~' € G and moreover, either v or mvm ™! is conjugate to z in G.
If v is conjugate to z, then we proceed as in Case 1.

If mvm~1! is conjugate to z, then we consider the pair (x”

— mx/m—l’y// — my/m—l) c
G x G. We have mvm™ = e,1(2”,y"), and we may continue as in Case 1. O

Corollary 3.7. Ifa € Fy, a # —2 belongs to the image pn(A2,)(F,), then any element z € G
with tr(z) = a belongs to E,.
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Proof. Indeed, p,(A2,) C pn_1(X2(¥,)), because (s, t,t) = (p(s,t),t,1). O

Definition 3.8. When ¢ is odd, the point (s,t) € Ag,t is called an exceptional point if either
t =0 or t? = 4. The set of all exceptional points is denoted by Y.
Corollary 3.9. If either q is even and a € pn(AZ,), or q is odd and a € p,(AZ,\ T), then

any element z € G = G(F,) with tr(z) = a belongs to Enyy, i.e there exist (z,y) € G x G
such that z = epi1(x,y).

Corollary 3.10. If ¢ is odd and T,,(F,) contains either a or —a for every a € F, then the
Engel word map e, is surjective on PSL(2, q).

Proof. 1t follows from Proposition 3.6(B) and the fact that both elements z € SL(2,¢) and
—z € SL(2, ¢) represent the same element of PSL(2, g). O

4. SURJECTIVITY AND NON-SURJECTIVITY OF ENGEL WORDS OVER SPECIAL FIELDS

The following examples show that the n-th Engel word map (for n > 3) is not always
almost surjective on SL(2,¢) (in light of Proposition 3.6). However, it is still conjectured
that it is surjective on PSL(2, q) (see Conjecture 1.3).

Example 4.1. In the following cases, computer experiments using MAGMA show that there
is no solution to p, = a in FF,.

e There is no solution in Fy; to p, = 9 for every n > 2.

e There is no solution in Fy3 to p, = 4 for every n > 5.

e There is no solution in Fy7 to p, = 10 for every n > 2, to p, = 4 for every n > 4,

and to p, = 5 for every n > 5.

e There is no solution in Fs5 to p, = 16 for every n > 2.

e There is no solution in F53 to p, = 31 for every n > 8.

e There is no solution in Fg; to p, = 4 for every n > 10.

Remark 4.2. In fact, it is sufficient to check any of the above examples for all integers
n < g, since for every (s,t) € FZ there exist some N < ¢ such that uy(s,t) is a periodic
point of .

Following some further extensive computer experiments using MAGMA, in which we checked

all ¢ < 600 and n < 50, we moreover suggest these conjectures (see also Proposition 4.9 be-
low).

Conjecture 4.3. For every finite field F,, a € F, and n € N, unless either a = 1 and
V2 ¢ IF,, or the triple (¢, a,n) appears in one of the cases in Example 4.1, one has that p,
attains the value a.

Conjecture 4.4. For every finite field F,, a € F, and n € N, either a or —a is in the image
of pn-

Observe that if the first conjecture is true then so is the second.

We continue by considering some special infinite families of finite fields. We will mainly
use the following properties of the maps u, and p,.

Properties 4.5.
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Corollary 4.6. Lett € F,. Then t* — 1 is in T,(F,) for every n.

Proof. Ttem (2) implies that the point (t* — 1,¢) is a fixed point of u. Moreover, if 2 = 4,
then (#* — 1) — 2 = 1 is always a square, and hence t* — 1 € ¥, for every q. O

First, we explain why —id cannot appear in the image of long enough Engel words, moti-
vating Definition 1.4 of “almost surjectivity”.

Proposition 4.7. For every odd prime power q there is a number ng = no(q) such that
en(x,y) # —id for every n > ny and every x,y € G = SL(2, q).

Proof. Assume that e,1(x,y) = —id. Then, by Remark 3.1, there exists some b € [F, such
that p,(b,0) = —2. According to Properties 4.5(5),

pn(D,0) = & +

where ¢ € F 2 is defined by the equation b = c 4 % Thus,
1
2

¢ + C? = —2,
implying that X
n—1
(02 + 2 )2 =0,
and so
& =—1.
If n > q then the last equation has no solution in F . O

Remark 4.8. Note, however, that —id can be written as a commutator of two matrices in
SL(2,q), where ¢ is odd. Indeed, take a,b € F, satisfying a® 4+ b* = —1, then

(o) G %)=

(See [Th] and [BI] for a general result regarding central elements in SL(n,q) and other
quasisimple groups).

Second, we show that there exists an infinite family of finite fields F,, for which the n-th
Engel word map in SL(2, ¢) is not even almost surjective for sufficiently large n > ny(q).

