SURJECTIVITY AND EQUIDISTRIBUTION OF THE WORD 1%’
ON PSL(2,q) AND SL(2,q)

TATIANA BANDMAN AND SHELLY GARION

ABSTRACT. We determine the integers a,b > 1 and the prime powers ¢ for which
the word map w(z,y) = %" is surjective on the group PSL(2,¢q) (and SL(2,q)).
We moreover show that this map is almost equidistributed for the family of groups
PSL(2,¢) (and SL(2,q)). Our proof is based on the investigation of the trace map
of positive words.

1. INTRODUCTION

1.1. Word maps in finite simple groups. During the last years there has been a
great interest in word maps in groups, for an extensive survey see [Se|. These maps

are defined as follows. Let w = w(x1,...,24) be a non-trivial word, namely a non-
identity element of the free group F,; on the generators xy,...,z,s. Then we may write
ni _.no ng

w=z;'r;? ... x;" where 1 <i; < d, n; € Z, and we may assume further that w is
reduced. Let G be a group. For ¢y,...,gq we write

w(gi, ..., 94) = 95 950 - 9iF € G,
and define
w(G) ={w(g1,...,94) : 15,94 € G},
as the set of values of w in G. The corresponding map w : G* — G is called a word
map.

Borel [Bo| showed that the word map induced by w # 1 on simple algebraic groups
is a dominant map. Larsen [La] used this result to show that for every non-trivial
word w and € > 0 there exists a number C'(w, €) such that if G is a finite simple group
with |G| > C(w, €) then |w(G)| > |G]'~¢. By recent work of Larsen, Shalev and Tiep
[LS, LST], for every non-trivial word w there exists a constant C'(w) such that if G
is a finite simple group satisfying |G| > C(w) then w(G)? = G.

It is therefore interesting to find words w for which w(G) = G for any finite simple
non-abelian group G. Due to immense work spread over more than 50 years, it is
now known that the commutator word w = [z,y] € F; satisfies w(G) = G for any
finite simple group G (see [LOST10] and the references therein). On the other hand,
it is easy to see that if (G is a finite group and b is an integer which is not relatively
prime to the order of G then w(G) # G for the word w = x°.
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The words of the form w = 2% € F, have also attracted special interest. Due
to recent work of Larsen, Shalev and Tiep [LST], it is known that any such word
is surjective for sufficiently large finite simple groups (see [LST, Theorem 1.1.1 and
Corollary 1.1.3]), more precisely,

Theorem 1.1. [LST|. Let a,b be two non-zero integers. Then there exists a number
N = N(a,b) such that if G is a finite simple non-abelian group of order at least N,
then any element in G can be written as x%y® for some x,y € G.

By further recent results of Guralnick and Malle [GM] and of Liebeck, O‘Brien,
Shalev and Tiep [LOST11], some words of the form x4y’ are known to be surjective
on all finite simple groups.

Theorem 1.2. [GM, Corollary 1.5]. Let G be a finite simple non-abelian group and
let b be either a prime power or a power of 6. Then any element in G can be written
as z%y’ for some x,y € G.

Note that in general, the word 2y’ is not necessarily surjective on all finite simple
groups. Indeed, if b is a multiple of the exponent of G then necessarily xzy® = id for
every z,y € G. It is therefore interesting to find more examples for words of the form
xy® which are not surjective on all finite simple groups.

More generally, one can ask whether it is possible to generalize Theorem 1.1 for
other word maps. In particular, the following conjecture was raised:

Conjecture 1.3 (Shalev). [Sh07, Conjectures 2.8 and 2.9]. Let w # 1 be a word
which is not a proper power of another word. Then there exists a number C(w) such
that, if G is either A, or a finite simple group of Lie type of rank r, where r > C(w),
then w(G) = G.

It is also interesting to investigate the distribution of the word map. Due to the
work of Garion and Shalev [GS], it is known that the word w = x?y? is almost
equidistributed for the family of finite simple groups, namely,

Theorem 1.4. [GS, Theorem 7.1]. Let G be a finite simple group, and let w :
G x G — G be the map given by w(x,y) = x?y>. Then there is a subset S C G with
|S| = (1 — 0(1))|G| such that [w™(g)] = (1 + o(1))|G| for all g € S. Where o(1)

denotes a function depending only on G which tends to zero as |G| — oo.

Another question which was raised by Shalev [Sh07, Problem 2.10] is which words
w induce an almost equidistributed map for the family of finite simple groups. In
particular, does words of the form w = 2% induce almost equidistributed maps?

1.2. The word w(z,y) = 2%’ on the groups SL(2, ¢) and PSL(2, ¢). In this paper
we analyze the word map x%® in the groups SL(2, ¢) and PSL(2, ¢). Analysis of Engel
word maps in these groups was carried out in our previous work [BGG].

We start by determining precisely the positive integers a, b and prime powers ¢ for
which the word map w = x%® is surjective on SL(2, ¢) \ {—id} and on PSL(2,q).
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Definition 1.5. Let a,b > 1 and let ¢ = p® be a prime power. We say that the
word w = 2% is non-degenerate with respect to ¢ if and only if none of the following
conditions holds:

e p =2, ais a multiple of 2(¢* and b is not relatively prime to —1);

-1 2(q>
e p =2, bis amultiple of 2(¢? ) and a is not relatively prime to 2(¢* — 1);
) (e’

e p is odd, a is a multiple of 2@ =D and b is not relatively prime to 2 )7

("1
qu4

p(q 1)
=

e pis odd, b is a multiple o and a is not relatively prime to

Obviously, if the word map w = 2%’ is surjective on PSL(2,¢) then it is neces-
sarily non-degenerate with respect to ¢. On the other hand, we prove the following
proposition.

Proposition 1.6. Ifw = 2%’ is non-degenerate with respect to q, then all semisimple
elements, namely matrices in SL(2,q) whose trace is not 2, are in the image of the
word map w.

Unfortunately, even if w = 2% is non-degenerate with respect to ¢, the image
of w = x%?® may not contain the unipotent elements, namely, matrices +id # z €
SL(2, q) satisfying tr(z) = £2. This phenomenon happens when one of the following
obstructions occurs.

Definition 1.7. Let a,b > 1 and let ¢ be a prime power. We define the following
obstructions:

e Obstruction (i): ¢ = 2°¢, e is odd, and a, b are divisible by 2Ae-1) _1)

e Obstruction (ii): ¢ = 3 mod 4 and a, b are divisible by ple’ _1)

e Obstruction (iii): ¢ =11 mod 12 and a, b are divisible by 24 _1)
e Obstruction (iw): ¢ =5 mod 12 and a, b are divisible by £ q _1)
Theorem 1.8. Let e > 1 and let ¢ = 2°. Let a,b > 1.

Then the word map w = x%° is surjective on SL(2,q) = PSL(2, q) if and only if w
is non-degenerate with respect to q and obstruction (i) does not occur.

Theorem 1.9. Let p be an odd prime number, e > 1 and q = p®. Let a,b > 1.
Then the word map w = x%y® is surjective on SL(2,q) \ {—id} if and only if w is
non-degenerate with respect to q and none of the obstructions (ii), (iii),(iv) occurs.

Theorem 1.10. Let p be an odd prime number, e > 1 and g = p°. Let a,b > 1.
Then the word map w = x%® is surjective on PSL(2,q) if and only if w is non-
degenerate with respect to q and obstruction (ii) does not occur.

For example, we deduce that the word w = x*?y*? is not surjective on the groups

PSL(2,7) and PSL(2, 8).
The last theorem implies that for the family of groups PSL(2,¢) one can give a
precise estimation for the bound N = N(a,b) appearing in Theorem 1.1.
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Corollary 1.11. For every a,b > 1, let
Q = Q(a, b) = max{\/3a, V3b},
3\/§a3/27 3\/§b3/2}.
2 2
Then the word map w = x%y° is surjective on the group PSL(2,q) for any ¢ > Q, and
hence whenever | PSL(2,q)| > N.

N = N(a,b) = max{

However, the statement of Theorem 1.1 [LST] no longer holds for the quasi-simple
group SL(2, q), as indicated by the following theorem and its corollary.
Theorem 1.12. Let q be an odd prime power, and set K = max {k : 2k divides f%} .
Let a,b > 1. Then —id # x%y° for every x,y € SL(2,q) if and only if 25X divides both
a and b.

Corollary 1.13. If ¢ = +3 mod 8, then x*y* # —id for every x,y € SL(2, q).

In addition, we show that for any a,b > 1, the word map w = z%" is almost
equiditributed for the family of groups PSL(2, ¢) (and SL(2, q)).

Theorem 1.14. Let q be a prime power and let G be either the group SL(2,q) or the
group PSL(2, q).

