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We derive the gravitational radiation-reaction force modifying the Effective One Body (EOB)

description of the conservative dynamics of binary systems.

Our result is applicable to general

orbits (elliptic or hyperbolic) and keeps terms of fractional second post-Newtonian order (but does
not include tail effects). Our derivation of radiation-reaction is based on a new way of requiring
energy and angular momentum balance. We give several applications of our results, notably the
value of the (minimal) “Schott” contribution to the energy, the radial component of the radiation-
reaction force, and the radiative contribution to the angle of scattering during hyperbolic encounters.
We present also new results about the conservative relativistic dynamics of hyperbolic motions.

PACS numbers: 04.30.-w, 04.25.Nx

I. INTRODUCTION

The Effective One Body (EOB) formalism [1-4] is
an approach to the relativistic dynamics of gravitation-
ally interacting binary systems which was originally pro-
posed as a way to extend the validity of the usual
post-Newtonian (PN) formalism beyond the slow-motion
(v?/c? < 1) and weak-field (GM/(c?r) < 1) regime. The
EOB approach is made of three, basic building blocks:

1. a description of the conservative (Hamiltonian)
part of the dynamics of two compact bodies;

2. an expression for the radiation-reaction force F
which must be added to the conservative, Hamil-
tonian equations of motion;

3. a description of the asymptotic gravitational wave-
form emitted by the binary system.

The building block 1, i.e., the EOB Hamiltonian, has
been analytically computed with an increasing accuracy
in a sequence of papers, both for non-spinning black holes
[1, 13], for spinning black holes |[4-8] and for systems in-
volving tidally-deformed bodies [9, [10]. In addition, the
comparison between the EOB dynamics and numerical
simulations of binary systems has allowed one to improve
the knowledge of some of the functions entering the EOB
Hamiltonian (see Ref. [11] for a review). More recently,
results from gravitational self-force theory [12] have also
allowed one to learn new information about the EOB
formalism (See Ref. [13] for recent progress and refer-
ences). The description of the second building block, i.e.
the radiation-reaction force F has also improved over the
years, both through the conception of new resummation
methods [14] and from the comparison with numerical
simulations (both in the comparable-mass case [15, [16],
and in the extreme-mass-ratio case [1719]). The same

remarks apply to the third building block, i.e., the grav-
itational waveform.

While the EOB Hamiltonian is able to describe the
conservative dynamics of general binary orbits (quasi-
circular, elliptic-like or hyperbolic-like), the currently ex-
isting accurate implementations of the radiation-reaction
force and of the emitted waveform are limited to the case
of quasi-circular, inspiralling orbits. The main reason be-
hind this limitation is that the EOB program was orig-
inally motivated as a tool for computing accurate wave-
forms from the type of circularized binary systems that
are likely sources for ground-based interferometric gravi-
tational wave detectors. However, the progress in numer-
ical relativity simulations has opened the possibility of
numerically exploring the dynamics of binary systems in
more exotic configurations. For instance, Refs. [20, [21]
have considered high-velocity encounters of black holes
and other bodies, and Ref. [22] has considered eccentric
orbits of binary black holes. We anticipate that more
simulations of general orbits will become routinely possi-
ble in the near future. See Ref. [23] for a recent example,
and more references.

This perspective motivates the main aim of the present
work, namely, to provide an expression of the radiation-
reaction force F along general orbits (elliptic or hyper-
bolic) within the EOB formalism. [We leave to future
work a corresponding generalization of the EOB gravita-
tional waveform.]

Gravitational radiation-reaction, notably in binary
systems, has a long history. Let us only recall that three
general different approaches have been used. The first
approach derives the full equations of motion of matter
(including both conservative and radiative effects) from
a direct integration of the retarded field generated by the
source. Because of its difficulty, this approach has been
implemented essentially only up to the next-to-leading
order in F, i.e., at the fractional 1PN accuracy [24-28].
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A second approach focuses on the radiation-reaction
piece in the equations of motion and derives it by us-
ing a matching between between the near-zone field and
the wave-zone field. This approach has been also imple-
mented only up to the next-to-leading order in F [29-38],
with some vistas on the effect of tails [39].

Finally, a third approach is based on requiring a bal-
ance between the losses of mechanical energy and an-
gular momentum radiated by gravitational waves at in-
finity. This “third” balance approach has been particu-
larly developed by Iyer and Will and their collaborators
[33, 134, 140] and has been implemented to a higher PN
accuracy than the other approaches, namely the next-
to-next-to-leading order in JF, i.e., the fractional 2PN
accuracy [40].

Note, however, that Ref. [40] does not include the
effect of tails. We shall, similarly, postpone the inclusion
of tails (entering at the fractional 1.5PN, v3/c?, level) to
future work. We note that Ref. [39] has shown that the
tail contribution to F satisfies the balance requirement.

In view of the technical efficiency of the balance ap-
proach (and of the direct proof by several authors of
the consistency between this approach and other ones
[33, 134]), we shall also base our work on this ap-
proach. However, instead of attempting to “translate”
the radiation-reaction force F derived in Refs. 33,134, 40]
(which was derived in harmonic coordinates, and was ex-
pressed in terms of quasi-Newtonian equations of mo-
tion) into the EOB formalism (which uses different coor-
dinates, and Hamiltonian equations of motion), we found
more efficient to develop a new way of using the balance
approach. We shall explain in detail below our new way
of implementing the balance approach.

Let us only say here that it is based on three essential
ingredients: (i) we start from the 2PN-accurate expres-
sions of the fluxes of energy and angular momentum, ¢
and ® 7, that have been derived in the PN literature [41-
45] (see references [46-150] for recent higher PN accuracy
results). These fluxes are expressed in terms of three
scalars v,%, 7'“,% and GM /rp, where x;, and v, denote har-
monic coordinate and velocities (of the relative orbit).
Then, (ii) we derive the transformation connecting the
three scalars v2, 72 and GM/ry, to the three scalars that
are natural within the EOB formalism, namely p¢2, p?,
and GM/r., where x. and p. denote EOB coordinates
and momenta. Finally, (iii) we introduce a new way
of using the two EOB-expressed fluxes ® g (x.,pe) and
® j(xe, pe) to derive the two independent components of
the radiation-reaction force F (Xey Pe) = Fleob) n.,
FEP (e, pe) = (xe x FE) e,

The structure of this paper is as follows. We present
in Sec. II our new way of implementing the balance ap-
proach. Then, in Sec. III, after presenting a brief review
of the EOB formalism, we apply our method to the 2PN-
accurate EOB-variables forms of ®g and ®;, and derive
explicit expressions for }'T(COb) and F . We also ob-
tain the explicit expressions of the associated “Schott”

energy contribution. Sec. IV discusses the gauge free-
dom in F and explains how it is related to the freedom
in defining the Schott contributions to the energy and
angular momentum. Then, Sec. V gives some applica-
tions of our results, and discusses notably the scattering
angle during hyperbolic encounters, and its modification
by radiation-reaction effects. We summarize our main
results in Sec. VI, and discuss future directions. Finally,
to relieve the tedium we have relegated several explicit
technical details to various appendices.

II. A NEW APPROACH TO
RADIATION-REACTION

Here, we introduce a new approach to the computation
of radiation reaction by the balance method. Let us con-
sider the effect of adding a radiation-reaction force, say
Fi, to the Hamiltonian form of the equations describing
the relative motion of a binary system (with masses m;
and msy)

) pi = _9Hlxp) + Fi.

OV 8H(Xap)
N oxt

i (2.1)

Here H(x, p) denotes the Hamiltonian and a dot denotes
differentiation with respect to time. When considering
the motion within the orbital plane, we can take as co-
ordinate and momenta x' = (r,¢) and p; = (pr,pe)-
Correspondingly, the radiation-reaction will have two in-
dependent components: F, and F.

Let us see how one can determine the two force com-
ponents F, and Fy by writing balance equations for the
energy and the angular momentum of the binary system,
namely

E(systcm) (t) = H(X(t),p(t)) — (m1 + m2)02
J(system) (t) = p¢(t> . (22)

On the one hand, the equations of motion (2T
yield the following time changes for E(system)(t) and

'](system) (t)
ABsystemy(t) _ dH _ ;01 . OH

i @ ow TPy T
dJ(systcm) (t) o dp¢ . OH
@ a e T (23)

The explicit form of these two equations read (when using
the fact that H does not depend on ¢)

Eisystom) (t) = 17 + 0 Fy (2.4)
and
j _ e _
'](system) (t) = E = F¢ . (25)

It will also be useful to consider the following combina-
tion of these two equations

E(systcm) - éj(systcm) =7F. (26)



Formally speaking, Eqs. (Z4) and (2X) provide two
equations relating the two unknowns F, and Fg to the
losses of energy and angular momentum.

On the other hand, we require that there is a balance
between the energy and angular momentum losses of the
system, and the corresponding energy and angular mo-
mentum fluzes (in the form of gravitational waves) at in-
finity, say @ and ®;. As was pointed out by Schott long
ago [51], one cannot, however, simply equate E(gystem)
and j(sysmm) to, respectively, —®r and —® ;. One must
allow for the existence of Schott terms that represent
additional contributions to the energy and angular mo-
mentum of the system, due to its interaction with the
radiation field, say E(schott)(t) = E(schott) (X(t), P(t)) and
J(schott)(t) = J(schott)(x(t)vp(t))' The correspondingly
modified balance equations then read

E(systcm) + E(schott) +Pp =0
j(system) + j(schott) +®,=0. (27)

Inserting the identities (24]), (2.5) into (Z1) leads to the
following two conditions on the two components of the
radiation-reaction force

rFr + ¢]:¢ + E(schott) +Pg =0

Fo + j(schott) +d;=0. (2.8)

Up to now, all the equations we have written down
are equivalent to the standard “balance approach” to
radiation-reaction, as used, in particular, by Iyer, Will
and collaborators 33,134, 40, 141], except for the fact that
we are working within a Hamiltonian framework. Let
us now explain the new, simplifying features of our ap-
proach.

The first simplifying feature is to note that it is al-
ways possible to impose the condition that the Schott-
contribution to the angular momentum vanishes:

J(schott)(x(t), p(t)) =0.

The proof that this is possible is simply that, after im-
posing Eq. (Z9), we shall be able to find a solution to
the general balance equations ([2.8]). Indeed, after making
the assumption (2.9)), we can use the second Eq. ([2.8)) to
determine the instantaneous value of the ¢-component of
the radiation-reaction force, in terms of the correspond-
ing instantaneous J-flux:

Fo=—5(x(t),p(t)).

Let us note in passing that the result (2.10) for Fyu
is standardly used in the current implementations of the
EOB equations of motion [11]. Then, by inserting the
result (2.10) into the first equation (28], we get an equa-
tion involving only F,. and E(Schott), namely

(2.9)

(2.10)

rFr + E(schott) =-%g,, (211)
where we introduced the notation
®py(x,p) = Pu(x,p) — d(x,p)s(x,p).  (2.12)

As we shall discuss in detail in the next section, we as-
sume here that we have in hands explicit expressions
for &g, ®; (as well as for the “combined flux” ®gy)
as functions of the instantaneous dynamical state of
the system. Within a Hamiltonian framework it means
(I)E = (I)E(X,p), ‘I)J = (I)J(X,p) and ‘I)EJ = (I)EJ(X,p).
[Note that, by Hamilton’s equations, the instantaneous
orbital frequency gb entering ® g is a function of position
and momenta, given by ¢(x,p) = OH(x,p)/Ipy. As we
shall further discuss below, contrary to & and @, ¢ is
not a gauge invariant quantity; we shall only consider its
explicit expression ¢(x,p) in EOB coordinates.]

While Eq. (2I0) provides an explicit expression for
F4 in terms of the instantaneous state of the system, our
remaining problem is to show how Eq. (ZIIl) can be
used to determine both F..(x,p) and E(schott)(X, P). Let
us now explain how this can be done.

The basic idea is that the specific combination ® g ; has
the property of vanishing along circular motions. Indeed,
it is well known that (because of the monochromatic na-
ture of the emitted radiation) one has & = Q& ; along
a circular motion with orbital frequency €. As a conse-
quence, when considering general, noncircular motions,
@y will necessarily be given by an expression which can
be written as a combination of the two independent quan-
tities that vanish along circular motions, namely

Z\(x,p) = p} (2.13)

and

0

Z(x,p) = r 0% = —rjy, (2.14)
where the factor r in Z5 is introduced for later conve-
nience. [See Sec. ITIC where we will work with rescaled
versions of Z; and Z that have the same dimensions.]

Here, we are availing ourselves of several simplifica-
tions that are allowed at the PN accuracy at which we
shall be working. First, as we shall explicitly check, the
combination ®g;(x,p) is invariant under time reversal,
and can therefore be expressed as a function of p? ~ 72,
rather than simply of p, ~ 7. Second, modulo terms of
5PN order (i.e., O(1/¢!?)) one can neglect the F,. contri-
bution to the link between p, and —9H /Or.

We can then write

Ppy(x,p) = P1(x,p)Z1(x,p) + P2(x,p) Z2(x, P)

dp,
= Byp? — 1Dy LT (2.15)

dt’
where ®; and ®4 exist but are not uniquely defined. For
instance, we can move a term o« Zs in ®; to 5, and
reciprocally a term «x Z; in ®5 to ®;. We shall discuss
below the effect of these ambiguities in the definition of
(1)1 and (1)2.
Operating by parts on the second expression (Z10)
(which involves p, ), we can then write

d
Prs(x,p) =pr [pr‘lh + E(T%)}



- % (T(I)2p7“) ’
which is a decomposition of ®g; in a part proportional
to p, (and therefore to 7, in view of 7 = H/Ip,), and a
total derivative. But, such a decomposition is precisely
the content of the balance requirement (2.1T).