Proposition 4.9. Let F, be a finite field which does not contain V2. Then there exists some
integer ng = no(q) such that for every n > ng, p, # 1.

Proof. Since the set of points (s,t) € A*(F,) is finite, every point is either periodic or
preperiodic for p,. This means that for every (s,t) € A3(F,) there are numbers (s, t) and
m(s,t) < n(s,t) such that

Lin(st) (S:1) = Him(s,t)(5,1).
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For a point (s,t) we define n(s,t) as the minimum of all possible n(s, ).
Let
no = max{n(s,t): (s,t) € A*(F,)}.
Then every (s,t) € Ry, = pin, (A*(F,)) is periodic and R, = R, for any n > ng. In order to
show that p, # 1 it is sufficient to show that for any ¢, the point (1,¢) &€ R,,, i.e. to show
that it is not periodic. Indeed, u(1,t) = (t* —1,t) which is a fixed point for any ¢. Thus, for
every k > 0 we have pi(1,t) = (£ — 1,t) # (1,¢t), if t2 # 2. O

Third, we show that there are certain infinite families of finite fields F, for which the n-th
Engel word map in PSL(2, q) is always surjective for every n € N. The first family consists
of all finite fields of characteristic 2, and the second family contains infinitely many finite
fields of odd characteristic.

Proposition 4.10. For every n > 1, the Engel word map e, is surjective on the group
PSL(2,q) for ¢ =2°¢ e > 1.

Proof. In this case
(s, t) = (s> —st*, ), p(s,0) = s>, (4.1)
Thus p(s,0) is an isomorphism of Al(F,), as well as any of its iterations p,(s,0). According

to Proposition 3.6, this implies the surjectivity of the n-th Engel word map on PSL(2,q) =
SL(2,q). O

Proposition 4.11. For every n > 1, the Engel word map e, is surjective on the group

PSL(2,q), if V2 € F, and /-1 & F,.

Proof. By Corollary 3.10, we need to show that either a € T,,(F,) or —a € T,,(F,) for every
a € F,.

In this case, the map x — 2 is a bijection on the subset of full squares of . It follows
that if @ = b? for some b € F,, then for every n, there is some b, € F, such that a = 02".
Moreover, for every a € F, either a = b? for some b € F, or a = —b* for some b € F,.

Assume that z € PSL(2,¢q) and z # e, 1(x,y). Let tr(z) = a. Then, by Corollary 4.6,
neither a + 1 nor —a+ 1 is a square in F,. It follows that a+1 = —c? and —a +1 = —b* for
some b, ¢ € F,. Hence, a = 0> +1 = 02" 4+ 1 = p, (b, + 1,+/2) according to Properties 4.5(6),
yielding a € T,(F,). O

2

5. ENGEL WORDS IN SL(2,¢) FOR SUFFICIENTLY LARGE ¢

In this section we prove Theorem A and show that the n-th Engel word map e,, is almost
surjective on SL(2, q) if ¢ > go(n) is sufficiently large. We moreover give an explicit estimate
for go(n), which, unfortunately, is exponential in 7.

By Proposition 4.10 we may assume that ¢ is odd. We continue to use the notation
introduced in Definition 3.2.

Theorem 5.1. For every n € N there exists o = qo(n) such that p, : A2, \' T — Al is
surjective for every field F, with ¢ > qo. Moreover, if n is a prime then there is an orbit of
1 of length precisely n.

Proof. Together with the endomorphism i : A2, — A2, we may define the following endo-
morphism m : AZ  — Ai% by

m(z, x) = (2(z — %), »). (5.1)
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A direct computation shows that p may be reduced to (5.1) by the substitution z =
s—2, x=1>—4.

Similarly to the morphisms A;(s,t) = s and p, = A; o 4™, we may define the morphisms
1:A2, — AL I(z,%) =zand r, = lom™.

First, we note that s = 2 is always in the image of p,, (see Proposition 3.6). Note also that
(s,t) = (—2,0) cannot be a periodic point, since u(—2,0) = (2,0), which is a fixed point.

Now, assume that some a + 2 € Fy,a # 0 is in the image of p,. This is equivalent to
a = r,(z, ) for some z € F, and » =t — 4, t € F,. The last statement implies that the
following system of equations has a solution in Fy:

(20 = 21(21 — x),

Zn = Zn—l(zn—l - %)7 (52)
a = zp(z, — ),
w=1t>—4.

\

Similarly, the orbit of length n is defined by the following system:

( 29 = 21<Z1 — %),

Zn = Zn_1(Zn_1 — %), (5.3)
21 = zp(2n — %),
w=1>—4.