Let a,b > 1 and let w : G x G — G be the map given by w(x,y) = x%°. Then
there is a subset S C G with |S| = (1 — 0(1))|G| such that |w=(g)| = (1 + o(1))|G]
for all g € S. Where o(1) denotes a function of q¢ which tends to zero as ¢ — oc.

1.3. Organization and outline of the proof. For the convenience of the reader,
we describe the organization of the paper, as well as give a bird’s eye view of the
proofs.

In Section 2 we compute the trace map of the word w(x,y) = 2%° (Lemma 2.3),
and more generally, of any positive word in Fy (Theorem 2.5). For any word w =
w(z,y) € Fy, the trace map tr(w) is a polynomial P(s,u,t) in s = tr(z),t = tr(y)
and u = tr(zy).

In Section 3 we collect basic facts on the surjectivity of w = 2% on finite groups
in general, and in Section 4 we describe some properties of the groups SL(2,¢q) and
PSL(2, q) that are used later on.

By Lemma 2.3, tr(2%y°) is a linear polynomial in u. We deduce in Section 5 that
if neither a nor b is divisible by the exponent of PSL(2,¢), then any element in F,
can be written as tr(z%?®) for some x,y € SL(2,q) (Corollary 5.3). This immediately
implies Proposition 1.6, stating that if w = 2%’ is non-degenerate with respect to
q, any semisimple element (namely, z € SL(2, ¢) with tr(z) # £2) can be written as
z = 2% for some x,y € SL(2, q).

However, when z is unipotent (namely, z # =+id and tr(z) = 42) one has to be
more careful, and a detailed analysis is done in Section 8. Indeed, it may happen
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that w = 2%® is non-degenerate with respect to ¢, but nevertheless the image of the
word map w = %" does not contain any unipotent (see Propositions 6.4 and 6.5).

These are the ingredients needed for the proofs of Theorems 1.8, 1.9 and 1.10, on
the surjectivity of the word w = %" on PSL(2,q) and SL(2,q) \ {—id}, which are
presented in Section 6. In addition, we determine in Section 8.3 when —id can be
written as z%y® for some z,y € SL(2, ¢), thus proving Theorem 1.12.

In Section 7 we prove Theorem 1.14 and show that the word map w = 2%’ is
almost equidistributed for the family of groups PSL(2,¢) (and SL(2,¢)). The basic
idea is to show that for a general a € I, the surface

So(F,) = {P(s,u,t) = tr(z) = a} C A*(F,)

is birational to a plane A2, As a result, we are able not only to find points on S, (F,),
but even to estimate their number.
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2. THE TRACE MAP

2.1. The trace map. The trace map method is based on the following classical
Theorem (see, for example, [Vo, Fr, FK] or [Mag, Go| for a more modern exposition).

Theorem 2.1 (Trace map). Let F' = (x,y) denote the free group on two generators.
Let us embed F into SL(2,7Z) and denote by tr the trace character. If w is an arbitrary
element of I, then the character of w can be expressed as a polynomial

tr(w) = P(s,u,t)
with integer coefficients in the three characters s = tr(z),u = tr(zy) and t = tr(y).

Note that the same remains true for the group SL(2, ¢). The general case, SL(2, R),
where R is a commutative ring, can be found in [CMS].

The following theorem is originally due to Macbeath [Mac] and was used by Band-
man, Grunewald, Kunyavskii and Jones to investigate verbal dynamical systems in
the group SL(2,¢q) (see [BGKJ, Theorem 3.4]).

Theorem 2.2. [Mac, Theorem 1]. For any (s,u,t) € Fi there exist two matrices
z,y € SL(2,q) satisfying tr(z) = s,tr(y) =t and tr(zxy) = u.
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2.2. Trace map of the word w(x,y) = 2%y°. The following Lemma shows that the
trace map of the word w(z,y) = x%® is a linear polynomial in tr(zy).

Lemma 2.3. Let w(z,y) = 2%y® where a,b > 1 and z,y € SL(2,q). Let s = tr(x),u =
tr(zy),t = tr(y). Then
trw(z,y) =u- fap(s,t) + hap(s,t),
where
fap(s,t), hap(s,t) € Fyls,t]

are polynomials satisfying:

e the highest degree summand of f,4(s,t) (of degree a+b—2) is:

Safltbfl,

e the highest degree summand of hqp(s,t) (of degree a +b—2) is:
Proof. We need to prove that the polynomials f(s,t) = f,4(s,t) and h(s,t) = hap(s,t)
satisfy the following properties:

(i) the coefficient of u, f(s,t), has precisely one monomial summand s*~1*~! with
coefficient 1;
(11) for all other monomial summands ¢; ;s't’, ¢;; € F,, of f(s,t), the following
inequalities hold: i <a—1,5<b—1,and 1+ 75 <a+b—2;
(#ii) h(s,t) contains the summand (s%°~2 4 s22t%) with coefficient —1;
(1) for all other monomial summands ¢; ;s'¢/, ¢;; € F,, of h(s,t), the following
inequalities hold: i <a—2,7<b—2,andsoi+j<a+0b—4.

We prove these properties by induction on a + b, using the well-known formula
(1) tr(AB) + tr(AB™!) = tr(A) tr(B).
Induction base. a < 3,b < 3. In these cases,
tr(zy) = u, tr(z?y) = us —t, tr(xy?) = ut — s, tr(z?y?) = ust — s* —t* + 2,
tr(zy®) = (> — Du — st, tr(ax’y) = (s* — 1)u — st,
tr(z%y’) = (st? — s)u — st — t* + 3¢, tr(x*y?) = (s*t — t)u — s° — st + 3s,
tr(z%y®) = (s°t* — 8> — > + 1)u — s°t — st® + 4st.

Induction hypothesis. Assume that the Lemma is valid for a+b < n for some n > 5.
Induction Step. We prove the claim for a + b = n, by considering the following
cases:

Case 1. w(z,y) = 2%°, a>b.
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Using (1) we get:
tr(z%y®) = tr(z) tr(z®y°) — tr(zy Pt
= tr(z) tr(2®'y®) — tr(z* %)
=5(u- far1p(8,t) + ha1p(8,8)) — (w+ faap(S,t) + ha—2s(s, 1))

= U(S : fafl,b(sa t) - fa72,b(3a t)) + (5 : hafl,b(sa t)) - hfa72,b(57 t))
=u- fap(S,t) + hap(s,t).

By the induction hypothesis, the resulting polynomial:
(i) is linear in w;
(%) the highest degree summand of f,;(s,t) is:

5@ D11 _ ga=1yb-1,
(#ii) for all other monomial summands ¢; ;s't/ of f(s,t) the following inequalities
hold: i< (a—1)—1+1=a—-1,j<b—1, and
itj<(@-141+b-2=atb—2
(iv) the highest degree summand in h(s,t) is:
s (sT I gl D2gy — (gagb2 | gam2yhy

(v) for all other monomial summands ¢; js't of h(s,t) the following inequalities
hold: i < (a—1)—2+1=a—2,j<b—2 and so

i+j<(a—1)+1+b—4=a+b—4

Case 2. w(z,y) = 2%, a <b.
Similarly we get:

tr(zy") = tr(a®y" ) tr(y) — tr(a"y" "'y ™)
= tr(y) tr(ay"") — tr(zy"7?)
=t fap-1(5t) + hap-1(5,1)) — (u- fap-2(5,t) + hap2(s,t)) =
= u(l- fap-1(5,1) + fap-2(8,1)) + (¢ - hap-1(s,t) = hap-a(s,1)) =
=u- fop(s,t) + hap(s,t).
Similarly to Case 1 we get a polynomial satisfying the desired properties. O

Remark 2.4. Assume that a,b # 0 but not necessarily positive. Since tr(zy™!) =
st — u, we deduce from Lemma 2.3 that

tr(29y”) = u - fap(s,t) + hap(s, 1),
where the highest degree summand of f,(s,t) (of degree a + b — 2) is +s2 101,
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2.3. Trace map of positive words. We can moreover compute the trace map for
any positive word in Fh, namely for any word of the form w = z®¢" ... 2%y’ where

ag,...,ak,bl,...,bk_l 21 and al,bk ZO

We note that we can consider only words of the form w = x®y" ... z%y where
ai, by, ..., ag, by > 1, and then we call k£ the “length” of this word.

Indeed if by = 0 then tr(z®y® ... x%-1ybh-170%) = tr(gatarybe  gok-19be-1) g
the trace map of a positive word of length k—1.