We therefore see that, given any choice of ®; and ®4
such that Eq. (213]) holds, we can obtain one particular
corresponding solution to Eq. (ZI1]), namely

(2.16)

pr
,,'-.

E(schott)(X7 p) =rpPa.

Fr(x,p) = — |:pr(1)1 + 1(7@2)}

dt
(2.17)

In keeping with our approximations, the time deriva-
tive of r®5(x, p) in the first Eq. (ZIT) should be evalu-
ated along the (conservative) Hamiltonian dynamics, so
that F, can be explicitly expressed in terms of the in-
stantaneous dynamical state of the system.

The results (2.I7), together with Eqs. (Z9) and (210,
give a constructive algorithm for determining the two
components F, and Fy of radiation-reaction, as well
as the Schott contributions to energy and angular mo-
mentum. [This contrasts with Refs. [33, [34, 40] which
had to use the method of undetermined coefficients.]
This proves our claim that is indeed possible to define
a radiation-reaction force such that the Schott contribu-
tion to the angular momentum vanishes. [By contrast,
one can show that it is generally impossible to define
Fi such that E(schot) vanishes.] We shall discuss later,
while implementing our construction, the impact of the
non uniqueness in the decomposition [215]), as well as a
simple, algorithmic way of fixing it. Let us only note here
that, in keeping with the analysis of Iyer and Will [33,[34]
and later developments by Gopakumar et al [40], all the
non uniqueness in the definition of the radiation-reaction
F has the character of a gauge freedom (and is actually
related to possible coordinate changes). This also applies
to the freedom of setting J(schott) t0 zero, that we have
used here to simplify the search for F.

IIT. RADIATION REACTION FORCE IN THE
EOB FORMALISM

Let us now apply the method explained in the previous
section to the construction of the radiation-reaction force
in the EOB formalism. To do that, we need the following
items:

1. The expressions of the various flux functions @,
®; and P in terms of the positions and momenta
of the EOB formalism;

2. An algorithmic way of decomposing ®g;(x,p) in

the form (ZI5]).

Before considering these items, let us recall the structure
we shall need of the EOB formalism.

A. EOB formalism: a short review

At the 2PN accuracy that we shall consider here, the
EOB Hamiltonian for the relative dynamics of two masses
my and ma, is completely described by the following ef-
fective metric

ds%eob) = —A(r)c2dt* + B(r)dr?
+72(d6? + sin® 0dg?)

GM GM\°

B(r)=1+2 (fz—]‘f) +2(2— 30) (%)Z

(3.1)

GM\?
A(r)B(r) = D(r) =1 - 6v (W) + ... (3.2)
Our notation is
- - mimso _ ﬁ
M =mi+mg, p=—r V= (3.3)
It will often be convenient to work with
GM
= . 3.4
u== (3.9
With an abuse of notation we will then write
3
u u
2
u u
u2
D(u) =1 —6VC—4+.... (3.5)

The EOB Hamiltonian H cop) is then defined as the fol-
lowing function of the EOB coordinates (7, ¢) and mo-
menta (pr,py) in the plane of the relative trajectory

Hon
H ooy = Mc2\/1 Y ( u(cg) - 1)

= Mc*h, (3.6)
where
(H(CH))2 _ (T) |:1 + (ne pe) (Ile X pe)2:|
112 122 B(r) 12c2
2 ~2
= A(r) |1+ 22’@ c];i?] : (3.7)
that is




and

Hetr)
h_\/1+2y<uc2 -1). (3.9)
Here we have introduced a tilde to denote the result of a
rescaling by the reduced mass p, e.g. p = p/p and

H(cob) — Mc?
Teot) 7 HC (3.10)

where we subtract the rest mass contribution to the en-
ergy before scaling by p. In addition it is convenient to
introduce a special notation for some useful rescalings by
GM, namely

Do Do r 2 t
i — f=—
1=3Cm GM

GM — uGM’

(3.11)

J

If we denote by V' any quantity having the dimension
of a velocity, we note that the dimensions of the GM-
rescaled quantities u, j, ¢ and tis u ~ V2, j ~ V1,
¢=lq=u"'~V~2andt~ V3. In the following, we
shall often find convenient to work with the Hamiltonian
pair of variables q,p,; ¢,j. These variables are canon-
ically conjugated with respect to the p-scaled Hamilto-
nian H(cob) = H(eob)/H, and correspond to an evolution
with respect to the GM-scaled time £. For instance, we
have

dg  OHeovy  dp, M (eon) -
- = — 5 ~ = — + GMFT B
dt Opr dt dq
do dp _ OHeory dj _ =
—=GM—+=—"—"", == . 3.12
dt dt 0j dt ¢ (812)
Note also the vectorial relation
. N r P J
j=axp (3.13)

oM " T aMp

where J = r X p is the orbital angular momentum of the
system. Let us also note the following relations

OHeob) 1 OH (o)

e Opa (3.14)
with
87:[(eff) B ?A
br  BHem
ety __c4 B (3.15)

Ope r2H (off)

B. &g, &; and Pr; in EOB variables

Let us now indicate how one can express the flux
functions ®g, ®; and Pg; in terms of EOB variables.

The first, crucial remark is that &5 and ®; are gauge-
invariant quantities, and are scalars. [Note, however,
that this is not true for ®p; = o — q5<I>J, because
¢ is not a gauge invariant quantity (along non-circular
orbits), but depends on the chosen coordinate system.
Here, we shall only consider the value of the combined
flux in EOB coordinates: @593 =& — ¢FOB® ;] This
implies that the numerical values of &5 and ®; are inde-
pendent of the choice of coordinates, and of any related
choice of dynamical variables. We can therefore start
from the results in the literature that have computed ® g
and @7, say at 2PN accuracy, in terms of, e.g. harmonic
relative coordinates and velocities, x5, and vy, and trans-
form these expressions in terms of EOB coordinates and
momenta. This transformation is facilitated by the fact
that &g and ®; being scalars, are actually expressed in
terms of a basis of scalar combinations of x5 and vy.
[Here x;, = x? — x}, v, = dx;,/dt = vl — v} are the
relative, harmonic positions and velocities, considered in
the center of mass system.|
Let us use the notation

Xf =}

X; = (nh . Vh)2 = T}QI
GM

Xh = , (3.16)
Th

and introduce X%, (A = 1,2,3) to refer collectively to
these three scalars. The corresponding, natural EOB
scalars are X§, A =1,2,3 with

X7

p’, X5=p,, X§=

(3.17)

where, as above, p = p./p and ¢ = r./(GM). Note that

all the scalars X Z, X4 have the dimensions of a squared

velocity. In other words X% /c?, X§/c? are dimensionless.
In terms of this notation we have simply

P (X4) = PE(X),
©5(X5) = @5(X5). (3.18)
Therefore, starting from the known results for &% (X%),
" (X"), it is enough to derive the transformation (taken
at a fixed, common dynamical time t" = ¢¢)

Xi = f(X5) (3.19)
to get the fluxes expressed in EOB variables. When
PN-expanded the transformation ([3I9) has a polynomial
structure, namely,

XK =¢ap, X5, + €an, 5, X5, X5,
+€4§A313233X%1X%2X%3 + 0(66) (320)

Here € = 1/c is the PN expansion parameter and the
structure of the 2PN-accurate expansion follows from the
fact that X 4/c? ~ V?/c? is dimensionless.

Actually, we have derived the transformation (BI9)
by combining the two transformations that have been



explicitly worked out in the literature: (i) the transfor-
mation between EOB (qc, pe) and ADM (qq, p.) phase-
space variables [1, 13, [7]; and (ii) the transformation be-
tween the ADM phase-space variables (qq,ps.) and the
harmonic positions and velocities (qp, vp) |41, 152, 53].
We give in appendix [El the explicit forms of the various
transformations (ge, Pe) <> (da, Pa) ¢ (Qn, Vi) we used,
together with the explicit form of the resulting transfor-
mation ([BI9), B20) between the corresponding scalars.

Cp)q(XA) = CAl...ApXAl . "XAp =+ EQCA1...APAP+1XA1 .

where we have ¢ — p + 1 contributions, each one (using
Einstein’s summation convention) is a sum over all the
indices A; ... A, it involves. Also the short-hand nota-
tion

XaXpXc...=Xanc... (3.22)

will be adopted hereafter, when convenient. Note that in
the multisummation

Cayon Xa, ... X4 (3.23)

the coefficient of (X1)"(X2)"2(X3)" (with ny + ng +
ng =mn) is

33 (3.24)

—~—

ng times

S(ni,n2,m3)C 11 . 92 .
NN

nq times ng times

where the symmetry factor S(ni,ng,ng) is given by

(n1 + no + ’ng)'

2
nl'ng'n3' (3 5)

S(n17n27n3) =

In addition, as our basic variables are the EOB ones, we
shall often, for brevity, suppress the index e (standing for
EOB) on them: X4 = X§.

Before considering the higher PN corrections to the
energy and angular momentum fluxes it is useful to re-
call their leading order (“Newtonian order”) expressions.
They are easily deduced from the well known quadrupo-
lar approximation (see e.g., [54]), namely

G 3))? 2G  (2),3)
(I)E = @ (Il_] ) ’ (PJ = geZiins I]S 5 (326)
with (in the center of mass)
I = m1$1<i17{> + mzxiix%> = pa<tzl> (3.27)

C13(Xa) =Ca, Xa, +€Ca,2,X0, Xa, + €' Ca 2,0, X2, X1, X a1,

and By 3(Xa) are listed in Appendix [AT] and [A2] Let

By inserting the latter transformation in the results
of Refs. [40] for the 2PN-accurate ®%, ®" we get the
explicit expressions of ®%, ®% in EOB variables. In order
to better comprehend the structure of these results it is
convenient to introduce a special notation for a general
polynomial in X§.

Given a collection of (symmetric) multi-index coeffi-
cients CA1A2...AP7 CA1A2~--APAP+1’ ceey CA1A2...Aq7 where
0<p<gqand A; =1,2,3, we denote

XApXAp+1 + ...+62(q7p)CA1mAqXA1 ---XAq , (3.21)

using standard notation for symmetric and tracefree ten-
sors. This yields

18 ,/GM\* 11
Gbp = ——-1> 402 — =52

A5 T/ 3
o, 18 ,/GM\® /., ., GM
-4 - Z 20 — 3 2—— | .
M 6551/ r ](U At r

Note that these fluxes are both proportional to v? and
contain a factor 1/¢® (2.5PN order). In terms of a char-
acteristic Newtonian velocity V (with GM/r ~ V2 j =
1/V), we have

10 7
GOp ~ VQV—, 2 ~1/2V—

= 37 = (3.28)

It will be also convenient to work with the quantities

~ c5
‘I)E = —G(I)E ~ VVlO
14
~ 5 P
B, = %—" ~ VT, (3.29)

which have a finite limit when ¢ — oo and in which one
power of v has been factored out (so that they will be
conveniently related to F/pu).

With this notation our 2PN-accurate results in EOB
variables have the form

Ae e GM ! €
Bx) = (20 craxs)

GM

€

3
<T>3<Xe>—j( >Bl,g<xz>, (3.30)

where the explicit values of the coefficients entering

(3.31)

us, for illustration, explicitly display here the leading or-



der contributions to ®5 and & (“Newtonian order”),
namely

~ 8 GM 11
(I)e(Ncwt) _° 4~2 _ 12
£ 57\ re P
8 (GMN\* /[ . 11_,
= gl/ ( . ) (4X — §X2>
M 3
e(Newt) gV <GT > j <21~)2 _ 3~£ I 2G >
8 (GM\*® .
v < - > 7 (2X¢ — 3XE + 2X2)

C. Algorithm for decomposing ¢z

Finally, we need to compute the correspondingly
rescaled version of the combined flux ®£9P = & —¢°®,

Eq. @I2) (with the EOB angular velocity ¢¢ = ¢¥OF),
in terms of EOB variables, namely

G
‘I’EJ =

~
€

i — GM¢° 5. (3.32)

Combining Hamilton equations for the angular motion,

de = OM (cob)/Opg, whose explicit expression is obtained

from Eqs. B4, i.e.

do® . 2A
T oMb = A
dt f2hH(Cﬁ-)

(3.33)

with our above explicit expressions for d g and ) 7, Eqs.
B30)), yields the following expression for ® g,

~ GM\* | GM A (GMN\?
Pyy = < ) Crs(X3) — — ( > 7*B1a(X3)| (3.34)
Te e h'H(Cﬁ-) Te
[
where h has been defined in Eq. 88). In Eq. B34), and hence
the factor (GM/r.)?j? can be expressed in terms of the
X9’s, Eq. , since j = py/(GM) and M2
4's, Bq. BI7) J=Ps/(GM) <G; ) _xe o xe (3.36)
GM\* , I ) ‘
( )]2:_3:(nexpe)2
Te Te Similarly, one can replace the remaining factor
=52 — (0. -Pe)?, (3.35)  2A/(WH(em)) = 1+ O(€?) in terms of the X§’s, namely
|
r2¢¢ c2A r+1 32 —v—1
e _ ~ =1 2 Xe —1)X¢ 4 (22 7 - Xe, — X¢
GMj Wi, te ( i+v-1) 3) te ( 2 (Xs3 13)
3
+(v+1)X5, + g(ﬂ +v+ 1)Xf1) : (3.37)
For instance, the leading order contribution (“Newtonian order”) to :13%] reads
Fe(Newt Fe(Newt Fe(Newt
Gelewt) _ Ge(Newt) ( ) 2 eNewt)
8 (GM\® 11 P N .7
—51/( > [ ( 2——p?) (5° = 7) (2p2—3p3+2 )]
Te e
8 G ° € e € € €
=ov (=) | (axi- —X2 — (XE — X5)(2X¢ — 3XE + 2XS)
8 (GM\° 5
= v ( ) ( 2(X X$)2 +5X0XS +2XE XS — §X§X§>
Te
8 (GM\° 5
= gl/ ( ) ( 2X11 3X22 + 5X12 + 2X13 3X2€3> . (338)

while one could naturally factor u* =

Ncwr), it is only the third

Note that,

(GM/r)* in front of ¢

power of v = GM/r which one can naturally factor



out of @e(NCWt). This difference is linked to the fact

that fI) (Nem Ju* was linear in X 4, while <I>€(NeWt)/ 3
quadmtzc in the X 4’s.