\

If n is a prime, then system (5.3) describes all the points in an orbit either of exact length

n or of exact length 1. In the latter case, these points are z; = »+ 1,7 = 1,...,n and
z,-:(),z':l,...,n

Consider the projective space ]P’””(Fq) with homogeneous coordinates {xy : - -, 1y :
d:w}. Assume that z; = i =1...,n, =2 1t . Then system (5.2) defines in P2

a projective set
((zow = z1(x1 — ¥),

X =4 vow=m, (01— 1Y), (5.4)

aw? = To(Tn — ),
| yw = d* — 4w

Similarly, system (5.3) defines a projective set
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((zow = 1 (x1 — ¥),

X1 = 2w =2y (201 — y), (5.5)
rw = xp(x, — y),
yw = d* — 4w

\

Lemma 5.2. The intersections S = X N{w = 0} and S; = X; N {w = 0} consist of 2"
smooth points with w =0,d =0,y =1 and z; =0 or 1 (fori=1,...,n).

Proof. 1f there was a point in X with w = 0,y = 0, then, according to (5.4) (respectively
(5.5)), d and all x; would vanish as well, which is impossible. Thus, y # 0 at the points of
S and S;. But then (5.4) (respectively (5.5)) implies that every x; is either 0 or y at the
points of S (respectively Sy).

It follows, in particular, that the sets X and X; have no components of dimension greater
than 1, since the intersection of each such component with {w = 0} would be positive
dimensional.

Let us compute the Jacobian matrices of these systems. We have for (5.4):

[ Oy Ow Oy Or, Oz, coe Onp gy Oz, ]
0 —T9 —r1 211 —Y —w o 0 0
0 —x3 —9 0 200 —y —w o 0 (5.6)
0 —Tp —Tp_1 0 0 e 2x, —y —w
0 —2aw —Zy 0 0 e 0 20, — Yy
12d —8w—y —w 0 0 e 0 0 |
and similarly for (5.5):
[0y Ow Oy Or, Oz, coe Oy, Oz, ]
0 —X —r1 2w —y —w o 0 0
0 —T3 —T9 0 200 —y —w . 0 (5.7)
0 —Tp —Tp_1 0 0 e 2x, —y —w
0 —I1 —Zy —w 0 e 0 20, —y
12d —8w—y —w 0 0 e 0 0 |
Since at the points of S and S; the ranks of these matrices are n + 1, every point is
smooth. U

Remark 5.3. In particular, we have proved that the map p, is surjective over every alge-
braically closed field. Indeed, every component of X has dimension at least one, thus no
fiber is contained in the set {w = 0}.

Consider an irreducible component A4; (over F,) of X of degree d;. If it was not defined
over [F, then every point in A;, which is rational over F,, would be singular. But, according
to Lemma 5.2, A; has smooth points defined over F, (namely, A; N S). Thus, A; is defined
over [F,. Similarly, every irreducible component B; of X is defined over [F,.
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Let w : P"** — P2, be defined as w(zxy : -+ :ap ty :d:w) = (x;:d: w). Then w
induces a birational map of every A; (respectively B;) on its image R; = w(A;) (respectively
U; = w(B;)), because of (5.4) (respectively (5.5)). Thus, A; is birational to the closure v

in P? of an irreducible component of the set
Y0 = {r, (21,1 —4) = a} C A?

21,00
which becomes
y(m — {pn(s,t) =a+2} C Ait,
after the following change of a coordinates s = 2 + 21, (r1 — x1 + 2w). Similarly, B; is

) in P2 of an irreducible component of the set

20 = {p,(s,t) = s} C AZ,.
The plane curves R; and U; are defined over the ground field as the projections of A; and
B; respectively. Let d, < 3*" and j, < 3?" be the degrees of Y™ and 7" respectively.

birational to the closure 7(n

For the number N(q) of points over the field F, in an irreducible curve C' of degree d in
P?, we use the following analogue of the Weil inequality (see [AP], [GL, Corollary 7.4] and
[LY, Corollary 2]),

[C(Fy) — (g + 1) < (d—1)(d—2)/q. (5.8)
Hence, we obtain
|Ri(Fq)| > q+1—d2\/q, (5.9)
and
Ui(Fy)] > g+ 1~ jav/a. (5.10)

Now we need to check how many of these points can be exceptional or at infinity. All
these points are the intersection points with 4 lines: d = 0, d = £2w, w = 0. By the Bezout
Theorem there are at most 4d,, (respectively, 4j,,) such points.