Theorem 2.5. Let G = SL(2,q) and let
w=z%y" . x%yP* ay, by, ... ag by > 1.
Denote s = tr(x),u = tr(zy),t = tr(y), and A=  a;, B=r b,
Then tr(w) = P(s,u,t) = Zf:o u'pyr(s,t), where
o pi(s,t) = sAFtB=F + &(s,t) is a polynomial in s,t and
deg, ®(s,t) < A—k, deg, P(s,t) < B —k,
deg, ®(s,t) + deg, D(s,t) < A+ B — 2k;
o forallr <k,
deg, p,(s,t) < A—k, deg,p,(s,t) < B —k.
Proof. The proof is by induction on k. The case k = 1 was treated in Lemma 2.3.
We may always assume that a; < ai. Let

ai1. b a b
wy(z,y) = xMy™ gty

wy(z,y) = z%y™

ws(x,y) = x| gty
Then, by (1),
tr(w) = tr(z®y® ... x%y%)
(2) = tr(aTyt L g iyht) tr(p %yt ) — tr(g@ Myt gy bEe1 k)

= tr(w: (z, y)) tr(ws(z,y)) — tr(ws(z,y)),
By the induction assumption we have

tr(wy) = Pi(s,u,t) = Zuprst

tr(wg) = uf + h,
tr(ws) = Q(s,u,t),
and
o Dr_1(s,t) = s B=bi=htl L §) (5 ¢);
o deg, Py(s,t) < A—ar—k+1, deg, ®1(s,t) < B—b,—k+1, and
deg, ®1(s,t) + deg, P1(s,t) < A+ B —ap — by — 2k + 2;
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o deg, f=ap—1, deg, f =0, — 1.
We want to show that
(3) deg, Q < k, deg,Q < A—k, deg,Q < B —k.
Since
tr(w) = P(s,u,t) = Pi(s,u,t)(uf +h) — Q(s,u,t),
the theorem would follow from (3).

Consider the following cases.

Case 1. ws(x,y) is a positive word.

Then its length is either k£ — 1, if both a = a7 —a, > 0 and b = b,_1 — by, > 0, or
k—2ifa=0o0rb=0. Anyway, deg, Q < k, deg,Q < A—2a,—k+2<A—k, and
deg, @ < B —2b, — k+2 < B —k, as needed.

Case 2. a1 —a >0, bp_1 — b, <O.

Then

tr(ws) = Q(s, u, t) = tr(wa(z,y)) tr(y™ ") — tr(ws(z,y)),
where
UJ4($, y> — xal_ak+ak—lybl N “/Lﬂk72ybk727
w5<x7 y) — xdl*akybl N .xak72ybk72xak71ybk*bk71.
Thus, wy is a word of length £ — 2 and ws has length k£ — 1, and both are positive
words. Let Ql (87 u, t) = tr(w4(x, y>>7 Q2<S7 u, t) = tr(w5(x, y))

By the induction assumption,
deg, Q1 =k—2, deg, Q1 < A—2a,—k+2<A—k, deg, Q1 < B—by,—bp_1—k+2;
deg, Q2 = k—1, deg, Q2 < A—2a,—k+1 < A—k, deg, Q2 < B—2b;,_1—k+1 < B—k.

Moreover, T} (t) = tr(y® % -1) is a polynomial in ¢ of degree b, — bj,_;, thus

dethlTl(t) SB—bk—bkfl—k+2—|—bk—bk,1 :B—Qbk,1 —k+2 < B—k.
Hence, for Q = Q171(t) — Q2 condition (3) is valid.

Case 3. a; —a; = 0, bp—1 — b < 0.

In this case ws(x,y) = y* ... x%-1yP%17% and

Q(s,u,t) = tr(x2 .. p%-1gybe=betbry

If bg_1 — by + by > 0 then the word is positive of length k£ — 2 and (3) is valid.
If bp_1 — br + by < 0 then we perform the procedure described in Case 2 for
computing
Qis,u,t) = tr(a® a1y Bty — (g, ) () — (s (o, ),
where
w4(x7 y) — xa2+ak—1yb2 N 'xak—2ybk—27

_ a2, ba ap_o,,br_ ap_ —b_1+bp—b1
w5(x,y)—x Yy .”kuyk QIkly k—1710% .
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The Length of wy is k — 3, and the length of ws is k£ — 2. Hence, deg, Q = k — 2.
Moreover, deg, @ < A —2a;, —k+2 < A—Fk and

dethSB—bl—bk_l—bk—bk_1+bk—b1—k+2§B—k.
Once more, we find out that conditions (3) are met by Q. O
Remark 2.6. Assume that a;,b; # 0 but not necessarily positive. In view of Re-
mark 2.4, for the word w = z% gy ... 2%y’ equation (2) implies that

k

k
(4) tr(w) =Y _u'G,(s,t) and Gy (s, t) = H Far-

0

3. BASIC FACTS ON THE WORD w(z,y) = 2" AND FINITE GROUPS

In this section we present some elementary facts regarding the surjectivity of the
word map w = % on finite groups.

Proposition 3.1. Let G be a finite group and let a be an integer. Then the word
map corresponding to w = x® is surjective on G if and only if ged(|G|,a) = 1.

Proof. Let d = ged(|G|,a). If d > 1 then there exists some prime p which divides
both a and |G|. Thus, G contains some element g # id of order p, and moreover,

g = (") = id.

Hence the word map w = z® is not 1 to 1, and cannot be surjective on G.
If d = 1 then there exists some integer [ s.t. [-a =1 (mod |G|). Let g € G and
take x = ¢', then

as needed. O

Proposition 3.2. Let G be a finite group and let a,b be two relatively prime integers.
Then the word map corresponding to w = x%y° is always surjective on G.

Proof. Since a, b are relatively prime, there exist integers k,l s.t. k-a+1-b=1. Let
kea L Ratlh — gl — g ]

g € G and take z = ¢* and y = ¢!, then 2%’ = ¢"%¢'* = ¢
Proposition 3.3. Let G be a finite group and let a,b be two integers. If either a or
b is relatively prime to |G| then the word map corresponding to w = x%® is surjective

on G.

Proof. Assume that a is relatively prime to |G|. Then there exists some integer [ s.t.
[-a=1 (mod |G]|). Then for every g € G, take x = ¢g' and y = id. Thus,

xayb: (gl)a"idb:gl.a'lld:gl =yq.
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Remark 3.4. Let G be a finite group and let w = 2%°. We can always assume that
0 < a,b < exp(G). Moreover, if G is of even order, we can assume that 0 < a,b <
exp(G)/2.
Indeed, let a; = a mod exp(G) and b; = b mod exp(G), then for every z,y € G,
2%’ = z@y" . Hence, 2%’ is surjective on G if and only if 2%y is surjective on G.
If exp(G) is even, let

] <
0y — {al if a; < exp(G)/2 and by —

bl if bl S exp(G)/Z
exp(G) —a; if a1 > exp(G)/2

exp(G) — by if by > exp(G) /2
Then, for every z,y € G, a1y’ = x192¢<2% where €, ¢, € {#1}, and

{z=a"y: 2,ycGy={z=0""2y": z,yc G}
={z=a2y™: sycGy={z=0""2y"™: 1,yc G}

4. PROPERTIES OF THE GROUPS SL(2,¢) AND PSL(2, ¢q)

In this section we summarize some well-known properties of the groups SL(2,q)
and PSL(2, ¢q) (see for example [Do] and [Su]).

Let ¢ = p®, where p is a prime number and e > 1. Recall that GL(2, ¢) is the group
of invertible 2 x 2 matrices over the finite field with ¢ elements, which we denote by
[F,, and SL(2, g) is the subgroup of GL(2, ¢) comprising the matrices with determinant
1. Then PGL(2,q) and PSL(2, q) are the quotients of GL(2, q) and SL(2,q) by their
respective centers. Also recall that PSL(2, q) is simple for ¢ # 2, 3.

1 if g is even
2 ifgisodd

Then the orders of SL(2, ¢) and PSL(2,¢) are q(¢ — 1)(¢+ 1) and 5q(¢ —1)(g+ 1)
respectively, and their respective exponents are 5p(¢> — 1) and p(¢* — 1).

One can classify the elements of SL(2, ¢) according to their possible Jordan forms.
The following Table 1 lists the three types of (non-trivial) elements, according to
whether the characteristic polynomial P;()\) := A? —tA+1 of the matrix A € SL(2, q)
(where ¢ = tr(A)) has 0, 1 or 2 distinct roots in F.

Table 1 shows that there is a deep connection between traces of elements in SL(2, ¢),
their orders and their conjugacy classes, as is expressed in the following Lemmas.

Denote d = ged(2,q — 1) =

Lemma 4.1.

e If q is odd, then x € SL(2,q) has order 4 if and only if tr(x) = 0.
e x € SL(2,q) has order 3 if and only if tr(x) = —1.
o [fp>5, then x € SL(2,q) has order 6 if and only if tr(x) = 1.