When keeping the higher order PN corrections (which
involve more powers of X§/c? ~ v?/c?), the adimension-
alized combined flux has the structure

(X0 = (GM>3Q2,4(XZ),

Te

(3.39)
|

Q2,4(Xa)

the coefficients of which are listed in Appendix [A3]

As indicated above, the first step of our new approach
consists in separating out of &JBEJ either a factor Z; = p?
or a factor Zy = r0H (eop)/Or = —1p,. As we are working
in terms of p; = p;/p and GM/r. = 1/q, we replace Z;
and Z, respectively by

Zl =D ~2 = X2
= P _ OHeob) _ 1o
ZQ = dt =Te 87‘6 = X4 y (341)

which both have the dimensions of a squared velocity. In
order to separate out a factor Z; = X§ or Zs = X§ from
@?EJ, Eq. (339), we need to replace our basic set of scalar
variables (X§, X§, X 3) by the new set of scalar variables
(X$ = 74, X5, X§ = Z5). This is done by first expressing
X§= re[?’;'-[(eob)/are in terms of (X§, X5, X§) (by differ-
entiating the EOB Hamiltonian (B.6]) with respect to the
variable r.) and then solving for X¢ as a function of X§,

=Qa,4, X4, X4y + QA a3 X4, X4, XAy + € Qayay454, X4, X2, X2, X4,

where

(3.40)
[
1, 152 1
= P+l - (342
2pr+22 . (3.42)
so that
= (Newt) (Newt) 21
ZNewt) — y(Newt) __J_, 2
2 4 q2 q
=-X1+ X2+ X3. (3.43)

Therefore, at the leading order, X; can be solved in terms
of Xo, X3 and X4 according to

1
X4 =X2+X3—X4+O<C—2) . (3.44)

The extension of this result to 2PN accuracy is ob-
tained by first computing Zs(X1, Xa, X3) to higher order,
namely

XS and Xj§. For instance, at the Newtonian order we .
have 7 _— ye e e e aH(GOb)
ZQ:X4(X17X27X3): 6787”
1 nNewt) 1.5 GM . ¢
; (H(eob) — C ) = §P - , = —0173(X§‘), (345)
1 19, GM R
—]52 “Po where the coefficients of Cy 3 in
2 2172 r ’
01)3(XA) = éAlXAl + EQC'AlAQXAlXAQ + 64CA1A2A3XA1XA2XA3 (3.46)

are listed in Appendix Bl Then one solves (perturbatively) for X in terms of X5, X3 and X4, starting with the

Newtonian solution ([3.44]). This yields

5 +1 1+
Xle = XQe + Xg — X48 + 62 (2X23 + 3X33 + X34 Y X24 VX44>

1 1
+et ((2 — 6V)X5q5 — 3(v — 3) X555 + 8(V +7v —63) X553, + 8(1/ —v+1)X5,

1 3
+Z(5V +8) X4 + —

4VX2€44 -

4

where we have used the short-hand notation (already in-
troduced in Eq. [3:22)) for the variables X1,X5, X3)

X6 =XeXeXe ... (ILJK=23/4). (3.48)

1 1
—(V v +3)XS5y, — g(u2 + 50+ 1)X§44) ,

(3.47)

Here and below we find often convenient to use an ex-
plicit form for the polynomial expansion in powers of X;’s



(rather than a tensorial form C; X1 + €2Cr X1 Xy + ...
where one must take into account the symmetry factors
associated with each term in the multi summations).

GM

Te

= (New 8v
#0500 = (

As anticipated, each term in this expression contains
either a factor 71 = X5 or Zo = X,4. It can there-
fore be decomposed in the form (ZI5) that we men-
tioned above. Actually, there are many ways in which
such a decomposition can be performed because the term
—X9X4 = —Z17Z5 can be considered either as a part of
(1)121 or of (I)QZQ

We shall define the minimal decomposition (215 of a
polynomial in the X;’s (which vanishes when Xy =0 =
X4) as the one of the form

3
4
) (2X3X4 + 53X X5 - 2X2 — X2X4> .

Finally, by substituting the PN expansion of
X{(X§, X8, X)), Eq. @410, into the combined flux
([33%), we get the expression of ®p; in terms of X¢ =
(X$§,X$5,X7). For example, at the Newtonian order, it
suffices to replace Eq. (3.44) into Eq. (838). This yields

(3.49)

in which the coefficient of X4 does not contain any de-
pendence on X3. (In other words, all the terms x X%
are shuffled into the ngf)g contribution.)

This rIAlinimal choice somewhat simplifies the expres-
sion of ®,, i.e., the coefficient denoted as ®5 in Eq.
@I5)-(@I10). In turn this simplifies both the radial com-
ponent of radiation reaction and the Schott energy, be-
cause, according to our above result (ZI7), these contain
respectively d®,/dt and ®4. [Note the mnemonic rule
that the indices get multiplied by a factor of two when
passing from the notation ofA Sec. II to theAnotation here,
Z1 — XQ, oy — X4, b, — &y and &y — (134]

For instance, at the Newtonian level, the minimal de-

Xo®5(Xo, X3, X4) + X404 (X3, Xy), (3.50)  composition of ®z; reads
|
o (New 8 (GM\* 4
o (xp) = cv ( ; > [XQ <§X3 = X4) + X4 (2X3 — 2X4)} : (3.51)
while its 2PN-accurate generalization reads
05, (X1) = Xo®a(Xa, X3, Xa) + X4D4(X3, Xy)
GM\° 1 - .
= - |:X2(I)2(X2,X3,_X4) +X4(I)4(X3,X4)} (352)
where we found it convenient to factorize the term (GM /r.)3 in the above expression so that
B2(Xo, X3, X4) = (X5)7®s, (X3, Xa) = (X5)70y, (3.53)
with
v 8 [4 .
oy = i (3X3 X4>
236 , 5252 608 256 484
X354 vXs X§s — —vX§ — —v° X3
ad (105 705 0 T 105772 T 105704 T 105 %
548 76 24 80 1300
+ 05’/X24 To7 VX§+ o 35 VXS5 — 2X23 ’/X34)
1756 854948 . 1112 . 1378 . 120268 .
e (TG XKim + g v g v X+ T X+ X
416 ., 45916 4066 . 32 . 1973 .
+ﬁ.5VX223 315 V* X534 — T35 U234 ﬁVX244 315 v X324
398 499 1496 14597 25442 .
o7 VX544 — 3 V* X5 + 315 = VX344 — T35 V34— W’/2X344
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892 668 289 701 9164
—m’ﬁ 334+ o 35 VX5 — 35 v X+ e 35 VX + —— 915 3X333
4% 1459 176 857 16
63 VP XS4 + 315 V* X534 — 105 X514 — 315 VX4 + = 3 V° X5os
1672 , . 4 ..
%VSX%?, - §V3X234> ) (3.54)
and
.16
by = 2v(X5 - X5)
704 278 . 256 ,., 568 _. 1168 ,.. 538 .
“%1%%Wmﬂmﬁﬁ%wﬁﬁ@+mﬂ@_¥ﬂ@
58 . 1135 14507 . 286 . 9832 . _
+¢* <_4_5’/X444 - W’ﬂ 344 — W’ﬂ 334 — 315’/X334 EV3X334
a4 3272 6082 1377 5. 1363 ,.. 6536 .
a5V Xiua + ggp v Xiss + g X 35 Xias T 3157 Xias — 35 v Xdua
654 5.
+§V3X344> | (3.55)

It should be noted that &)2 and &)4 have the dimension of V2. Moreover, in the circular orbit limit Xy = 0 = X, (for

a later use) the above expressions reduce to

y . 32 9
®5(0,X5,0) = ?Ew%[1+2X3Q%V_
1

-§VX§[1+6%X§<—

44

d4(0,X5,0) = i

D. Minimal expressions of F. and E(shott)

Having obtained a particular, minimal decomposition
of the 2PN-accurate combined flux ® g ;(x, p) in the form
@I3), namely Eq. (8352), we can now apply our general
results (ZI7), i.e., derive the corresponding minimal ex-
pressions of F,. and FEcnotr)- Modulo the p-rescaling

(E = E/u, p = p/n), the prefactor (GM/r.)® and
|

»(min,Newt) 1 16v GM
Eschott ‘ - C5 5 —Dr

€

-5 (S [0 () )

where we used Eq. (344) to write the second form. The
corresponding minimal expression of the (p-scaled) radi-
ation reaction is obtained from the first Eq. [2I7). To
write it explicitly, we first need to derive the value of the
ratio p,./r. This is obtained from Hamilton’s equation

57'[(0
op¢

(3.59)

7:'6 - = é(xu p)ﬁ’l‘ )

1313

56

oy (2201 5, 2195 213737
33\ 504 168 1512
269\ 3041 , 1377 409
-2 Xe, (o2 220, 2 .
) ‘ (1512” 1121'+'378>} (3:56)

(&, — By, Dy — By), the second Eq. (ZI7) yields the
following minimal Schott energy per unit reduced mass,
E(min) o E(min)

schott — “schott

(3.57)

schott b Te

iy 1 (GMN? o
Elmin) ( )pT<I>4(X3,X4).

Note that the Newtonian order approximation to the
(rescaled) Schott energy reads

—>2 (X3 — X4)

(3.58)

with

C(x,p) = (3.60)

h'}f[(cﬁ-) B(Te)

where h is given by Eq. (B9) above. The expression
B560) for C is exact. Here, we shall work with its 2PN-



accurate expansion which is found to be

C=1+€eC12(X9), (3.61)

and the coefficients of C~’172 are listed in Appendix [Bl In
terms of C, d, and <i)4, the radial component of the min-

11

imal (p-scaled) radiation-reaction is given by

. 1|1 (GM)? _ . d [ (GM\?.
b) _ _ - | = e e e el e e
Fleob) — =l o pr®o (XS, X5, X§) + T o (X5, X || - (3.62)
[
Let us also recall that the azimuthal component of the and
minimal (p-scaled) radiation-reaction is simply given by
(Newt) ﬁi GM
X, =—-——+ , (3.64)

=(eob) T (eob) 1 e
Feot = - — -85

1(GM

3
=% ) JB13(X5). (3.63)

Te
For illustration, let us display the leading-order (“Newto-
nian order”) terms in these expressions. To get in explicit
form the leading order expression of ~T(COb) (x, p) we need
to perform the time derivative in Eq. (B.62)) by using the
unperturbed (conservative) equations of motion. Here,

we get some simplifications from having chosen :134 as a
function of X3 and X4 only. Indeed, as X§ = GM/r.

r2 r
(where pg is constant along the conservative dynamics),

the time derivative of X3 and X, are both proportional
to r, e.g.

ax" ) w0, GMY (1
dt r\ 72 r S/

Re-expressing the result in terms of p, = (1 + O(c™2))
we get

(3.65)

. 18 (GM)?_ [ . . GM 1
(Ncwt):__ 2 2 e -
Fr(x,p) S5V s b 21p° — 21p; " +0 i (3.66)
which, at this order, could alternatively be written in terms of velocities
~ 18 (GM)?*, . GM 1
Newt) __ 2 2
Fr(x,v) =Sl s 21v° — 217 " +0 =) (3.67)
The corresponding, Newtonian order, results for f'¢(x, p)Newt) read
. 18 (GM\® p GM 1
(Newt) —_ - - _¢ 2~2 _3~2 it O =
Fo(x.p) 550 ( T ) GM ( P Prt T * c’
~ 18 (GM)?*. . GM 1
(Newt) - _ -2 2 2 el -
Fu(x,v) AT o | 2v° — 3r° 42 " +0 =) (3.68)

The explicit 2PN-accurate versions of our minimal E(Schott), F, and Fy are given in Appendix [(] and [Dl They are
expressed there in terms of X4 = (X¢, X§, X$) and have the forms

~ (min) 1 (GM

E(schott) (x,p) - C_5pr ( .
- 1 (GM)?
]:r(xup)zc_5( ’I”B)

. 1 (GM\® p
Fobop) =5 <—) g (SaX5 + SapXip + ' SancXipe).

GM

r

2
) (CAXE =+ €2CABX§xB + 64CABCXch)

Pr(RaX4 +ERapXip + €' RapcXipe)

(3.69)

where the coefficients Ca, . a,, Ra,..A,, Sa,...a, are explicitly displayed in Egs. (C2])-(DS]).
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The Schott energy as a function of Xo, X3 and X, (especially useful to study their limiting values along circular
orbits) is given by Eq. (857), while the radial and azimuthal components of the radiation-radiation force follow from

Egs. 3.62) and (B363), i.e.,

. 1 (GM\*?