For any q > 2d} we have

g+1—d>Jg>2dt +1—-dV2=d* (2 —V2) +1 > 4d,.
Similarly, for ¢ > 2j2,

G+ 1= Ja/d > 2y + 1= jivV/2 = Gu(2 = V2) + 1> 4.
Thus, if ¢ > max{2d:, 252} then (R; \ T)(F,) # 0 and (U; \ T)(F,) # 0, which completes
the proof of Theorem 5.1. O

Corollary 5.4. The map e, : Gx G — G is almost surjective zfé = SL(2,q) and g > qo(n)
15 big enough.

Proof. According to Corollary 3.9, the almost surjectivity of e,,; on SL(2,q) follows from
the surjectivity of p, on A2, \ T, which was proven in Theorem 5.1 for any ¢ > go(n). O

In order to make the estimation for gy(n) more precise a detailed study of system (5.4) is
needed.

Proposition 5.5. The curve X defined in (5.4) is irreducible provided a # 0. Leti : X — X

be the normalization of X. Then the genus g(X) < 2"(n — 1) + 1 and v=(S) contains 2"
points.
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Proof. We will work over an algebraic closure of a ground field. For k = 1,...,n, we denote
by C}, a curve defined in P"*+2 by
Tpw = Tx(T) — Y),
Cr = : (5.11)
TpW = xn—l(xn—l - y)7
aw? = T, (2, —y).

Lemma 5.6. If a # 0 and q is odd, then the system (5.11) for k = 1 defines in P"! q
smooth irreducible projective curve Cy of genus g(Cy) < 2" 1 (n —2) + 1.

Proof. Let gi denote the genus g(Cy) (if Cy is irreducible).

We shall prove by induction on r = n — k that all curves C}, are irreducible and moreover
G <27 —k—1)+1.

Step 1. It is obvious that C, (r = 0) is an irreducible conic in P? and that g, = 0. At a
point (o : §: 1) € C,, we may use the affine coordinates z; = %, = £. A local parameter
on C), at this point may be taken as z, — «, since

%—ﬁ:(zn—a)(l—i-a_B)

Zn

(see, for example, [DS, I, Chapter 2, §1.6] for a definition of a local parameter).

The induction step. Assume that for r = n — k the assertion is valid, namely:

e The curve C}, is smooth and irreducible;
e z; — ay is a local parameter at every point (ag : -+ :ay, : f:1) € C (w # 0);
e g <2"Fn—k—1)+1
The curve Cj_; is a double cover of C}, since to the equations defining C; one equation
for the new variable x;_; is added:

TrW = -Tk71<1'k71 - y)

[2/2
L1 = % + yz + wWrg.

It follows that the double points are:

Thus,

Lh—1 = Q’ Tk = —y—z-
2 4w
Note that w # 0 at a ramification point. Indeed, if w = 0 and 4/ % + wxy, = 0 then y = 0,
which is impossible in light of Lemma 5.2. Thus we may take w = 1.
Hence in affine coordinates, at the double point (g : —%2 Ceeetay s B 1) € Cyog, we
have
° %2 + 2z is a local parameter on C} by the induction hypothesis;

2
o (-9 =5%+u

It follows that:

e This point is a ramification point indeed;
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® 21 — g is a local parameter on C)_; at this point;
e (;_1 is smooth at this point.
Outside the ramification points, the projection Cy_; — Cj is étale. At infinity all the
points are smooth, see Lemma 5.2. Therefore, since C} is smooth and irreducible by the
induction assumption, then Cj_; is smooth and irreducible as well.

Let us compute the number of ramification points. We have:

kalzg; xk:_y_27 xk+1:_y_2(_y_2_y)> )
2 1 1\ (5.12)
LThys = ps(y>, cee 5T = pn—k(y)u & = Pn—k+1 (y)7

where p,(y) is a polynomial in y and deg p,(y) = 25T
Hence, the last equation has [ < 2"~*+2 distinct roots.

By the Hurwitz formula (see e.g. [DS, I, Chapter 2, §2.9]) and the induction estimate for
g we obtain:

l
g1 =20 =145 < 22" (n—k—1)+1) —1+2"F1 =
kD — k) —2.on 7k ponhtl L9 —gn=kD(p k) 4 1.
This completes the induction. Thus, g; < 2" }(n — 2) + 1. O

Now, the curve X is obtained from C} by adding one more equation:

wy = d* — 4w?,

(this is the last equation of system (5.4)). It follows that X is a double cover of C} with
double points at w = 0 or y = —4w. At every such point y # 0. Moreover, X is smooth at
every point of S (see Lemma 5.2), hence every point of S is a ramification point. Thus, X
is irreducible. Moreover,  is one-to-one at these points.

Any other double point is either a ramification point or a double self-intersection. Since
d? = wy + 4w?, these are points with y = —4w. Similarly to (5.12), there can be at most 2"
such points at X.