Moreover, for any x € SL(2,q) satisfying tr(x) # 0,41, £2, there exists some
y € SL(2,q) such that tr(z) # tr(y), but the orders of x and y are the same.
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element roots canonical form in | order in | order in | conjugacy classes
type of P;(\) SL(2,F,) SL(2,q) | PSL(2,q) in SL(2, q)
1d 1 root <(1) (1)> 1 1 one element
. -1 0
—id 1 root 0 —1 d 1 one element
. 11 .
unipotent | 1 root 01 P P d conjugacy classes
t=2 each of size q%l
1 root (_01 _11) dp P d conjugacy classes
t=-2 each of size qiT_l
semisimple | 2 roots (g aol) divides | divides for each t:
split where « € F} q—1 % one conjugacy class
and o +a ' =t of size q(q + 1)
semisimple | no roots g o?q divides | divides for each t:
non-split where o € Flo \Fy | g+1 % one conjugacy class
altl =1 of size q(q — 1)
and o +a? =t

TABLE 1. Elements in the groups SL(2,¢q) and PSL(2, q).

Proof. If m > 2 is an integer dividing ¢—1 then F,\ {0, 1, —1} contains ¢(m) elements
of order m, where ¢ denotes Euler’s phi function. Similarly, if m > 2 divides ¢ + 1
then F,2 \ F, contains ¢(m) elements « of order m satisfying o™ = 1.

Hence, if m > 2 divides either ¢ — 1 or ¢ + 1, then

#{teF,: t=tr(x), v € SL(2,q), |z| :m}:%m).

The claim follows from the fact that ¢(m) > 4 if and only if m # 1,2,3,4,6. O
Lemma 4.2. Assume that q is odd, take N\ € Fp \ F, satisfying \* € F,, and let

9= (3 )\91)- Then for any x € SL(2,q), grg~' € SL(2,q), and moreover,

e [ftr(x) =2 then exactly one of x,grg~ " is conjugate in SL(2,q) to ((1) 1) ;
1

o Iftr(z) = —2 then exactly one of x,grg™" is conjugate in SL(2,q) to (_01 _1> :
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2
Proof. Let x = (3 6) € SL(2, q), then gzrg™! = ( a P ) € SL(2,q).

) A2 5
: 11 1 1 A% . . .
Moreover, if z = 0 1 then grg™ = 0 1) not conjugate to x in SL(2, q),
since A\? is not a square of some element in F,. O

Corollary 4.3. Let w € Iy be some non-trivial word, let z # +id be some matriz in
SL(2,q), and assume that z can be written as z = w(x,y) for some x,y € SL(2,q).
Then for any matriz £id # 2" € SL(2, q) with tr(2') = tr(z) there exist ',y € SL(2,q)
such that 2z’ = w(x',y').

Proof. If q is even, or if ¢ is odd and tr(z) # £2, then necessarily 2’ = hzh~! for some
h € SL(2,q), so one can take ' = hah~! and v’ = hyh™!, and then

w(z',y') = whah™ hyh™") = hw(z,y)h ™' = hzh ™' = 2/,

Assume that ¢ is odd, and let 2’ € SL(2,q) be some element with tr(z') = 2 =
tr(z), then by Lemma 4.2, 2’ is either conjugate in SL(2,q) to z or to gzg~!' (where
g9 € SL(2,¢%)).

If 2/ = hzh™! for some h € SL(2,q), take 2’ = hah™! and y = hyh~', and then

w<xl’y/> - U)(hﬂjhilj hyh‘il) = hw<x7y)h71 = hzh t =2\

If 2/ = hgzg 'h~! for some h € SL(2, q), take 2’ = hgzg 'h~' and v = hgyg *h1,
and then z’,y" € SL(2, ¢) and moreover,

w(a',y) = w(hgrg™ h™' hgyg™'h™") = hgw(w,y)g~'h™" = hgzg~'h™' = 2"
Similarly, if tr(z') = —2 = tr(z), then 2/ = w(a’,y’) for some 2’,y’ € SL(2,q). O

5. SURJECTIVITY OF THE TRACE MAP OF w(z,y) = 2" oN F,
Recall that by Lemma 2.3, the trace map of w(z,y) = %" can be written as
trw(:v, y) =u- fa,b(57 t) + ha,b(sa t)

The following proposition shows that if neither a nor b is divisible by the exponent
of PSL(2, ¢), then the polynomial f,;(s,t) does not vanish identically on A2 ,(F,).
Proposition 5.1. Let a,b > 1 and assume that neither a nor b is divisible by z%’
Then fau(s,t) does not vanish identically on A2 ,(F,).

In particular, the following table summarizes the possible nine cases.

| _pta | fGte | “Pta |

p1b || fap(2,2) #0 | fan(51,2) #0 | fap(s2,2) #0
% 10| fap(2,t1) 0| fap(s1,t1) 0| fap(s2,t1) #0
% 10 fap(2,t2) #0 | fap(s1,ta) 0| fap(s2,t2) #0
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where:
s1 = tr(zy), z1 s any element of order g — 1;
So = tr(wa), T2 s any element of order q + 1;
t1 = tr(y1), y1 is any element of order ¢ — 1;
to = tr(y2), Yo is any element of order q + 1.

Proof. If fo4(s,t) vanishes identically on A2 ,(F,), then trw(z,y) = hqy(s,t) does not
depend on u. We have to show that it is not the case for every F,. Take

A 0
z(A,¢) = <0 > oyl d) = (Z _> :
o
Then for any m,n,

s = (5 M) v = (it L)

™ o

>= 0
—

Lemma 5.2.

CQn -1
@1
Proof. We use induction on n. For n = 1 we have h,(¢) = 1.

Assume that for n > 1 it is proved. Then, by computing z(¢, c)"*' = z"z and
y(¢,d)"™ = y"y from the induction assumption we obtain, respectively,

(5) hn+1<<>—<"+h"7(o; B (€) = ChalC) +

Both relation lead to the same result:
. CZn -1 C2n CQ -1 + C2n -1 C2n+2 1
haa(¢) = ¢+ Sl (b

hn(C) =

1
Cn

CE-n- T Ce-y T eeey
¢r-1 1 G- o
. =(oorm ot = - '
+1(C> an_1<<2 _ 1) + Cn CR(CQ — 1) Cn(CQ - 1)
O
Now, a direct computation shows that
tr(z(A, )y (p, d)') = A’ + cdha (N hy (1) + Xllub

We have to show that for every field F, there are z(A, ¢) and y(u, d) such that

(% =1~ )

ha(/\)hb(,u) = ()\2 — 1)(M2 — 1)>\a—1,ub_1

£ 0.

Note that h, (1) = n.
Let a € F, be an element such that a2t = 1,a™ # 1 for any m < ¢ — 1, and let
B € F, \ F, be an element satisfying that 477 =1, 6™ # 1 for any m < g + 1.
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(¢ g—1 g+1

Since pd_;1) f a it follows that either p or <= or %

either p or q%dl or % does not divide b.
Thus, we need to consider nine cases, and in each case we have to find z(A, ¢) and

y(u, d) such that h,(A)hy(p) # 0. The following table shows that this is possible.

| _pta | ‘Gte | ffta |

does not divide a. Similarly,

ptb || A=p=1 [ A=au=1[A=3pu=1
%J{b A=lpu=a|d=a,pu=a|A=0u=«a
Cotb| A =Lu=0[A=apu=0|A=06pnp=0

O

We can now deduce that if neither a nor b is divisible by the exponent of PSL(2, q),
then the trace map of the word w(z,y) = z%?" is surjective onto F,.
Corollary 5.3. Let a,b > 1 and assume that neither a nor b is divisible by ’%.
Then every a € F, can be written as o = tr(z"y) for some z,y € SL(2,q).

Proof. According to Lemma 2.3 the trace of w = x%® can be written as
tr(w) =wu- f(s,t) + h(s,t),

where s = tr(x),u = tr(xy),t = tr(y). Namely, it is linear in u and the coefficient of
u is a non-trivial polynomial f(s,¢) in s and ¢.

By Proposition 5.1, f(s,t) does not vanish identically on A2 (IF,), and hence for
every o € IF, there is a solution (s,u,t) € F? to the equation

u- f(s,t) 4+ h(s,t) = a.

6. SURJECTIVITY OF w(z,y) = %" ON SL(2,q) \ {—id} AND PSL(2,q)

In this Section we prove Theorems 1.8, 1.9 and 1.10 on the surjectivity of the word
map w(z,y) = z%° on SL(2,q) \ {—id} and PSL(2,q).

By Remark 3.4, throughout this section we can assume that 1 < a,b < ’%.

The following two Corollaries follow from the general arguments presented in Sec-
tion 3.
Corollary 6.1. If either a is relatively prime to %

%, then the word w(x,y) = x%y® is surjective on SL(2, q), and hence on PSL(2, q).

or b is relatively prime to

Proof. The claim follows immediately from Proposition 3.3. U

p(g®-1) .