Fr(X5, X5, XY) = = <—r ) (T X5+ ETs X5+ Trox X5 )

T e e e 1 GM ° . e 2 e 4 e

Fo(X3, X5, X{) = s\ JViX7+ eV Xi;+ e Vi Xik) (3.70)

where I = 2, 3,4 and the coefficients Tr, .1, , Vi, .1, are explicitly displayed in Eqs. (DI12)-(DI4). Note that if one
wishes to express Fy entirely in terms of X5, X3 and Xy, the (rescaled) angular momentum term j should also be
expanded in terms of X5, X3 and X4; the result is the following

X —X§ X&—X¢ W W-
j:\/le 2:\/36 4[1+ 1y 828254 (3.71)
X3 X3 Xg — X§ (X§ —X§)
where
v+1_, v—=-5_., v+1_. 3.,
Wi = TX44 + TX34 - TX24 + §X33 + Xo3
248 1 —41? — 220 — 24 24 1
=3 +4v+121 3?2 —1) 32 +1) .,
+ = XSaaq + T Xogaa — B X214
v? 4+ 250 — 105 _, vi—24v -2 v2+3v+5 ., —12v +27 _,
TX%M - fX%M + TX2234 + TX3333
96v + 16 _ ., 1. .
— 35 Xasss — 5Xo0ss- (3.72)
In the circular orbit limit these quantities reduce to
. 3 e . —12v4+27__,
W1(0, X35,0) = §X337 Wa(0, X35,0) = TXBBBB' (3.73)

IV. NON MINIMAL CHOICES AND
ASSOCIATED GAUGE FREEDOM

Iyer and Will [33,134] and later Gopakumar et al. [40]
have shown that, at each order in the PN expansion,
there is a multi-parameter arbitrariness in the construc-
tion of a radiation-reaction force by the balance method,
and that this arbitrariness is linked to the freedom in
the choice of coordinate gauge. Let us briefly discuss
how this arbitrariness enters our approach. First, it can
be checked that our simplifying constraint (2.9) that the
Schott contribution to the angular momentum vanishes,
J(schott) = 0, corresponds to part of the freedom found
by Iyer and Will.

Indeed, one easily checks that within their approach,
all the (non necessarily vanishing)parameters entering
J(schott) are linearly independent, i.e., are unconstrained
by the set of linear equations they obtained. Within
our approach, this is immediately clear as we have ob-
tained a solution with Jischotty = 0, so that by choos-
ing some given, general (nonzero) expression for J(schott)

(such that J(Schott) vanishes along circular motions) we

will be able to straightforwardly construct a correspond-
ing (minimal) radiation reaction force. [Indeed, the con-
dition that J(Schott) vanishes along circular motion will
introduce extra source terms in the equation (ZII]) for
Fr and Egchott), linked to extra terms linear in Z; and
Z3 in the right hand side of (2I1]), coming from an extra
¢(5f¢) contribution to ® g7, linked to §F, = _j(schott)']
This freedom in the choice of J(scnott) is parametrized by:
(i) one parameter (\J) at the leading (“Newtonian”) or-
der, (ii) three parameters (AJ, \{, A7) at the 1PN order,
and (iii) six parameters (AJy, AJ3, Az, Adz, Agy, Ag,) at the
2PN order. The general form of j(schott) = J(schott)/ 1t can
be written as

monminy 1 (GM)\?

T = oo () 04

€

+EN X+ N X1 X)), (41)

where the free gauge parameters parametrize the coeffi-
cients of a general polynomial in X; = (X3, X3, X4).
Note that these parameters were indicated differently
in previous papers [2, 133, 34]. In particular, the single
J-related parameter )¢ at leading (“Newtonian”) order



was previously notated as

GII _ oIW _ 5BD (4.2)

and was normalized so that \J = (8/5)vp51L.

Besides the parameters associated with the (non min-
imal) choice of a non vanishing J(schott), there are fur-
ther arbitrary parameters which, in our approach, cor-
respond to further non minimal choices in the construc-
tion of Ecnott). Indeed, our general result (Z.I7) shows
that the arbitrariness in the coefficient ®5 of Z5 in the
decomposition ([2.I5), will directly affect E(schott), and
then F,. [Given a choice of ®3, compatible with (219,
the corresponding ®; is uniquely determined.] As dis-
cussed above, the arbitrariness in ®, is parametrized by
a general term o Z; = p2 = X5. In terms of the rele-
vant basis Xo, X3, Xy (with X5 o< Z; and X4 « Z3) the
arbitrariness in ®4 ~ ®, in Eq. B is of the general
form

(/I;Elnonmin) (X]) = I/XQ ()\OJ + 62/\’]]X]
+eA X1 X)) (4.3)

corresponding to an additional non minimal contribution
to E(schott) of the form

2
(nonmin) _ V .3 GM E
E(schott) - C_5p7“ ( ) ’ (AO

Te

+EN X+ €N XX ) . (44)
This expression shows that the additional gauge-freedom
associated with such non minimal choices in the Schott
energy is parametrized by: (i) one parameter AF at
the leading (Newtonian) order, (ii) three parameters
(AF AE AE) at the 1PN order, and (iii) six parameters
(A, A AL A D AL at the 2PN order.

In terms of the notation of [40] (if we approximately
identify their Lagrangian framework with our Hamilto-
nian one) these parameters correspond, respectively, to:
(1) as, (ll) 52754755 and (111) ¢27¢47¢67¢77¢87¢97 Le. to
the following contributions (o< 73) to the Schott energy
considered in [40]):

16 G2M?
V———FT

E(non min,Newt)
cdr?

(schott) as ?

(non min,1PN) 16 G*M? .3 2 .2
E(schott) = gyw’f' (527) +§4’f‘

ENR(t) = E(systcm)(x(t)v p(
JNR(t) = '](system) (X(t)v p(t)) =+ J(schott) (X(t)a p(t)) .

On the other hand, one of the tenets of the current im-
plementation of the EOB formalism is to require that the
¢-component of the radiation-reaction force be equal, at

13

GM
+6 2
r
(non min,2PN) 16 G2M2 .3 4 2.2
(schott) 5V a2 (V2" + hgvr

GM . o GM
+¢6U2T + 7t + ¢87‘2T

2
+1bo (G—M> ) :
r
Summarizing: the arbitrariness in the construction of a
radiation-reaction force is parametrized by the parame-
ters AJ, A{, A{ ,, ... entering the (non-minimal) Schott
angular momentum (A1), together with the parame-
ters Ay, AL, Af, ... entering the (non-minimal) O(p3)
Schott energy (44) (expressed as a function of Xo = p2,

X3 and Xy). It is easy to see that the number of arbitrary
parameters entering the nPN order is equal to

0 — (n:;2> _ (n—2i—2) _ (n+1)2(n—|—2)7 (4.6)

(4.5)

for each one of these sources, with ag = 1, a1 = 3, as = 6,
as = 10, etc.

V. SOME APPLICATIONS OF OUR RESULTS
A. Schott energy along quasi-circular inspirals

Recently, Damour, Nagar, Pollney and Reisswig [55]
have compared several different functional relations E(J)
between the energy E and the angular momentum J of a
binary system evolving along a radiation-reaction driven
sequence of quasi-circular orbits. In particular, they com-
pared a relation ENE(.J) obtained from accurate numer-
ical relativity (NR) simulations, to several of the rela-
tions E¥OB(.J) that can be derived from EOB theory (un-
der various approximations). Actually, the NR relation
ENR(J) computed in Ref. [55] was obtained by defining
the NR energy EN® and the NR angular momentum as
being their initial values minus the time integral of their
respective NR fluxes, ®RF and ®Y® (as recorded at in-
finity). In view of our general balance equations (2.7,
we see that (modulo numerical errors) the NR energies
and angular momenta can be identified with the sum of
the system plus Schott contributions:

t)) + E(schott) (X(t)7 p(t))
(5.1)

any moment, to minus the angular momentum flux ® ;.



In view of the second Eq. (28], this means that the
EOB formalism has chosen a “gauge” where

J(E?h%tt) (x(t),p(t)) =0.

In view of this, it is consistent to identify the instanta-
neous NR angular momentum JN2(t) with the EOB one
JEOB which indeed measures the angular momentum of
the system, J(system)):

(5.2)

JNE(t) = JEOR(x(t), p(1)) - (5.3)

By contrast, in view of the first equation (&), the EOB
measure of the total energy of the system, defined as
EEOB (X(t)a p(t)) = H(cob) (X(t)7 p(t)) - MCQ
= E(systcm) (X(t)a P(t)) )

cannot be simply identified with the NR computed en-
ergy ENR. Indeed, one expects the relation

(5.4)

ENR(t) = EROP(x(t), (1)) + Eichow) (X(£), p(1)) - (5.5)

In conclusion, as was already pointed out in Ref. [55],
the NR-derived functional relation ENR(J) should dif-
fer from the EOB derived one E¥OB(J) by the quan-
tity E(schott) (t), re-expressed in terms of the correspond-
ing instantaneous angular momentum J(¢) = JYNR(¢) =
JEOB (t)

Our results provide, for the first time, the explicit an-
alytical value of E(schott), namely the first of Eqs. (5.69)

3
E(msplral) (t) ~ 1&]57‘ (GM) |:

(schott) A5 Te

3024

Note that E((;rcl;ﬁ:;(;l)(t) is negative (because p, ~ 7 < 0
during the inspiral). It would be interesting to take into
account the modifications of the EOB/NR comparison of
Ref. [55] introduced by the presence of the Schott contri-
bution to the energy (especially during the late inspiral
and the plunge). This might allow one to refine the con-
clusions of Ref. [55] and to extract some information

about the exact form of the EOB Hamiltonian.

B. About the radial component of
radiation-reaction

When Buonanno and Damour [2] incorporated
radiation-reaction effects in the EOB formalism, they
suggested that it is possible to use the radiative gauge
freedom to put the radiation-reaction force in the simpli-

1
—— (608202 + 37179v + 3272) (
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(see Appendix [C). Note that E(schott) 18 proportional
to pr, which stays rather small all along the radiation-
reaction driven sequence of quasi-circular inspiralling or-
bits, including most of the subsequent plunge phase (see
Fig. 1 of [2]). The smallness of p, further implies that
the numerical value of Fcpotr) 18 approximately gauge-
invariant during the inspiral and the plunge. Indeed, Eq.
@4 above shows that the general non-minimal contri-
bution to Eschott) contains an overall factor P2, instead

The ratio

(min)

of the corresponding factor p, in E(schott)'

(non min) (min)
E JE

(schott) schott)
numerically of order p2, and hence small during the in-
spiral (and even the plunge).

In addition, during the inspiral, i.e., before crossing
the Last Stable (circular) Orbit (LSO), the dimension-
less scalar X§/c2 = Z3/c? = (r¢/c?)0H (cob)/Ore Will also
be numerically small. [Indeed, the orbital radius r.(t)
approximately stays at the bottom of the effective radial
potential H (copn)(j,7e) during the inspiral.] The numeri-
cal value of E(schott) during the inspiral can then be ap-

is therefore generally expected to be

proximately evaluated by neglecting X§ in 54 (X§, X5).
This leads to an approximate, simplified expression for
E(schott), along the inspiral, as a function of the EOB
radius r,

1

(inspiral) _ /(min) ~ =z e
E(schgt{; >~ Elenott) = C—5pr‘1>4(X3,0), (5.6)
i.e., explicitly
1 GMY\ ,
1 — 1—68(807+ 3521/) ( re ) €
GM\° ,
5.7
Te > ‘ ‘| ’ ( )
[
fied form
Fr=0 (5.8)
Fo=—2;. (5.9)

For instance, at the Newtonian order they argued that
the choice
10

app = arw = fBeqir = — -

3 (5.10)

of one of the two free gauge parameters entering }'Z-(NeWt)
ensured the vanishing of the radial component FiNewt),
This statement is correct. However, this specific choice
of agp = arw = B2a1r conflicts with the second require-
ment (5.9) that Fy4 be identified with minus the angular
momentum flux. Indeed, our results above (as well as
the previous results of Iyer and Will) show that the sim-

plifying requirement (B.9) actually determines the value



of half of the free gauge parameters entering F;. More
precisely, they determine the values of the parameters
M, .1 (n=0,1,2) entering J((:Cizi?;n), Eq. (1) (namely
)x{lm]n = 0). One the other hand, as pointed out in
Sec. IV above, the Newtonian order J(spnotr)-related pa-
rameter \J happens to be proportional to the parameter
agp = arw = [B2¢rr which needed to take the nonzero
value (BI0). We see therefore that the choice (EI0) cor-
responds to a non-minimal (i.e., non vanishing) value for
J(schott), in conflict with the second, simplifying require-

ment ([G.9).

In view of this result, we henceforth advocate to in-
corporate radiation-reaction in the EOB formalism by

= —=Pr——5
T 05 T ’["3

Y5 (GM)?

€

where the coefficients Ra4,. 4, are listed in Appendix
If we consider the case of a quasi-circular inspiral we can
neglect X§ = Z; = p2, and replace X{ = p? by the
expression obtained by setting X5 and X§ to zero in the

relation (B.47]).