.JFrom the Hurwitz formula we obtain:

g(X)<29(Cy) —142"=21+2"" (n—-2)) —1+2"=2"(n—1) + 1.
This completes the proof of Proposition 5.5. U

Remark 5.7. The more detailed analysis of the curve X shows that it is not smooth only
if a = —4. If a # —4 the normalization is not needed.

Corollary 5.8. For anyn > 2, the map e,11 : GxG — G is almost surjective z'f@ = SL(2,q)
and q > 2*"3(n — 1)2.
Proof. We want to prove that any number a € [, is attained by r,. Since the normalization
X of X is defined over the ground field (see [Sa, Chapter 1, §6.4 and §7]), every point
i € X(F,) provides a point #(#) € X(F,). In order to exclude the exceptional points, we
should take away from X the following points:

e 2" points of S;

e 2" points with y = 0, d = +2w;

e 2" points with y = —4w,d = 0.
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Since (for a = —2) the points With~y = —4w, d = 0 may be selfintersections, we should count
them twice. Thus we need that | X (F,)| > 5-2".
We shall use the Weil inequality (see [AP]) once more. For a field F, we need that

q+1—29/G—6>0, (5.13)

where, by Proposition 5.5, ¢ < 2"(n — 1) + 1, and § = 5-2". Take ¢ > 22""3(n — 1)%
Then

g+1-29q—6>2"PBn -1 +1-22"n—-1)+1)2"" ' (n-1)v2-5-2"

> 2" (2" (n — 1)? — 2" (n — 1)2V2 — 4v2(n — 1) — 5) > 0, (5:14)

for any n > 2. U

6. SHORT ENGEL WORDS IN PSL(2, q)

In this section we prove Corollary B and show that for any n < 4 the n-th Engel word
map is surjective for all groups PSL(2,¢q). From Corollary 3.10 it follows that in order to
prove that the map e,;; : G X G — G is surjective, one should check that for every a € I,
either a or —a belongs to the image T,, of p,. For a fixed n and ¢ big enough it follows from
Theorem 5.1, and so for small values of ¢ it may be verified by computer. Indeed, we have
done the following calculations for small values of n using the MAGMA computer program.

Case e; = [z,y]: In this case, the surjectivity follows from Proposition 3.4, Proposition 3.6
and Remark 4.8. This provides an alternative proof to the well-known fact that any element
in the group SL(2,¢) (and in the group PSL(2,¢)), when ¢ > 3, is a commutator (see [Th]).

Case ey = [z,y,y]: We need to prove that the map p; is surjective. Indeed, the equation
pr(s,t) —a=8—st? +2° —2—a=0

defines a smooth curve of genus 1 with two punctures if a? # 4. Thus if ¢ > 7 it has a point
over F,. The case a = 2 was dealt with in Proposition 3.6. The cases ¢ = 5,7 can easily be
checked by a computer. Therefore, es is surjective on the group SL(2,¢) (and on PSL(2,q))
for any ¢ > 3.

Case e3 = [r,y,y,y]: Recall that by Example 4.1, e3 is no longer surjective on SL(2,¢). In
this case, the curve py(s,t) — a has genus 2% + 1 = 5 and it has at most 20 punctures at oo,
t2 = 4 and t = 0. Thus the techniques of Section 5 may be applied for any ¢ which satisfies
that

g+1—10,/g— 20 >0,

namely, for any ¢ > 137. For ¢ < 137 the surjectivity on PSL(2,q) was checked by a
computer.

Case ey = [x,9,y,y,y|: Inthiscase g = 17, and the computations were done for all ¢ < 1240.
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7. EQUIDISTRIBUTION OF THE ENGEL WORDS IN PSL(2,¢)

In this section we prove Theorem C by showing first that the n-th Engel word map is
almost equidistributed for the family of groups SL(2, ¢), where ¢ is odd, and then explaining
how this implies that the n-th Engel word map is almost equidistributed (and hence also
almost measure preserving) for the family of groups PSL(2, q), where ¢ is odd.

More precisely, for g € G = SL(2,q), let

E.(g9) ={(z,y) € GxG: en(z,y) =g},
then by Definition 1.5 we need to prove the following:
Proposition 7.1. If q is an odd prime power, then the group G = SL(2,q) contains a subset
S = Sz C G with the following properties:
(1) 5] = |GI(1 —¢); ~
(i) |G|(1 —¢€) < |E.(9)] < |G|(1+ €) uniformly for all g € S;
where € — 0 as ¢ — 0.

For the commutator word e; = [z, y]|, Theorem C has already been proved in [GS, Propo-
sition 5.1]. Hence we may assume that n > 1. Following Section 5 we continue to assume
that ¢ is odd. We maintain the notation of Definition 3.2.