Corollary 6.2. If either a = @D and b is not relatively prime to

d2 d2 )
b= % and a s not relatively prime to p(q2;1),' then the word map w(z,y) = x%°

is not surjective on PSL(2, q), and hence not on SL(2,q) \ {—id}.

or
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Proof. The claim follows immediately from Proposition 3.1. U

Remark 6.3. It follows that the only interesting cases to consider are when a,b <
2
p(qd—, and both a and b are not relatively prime to 2 ( 1)
We can now deduce Proposition 1.6, stating that if w = 2%’ is non-degenerate
with respect to ¢, then any semisimple element z (namely, when tr(z) # 42) can be
written as z = % for some x,y € SL(2, q).

Proof of Proposition 1.6. Assume that w = 2%’ is non- degenerate with respect to q.
Without loss of generality, we may assume that 1 < a,b < £ (q U Ifa,b < b4 = 2@ =) then
the result immediately follows from Corollary 5.3 and Sectlon 4. Otherw1se either a

p(g®>—1)
d2

or b is relatively prime to , and the result follows from Corollary 6.1. U

Unfortunately, a similar result fails to hold when z is unipotent, namely when
z # +id and tr(z) = £2. This case will be discussed in detail in Section 8, where we
shall prove the following two propositions.

Proposition 6.4. Let 1 < a,b < ’%. Then the image of the word map w = x%°
contains any non-trivial element z € SL(2,q) with tr(z) = 2, if and only if none of
the following obstructions occurs:

(i) ¢ =2°, e is odd and a,b € {2(‘13‘1 ’ (qz—l)};

(74) ¢=3mod 4 and a =b= Tl),

(74i) ¢ =11 mod 12 and a =b =2 61)

(iv) ¢ =5 mod 12 and a,b € {qu_> p—(qlg_l)}'

Proposition 6.5. Assume that q is odd and let 1 < a,b < Z@. Then the image

of the word map w = x* y contaz’ns any element z # —id with tr(z) = —2, unless
q_3mod4anda—b 1)

We can now prove the main theorems.

Proof of Theorem 1.8. Let ¢ = 2°. If w = 2%® degenerates with respect to ¢, then by
Corollary 6.2 the word map w is not surjective on SL(2, ¢). If obstruction (7) occurs
then by Proposition 6.4(i), the image of w = x%® does not contain any non-trivial
element z € SL(2,¢) with tr(z) = 0, and hence it cannot be surjective on SL(2, q).
On the other hand, if w = 2%’ is non-degenerate with respect to ¢ and obstruction
(i) does not hold, then by Proposition 1.6 and Proposition 6.4(7), any element z €
SL(2, q) is in the image of the word map w = x%°. O

Proof of Theorem 1.9. Let ¢ be an odd prime power. If w = %" degenerates with
respect to g, then by Corollary 6.2 the word map w is not surjective on SL(2, ¢)\{—id}.
If one of obstructions (%), (iii), (iv) occurs then by Proposition 6.4, the image of
w = %" does not contain any non-trivial element z € SL(2,¢) with tr(z) = 2, and
hence it cannot be surjective on SL(2, q) \ {—id}.
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On the other hand, if w = 2%’ is non-degenerate with respect to ¢ and none of
the obstructions (ii), (i7i), (iv) holds, then by Proposition 1.6, Proposition 6.4 and
Proposition 6.5, any element z € SL(2,q) \ {—id} is in the image of the word map

a,b
w = x%Y’°. [

Proof of Theorem 1.10. Let g be an odd prime power. Observe that the word map
w = 2%’ is surjective on PSL(2, ) if and only if for every z € SL(2, q) either z or —z
can be written as x%® for some z,y € SL(2, q).

If w = 2%" degenerates with respect to ¢, then by Corollary 6.2 the word map
w is not surjective on PSL(2,¢). If obstruction (ii) occurs then by Proposition 6.4
and Proposition 6.5 the image of w = 2%® does not contain any element +id # 2 €
SL(2, q) with tr(z) = 2 or tr(z) = —2, and hence it cannot be surjective on PSL(2, q).

On the other hand, if w = 2%’ is non-degenerate with respect to ¢ and obstruction
(7i) does not hold, then by Proposition 1.6, Proposition 6.4 and Proposition 6.5, for
any element z € SL(2,q), either z or —z can be written as z%® for some z,y €
SL(2, q), as needed. O

Proof of Corollary 1.11. If ¢ is odd, then by Theorem 1.10, the word map w = 2%’
is surjective on PSL(2, ¢) whenever

]@ > max{a, b}.
Thus, one has to prove that
(6) q>V3a = @ >a
and
(7) | PSL(2,q)| = ale’ —1) > 3\/§a3/2 — IM > a.

2 2 8
Assume that ¢ > v/3a. Since ¢ > 3 then ¢* — 1 > 3¢°. Therefore,

pl® =1 3¢ -1 _3-8¢ ¢

> a.
§ ~ 8 9.8 ¢
Moreover, the inequality
3V3 21 3
Tfam < |PSL(2.q)| = % <L

implies that ¢ > v/3a.
This estimate is sharp. Indeed, if a = p = ¢ = 3, we have

2
—1
qg=3=+V3a, p—(q )

3 =3 =ua.
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If ¢ is even, then by Theorem 1.8, the word map w = x%" is surjective on PSL(2, q)
whenever

@ > max{a, b}.
Thus, in this case one has to prove that
(8) q>V3a = @ > a
and
(9) |PSL(2,q)| = q(¢* — 1) > %aiﬁﬂ — @ > a.

If ¢ > v/3a then

2040 =1 2Ba-1) _, 2

3 3 3

Let us prove (9). If ¢ = 2, then ¢q(¢* — 1) =6 < %ga?’ﬂ for any a > 2. Hence, we

may assume that ¢ > 4, and then @ > 10 > 3. It follows that (9) is valid for

a = 2,3. On the other hand,

3v3 3v3
q(q2 ~1) > \2/_a3/2 ; q3 > \2/_a3/2
3a 2(q2—1) 1 2
2
_— > = = 2 > 9 —— >
q 2% 3 3a 3 ~Za
if a > 3. O

7. EQUIDISTRIBUTION OF THE WORD MAP w(x,y) = x%° oN PSL(2, q)

_The goal of this section is to prove Theorem 1.14. We first consider the case
G = SL(2,q). In this case, the Theorem follows from the following Proposition.

Proposition 7.1. Denote G = SL(2,q), let a,b > 1 and let w : GxG — G be

the map given by w(x,y) = 2%°. Then there are a subset S C C;', and numbers
Ai(a,b), As(a,b) such that:

) |S] = g Ar(ab).
(i) 1S = (1 — €(q)) |G, where 0 < €(q) < 22

(i) |M,| = ¢*(1 + 6(q)) for any g € S, where M, = {(z,y) € G* | w(z,y) = g}
and [§(q)| < 2L,

Proof. We fix a,b and maintain the notation of Section 2 omitting only the indices
a,b. Let D=a+0b—1.
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Consider the following commutative diagram of morphisms:

(10) G x G(F,) —= A, (F,)
| \ i‘”
G(F,) AL(TF,)

In this diagram:

e A7 ,, . denotes an n—dimensional affine space with coordinates x1, z, . . .
(ZE y) (tr(x),trN(xy), ( )) S Aguw
w(z,y) = 2%’ € G
P(s,u,t) = uf(s,t) + h(s,t);
7(x) = tr(z) € Al;
p(z,y) = tr(w(z,y)).
By definition, M, = w™'(g). Let t € F,. Denote:
[ ] Nt = ( ) C G2
.Lt:¢ ()CAg’ut’
o T, =71t) C G,
o p(s,u,t) = s>+ u? + 1% — ust — 4,
e y;(t), i = 1,2, are solutions of the quadratic equation 2? — tx + 1 = 0,
o w2=1>—4.
t
Note that v4(t) # v»(t) if and only if ¢ # 2. For odd ¢ the condition w; € F, is
equivalent to the condition v 5 € F,.
Recall that if £2 # ¢t € F,, then all the elements in T} are conjugate (see Section 4).

Thus, if tr(g) = t, then |M,| = e From Table 1 in Section 4 we deduce that

|T\
(11) T, = ¢*(1+6:(1)),
where
51(t> = % if Wt 7é 0 and V172(t) S Fq .

71 if wy # 0 and v15(t) ¢ F,
Hence, in all the cases above, |d;| < %.

We divide the proof into three steps.
Step 1. Fibers of .
Proposition 7.2. (a) Ift* # 4, then

3 .
B = q°(1 4 09t if p(s,u,t) #0
|7~ (s, u, 1) (Fy)| g 21( )t )_ ,
< 2q (1+§) pr(sauat)_o
where |dz| < 2 for every (s, u,t).
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. =¢ —q if pls,u,2) # 0
(b) ‘7T (S,U, i2)(Fq>’ {S 2(]3(1 + 51(3)) ifp(S,U,Q) =0

The proof of this Proposition follows from the next two Lemmas.
For a fixed y € G with tr(y) = t, let

Kouly) = {2 € G | nla,y) = (s.u,0)}.