Specialized along circular orbits, relation ([B:47) be-
|

v 32, (GM)”

ﬁ(inspiral) ~
s C5 3 pr 'I"él

15120

1 GM\’
+——— (175549 + 322623v + 707941/%) (—) 64] :
Te

It might be useful to record the value of the ratio between
F and Fy during inspiral. To this end, we first note that

G

Te

~(inspiral) _ v 32 (GM 2
7§ —

+ 18144

so that we have the ratio

Flinspiral) g5 227 1957\ (GM
= COMZ 1+ (-
‘/—j;;msplral) 3 ﬁ¢ + ( 140V + 1680) ( Te

This result is consistent with Eqgs. (3.14), (3.18) of

280

GM\?
(—89422+1533691/+9072u2)< - ) 64] .
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consistently enforcing the minimal choice

Fp=—By, (5.11)

corresponding to

i.e., A{ ;= 0. This choice necessarily implies a nonzero
value for F,.. In particular, if we also require the second
minimal choice,

Ef o (x(1), (1)) = Egiom " (x(t), p(1)) ,

we have seen above that F, is completely determined,
and has the form

(5.13)

(RaX +€RapXp + ' RapcXSp0) (5.14)
[
comes
X = xe 432X, — 3(v—3)e' XS, (5.15)

This leads to the following approximated form of Fr

1

1 — —(1133 + 944v) (G—M> €

Te

(5.16)

the inspiral value of f¢ [obtained by replacing X§ — 0
and X§{ — 0 in Eq. (3.63)] reads

336

Te

1-— i(588u +1247) (GM> e

(5.17)

s (738, 165703 25672541\ (GM 2,
€ — — el
560 70560 5080320 Te
(5.18)
[
[2] with the value agp = 0 (i.e., Aj = 0). We leave



to future work a detailed study of the consequences of
incorporating in the EOB formalism the non-vanishing
value of F, advocated here. The preliminary comparison
performed at the end of Sec. V in Ref. [2] (between
using F,/Fy = 0 and F,/Fy = 7/(r2$)) indicates that
the effect of the more consistent value of F,./Fy found

|
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here will be small. However, modern use of EOB theory
aims at a very high accuracy in the phasing, for which
the new value of F,. will probably have a significant effect.
Let us also recall that along circular orbits, one finds (at

2PN order), using X" = p3/r? and Eq. (513,

3GM , 3 GM\*
Po = VGMr, 1+5— 62—§(4y—9)< . ) 64] (5.19)
and hence, for Qcire) — OH (cob)/ OPglcire;
GMQEr) 1 GM\*? vGM , 3 GM\?
= 1+ = +(v-5 4 5.20
I <62r8> +2 Te ‘ +8(V )(T’e ) ¢ ( )
The latter equation implies the following expression for the dimensionless frequency parameter z, i.e.,
GMQErNY?ranr vGM v GM\?
= —— = 1+ —-——+ —(—45+38 ; 5.21
* ( c? ) <62T6> * 3 c2r, + 36( +8v) (CQ’I‘B) ’ ( )
inverting (perturbatively) this relation yields
GM 1, 5 .
2 ¢ = qve + 7% (5.22)
so that, in terms of x we have
- (inspiral) — E 3~ 1 _@ _ @ 7769 2 7543 @ 2
(schott) — 5 VP { U s ) T e Tz T
S 32 ¢ 494 1133 3071 55577 175549
F(lnsplral) _2° 4~T 1 T, 2 — 2
’ sam” P P\ T105” " es0 )T T\ 280 T Tes0 YT 15120 )
Snepieal) _ 32 2 o[ (35 1247 65 , 9271 44711\ - 93
o A R N T L =73 R S TR VI Tiro 2 A I (5:23)
The latter expression of fgmpiwl) as a function of the frequency parameter x agrees with well-known previously

derived results (see, e.g., Eq. (4.18) in [43]).

C. Hyperbolic orbits: conservative aspects

Up to now, the EOB formalism has been applied
only to the description of radiation-reaction driven quasi-
circular orbits, because these are the orbits of greatest
relevance for the current network of ground based grav-
itational wave detectors. However, we anticipate that it
will be useful to apply the EOB approach to other or-
bits, such as elliptic orbits, but also hyperbolic ones. It
is now possible to do so because we have provided above
a description of radiation-reaction along general motions.
Here, we shall consider the case of hyperbolic motions,
and focus on the effect of radiation-reaction on the an-
gle of scattering of a gravitationally interacting binary
system (considered in the center of mass system).

Before taking into account the additional effects of the

radiation-reaction force F;, let us consider the conser-
vative dynamics of hyperbolic encounters (at the 2PN
accuracy). We recall that, at the 2PN accuracy, the rela-
tive motion in the orbital plane, r(t), ¢(¢) is described (in
any PN gauge; harmonic, ADM or EOB) by equations of
the form |26, 56-58]

diN' e 2 G

— ) =24+ —
(dt> TETR
62& + 64R4 +€4R5

73 Y 75

odd G1 Gs Gs
209 2 4 4
Tﬁ—j/<1+€ 7+6 P> +e P3>'(5'25)

+ (5.24)

Here we have used the scaled variables (7 = r/(GM)),t =
t/(GM)), and the prime on any quantity @ denotes a
multiplicative modification by higher PN terms of the



type Q' = Q(1+ q1€% + qz2¢?), where g1€2, gae* (as well as
the coefficients Rpe?, Gpe? above) are polynomials (with
v-dependent coefficients) in the dimensionless quantities
E/c? and 1/(jc)?®. For instance, at the 1PN accuracy,
and in harmonic coordinates [59]

~/ = 3 E 1

2F = 2F (1 +3Br-D5Z+0 (C_4>>
v (1e 05 vo(4))

(7?) =5 <1 +2(3v - 1>§ ~ (v = 10) <C;>2

di

2
) =2F'(j)? +2'a—1

(

where all coefficients (E”, (312, 2, 1, 2Us, €Uy,
€*Us) are dimensionless. Omne can then reduce the
above equation to a Newtonian-looking equation by a
suitable change of (inverse) radial coordinate. Indeed,
by appropriately choosing the dimensionless coefficients
€2¢1, €*ég, €*é3 in

=1+ éra + 't + e*éza®) (5.29)
one can get (modulo 3PN terms) an equation for @(¢) of
the simple form

du

(&

where the double prime indicates further multiplicative
modifications by higher-PN terms of the usual coefficients
entering the Newtonian-order equation for u¥) = j2/r,

namely
du®™)

(%

The general solution of the latter (Newtonian-order)
equation is the well known polar equation of a conic,

2
) =2E%" +2"a —1"u?, (5.30)

2
) =2F5% 4 2u™) — (u(M))2, (5.31)

uM (@) =1+ ™ cos (5.32)

with e®¥) = /14 2Ej2. By contrast, the general solu-
tion of the modified Eq. (G.30) will be of the form

¢—¢0)

(5.33)

a(¢p)=0C <1+écos 7

!~
U2
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1

w(z))

p
E 1
j/_j<1—|—(3l/—1)c—2—|—0<

I (5.26)

Note that (j2)’ is not the square of j’. Many previous
investigations |26, [57-59] were interested in describing
the motion as a function of time. Here, we shall instead
focus on the shape of the orbit, i.e., 7 as a function of ¢.
This is obtained by eliminating di between Eqs. (5.24)
and(@28)). Introducing the dimensionless variable

(")

7’;

2

(5.27)

’&:

leads to a first-order differential equation for @(¢) of the
form

+ EUsa® + AU + 2 Us0° (5.28)

where ¢q is an arbitrary integration constant and where
e, C and K are functions of Fj2, F/c? and 1/(cj)? which,

respectively, reduce to \/1+ 2E32, 1 and 1 when 1/¢% —
0. Note that the quantity K measures the periastron

advance

L0

o= (5.34)

where @ denotes the period of ¢ (i.e., u(¢ + @) = u(¢)
in the elliptic case; see below the definition of ® in the
hyperbolic case), and where k is the usual notation for

the relativistic contribution to periastron advance. It is
given at 2PN by [57]

HE) = o 14+ <§—) L
<% - gV> ﬁ 0 <Ci4)] (5.35)

[See Ref. [60] for the 3PN accurate value of k]. Here, we
work with the analytic continuation (in E) of the function
E(E,j) from the elliptic-like case (where E < 0) to the
hyperbolic-like one (E > 0). Note that we can further
simplify the result (5.33) by modifying the leading-order
coefficient 1 in the parenthesis appearing on the right
hand side of Eq. (E29) so as to absorb the coefficient
C =1+ 0(c™?) in a rescaling of @. In other words, there
exist coefficients 1’ = 1+ O(E/c?)4+0(1/(jc)?), and €2,
€té9, €*c3 such that the polar equation #(¢) of the orbit
takes (at 2PN order) the form



.9 .9 .9 2 .2 3 o
2 <1’+e2c1]7 + €% (3—> + 4G, (J—) ) 1tecos PO
7 7 7 7 K

This form is valid in any PN gauge (harmonic, ADM
or EOB). We will give below the explicit values of its
coefficients in the EOB case. In this form the two coeffi-
cients, € and K entering the rhs acquire a gauge-invariant
meaning. This is well known for the periastron advance
parameter K (when it is considered for the elliptic-like
case), but this is also true (when considering asymptot-
ically flat gauges) for the “eccentricity” e (when consid-
ering the hyperbolic-like case). Indeed, when considering
hyperbolic orbits the lhs will vanish both in the infinite
past (incoming state, # — 400) and in the infinite future
(outgoing state, # — +00) so that (choosing the integra-
tion constant ¢g = 0; location of the periastron) ¢ will
evolve from ¢_ in the infinite past to ¢4 in the infinite

future, where ¢_(= —¢4) and ¢, are the two solutions
of

)
1 — =0 5.37
+ €cos e , (5.37)
i.e. (we are in the hyperbolic case where & > 1)
1
¢+ = £ Karccos (—:) . (5.38)
€

The (center of mass) scattering angle, x (taken with a
positive sign) is related to ¢4 via

X+T=¢s—d_ =00

so that we can write x in terms of K and € according to

(5.39)

(5.40)

1
X + 7 = A¢ = 2Karccos (——> .
€
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(5.36)

Both the scattering angle x and the periastron pre-
cession parameter K are gauge-invariant physical quan-
tities that can be expressed as functions of the two basic
gauge-invariant dynamical parameters F and j2. We see
therefore from Eq. (B40) that € can also be considered
as a gauge-invariant quantity, and can be, in principle,
expressed as a function of £ and j2. [We shall give below
some explicit integral definitions of the functions x(E 2 7)
and K (E, ) from EOB theory.]

At the 1PN accuracy, the invariant eccentricity € coin-
cides with the eccentricity denoted as eg in [59] (see Eq.
(5.7) there, which is of the form (536)). The expression
of & in terms of £ and j2 is given by (see Eq. (4.13) in

[59])

L4 (v _B\E
2 2 ) c?

x <1 - &) +0 <ci4) : (5.41)

We have determined the extension of this relation to the
2PN accuracy by using results in the literature on the
“quasi-Keplerian” parametrization of the 2PN motion
[57, 58], namely

e® =e; =1+2E5°

f gt

n(t —to) =u — ey sinu + c—isinv+c—4(v—u)

r=a,(1— e, cosu)

¢ —¢o
K

where

v = 2arctan (5.43)

1+e4 1/2tang
1—6¢ 2 )

Here the “eccentric anomaly” u (and its analytic contin-
uation @ mentioned below) should not be confused with
the gravitational potential variables v = GM /7., @, used
above.

The form written here corresponds to elliptic-like mo-

=v+ f—fsin2v—|— g—fsini}v
c c

(5.42)

tions (E’ < 0). However, similarly to the Newtonian
case (which is recalled in Appendix [[]) the corresponding
parametrization of hyperbolic-like motion is obtained by
the simple analytical continuation

u=1iu, (5.44)
which accompanies the continuation of E from negative

to positive values, as well as the continuation of the var-
ious eccentricities e¢, e,, e from e; < 1 toe; > 1. In



addition, n? ~ GM /a3 and a, ~ —GM/(2E) are contin-
ued from positive to negative values. In this continuation
the angular variable v remains real. The radial motion
equation becomes r = a,(1 — e, cosh @), so that the out-
going and incoming states are described by u — +o00.

This corresponds to finite values of the real angle v
given by

1\ /2
v+ = £2arctan <e¢ + ) , (5.45)
€p — 1
so that (choosing ¢g = 0 as above)
% =04 + % sin 2v4 + i—f sin vy . (5.46)

Taking the cosine of this result, and using the 2PN ac-
curate expressions of eg, fs, g4 as functions of E and
42 [58] then leads to the following explicit 2PN-accurate
expression for &(F, 5)

e2(E,j) =1+42Ej%[1+ 2B + €*By + 0(%)]  (5.47)
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where
B, = %(1/— 15)E — j%
B2—5<8—g )E2+(23u—4)j§2
+g(1oy— 17)3,14. (5.48)

This leads to several possible ways of computing the
scattering angle x as a function of F and 52, at the 2PN-
accuracy. A first form would be obtained from Eq. (5:40)
without any re-expansion, i.e.,

» - 1
X(E,j) +m=2K(FE,j)arcos | ————=
e*(E,j)

(5.49)

where K(E,j) = 1+ k(E,j) is written in Eq. (5.37)
above, and 2(E, j) is the polynomial in E and 52 written
above.

Alternatively, one might consider re-expanding the re-
sult (5.80) as a straightforward expansion in 1/c?. This
leads to

1 -
§X(E,j) = arctan = +e2A; + et Ay, (5.50)
2652
where
3 _ 2F 52 N
A= 22 (B, ) — —Y (v —15)Ej2 — 12
1 ]2¢+( 7) 4j2(1+2Ej2)[( VEj ]
Ay = ¢} (E, j)Aza + Az, (5.51)
3 (5-2v) - 5(7T—2v)
Ase = = |— E
e [ 2 g
2E2 2 3 -6 2 52 4
Agy= — V"7 [2(3u + 300 + 35) B35 + (v — 838w + 2593) B2
32(1+ 2E52)%54
—32(28v — 95)E% — 2400 + 840} , (5.52)
and
o - 1
¢4 (E, j) = arccos | ———=— (5.53)
1+ 2E52
One can also consider the PN expansion of tan §, namely
E,j 1 1+ 2E52 1
tan X4 2’]) — il e e Ay ——— a2 (5.54)
2652 2E52 \/2E52



Beware that the straightforward PN expansions of
k(E,j) and x(E,j) are badly convergent because of
the presence of a singularity (where k(E,j) — oo and
X(E, j) — 00) along the sequence of unstable circular or-
bits. Let us recall that, in the (E, j) plane the sequence
of circular orbits is defined by parametric equations of
the type (when v — 0)

E(x)_ 1—2z

o T visa oW
(@) = ————+0()
= x(1 — 3x) v

The orbits we consider here (either elliptic-like or
hyperbolic-like) lie between the two branches defined by
the parametric equations above: the lower branch of sta-
ble circular orbits (corresponding to 0 < z < zrgo(v),
with z1s0(v) = % + O(v)), and the upper branch of
unstable circular orbits (zrso(v) < = < zLr(v), with
2 r(v) = £+ O(v)). [Both branches meet at a cusp cor-
responding to the LSO.] Many of the functions of E and
j that we consider here (and notably k(E, j) and x(E, j))
become singular on the upper branch. It might then be
better to work with the PN expansions of related vari-
ables that are regular on the upper branch, e.g. related
functions that smoothly vanish there instead of blowing
up. [When considering the zero-eccentricity limit, this
strategy was used in Refs. [3, 60], which replaced the
singular function K (F, 5) by the smoothly vanishing [57]
function K~4(FE, j).]