Proof of Proposition 7.1. Consider the following commutative diagram of morphisms:

~ ~ /
GxG A2, THAL
7l N o L
=~ A
G LA; <—1Az,t

Here, vy =00 ¢, = eny1, P'(s,u,t) = (s + t* + u? — ust — 2,t), and « is a composition of
the corresponding morphisms in the diagram.

We denote f~!(a) = f~(a)(F,).

Let a € F,, a # +£2. Then o !(a) is a union of the fibers I', = v7(z), where z € G is
an element with tr(z) = a. Since a # £2, any I', may be obtained from any other I',, (with
tr(z') = a) by conjugation, and so |E,(z)| = |E,(2’)|. Hence,

o~ (a)]

Iy (2)] = =101k (7.1)

Recall that |SL(2,¢)| = ¢* — ¢.
Take the set S = Sz = {2z € G : tr(z) # £2}, then
S| = ¢* —2¢* — g = ¢*(1 - O(1/q)),
satisfying condition (7).
In order to prove condition (%) it is enough to show that for any z € G with tr(z) = a # +2,
) =1+ 9,
where € — 0 as ¢ — .

It is well-known that
77 (a)] = (1 + ex(q)), (7.2)
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where [€1(q)| < % (see, for example [Do]).
On the other hand, o = p, op’ o m. Let us estimate |a~*(a)|.

Lemma 7.2. Let p = p' oxw. Then there are constant My and My such that for every
(s,t) € Ag,t: s#2,

(1) If  # 4 and s # 2 = 2 then [57(5,1)] = ¢*(1 + &2), where |ea] < 2
(2) If t* = 4 then |p~'(s,t)| < Mayq™.

Proof. We use the notation of Proposition 3.4.
(1). Assume that t2 # 4 and s # t?> — 2. According to Case 2 of Proposition 3.4,

P (s, 1) = [Coa(Fy)| = g £ 1. (7.3)

For a point (s',u,t) € Cy4(F,) we shall now compute |771(s, u, t)].

We fix a matrix
[t
=1 0

with 2 # 4. Direct computation shows that (z,y;) € 771(s',u,t) if

a b
$_(u+b—at s’—&) (7.4)

6% — w?o? = p(s u,t) — 2,

satisfies that

where
w? =12 — 4,
bt s
U:a_§_§7 (7.5)
5 st w?b

Thus, we have a conic once more, and the number of such x is therefore ¢ + 1. Together
with (7.2) and (7.3) one has that

57 (s, 1)l = (= Da £ (1 + ea(q)) = ¢* (1 + e2(q)),

where 5 | 4
€2 < —+elg) +0(—) < -
| 2’ q 1(Q) (qg) q

(2.1). Assume that ¢ = 2. Then (see Case 2 of Proposition 3.4),

‘Cs,t<Fq)| S 2QJ (76)

where s — 2 =v? and s’ — u = £v for some v € F, and any (s, u,t) € Cs,(F,).
We now consider matrices of the form

(1 r
Ir=No 1)

(¢ /t)
xr = ’

cC S —a

a(s' —a)—bc=1, rc+s =u.

A pair (z,y) € 77 (s',u,2) if

and
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This implies that
s+ ') -1
ot Ao, _as—a -1
r r c
Hence for a fixed y, there are at most 2q possible matrices x defined by the value of a and

by the sign of c¢. Together with (7.2) we get
7 (' w, 2)] < 24(¢% + q).

It follows from (7.6) that

57 (5,2)] < 29(¢* + )29 < 5¢". (7.7)
(2.2). Assume that t = —2. Similarly to (2.1) we get

57 (5,2)] < 2q(¢° + ¢)2g < 5¢", (7.8)
To complete the proof we may take M; = 4 and My = 10. O

We proceed with the proof of the Proposition. By Theorem 5.1 and Proposition 5.5, the
fiber R, = p,'(a) of p, is isomorphic to a general fiber of X, o =7, (a —2) and is a curve
of genus ¢, < G,, where the bound G,, depends only on n. Moreover, it has at most 2"
points at infinity and 22" points with > = 4. It does not have points of the form (? — 2, ),
since p(t* — 2,t) = (2,t), which is is a fixed point.

Let A= R,N{t* # 4} and B= R, N {t* = 4}.