Lemma 7.3. Let t> # 4 and v, = (_tl é) Then

g1 ifp(s,u,t) #0
(12) [ Ksu(ye) (Fo)| = 4 1 if p(s,u,t) =0, vi2(t) € Fy .
2¢—1 ifp(s,u,t) =0, 1ns(t) €F,

Proof. If wy # 0 then K, (y:) consists of the matrices
_ o B
v u+pf—at s—a)’
such that

(13) a(s—a)—(u+pf —at)f =1

Assume that ¢ is odd. Then (13) is equivalent to

st —2u  w?f 2 Ot s 2
< 5 + ;) —wf(a—?—é) —p(s,u,t) = 0.

Thus, if p(s,u,t) # 0 then K, (y;) is a non-degenerate conic; whereas if p(s, u, t) =
0 then K, (y:) is a pair of intersecting straight lines, which are not defined over F,
if w; € IFy, or defined over F if w; € .

Assume that ¢ = 2°. Substituting & = a + ¥, B=p+ 2, we reduce (13) to

(14) &+ P+ taf = p—(‘s;g’ £

Thus, since t # 0, we have a conic for p(s,u,t) # 0. Hence, |K;,(y)(F,)| = ¢+ 1if

p(s, u,t) # 0.
If p(s,u,t) =0 then (14) provides

(15) (n()a+ B)(ra(t)a + 5) =0

Thus, if v15(t) € F, we have two intersecting lines, whereas if v 5(t) ¢ F, we have
precisely one point (0,0). O
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Lemma 7.4. Lett =2, A # 0, and v\ = (1 )\). Then

0 1
q if p(s,u,2) # 0
(16) [ K () (Fg)| = 0 if p(s,u,2) =0, via(s) € Fy .

2q or q if p(s,u,2) =0, v12(s) € F,

Proof. If X # 0 then Kj,(v,) consists of the matrices

such that
U— S

afs —a) = f—

Thus if p(s,u,2) = (s — u)? # 0 then we have ¢ points; whereas if p(s,u,2) =
(s —u)* =0, then we have

=1.

e cither two disjoint lines, if v15(s) € Fy, 1 # 1, (for odd ¢ it means that
ws # 0,w, € Fy);

e or one line, if v 5(s) € F,, vy = 1, (for odd ¢ it means that w, = 0);

e 10 points, if v15(s) ¢ F,, (for odd ¢ it means that wy ¢ F,).

Proof of Proposition 7.2.
(a) Indeed, |71 (s,u,t)(F,)| = |Ksu(y:)(Fy)| - |T3|, thus the claim follows from
Lemma 7.3 and Equation (11). Moreover,

3

1 1
102(t)] < [61()] + = + [6:(¢)] -~
q q
(b) There are two or three conjugacy classes of matrices y with tr(y) = 2. If

u # s, then y # id, thus there are ¢?> — 1 different matrices y to consider, and
according to Equation (16),

77 (s, u, £2)(Fy)| = (¢ — 1)g.
If p(s,u,2) =0, i.e. s =wu, then summation over the classes yields

7 (s, 0, EDE)] < 20l = 1) + 1+ 01(5) < 20 (15 )

For t = —2 the proof is similar.
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Step 2. Definition of the set S.
Let
A={(s,t) €A, | f(s,t) =0},
B = {(s.t) € A7, | h(s,t) = (},
C=A{(s,u,t) € Aiu’t | p(s,u,t) =0}.
Note that C is absolutely irreducible for every field F,. We first define the set
¥ C IF, by the following rules.

e Rule 1. Assume that there exists ¢ € F, satisfying p(s, %(;t),t) =0on C.
Then ¢ € X.

e Rule 2. Assume that there is an irreducible (over F,) component A’ C A and
¢ € F, such that h(s,t) = ( on A’. Then ¢ € X. Note that since deg A = D
(by Lemma 2.3) there are at most D such numbers.

e Rule 3. 2 € ¥ and -2 € X.

Remark 7.5. By the above construction, ¥ contains all the values ¢ such that ANB,
contains a curve or L. N C' is not a curve.

Now, we can define the sets T = 77 1(%) and S
Lemma 7.6. |S| = |G|(1 —e(q)), where |e(q)| <

_a\T
34D
q—1"
Proof. Indeed, by construction, |S| < (3+ D). Thus by (11), |T| < (3+ D)¢?(1 + %)
Hence, . . . .
S| =G| = [T] = |GI(1 = &(q)),
where ) )
B+ D)g*(1+7) 34D

@ —q g—1

le(q)] <

Step 3. Estimation of |M,|.
Let ¢ € F,\ X. Then Ly = ¢~ 1({) = Y U Re U Q¢, where
Ye=A{(s,u,t) € L | p(s,u,t) # 0, f(s,t) # 0},
Re={(s,ut) € L¢ [ p(s,u,t) =0, f(s, 1) # 0},
Q¢ =A{(s,u,t) € L¢ | f(s,1) = 0},

In the estimation of the sizes of the above sets, we will use the following fact, which
is the case n = 1 of [GL, Proposition 12.1].

Claim 7.7. Let X C PY be a projective curve in the projective space PV of degree D
defined over F,. Then

(17) X (Fy)| < D(g +1).
Lemma 7.8. |Q.(F,)| < D?%q.
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Proof. 1f f(s,t) = 0 and (s,u,t) € L¢, then h(s,t) = (, i.e.(s,t) € AN Be. Since
¢ ¢ %, the set AN B, is finite. Both curves have degree at most D (by Lemma 2.3),
hence, by Bézout’s Theorem, |AN B;| < D?. On the other hand there is no restriction
on the value of u. Hence, |Q.(F,)| < D?q. O

Lemma 7.9. |R:(F,)| <3D(q+1).

Proof. Indeed, R¢(F,) = {p(s,u,t) = 0,uf(s,t) + h(s,t) = (} is a curve, since { ¢ X.
By Bézout’s Theorem, deg(R;) < 3D. Hence, according to Equation (17), |R¢(F,)| <
3D(g+1). O

Lemma 7.10. |Y;(F,)| = ¢*(1 4 83(q)) where [03(¢)| < %.
Proof. Since deg A = D, by Equation (17), |A(F,)| < D(¢+ 1). Hence
¢* — (A% \ A)(Fy)| < D(g+1).

For every point (s,t) € (A7, \ A)(F,) there is precisely one point (s, %{;ﬂ, t) € Y.
Thus,
Yo (F)l = (A2, \ A)(Fo)| = ¢*(1 + d3(q)),

and ( )
D(g+1) _ 2D
50y < 2D 2D
q q
O
We can now estimate |M,| = % By Proposition 7.2, we have
7 (YO (F)| = ¢°(1+ da),
where
2D 3 2D3 8D+3
|04 < —+ -4+ —=-< ;
q q q q q
and
1 1
7 (Re UQe)(Fy)| < (D?q+3D(q +1))2¢°(1 + 5> <2(D*+6D)g"(1+ 5).
Therefore

INc(Fy)| = ¢°(1 4 62)| = |71 (L) (Fy)| — | (YO ()]
<2(D*+6D)g*(1+ %),

implying that
IN(Fy)| = ¢°(1+ d5),

where

8D+3+2(D2+6D)(1+§) _AD* +32D +3

05 < <
q q q
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We conclude that

N U 5) sy g0,

M | = = —
Ml =71 = piirey

where

q q q

4D?>+32D+3 2 4D?*+32D+5
166(Q)] < +-= .

For completing the proof of Proposition 7.1 it is sufficient to take

D
Ai(a,b) =23+ D) > %,
and

As(a,b) = 4D* 4+ 32D + 5.

We can now prove Theorem 1.14 for the group G = PSL(2, q).

Proof of Theorem 1.14 for G = PSL(2,q). Assume that ¢ is odd, denote G = PSL(2, q)
and consider the commutative diagram

(18) G % G(Fq) - é(]Fq)

where
e p: G — G is the natural projection G — G/Z(G);
e p': G x G — G x G is the projection induced by p;
e w1, wy correspond to the map (z,y) — 2% on G xG and on G x G respectively.

Define S = p(S). Since for any z € G, p~'(z) contains precisely two elements of G,
then Proposition 7.1 implies that

GI(1 —(q))
2
Take z € S, then p~'(2) = {21, 2}, and denote H, = w; '(2). Let y € G and denote
M, = wi(y). Then M., U M., = p*(w;}(2)) = o (H.).
Thus,

|S] = = |GI(1 —e(q)).