Let us finally note that the EOB formalism gives an
exact integral form for the scattering angle. Indeed, ap-
plying the Hamilton-Jacobi method to the EOB Hamil-
tonian leads to a separated action of the type

S(eob)(t, 7,03 B, py) = —Et +pgg

+ / drps(r; B, pg), (5.55)

where p,(r; E,pg) is obtained by solving the equation
H(cob)y = E, or, in terms of the y-reduced effective energy

H(or) (using also 7 = r/(GM))

2 2 g
(eff) N J pr
=A 1 .
= (7) ( T c2B(f))

(5.56)

This yields

Pr_y B(f)\/g?eﬂ’ — A(F) (1+ i

c A(F) ct 272

) . (557)

The orbit ¢(7) is then obtained from using 0S(cob)/Ipy =
¢o =constant. Setting ¢y = 0 yields

8(7) = —(GM)% / dp, = + / R . ety
(5.58)
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R | A(7)B(F)
~2 = N

It is useful to re-write this result in terms of the inverse
radius u =1/# = GM/r.

. (5.59)

Introducing
U5, ) = j—e Y IEW (5.60)
VR A @+ 2
we have
P(u) = i/duU(u;j,;ft(eH)). (5.61)

The function U(u) is defined as a real function in the
classical domain where the function appearing under the

square root in its denominator, say D(u; j, H (efry) = D(u)

7_22
(eff) _ A(u) (02 + j2u2)

D(u) = 2

(5.62)

is positive. In the elliptic-like case (E < 0) this is the
case in an interval of the form 0 < umin(E,j) <u <
umax(E, J), where umin and umax are two positive roots
of D(u). In the Newtonian approximation D(u)Newt) =
2F + 2u — j2u?, these two positive roots are

_ 1—/1+2E52
u(Ncwt) (E, ]) .

min - )

J

N 1+4/1+2E52
eV (B, ) = ———5——.

max 5]
J

Then the angular period ® = 27K is given by an integral
over the interval [tmin, Umax], Namely
R J0o)

WK(EJ)ZT

umax(E)j) -
:/ o duU(u; §, Her)) - (5.64)
“min(Evj)

(5.63)

When one continues E from negative to positive values,
the analytic continuation of umin (F, j) stays real, but be-
comes negative. However, nothing wrong happens to the
integrand, and one can still consider that the real integral
above defines K (F, j) in the hyperbolic-like case (E > 0,
ie., 7:[(65)/02 > 1). [In terms of the usual radial variable
7 = 1/u this means that one is taking an integral which
goes beyond 7 = +o00 to formally extend to negative val-
ues of the variable #.]

By contrast, the scattering angle x is directly defined
in the hyperbolic-like case (E > 0) by an integral over

the interval 0 < u < umax(E, j), namely
X(E.j) 7 _ A(E,j)

2 2 2



“de(EJ) ~
- / dul (u; j, He) - (5.65)
0

Here the interval 0 < u < umaX(E’,j) corresponds to the
radial interval 7, < 7 < 400, where fmin = 1/Umax
is the minimum of # (periastron). By comparing Eq.
(E68) with Eq. (B.64) we see that while K is given by
a complete integral (i.e., a period integral, between two
successive roots of U(u)), x is given by an incomplete
version of the complete integral (going between a root
and u = 0, which is an intermediate point). This explains
why the PN expansion of y(E, j) has a more complicated
analytical structure as a function of E and ;2

arctan(1/4/2E42)], than K(E, j).

Let us finally indicate how one can rather easily com-
pute the explicit quasi-conical equation (see Eq. (5.36]))
of the orbit in EOB coordinates. Let us consider the
squared differential of the polar angle, d¢? = U?(u) du?.
We wish to transform it, by a (2PN-accurate) change of
u variable of the form

[involving

u=1+e*aw +'bu + et + 0(f),  (5.66)

so that it simplifies (modulo O(e%)) to a form involving
a quadratic polynomial in ¥ as denominator, i.e.

) D(U) (du)2
W =T @~ A (@ § 2)
2
=4? (dw) . (5.67)

e+2au— j2Bu?

Here, D(u) = A(u) B(u) = 1—¢2 6 v u, and we introduced
the new energy measure £ (not to be confused with the
PN ordering parameter e = 1/c¢)
) 2
vV ~ 2
—4 5 E ) —C

H E
(eff) 2 _ 2
2 —c"=c (1 + _02

- 7 1
:2(13 —EQ) —(E —E2) .
+ 502 + + 502 (5.68)
It is easy to check that the choice of coefficients
1 1
a=-1-— 422(17 101/)+O<C—4)
3 1
1
c=0+4+0 = (5.69)

in Eq. (566) does yield the simple u-form indicated in
the second Eq. (5:67). The coefficients o and /5 entering
the quadratic -denominator € + 2 a @ — 52342 are then
found to be (at 2PN accuracy) the following functions of
FE and J:
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- 1 1
Ej)=—=——""-—. 5.70
[The latter result for 8, that we explicitly checked at
2PN, must hold to all PN orders.]
The integration of Eq. (5:67)) then yields

7o (1 200 )

where, denoting by w; and ws (u1 <

< uy) the two roots of
the quadratic w-denominator,

e+2am—j2B0% = j*B(@ —uy) (T — 1),  (5.71)
we have
_ uy + Uz _ Uz —w
(@) = e=
2 U1 + Uo
This yields
. « a K?
U)= —H55 = .
@ 8 J?
and
) o B 5j2
ee—l=¢cj°= = (5.72)

a2 K?2a2°

When inserting in Eq. (B72)), the expressions of e
(Eq. 569), K (Eq. (&38), and « (Eq. (&70) with the
first equation (5.69)), one finds, after PN reexpanding
@2(E, §) the same result as Eq. (5.47) above.

D. Hyperbolic orbits: radiative effects

Having explained the various ways in which one can
compute the scattering angle x as a function of E and
42, in the conservative case, let us now discuss the mod-
ification of x brought by radiation-reaction. We define
the supplementary contribution x(B®) to y entailed by

radiation-reaction by decomposing the total x as

X(tot) (E_,j_) _ X(Conserv)(E_,j_) + X(RR) (E_,j_).
(5.73)
Here x(co"e™)(E, j) is the function defined above in
the conservative case and we have denoted by E_ and j_
the energy and the angular momentum of the incoming
state (considered in the infinite past, t — —o0). We
are going to prove the following simple result concerning
x®BR) . When working linearly in the radiation-reaction
Fi, i.e. modulo terms that are formally quadratic in JF;,
we can write

1 conserv) [ . conserv) [ 7 .

X =2 (x( (B j4) = X' )(E—J—))
1 (ax(coriscrv) 6(RR)E ax(conscrv) 5 (RR) )
2 OF 9j

(5.74)



where §BR)E and §®R) j are the integrated losses of en-
ergy and angular momentum, radiated (between ¢t = —oco
and t = +00) at infinity in the form of the corresponding
fluxes @ and ;. Note that (still modulo terms O(F?))
the result (BX74) means that the total scattering angle
Y in presence of radiation-reaction, can be written
as

n - 1 nserv) [ g -
X G) = 5 (x(” “Y(Ey, jy)
+X(C0nserV)(E—7j—)) ) (5'75)

Moreover, it can also be written (modulo O(F?)) as

XONE, j-) = xm)(Ey, jo) , (5.76)
where
- 1 - -
EQ = §(E+ + E_)
. 1 . .
Jo = §(J+ +3j-) (5.77)

are the average values of E and j over the incoming and
outgoing states. As the radiation-reaction is of PN order
F = 0(1/c®), the accuracy of the results stated above is
modulo corrections of PN order O(1/c'?).

To give a proof of the above statements, one should use
the generalized method of variation of constants used in
Refs. 26,156, 61], which considers the perturbation of the
2PN accurate conservative dynamics by the radiation-
reaction force. Moreover, one should extend the treat-
ment of these references from the elliptic-like case they
consider, to the hyperbolic-like one we are interested in
here. This can be done, and yields a straightforward
proof of the relations above. Here, for the benefits of
simplicity, we shall content ourselves with presenting the
proof of these relations in a simplified case where the un-
perturbed dynamics is treated as being Newtonian, while
the perturbing force F; is considered at the fractional
2PN accuracy. We shall, however, indicate the essential
reason why the result still holds in the case where both
the conservative dynamics and the radiation-reaction are
treated more exactly, i.e. with a Hamiltonian of the type

1 1
H(conscrv) _ H(Ncwt) + C_2H(1PN) + C_4H(2PN) , (578)
and a radiation-reaction of the type

F = Fewt) 4 Lpaen L zeen) (5.79)
c? ct

When considering the simple case where the unperturbed
dynamics is Newtonian, we can simplify the calculations
of x(®R) by making use of the famous Laplace(-Lagrange-
Runge-Lenz) conserved vector. Using scaled variables,
F=r/(GM), j =J/(GMu), p = p/p (and, henceforth,
dropping both the carets and the tilde’s for easing the
notation) we have the Laplace vector

At)=pxj—n (5.80)
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where j = r x p and n = r/r. Its time derivative is

proportional to the perturbing force F (henceforth we
shall also drop the tilde on F) and is given by

%:}'xj+p><(r><}').

o (5.81)

If we write F in vectorial form, it has the structure

F = a(r,p)p,n + B(r,p)p (5.82)

where the crucial information is that the coefficients «
and S (which should not be confused with the quanti-
ties introduced in the previous subsection) are time-even
scalars, i.e., combinations of our usual scalars p?, p? and
1/r. [This holds for the 2PN-accurate o’s and §’s.] In-
serting this structure in the time derivative of A yields

dA
—— =apnxj+20p xj.

p (5.83)

Let us now decompose all vectors with respect to an or-
thonormal basis e,, e, e,, with the x direction along the
apsidal line (i.e. with e, a unit vector directed from the
origin towards the periastron) and with e, being along
the angular momentum: j = je,. We have

n = cos pe, + sin ge,

p= jl [—singe, + (cosp + e)ey] , (5.84)

so that the two components of A = A,e, 4+ A e, read

A, = aesin® ¢ + 2B(cos ¢ + e)

A, = —sinp(aecos ¢ + 28), (5.85)
where we used the fact that
pT:n-ngsingb. (5.86)

The crucial fact we wish to stress is that Ax is an even
function of ¢, while A, is an odd function of ¢. [Recall
that the scalars o and 3 are functions of p?, p? and 1/r
and are therefore even functions of ¢.] Remember that we
have chosen the origin ¢g of ¢ at ¢ = 0, so that these
parity properties of the vector A correspond to simple
symmetry properties between the first half of the motion
(between infinity and the periastron) and the second half
(from the periastron back to infinity). When integrat-
ing over time to get (at order O(F)) the total radiation-
reaction-induced change of A between —oo and +oo, we
deduce (using the fact that ¢ = j/r? = (1 + ecos ¢)?/53
is even in ¢)

SERA = AL —A_ (5.87)
will be directed along the x axis. As the unperturbed A
vector is simply

A(conserv) = ce,,

(5.88)



we conclude that the effect of radiation-reaction on A
amounts to changingonly the magnitude of the eccentric-

ity e, without introducing any further angular rotation
in the apsidal line. More precisely, as the magnitude of

the perturbed A2(t) is given (at any moment) by

2 -
A%(t) =p?P +1 - ;jQ =142E@)52%(t),  (5.89)

where E(t) and j(t) are the instantaneous (Newtonian)
values of the energy and angular momentum along the
perturbed motion, we conclude that an incoming A vec-
tor at t = —oo of the form

At = —o0)=A_ =/1+2E_j2e, (5.90)
will end up, at t = +oo with the value
A(t=+o0)= A, =/1+2E,j%e,. (5.91)

Let us now use these asymptotic results to compute the
value of the scattering angle x(*°), including the cumu-
lated effect of radiation-reaction. This is done by consid-
ering the limits ¢ — 400 in the defining expression (580
of A(t). Asymptotically, we have

p(t = +00) = pi = +4/2E,n. . (5.92)

(o)) = 1

N =

2

which is the relation that we have indicated above.