According to the Weil estimate,

|A(Fy)| = q(1 + e3(n, q)), (7.9)
where
1+2/9-G,+3-2"
s, )] < YL .
Hence, according to Lemma 7.2(1),
PH(A)(F)| = a1 + e3(n,9))g" (1 + €2) = ¢°(1 + ea(n, q)), (7.10)
where
1
lea(n, @) < les(n, q)] + [ + |es(n, q)] - [eo] = O(ﬁ)-
There are at most 2"*! points in B, thus by Lemma 7.2(2),
5~ (B)(Fy)| < 2F'q* M. (7.11)
Therefore,
o™ (a)| = ¢°(1 + e5(n, q)), (7.12)
where
2n+1]\42 1
e5(n, q)| < les(n,q)| + =0(—).
esn, )] < Jea(n. ) + 22 = O(—2)

Finally, from (7.1) and (7.12) we obtain

L e @)] PO 1
= e T e e (”O(ﬁ))’

as needed. O
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We shall now show that Proposition 7.1 implies that the n-th Engel word map is also
almost equidistributed for the family of groups PSL(2, ¢), where ¢ is odd.

Denote by g the image of g € G = SL(2,¢q) in G = PSL(2,¢q). Since ¢ is odd, one may
identify g with the pair {+g}.

Let ' ={geG:geSand —g e S} CS. Then, by Proposition 7.1(i), || < |G|(1—2¢).
Hence, if S’ is the image of the set S’ in G = PSL(2, ), then

5] < 1G](1 = 2e).
For g € G = PSL(2, q), denote
E.(9) ={(z,9) € G x G :e,(Z,7) = G}
Observe that for any x,y € G,
en(r,y) = en(=2,y) = en(z, —y) = en(—1, —y),
thus B
4- E,(9) = En(9) U En(—g),
(this is a disjoint union) and so
G| 2. |G

Therefore, by Proposition 7.1(ii), for any g € S’ one has that

(1-6)|G] < Eu(g) < (1+ )G,
completing the proof of Theorem C.

8. CONCLUDING REMARKS

The trace map is an efficient way to translate an Algebraic word problem on PSL(2, q) to
the language of Geometry and Dynamics, which has already been used fruitfully in [BGK].
We use it in this paper for studying the Engel words, but, actually, the same could be done
for any other word with the same dynamical properties. Thus, one may ask the following
questions:

Question 8.1. What are the words for which the corresponding trace map ¥(s,u,t) =
(f1(s,u,t), fo(s,u,t),t) has the following property (%) for almost all ¢:
(%) For every a € F, the set { fi(s,u,t) = a} is an absolutely irreducible affine set.

Question 8.2. What are the words for which the trace map (s, u,t) = (fi(s,u,t), fa(s, u,t),t)
has an invariant plane A and the curves {¢ ‘ A= a} are absolutely irreducible for a general
a € F, and for almost all ¢?

We believe that these two Questions are closely related to the following variant of Shalev’s
Conjecture 1.1:

Conjecture 8.3 (Shalev). Assume that w = w(x,y) is not a power word, namely, it is not
of the form v(x,y)™ for some v € Fy and m € N. Then w(G) = G for G = PSL(2,q).

One can moreover ask these questions for finite simple non-abelian groups in general.

Question 8.4. What is an analogue of the trace map for other finite simple non-abelian
groups? In particular, for the Suzuki groups Sz(q)? (see [BGK, §4]).
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Another interesting question is related to the explicit estimates for ¢ in Proposition 5.5.
The genus of the curve X given there is very large, and this leads to an exponential estimation
of ¢, as a function of n, for which X (F,) # (. On the other hand, computer experiments
using MAGMA demonstrate that this estimate should be at most polynomial. It would be
very interesting to investigate X and to understand this phenomenon.

ACKNOWLEDGMENTS

Bandman is supported in part by Ministry of Absorption (Israel), Israeli Academy of
Sciences and Minerva Foundation (through the Emmy Noether Research Institute of Math-
ematics).

Garion is supported by a European Post-doctoral Fellowship (EPDI), during her stay
at the Max-Planck-Institute for Mathematics (Bonn) and the Institut des Hautes Etudes
Scientifiques (Bures-sur-Yvette).

This project started during the visit of Bandman and Garion to the Max-Planck-Institute
for Mathematics (Bonn) in 2009 and continued during the visit of Grunewald to the Hebrew
University of Jerusalem and Bar-Ilan University (2010).

Bandman and Garion are most grateful to B. Kunyavskii for his constant and very valuable
help, to S. Vishkautsan and Eu. Plotkin for numerous and useful comments. The authors
are thankful to A. Shalev for discussing his questions and conjectures with them. They are
also grateful to M. Larsen, A. Reznikov and V. Berkovich.

Fritz Grunewald has unexpectedly passed away in March 2010. This project started as a
joint project with him, and unfortunately it is published only after his death. Fritz Grunewald
has greatly inspired us and substantially influenced our work. He is deeply missed.