M, |+ M, 2¢°(1 4 6(q))
4 4
where [0’(¢)| — 0 when ¢ — oo. O

) = | — 161+ 8(q)).
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8. NON-SURJECTIVITY OF SOME WORDS w(z,y) = z%°

In this section we prove Propositions 6.4 and 6.5, and in particular, we show that
there are certain fields ¢ and positive integers a,b such that the trace map corre-
sponding to the word w = z%?’ is surjective on F,, by Corollary 5.3, however, the
word w = x%p® itself is not surjective on SL(2,q) (or PSL(2,q)), since the image of
w does not contain —id or unipotent elements, yielding the obstructions described in
Definition 1.7.

8.1. Proof of Propositions 6.4 and 6.5.

Proof of Proposition 6.4. Since % 1 a it follows that either p or % or %

not divide a. Similarly, either p or % or %1 does not divide b.

We may consider the following four cases:

does

Case 1: pta.
Take v =

1 L
0 1
from Corollary 4.3.

and y = id. Then 2%’ = 2% = (1 !

0 1), and the claim follows

For the other cases, it is sufficient to find some x,y € SL(2,q) with s = tr(z),t =
tr(y) satisfying:

(19) fas(s,t) # 0 and tr(z®) # tr(y").
Indeed, if f,4(s,t) # 0 then one can find some u € [F, such that
tr(w) =u- f(s,t) + h(s,t) =2.

Hence, there exist some matrices z1,y; € SL(2, q) satisfying tr(z,) = s,tr(y;) =t
and tr(x1y;) = v and so tr(z$y}) = 2. Moreover, 2¢y% # id since

tr(af) = tr(a®) # tr(y’) = tr(yy).
Therefore, by Corollary 4.3, there exist x5, y» € SL(2, q) such that z = 2315 as needed.

Case 2: 1 fa and 22 1 b.

Let x and y be two matrices of orders ¢ — 1 and ¢+ 1 respectively, and let s = tr(z)
and t = tr(y). According to the table in Proposition 5.1, f,;(s,t) # 0. Moreover,
since x is a split element while y is a non-split element, and since % # +id, y® # +id,
then tr(z®) # tr(x®), implying (19).

Case 3: ! {aand &+ {b.

Let x,y be some matrices of order ¢ — 1 and note that 2% # +id and y® # +id.
Observe that unless either |2 = |y°| = 3 or |2?| = |y°| = 4, for all elements x,y of
order ¢ — 1, one can find two matrices x,y of order ¢ — 1 satisfying tr(z?) # tr(y®) (see
Lemma 4.1). Let s = tr(z) and ¢ = tr(y). According to the table in Proposition 5.1,
fan(s,t) # 0, and so (19) holds.
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Since a,b < ’@ the only cases left to consider are cases (i), (i), (v) of Re-
mark 8.1. In Proposition 8.4 we will show that in all these cases the image of w = z%y®
contains every non-trivial element z € SL(2, ¢) with tr(z) = 2.

Case 4: Zt1 fq and 22 1 b.

Let x,y be some matrices of order ¢ + 1 and note that 2% # +id and y® # +id.
Similarly to Case 3, observe that unless either |z%| = [¢°| = 3 or |2?| = |y°| = 4, for
all elements z,y of order ¢+ 1, one can find two matrices x, y of order ¢+ 1 satisfying
tr(z?) # tr(y®) (see Lemma 4.1). Let s = tr(z) and ¢ = tr(y). According to the table
in Proposition 5.1, f,4(s,t) # 0, and so (19) holds.

Since a,b < @ the only cases left to consider are cases (ii), (iv), (vi) of Re-
mark 8.1. In Proposition 8.3 we will show that in all these cases the image of w = z%°
contains no non-trivial element z € SL(2, ¢) with tr(z) = 2, yielding the obstructions
given in the proposition. U

Proof of Proposition 6.5. Since i@ f a it follows that either p or qg—l or % does

not divide a. Similarly, either p or % or %1 does not divide b.
We may consider the following six cases:

Case 1: pfaand p1{b.

(1 =2/a (1 0
Take: x = 0 1 , Y= 2 1)

o (1 =2 » (1 0 b (3 =2 .
Then =z —(0 1), y—<2 1>,andsoz—xy—<2 1)7& id,

satisfies that tr(z) = —2, and the result follows from Corollary 4.3.
For the other cases, it is sufficient to find some z,y € SL(2, q) with s = tr(x),t =
tr(y) satisfying:
(20) fan(s,t) # 0 and tr(z®) # —tr(y®).
Indeed, if f,4(s,t) # 0 then one can find some u € [F, such that
tr(w) =u- f(s,t) + h(s,t) =—2.

Hence, there exist some matrices z1,y; € SL(2, q) satisfying tr(z,) = s,tr(y;) =t
and tr(xy;) = v and so tr(z$y}) = —2. Moreover, x{y? # —id since

tr(z}) = tr(a) # — tr(y’) = —tx(y}).
Therefore, by Corollary 4.3, there exist 22,7, € SL(2, ¢) such that z = 23y as needed.
Case 2: pfa and S 1b.
Let y be some matrix of order ¢ — 1 and let ¢ = tr(y). According to the table in

Proposition 5.1, f,4(2,t) # 0. Moreover, since y is a non-split element and y° # +id
then tr(y®) # £2, implying (20).

Case 3: pfa and £ 0.
The proof is the same as in Case 2.
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Case 4: % fa and L 0.

Let x and y be two matrlces of orders ¢ — 1 and ¢+ 1 respectively, and let s = tr(x)
and ¢ = tr(y). According to the table in Proposition 5.1, f,s(s,t) # 0. Moreover,
since z is a split element while v is a non-split element, and since x® # +id, y® # +id,
then tr(z%) 7é + tr(y®), implying (20).

Case 5: &1 {a and &+ 1b.

Let z,y be some elements of order ¢ — 1 and note that 2% # +id and y® # +id.
Observe that unless tr(z?) = tr(y?) = 0 for all elements z,y of order ¢ — 1, one can
find two matrices x,y of order ¢ — 1 satisfying tr(z®) # — tr(y°) (see Lemma 4.1). Let
s =tr(x) and t = tr(y). According to the table in Proposition 5.1, f,4(s,t) # 0, and

so (20) holds.

Now, the only case left is ¢ = 1 mod 4 and a = b = 2= (see Remark 8.1(iii)).

In Proposition 8.4 we will show that in this case the image of w = %" contains every
element z # —id with tr(z) = —2.

Case 6: ! {a and <2 {b.

Let z,7 be some elements of order ¢ + 1 and note that 2% # +id and y® # +id.
Similarly to Case 5, observe that unless tr(z?®) = tr(y?) = 0 for all elements x,y of
order g+1, one can find two matrices x, y of order ¢g+1 satisfying tr(z?) # — tr(y®) (see
Lemma 4.1). Let s = tr(z) and t = tr(y). According to the table in Proposition 5.1,
fap(s,t) # 0, and so (20) holds.

Now, the only case left is ¢ = 3 mod 4 and a = b = 1) (see Remark 8.1(iv)).
In Proposition 8.3 we will show that in this case the i 1mage of w = 2% contains no
element z # —id with tr(z) = —2, yielding the obstruction given in the proposition.

O

8.2. Obstructions for surjectivity of the word w(xz,y) = 2%°.

Remark 8.1. In the course of the proof of Propositions 6.4 and 6.5, we need to
consider the following special cases:
(i) q is even, |z¢|,|y°| € {1,2,3} for all z,y € SL(2,q), and |z%| = |*| = 3 if
[ = [yl =q¢—1:
Namely, ¢ = 2°, e is even, ]a q + 1|a, 2|a (and similarly for b). Hence,
a and b are multlples of

qg—1 2(¢* - 1)
| I 1.9 =22~/
Cm( 3 7q+ 7) 3 )

2(¢*—1) —1 4(q2—1

namely, a,b e {21 } By Remark 3.4, it is enough to consider the

case a = b= M
(i) q is even, |z°|, |y | € {1,2,3} for all z,y € SL(2,q), and |27| = |¢y*| = 3 if
[ = [yl = ¢+ L:
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Namely, ¢ = 2°, e is odd, %m, q — 1]a, 2|a (and similarly for b). Hence,
a and b are multiples of

1 202 — 1
lem (4L, q0) =2 =D
3 3

2(¢*—1) —1 4(q2—1

namely, a,b e {21 } By Remark 3.4, it is enough to consider the

case a =b= M
(741) q ia odd, |z, |y | € {1,2,4} for all x,y € SL(2,q), and |z = |¢°| = 4 if
=lyl=q-1:

Namely7 g = 1 mod 4, %|a, &21]@, pla (and similarly for b). Hence,

g—1q+1 plg* = 1)
. cm( Ll p) .
(iv) q is odd, |z¢|,|y°| € {1,2,4} for all x,y € SL(2,q), and |2%| = |3*| = 4 if
|z = [yl = ¢+ 1:
Namely, ¢ = 3 mod 4, Zt|a, St|a, pla (and similarly for b). Hence,

1 ¢g—1 21
a:bzlcm(%,%,p) :%.