Let us briefly indicate why this result extends to the
case where the unperturbed, conservative dynamics is
treated, say, at the 2PN accuracy. In that case one can-
not use the Laplace vector because of periastron preces-

sion. Instead one can use the version of the method of

6(t) = / Q[ + k(cr (), ca()ner (£), ea(8)) + ex(t) + W (L ex(t), ea(t)].

to

Here, ¢1(t) and ¢, (t) denote E(t) and j(t), while the third
quantity cx(t) corresponds to a possible additional angu-
lar displacement of the apsidal line, beyond the effect
linked to_the radiation-reaction-driven adiabatic varia-
tions of F(t) and j(¢). The quantity cy(t) corresponds
in our above simplified treatment to the direction of the
vector A(t). We found above that the direction of A(t)

(- +x) = 5 [XCME ) +xleomem (B, )]
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Let us replace any vector V. = Ve, + V,e, in the
orbital plane by the corresponding complex number V =
Vz + iV,. In particular, the unit vector n(t) becomes
the complex number n(t) = ¢*¢(®). Tts limiting values are
ny = €%+ where ¢, = ¢(t — +o0) and ¢_ = ¢(t —
—00). It is then easy to find that the asymptotic values
of A(t) = A (t) + iAy(t) are given by

A = (=14i\/2E_j2)n_

Ay = —(1+i\/2E152)n; . (5.93)
If we then define x4+ (and e1) by
1 1
tan %i L (5.94)
V2B el -1
we conclude that
X — X — .
A_=ie_eTn_ =ie_eT el
Ay = —ie+efix7+n+ = _7:€+67ix7+6i¢+ . (5.95)

Our previous result show that A, has the same argument
as A_. Therefore
X— ™

+—+¢,:———X7++¢>+

™
31+ 5 (5.96)

so that the total scattering angle y(*Y) = ¢, —¢_ — 7
(including radiation-reaction) is simply given by

(5.97)

variation of constants used in Refs. [26, 156, 61], and
adapt it to the hyperbolic case. Then the crucial quanti-
ties which encode the effect of radiation-reaction on the
scattering angle are the “varying constants” c¢;(t), ca(t)
and cy(t) that enter the expression for ¢(t) given in Egs.
(32b) and (33b) of Ref. [61], namely

(5.98)

did not include a secular change under the influence of F,
because of symmetry reasons linked, finally, to the time-
odd character of F. This fact has a correspondant in
ex(t). Indeed, Ref. [61] found that there were no secular
changes in cy)(t) (and ¢;(t)) precisely because dcy(t)/dt
is an odd function of ¢, around the periastron, and re-
marked that this was linked to the time-odd character of



F. When applying this result to a scattering situation,
one again finds that the total scattering angle will be
given by the average of the conservative y(€omse™)(E, j)
over the incoming (E_, j_) and outgoing (E., j ) values

oF

1(0 (conserv) E, : b (conserv) E7 :
SRR)y, — 5( X i j)a(RR)E+ X . ( ])5(RR)j

of the scattering angle entailed by radiation-reaction. We
will do this calculation at the leading PN order in the
value of F, i.e., at the O(1/c%) order only. We there-
fore need the values of the losses of energy and angu-
lar momentum during a hyperbolic encounter. From the
(Newtonian-order) energy flux at infinity
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of the two secularly-evolving “constants,” E(t) and j(t)
(i.e., c1(t) and cz(t) in the notation of [61]).

Let us finally give an explicit estimate of the modifica-
tion

5 (5.99)

we compute the integral

/ o At (1)

— 00

(5.101)

along the unperturbed motion, using ¢, rather than ¢, as
integration variable, i.e.,

(RR) £ c = o r? )
OV E=F —E_:—/ d¢ -dp.  (5.102
! o GMupj (

8 GM\* 11
by = FCo 2 ( " ) (41)2 — ?7‘2) , (5.100) Computing this integral, we find
|
~ 2 1
SER B — —15% [5(67362 +602)y/e2 — 1+ (37eL +292¢2 + 96)¢3(e_)} : (5.103)
c’gl

where ¢ (e_) is defined (in keeping with Eq. (5.53)) as

¢ (e_) = arccos (—i> = g + arcsin (i) . (5.104)

This result agrees with Eq. (2.10) in [62]. Similarly, from

We find

8v
SEBRR); —
J 5c554

[(2& +13)4/e2 — 1
+(7e2 +8)¢% (e-)] ,

(5.107)

where ¢9 (e_) is the same function as above.
As the (conservative) scattering angle is a function of
the eccentricity, i.e., the combination

e(E,j) =\/1+2Ej5?

(5.108)

the Newtonian angular momentum flux at infinity,

8 V2 (jGM) (GTM)S (2v2 — 32+ %) (5.105)

B, =
77 5ed

we computed

(5.106)

of E and 7, we are mainly interested in the radiation-
reaction-driven change in the eccentricity, namely

5w, = DB seemy p o OB ) sy (5.109)

OF dj

Using the results above for §®® E and 6(®%)j we find

(5.110)

where



e —1
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Qe—) = F——5—(72e* +1069¢2 + 134) + (304 + 121e% )¢ (e—). (5.111)

3e2

We have also checked this result by computing the change
in the Laplace vector A. We find that the ¢-derivative
of the associated complex quantity A = A, + 14, reads

dA 8 .
7 @uje“f’ (=315 + 65277

+i(7F — 155%)7*F — 12(7F + 52)/*] | (5.112)

where the prime denotes a ¢-derivative. Inserting the
Newtonian orbit 7+ = j2/(1 + ecos¢), and integrating
between ¢_ and ¢, yields

2 e_

RR _ —
5( )A—A+—A7——EV@

Qe-), (5.113)
in agreement with Eq. (B.110) Finally, as
(conserv) _ ( 1>
X (e) =2arccos | —— | —
e
. 1
= 2arcsin (—) (5.114)
e

we have dy () /9e = —2/(ev/e2 — 1) so that

B lax(conserv) (e)
X= 2 Ode
§(RR)
-2 (5.115)

eveZ —1

§(RR) 5(RR) ¢

Finally, the radiation-reaction contribution to the scat-
tering angle is given by

1 2v 1
SEBR) Y — S —
j2a /e —1

where Q(e_) is defined in Eq. (GI1I).

Qle_)+0 <cl—7) . (5.116)

VI. SUMMARY AND OUTLOOK

Let us summarize the main results of our work:

1. We have introduced a new approach to the compu-
tation of the gravitational radiation-reaction, based

on the identities (Z10)), (2.10) satisfied by the com-

bined energy and angular momentum flux function

(I)EJ, Eq. m

. We have computed some “minimal” version of

the 2PN accurate radiation-reaction force F(x, p)
which must be added on the rhs of the Hamil-
tonian EOB equations of motion when describing
general orbits (elliptic-like or hyperbolic-like). The
radial, F,, and azimuthal, F,, components of the
radiation-reaction force are explicitly given as func-
tions of the EOB position and momenta by Egs.
B82) and B63). Our calculations were based
on the transformation properties of the three ba-
sic scalars X7 ~ p?/u? ~ v?, Xo ~ p2/u? ~ 7?
and X3 ~ GM/r between the various coordinate
systems used in PN theory (harmonic, ADM and
EOB).

. We have also computed the “Schott” contribution

to the energy, corresponding to the above minimal
construction of F. It is given as a function of the
EOB position and momenta by Eq. ([8:69). In par-
ticular, we pointed out that Fpotr) does not van-
ish during quasi-inspiral but is proportional to p,

and is given by Eq. (57).

. We provided a new understanding of the gauge free-

dom in the construction of the radiation-reaction.
It is linked to the arbitrary choice of (i) the Schott
contribution to the angular momentum, and (ii) the
part of the Schott energy which is proportional to
the cube of the radial momentum p,.. This explains
very simply why there exist 2 x 1 arbitrary param-
eters in F at the Newtonian order, 2 x 3 at the
1PN order and 2 x 6 at the 2PN order [and then
(n+1)(n+ 2) at n PN order].

. We pointed out that there is an inconsistency be-

tween the assumptions that are standardly used in
current implementations of the radiation-reaction
force in the EOB formalism, namely Eqs. (B.8]) and
(E9). We showed that if one adopts the assump-
tion Fy = —®; (which is convenient, and always
possible) this essentially determines (during inspi-
ral) a nonzero value for the radial component of
the radiation-reaction force, given by Eqs. (5.14),

G.16) and (EID).

. We introduced a new way of parametrizing (con-

servative) hyperbolic orbits in PN theory, by the
simple quasi-conic equation (at 2PN)



and emphasized that the two quantities & (“eccen-
tricity”) and K (“periastron advance”) are gauge
invariant. The gauge-invariant eccentricity € is re-
lated to the scattering angle x and to K via Eq.
(E40). Moreover, K and x are given, in EOB the-
ory, by simple (complete or incomplete) integrals
over the inverse-radius v = GM/r, Egs. (.64,

(6.63).

7. We have showed how the effect of radiation-reaction
on the scattering angle can be computed (modulo
correction O(F?) = O(1/¢'?)) from the sole knowl-
edge of the losses of energy and angular momen-
tum at infinity, see Eqs. (&74), (&70) and ([G.70).
This result might be used to subtract the effect of
radiation-reaction on the scattering angle obtained
in numerical simulations, by using only numerical
data in the asymptotic domain at infinity. We also
gave an explicit expression, at leading order in 1/¢,
for the additional contribution to the scattering an-
gle due to radiation-reaction, see Eq. (E116).

Finally, let us point out some of the future research
directions that would complete our results:

(a) In the present work we have not included the effects
of tails on the radiation-reaction. We plan to treat
this issue in a future publication.

(b) Here we obtained the components of the radiation-
reaction force F in the form of a standard, non-
resummed PN expansion. However, the cur-

(6.1)

them by the method introduced in [14]. We gave
some partial results towards this goal in Sec. IV.

(c) Let us finally mention that, in order to have a com-
plete EOB formalism for general orbits, there re-
mains the problem of expressing the emitted grav-
itational waveforms in terms of the EOB phase-
space variables. The transformation formulas we
provided should be also useful in this respect.
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Appendix A: The 2PN energy and angular
momentum fluxes in the far zone in EOB
coordinates

1. Energy flux

The 2PN energy flux (excluding tail terms), scaled as
in Eq. 828)), can be written as

rent most successful implementations of the EOB ‘b(%b) (X5) = [X§]* (CaX§ + ECapX5X5
formalism make a crucial use of efficient re- 4 e ye ye
+eC X5X5X Al
summations of Fg, in the circular limit. It would € HABCRASE C) (A1)
be interesting to concoct resummation schemes in here
the more general context considered here. For in- W
stance, in the case of slightly elliptic orbits one N 11
might hope to improve the numerical validity of Cyp=-v [4, ——,0} , (A2)
our PN-expanded F;’s by first factorizing the “cir- 5 3
cular part” of these components, and re-summing
|
Cii = 373 V(1347 — 2556v) Cia = % v(—1333 + 412v) Cis = 835 v (36720 — 6696v) (A3)
Cog = — i v(—18549 + 108v) Caz = 5v(12960 — 2304v) Cs3 = 553pv(432 — 1728v)
and
Cii1 = % (—159 — 838v + 18741/%) Ciz2 = 573 V(490V + 1523v + 1101)
0113 = —945 (1390V — 6362 + 4761) 0122 = —2% ( 372v + 2034V + 4.3)
Ciaz = %I/( 2242v + 8111 + 36812) Cisz = = (2283612 — 615961 + 198961) (A4)
0222 = ml/( 4498v + 2828V - 2501) 0223 = 2835 (590V — 58611 + 9741/ )
Cosz = —28235 (764412 — 320520 + 81263) Cs33 = —945 v(145 — 648y + 27202) .

Note that we are listing here and below the indepen-
dent components of the symmetric “tensor” Cy,. 4, .

When explicitly effecting the multisummations present



in the contractions Ca,.. 4,Xa,. .4

n

factors of Eq. (3:2H]), namely

CapXap = C11X11 + Co2Xog + C33X33 + 2C12X 12 + 2C13X13 + 2C23 X023
CapcXapc = Cri1 X111 + C222 X292 + C333 X333 + 3C112 X112 + 3C113 X113

27

(with Xa,..4, = X4, ...X4,) they appear multiplied by the symmetry

+3C122 X122 + 3C133 X133 + 3C223 X223 + 3C233 X233 + 6C123 X123 - (A5)
[
2. Angular momentum flux where
The 2PN angular momentum flux (excluding tail
terms), scaled as in Eq. (28)), can be written as By = §V 2,-3,2] (A7)
S5 (x4) = j [X5)° (BaX§ + € Ban X5 X5
+€e'Bapc X5 X5X¢E) (A6)
|
By = 3# (330 — 1272v) Bio = = ( 396 4+ 900v) B3 = @ v(—5928 — 3288v) (A8)
Bao = —3# (—=1710 — 1080v) Bos = _% v(—11520 — 600v) B33 = —945 v(11898 — 1548v)
and
Blll = 3{5 ( 1051v — 50 + 7501/ ) Bllg = 3 5 (2051V + 3347y — 971)
3113 = 945 (78021/ — 6057 + 6238V) Blgg = —%I/(872U — 430 + 14891/)
Bias = 18 oV v(5516v2 — 103921 — 26869) Bisz = 15 v(4312 + 444802 — 21843v) (A9)
Boos = —1/(761/ — 78+ 155u) Bass = %V(272V — 27251 — 5255)
Bos33 = 945 v(—2997 + 109812 — 6566v) B333 = 555:1/(46085 + 304202 — 6741v).
3. Combined energy aAnd angular momentum flux
s
The combined flux fI)(eOb) Peob) _ GMgf)eff)wa) (ex-
cluding tail terms) can be ertten as
= (eob e e e
557 (X5) = [X5]° Qaa(X5) (A10)
where
Qu=-2Lr Qu=4w Qi3 = Sv
All
Qu=-%v Qmn=—3v Q=0 (ALL)
and
Q111 = —315 v(—174 — 1776v) Q112 = 941‘5 v(534 + 3432v)
Q113 = 9%—51/(10134 — 2328V) ngg = —%I/(534 + 34321/)
Q123 = 945 v(—18234 4 1536v) Q133 = 945 v(—3690 + 468v) (A12)

Qoo = _3 v(=1710 — 1080v) Qa2 = 835 v(—76194 + 2952v)
Qs = —2=1(— 12510 + 15480) Qazs = 52=1/(432 — 17280) ;



finally, the 15 independent components of Q apcp are

Qllll = I/(163 —202v + 1764V ) Q1112 1260 (33721/ + 9424y — 3445)
Q1113 = (456V — 16682y + 1905) Q1122 = 630 v(10984v + 625202 — 2959)

Q1123 = 9 (14159V — 5543 + 778412 ) Q1233 = 1890 (32961/ —2134v — 108839)
Q1222 = I/(6916V + 378812 — 2211) Q1223 = 3780 v(—30434r — 66503 + 3031202 )
Q1133 = W (790V + 3200v — 19679) Q2222 = —I/(761/ — 78+ 155V)

Q2223 = m v(—=6779r — 9211 + 24281?) Q2233 = 2835 (39912 — 9005 — 133530)
Q3333 = 1890 v(1768v* — 18361 + 24455) Q3331 = T35 (176802 — 18361 + 24455)

Q3332 = —555v(540002 — 40068V + 118193) .