REFERENCES

[AP] Y. Aubry and M. Perret, A Weil theorem for singular curves, In: “Arithmetic, Geometry and
Coding Theory”, R. Pellikaan, M. Perret, and S. G. Vladut (eds.), Walter de Gruyter, Berlin—New
York, 1996, pp. 1-7.

[BGK] T. Bandman, F. Grunewald, B. Kunyavskii, Geometry and arithmetic of verbal dynamical systems
on simple groups, preprint available at arXiv:0809.0369.

[B]] H. Blau, A fized-point theorem for central elements in quasisimple groups, Proc. Amer. Math.
Soc. 122 (1994), no. 1, 79-84.

[Bo] A. Borel, On free subgroups of semisimple groups, Enseign. Math. (2) 29 (1983), no. 1-2, 151-164.

[Mag] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic

Comput. 24 (1997), no. 34, 235-265
[CMS] J. Cossey, Sh. O. Macdonald, A. P. Street, On the laws of certain finite groups, J. Australian
Math. Soc. 11 (1970), 441-489.

[DS] V.I. Danilov, V.V Shokurov Algebraic curves, algebraic manifolds and schemes, Encyclopedia of
Math. Sciences, vol. 23, Springer, 1998.

[Do] L. Dornhoff, Group Representation Theory, Part A, Marcel Dekker, 1971.

[EG] E.W. Ellers, N. Gordeev, On the conjectures of J. Thompson and O. Ore, Trans. Amer. Math.
Soc. 350 (1998), 3657-3671.

[Fr] R. Fricke, Uber die Theorie der automorphen Modulgruppen, Nachr. Akad. Wiss. Gottingen
(1896), 91-101.

[FK] R. Fricke, F. Klein, Vorlesungen der automorphen Funktionen, vol. 1-2, Teubner, Leipzig, 1897,
1912.

[GS] S. Garion, A. Shalev, Commutator maps, measure preservation, and T-systems, Trans. Amer.

Math. Soc. 361 (2009), no. 9, 4631-4651.



ON THE SURJECTIVITY OF ENGEL WORDS ON PSL(2,q) 23

S. R. Ghorpade and G. Lachaud, Etale cohomology, Lefschetz theorems and number of points
of singular varieties over finite fields, Moscow Math. J. 2 (2002), 589-631, and CORRIGENDA
AND ADDENDA.

W. Goldman, An exposition of results of Fricke and Vogt, preprint available at
http://www.math.umd.edu/ wmg/publications.html .

R. Hartshorne, Algebraic geometry, Springer-Verlag, NY, 1977.

W.M. Kantor, A. Lubotzky, The probability of generating a finite classical group, Geom. Ded. 36
(1990), 67-87.

M. Larsen, Word maps have large image, Israel J. Math. 139 (2004), 149-156.

M. Larsen, A. Shalev, Word maps and Waring type problems, J. Amer. Math. Soc. 22 (2009),
no. 2, 437-466.

M. Larsen, A. Shalev, P.H. Tiep, Waring problem for finite simple groups, preprint.

D. Leep and C. Yeomans, The number of points on a singular curve over a finite field, Arch.
Math. (Basel) 63 (1994), 420-426.

M.W. Liebeck, E.A. O’Brien, A. Shalev, P.H. Tiep, The Ore conjecture, J. European Math. Soc.
12 (2010), 939-1008.

W. Magnus, Rings of Fricke characters and automorphisms groups of free groups, Math. Z. 170
(1960), 91-102.

D. McCullough, M. Wanderley, Writing Elements of PSL(2,q) as commutators, preprint.

O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307-314.

P. Samuel, Méthodes d’algébre abstraite en géométrie algébrique, Springer-Verlag, NY, 1967.

D. Segal, Words: notes on verbal width in groups, London Mathematical Society Lecture Note
Series 361, Cambridge University Press, Cambridge, 2009.

A. Shalev, Commutators, words, conjugacy classes and character methods, Turkish J. Math. 31
(2007), suppl., 131-148.

A. Shalev, Word maps, conjugacy classes, and a non-commutative Waring-type theorem, Annals
of Math. 170 (2009), 1383-1416.

R.C. Thompson, Commutators in the special and general linear groups, Trans. Amer. Math. Soc.
101 (1961), 16-33.

H. Vogt, Sur les invariants fundamentauz des equations différentielles linéaires du second ordre,
Ann. Sci. E.N.S, 3-ieme Sér. 4 (1889), Suppl. S.3-S.70.

BANDMAN: DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, 52900 RAMAT GAN, ISRAEL
FE-mail address: bandman@macs.biu.ac.il

GARION: INSTITUT DES HAUTES ETUDES SCIENTIFIQUES, 91440 BURES-SUR-YVETTE, FRANCE
E-mail address: shellyg@ihes.fr