(v) q is odd, |z, |y®| € {1,2,3} for all z,y € SL(2,q), and |2 = |[¢°| = 3 if
7| =yl =q¢—1:
Namely, ¢ = 1 mod 6, ]a
b are multiples of

5 (q—l g+1 ) P if g =1 mod 12
m ) ) _ .
302 P) T\ HE i g =7 mod 12

a, pla (and similarly for b). Hence a and

(vi) q is odd, |z¢|,|y°] € {1,2,3} for all x,y € SL(2,q), and |2%| = |3*| = 3 if
2| = [yl =q+1:
Namely, ¢ = 5 mod 6, %1]@, q;;]a, pla (and similarly for b). Hence a and
b are multiples of

1cm<ﬂ q—lp): % if = 11mod 12
3 7 20 p—(q12—1) if ¢ =5 mod 12

In order to investigate these obstructions in detail, we need the following technical
result on unipotent elements.

It follows from Theorem 2.2 and Section 4 that for any matrix z € SL(2,¢q) with
tr(z) # £2 and any two integers m,n > 2 dividing p(¢>—1), one can find two matrices
x and y, such that 2™ = id = y" and z = xy. However, a similar result fails to hold
if z is unipotent.
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Proposition 8.2. Let z € SL(2,q) be a unipotent element (i.e. z # +id and tr(z) =
+2), and let m,n > 2 be two integers dividing p(q> — 1). Then there exist x,y €
SL(2,q), such that ™ = id = y™ and z = xy, if and only if none of the following
conditions hold:

(i) ¢ =2° e is odd, tr(z) =0 and m =n = 3;
(i) ¢ =3 mod 4, tr(z) = £2 and m =n = 4;
(#i) ¢ = 5 mod 6, tr(z) =2 and m =n = 3.

Proof. If m,n > 2 are two integers dividing p(¢®> — 1), then one can find m/,n’ > 2
satisfying m/|m, n’|n and moreover, either m’ = p or m’|q — 1 or m/|¢ + 1, and either
n’ =porn|qg—1orn|qg+ 1. Thus, there exist some matrices z,y in SL(2,q) such
that z has order m’ and y has order n/, namely 2™ = id = 2™, and so 2™ = id = 2"

Assume that tr(z) = 2. If m’ = p then we can take + = z and y = id. Thus we
may assume that both m’ and n’ are relatively prime to p. Hence, unless m’ =n' =3
or m' =n/ = 4, one can find two matrices x1,y; € SL(2,q) such that 27" = id = y"
and tr(x;) # tr(y;) (see Lemma 4.1). Let s = tr(x;) and ¢t = tr(y;).

By Theorem 2.2, there exist two matrices zz,ys € SL(2,¢q) with s = tr(xs), t =
tr(ye) and tr(xeys) = 2. Since s # t then xoys # id, and hence, by Corollary 4.3,
there exist some x,y € SL(2,¢) with tr(z) = s and tr(y) = t satisfying z = xy.

Now, assume that tr(z) = —2. Unless m’ = n’ = 4, one can find two matrices
z1,y1 € SL(2, ¢) such that 27 = id =y and tr(z;,) # — tr(y1) (see Lemma 4.1). Let
s = tr(zy) and t = tr(y;). By Theorem 2.2, there exist two matrices xq,y2 € SL(2, q)
with s = tr(zy), t = tr(y2) and tr(zoys) = —2. Since s # —t then xoys # —id, and
hence, by Corollary 4.3, there exist some z,y € SL(2, ¢) with tr(z) = s and tr(y) =¢
satisfying z = zy.

It is left to consider the cases m’ =n’ =4 and m' =n’ = 3.

For an odd ¢, in case m’ = n’ = 4 we have s = tr(z) = tr(y) = ¢t = 0, and w? = —4.
In Lemma 7.3 it is shown that such pair with 2 # y~! exists if and only if w; € F,,
therefore if and only if ¢ = 1 mod 4.

In case m’ = n’ = 3 we have s = tr(z) = tr(y) =t = —1 and w? = —3. Hence,
w; € Fpe if and only if either e is even or e is odd and p = 1 mod 6, namely if and
only if ¢ = p® = 1 mod 6.

In case ¢ = 2° and m’ = n’ = 3 we have s = tr(z) = tr(y) =t = 1, and v, 5 are the
roots of the polynomial a? + a + 1. These roots belong to the field Fye if and only if
e is even. U

The following proposition shows that the condition that neither a nor b is divisible
by the exponent of PSL(2, ¢) is not sufficient for the surjectivity of the word z%y" on
PSL(2, ¢) (and on SL(2, ¢)\{—id}), yielding the obstructions given in Propositions 6.4
and 6.5.

Proposition 8.3. Let ¢ be a prime power, a,b > 1, and z € SL(2,q) a unipotent
element, satisfying the conditions given in the following table.
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‘ q=p° ‘ a,b ‘ conditions for z ‘ m ‘
(i) | q=2° e is odd a=b=2C"D z #id with tr(z) =0 | 3
(ii) | ¢=3mod4 a=b="2r) 2 # +id with tr(z) = +2 | 4
(i) | ¢=5mod 12 |a,be {MC1 2Oy 1 o oL ig with tr(z) =2 | 3
(1v) | ¢ =11 mod 12 a:b:@ z #id with tr(z) =2 | 3

ayb_

Proof. By Remark 8.1, for every x,y € SL(2, q) either * = +id or x* is of order m,
and similarly for ¢°. If z = 2% is unipotent then necessarily x® # +id and y® # +id,
hence both 2% and y° are of order m. Assume that z is given as above. According to
Proposition 8.2, in all these cases z cannot be written as a product of two matrices
of order m, hence, z is not in the image of the word map w = z%°. 0

Then, in all these cases, z does not belong to the image of w = x

Proposition 8.4. Let g be a prime power, a,b > 1, and z € SL(2,q) a unipotent
element, satisfying the conditions given in the following table.

‘ q=p° ‘ a,b ‘ conditions for z ‘ m ‘
1) | q=2° e is even a=b=2C"D z #id with tr(z) =0 | 3
3
(i) | ¢=1mod4 a=b=2e) z # Fid with tr(z) = £2 | 4
(73i) | g =1mod 12 a=b=2C-1 z #id with tr(z) =2 | 3
w qg=T7Tmod 12 |a,be M,M z # id with tr(z) = 2 3
G 2

Then, in all these cases, z is in the image of w = xy°.

Proof. According to Proposition 8.2 in all these cases there exist two matrices of order
m, x1 and yi, such that z = z1y;. Moreover, by Remark 8.1, any element x order
q— 1 satisfies that x® has order m. Hence, there exist some = € SL(2, ¢) of order ¢ — 1
such that z% = z; (see Section 4). Similarly, one can find some y € SL(2, ¢q) of order
g — 1 such that y* = y;, and then %" = 2 as needed. 0

8.3. Missing —id in the word map.

Proof of Theorem 1.12. Assume that ¢ is odd and let K = max {k : 28 divides ‘127_1} .

Observe that since 25 | ‘12771 and ged(q — 1,¢ + 1) = 2, then exactly one of the
following holds:

e cither ¢ — 1 =25 .m and ¢ + 1 = 2 -1 for some odd integers [, m;
eorg+1=2%.mand q—1=2-1for some odd integers I, m.

If 2K @ then one can write a = 2¥a’ for some k < K and some odd integer a’.
Without loss of generality we may assume that ¢ — 1 = 2% . m for some odd integer
m.

Let x; € SL(2, q) be some element of order ¢ — 1 and let x = x%Kﬁk*l, then

9K—1 g—1

a k\a a’ 3 \ma' - nnma’' .
T = (x2 )= )T = (%) = (—id) = —id,
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and hence —id = 2%d" as needed.

On the other direction, if 2% | a then since any element z in SL(2, q) is either of
order p or of order dividing ¢ — 1 or of order dividing ¢ + 1, we deduce that z¢ is
either trivial or of odd order. Similarly, if 2% | b then for any element y € SL(2, q),
y” is either trivial or of odd order.

If —id = 2% then neither z® nor g is trivial. Let [ and m be the orders of 2 and
1 respectively, then both I, m are odd and divide either ¢ — 1 or ¢ + 1. Without loss
of generality we may assume that both orders of x and y divide ¢ — 1, and that x%,
and so also °, are in diagonal form, namely:

a A0 0
X :(0 )\—1)7 yb:(/é M—l)a

for some A, u € F, satisfying \' = 1 and p™ = 1.

Hence,
. A 0
o _ a. b __ %
zd—xy—<0 )\_l,u—l)’

implying that Ay = —1, but then, since Im is odd,
S1= () = () = )T () =11 = 1,

yielding a contradiction. U
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