28

(A13)

Similarly to Eqs. (A3]) and (A4)) above, the symmetry factors multiplying the independent components of the sym-

metric tensor Q 4pcp are given by

QapcpXapep = Q111 X1111 + Q2222 X2222 + (3333 X 3333
+4Q1112X1112 + 4Q1113 X 1113 + 4Q1222 X 1222
+4Q1333X1333 + 4Q2223 X 2003 + 4Q2333 X 2333
6Q1122 X 1122 + 601133 X1133 + 6Q2233 X 2233

+12Q1123 X 1123 + 12Q 1223 X1223 + 12Q1233 X 1233 (A14)
[
Appendix B: Hamilton equations in EOB with
coordinates: expansion at 2PN - - -
C=1+C4X5+€'CapX5X5, (B2)
e Equation for 7, where
From Hamilton’s equations we have - 1+v
CAz[— 5 ,0,1/—3} (B3)
67:2 eo = ~
= DU G, p) =GR (BL)  and
opr” |
C:'ll—%(l—i-u—i-u) qlg—O C’l :%(1—}—1/—1/2) (B4)
Cop = Cos=3(1+v) Cu=1B2+Tw+3).
[
e Equation for p(e) and
From Hamilton’s equations we have C:'u _ _%(1 +v) QlZ _ %(1 +v)
Ci3 = —%(1 —v) Cx=0 (B8)
~ C = —=U C - _1 —V
) OH 23 3 33
f(e) _ _ Y7t(eob) B5 and
Dy or. (B5)
0111—%(14—1/4—1/2) 0112——%(1+V+V2)
A 5 2 _
In X4 variables we have Cus = _ﬂ(?’y —v—1) Cip = ? )
0123 = 12(2+2V+31/ ) 0133 = §(3V —V — 1)
Cagp = Coa3 = —%(1 +v)
. A A 1 A _ _3
P = X501 5(X5) (B6) Chay = =53V =9 =5) Oy = =5 (V" —v + 1>(i39>

where

CAvA = [17 _17 _1]

(B7)

Appendix C: Schott energy at 2PN in EOB
coordinates: minimal gauge expression



The minimal gauge expression for the Schott energy is given by the first of Eqs. ([3.69), that is

29

min 1 P e e
o = v/ X5[X5°Cra(X5) (c1)
where /X§ denotes p, (with its sign),
16
Cy= gy[l, 1,0] (C2)
and
(22 24 _ (68 19 _ 1382 _ 76
Cnzvimg ), CezrigyogEl Cnzvioue ) (©3)
Co=v(-fHr+im) Cu=v(T+5v) Cs=v(iE - 1Y)
and
Cypp = v (=18, 4 80,2 _ 10 Ciis=v (-3 + 8Ly — 2422
A I N et N L WA R
13 = v (v 045, T 045, ? 122 =V g’/ 63 Y 13
Croz = v (—2328y% — 234y BB (g = v (—22p2 4 100, 4 24) (C4)
& 945 945 1818 §, s
o=l g8 oo (Rl
3043 94 484 1 64 260
Coss =v (5 v2 — GV —T35) Csss=v(mv— 17" — 55) -
[
Appendix D: Radiation reaction force at 2PN in where
EOB coordinates: Minimal gauge expressions
The minimal gauge expression for the radial compo- 1
nent of the radiation reaction force is given by the second Ry = g’/ [77 =7, g} (D2)
of Egs. (8:69), that is
(e e 1 e e e
Fleobl(XG) = aares VX [X5PPRi3(X3) (D1)  and
|
Ryy = v (1252 v Ryy = v (138, _ 438) Ryg — 1 (—248 _ 634 )
Ry = y§—% 3_‘2 Ros = v 31%056 + 3%2 ) Ras — 634 %8 ) ' (D3)
and
Rivi = 3229+3277 L2 _ 118, Ry — v (289 4 282, 7692
P P b T )2 PR K Ve R T
Rios = v _@ 2 14%1841/_?_15305 ) Rizs = v _@9 9 +9665032 %g) (D4)
SO T [ A L s PV A 1) 36533
Rozz = v 564%%1 - 22233145 1é8§9 ) Razs = v _é— 29150256 +839§638) :
[
The minimal gauge expression for the azimuthal com-
ponent of the radiation reaction force is given by the third .
of Egs. (8:69), that is ]—";mb) = 03—5[X§]351,3(X2)7 (D5)
where
8
Sa= 3 (2, -3, 2] (D6)
and
|
Sll—V( 2—‘1-%1/) Slgzu—ml/—l—m) S13 = @4—?&)
Sgo =v (- ﬁl/—%) Soz = v —@—ﬁ) 533—1/@—@), (D7)

7 105 105



and

Sy = v (1031, _ 50,2 4 10
_ 1302 2% 63 _636)238

S113 =v Y T 905 V)
_ o r30d%3 T 173305 S8R

5123_V(13 v 315 Y 890)
_ (P52 2 BB b

oA B R ]
_ 2

Sozz = v (—1osv? + 52V + 1)

30

Sipp = v (2L — 3331471/ . %Vz
Sy — 3 o Piuge  YPu30

122 =V 63V+%V 63
Syas = v (898956]/2 _ 318V + 42 522 (D8)
G — 76 o 31360, Hios

WA B

_ 2

Sszz =V (=35 V" + Y~ et ) -

Finally, for the expression Eq. BX0) of F, (X5, X§, X§) in terms of the EOB variables X§, X§, X§ we have the

following coefficients

32 56
TI:U|:07€7_€:| 5 (Dg)
and
4 100 _ 76 232 _ 3776 4532
T23_V(?V+W T24—V(—EV—% Tss =v (—35v — T8) (D10)
T 172 998 Tys — __ 400 368
34—”(35V+105) 44_”( n?to9r)-
and
_ 2062 94 14 88 .2 , 1382 1088
T223—V—§V—§V—B) T224—V @V +%V—|—ﬁ)
Tyzs = v (— 13122 11078, 70 1020y o (2063 ,2 7550, 300
Toss — v 10155 178651/67_|_ 562) 100 Tiss = v 17%51/2 1138 57_ 351008 (D11)
Tay — 383384 9315 6317331?’_ 1618y p, = 7834 2 5584 _28’33976)
334 =V 345 2’/ 230905 ’/968 189 344 = V{135V 315 945
Taa = v (~157" T 315V ~ 315

Similarly, for the expression Eq. B.70) of Fy (X5, XS, X5) in terms of the EOB variables X§, X5, X§ (having also
used the expression 7)) for j), we have the following coefficients

8 32 16
v, |8 3216 D12
= [3-2.2]. (D12)
and
_ 236 548 _ 722 1312 _ 38 128
C e At A Ve S (D13)
Vas =v (Fv+ 5 Vaa=v(—5v—155) Vau=v(iGv-is
and
i ol T T e T T
#3826 2 531008 %3 8731 10150 6689, 289\ 1P
Vaza = v (5007 + v+ )V244—1/ =V sV + g ) (D14)
VU ) e e e T
3 0 31 89

Appendix E: Coordinate transformations in phase
space: harmonic, ADM, EOB

In PN theory there exist at least three different co-
ordinate systems that are largely used: harmonic (h),
ADM (a) and EOB (e). Each of these systems has its
own utility and we shall discuss here their transforma-
tion laws at the 2PN order. We work with the scaled
position variables qn, = x,/(GM), qo = %X./(GM),
e = X./(GM) and similarly for velocity or momentum
(per unit reduced mass) variables, which are simply de-
noted by pn, Pa, Pe Without recalling the tilde notation.

Phase space variables associated with harmonic coordi-
nates are only (qp, vp) (no ordinary Hamiltonian exits in
this case), whereas for the ADM and EOB cases one has
either (qq,ve) and (qe, ve), respectively or (qq, pa) and
(Qe, Pe). With each choice of phase space variables (ha,
or e) is associated a family of fundamental scalars, that
is for example

(o vn) = X =0 X} = (mnova)” X =

where ny, = qp/qn, etc. We list below the main transfor-
mation laws among phase space vectors as well as funda-



mental scalars.

1. ADM vs harmonic coordinates

ADM vs harmonic phase space vector 2PN-transformations are the following:

1) (qa,Va) - (qhvvh)

1 5 1 9
qnh =da T € { |:< _) q_ + ngz - gV(na : pa)2:| n, — ZV(na 'pa)pa}
9 9 1 1
Tv; —3(ng - ve)~ + 38q— + 4q— n,

1
v 17(n, - +13v — 42— ) —2—} Va} .
84a |: ( ( ) Ga Ga

h—Va‘|'e

2) Va <7 Pa
1 3v—1 1
Vo = Pa + € |:——I/(Ila “Pa)g + (% -3+ u)q ) pa}

1 1 v? 3
+et [—(na “Pa) (3uq— — Tpi - §V2(na . pa)2> n,

3 1 1 121
+ (5(51/2 — B+ 1)pl = 5 (307 + 200 5) -l + (89 +5) 5 - Y1, payz) pa] 7

a 2 qq
1 1-— 1
Po = Vq + € [—u(na “Va)Dg + ((723]/)02 + 3+ 1/)—) Va:|
qa

+€4{(na .aw>na Ey2<na.va>2 2= (1“)%]

qa 2 da
v V(2 —5v) (ng - vq)? n 3902 —211/—1—Z}v:i 9% + 120 — 70?2 Ya |y _2y+4)
2 a 8 2 a da
3) ny ¢ n,
n, =n, + vet [(Ng - Vo)g — Vo], ng=ny, — —vet[(ng, - vi)ny, —vy] .
da 4qn,
4) vy, = v,
3v 19v + 2 Tv
o 4|2V ] g Wtz AV o )
Vg = Vp € { |:8qh (nh Vh) 4(]}21 8qh ’Uh:| (I‘lh vh)nh
[17V (np-vp)? 1421y 13v 2} }
R 5 — < —Uh| Vh .
8 dn 4q;, 8qn
5) Vh = Pa
1-3v v+3 v
Pa =Vh + €2 [vh ( Vi + ) + —(np -Vh)l’lh:|
2 qn an
4 3902 —21lv+3 , 3602 +35v—28v7 v(20049) (ny-vy)? 42 —29v+15
TE | Va Up — — = + §
8 8 qn 8 an 4q;;
3v(dv — 1)

(0 - vi)? Sv(dv — 3) 2+12V2+31V—|—2>:|
htVh) — -

v < S 4q;

8qn

)
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Concerning the transformation of fundamental scalar quantities, we recall once more the notation introduced in

(E6)

(E7)

Sec. II, namely X! = vZ, X} = (n;, - v5)?, X} = q— The same notation for the ADM variables leads, as explained
before, to the two possible choices
XP=pt. Xf=(uopaf. Xf- o
and
T
We find explicitly
X! =Y+ vy {Yg" (§1/Y2a _2 +219UY3‘1> +Y (gl/YQ‘l - %VY{Z + ! +221VY3

19 2v—1
X} =Yy [1+e4Y3“ (— VY§ — UVt (—2)5@,)]
1
X} =Yg+ AP | Zaovy - 5ve) - J0+ 107 |
and

4 2 2 4 2

1 1 2 — 1
Yg = X} [1—64)(53 <79 vXh —79 vXI + %Xgﬂ

3 2419 5 13 1421
Yla_Xf+e4X§[X§(——uX§+ T VX3>+Xf<——VX§+—qu il

1
Y= Xh [1 —elxh (g(mxg —5X7) — Vit 121/))(51” .

Equivalently, using our “tensorial” notation Egs. (E9) are summarized by

1. Y = 1Q (X ) with 1 = 15 and the 1Q all vanishing, while
1C111 =0 - . 10113 = _3’/ 10112:3 = _9%’/ )
101y = —3v—¢ 1058 =-% 108y =3v+3.
2. Y9 = 2@7%( 1), with o = 0y and the 2Q%% all vanishing, while
20?12 =0 20123 = E’/ 20512}13 = _%V 20%13 = % - %
3. Yy = 3Q‘1’)’§ (X%), with 3Q%" = 835 and the 3Q% all vanishing, while
3Q = 5V 3Q8 = —3v  3Q4 =1 +3v.
Similarly, we may summarize the relations X4 = 4C{%(X"%) as indicated below
1. Xl = 1C (XA) with 1C%h = 513,
and finally
10111 — 121/ - 247V+1 10113 —_4.1/2_ ?;V—"% 1Cil2hs: _%V2+%I/
1Oy =12 = Fv+ 5 108y = v° — qv 1C8 =30 + By + 1
2. X§ =08 (X1h), with ,CY" = b2,
20?2]1:% 2023 =2v+3,
and finally
20112 = 4V — _V + 20{12]13 = _13—0V2 — %V + % 0223 = _%VQ — %V

2C8h = 412 + —31/—|— &
3. X§ = 3CY h(XH), with 3C%" = 635; here all the 3C%% vanish while

ah _ 5 19 ah __ 1
30133 = ﬂV 30233 ﬂV 30333 = 3V + 1

)

S

(E9)

(E10)

(BE11)

(E12)

(E13)

(E14)

(E15)

(E16)

(E17)
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2. Harmonic vs EOB coordinates
Harmonic vs EOB phase space vector 2PN-transformations are the following;:

1) Pe < Ve

. v+1 1 1
V€=q€=p€+62 |:pe <_ 5 P?-(V—l)q—) —2—(n€-pe)n€:|

+et {neq—le(ne “Pe) [(u +1)p? +2(1 + 2U)i:| + pe [(;j +1)(n, - pe)2q_1e

3 11 1
+§(1+V+V2)pi—5—(—1—V+3V2) (pi—q—)}} . (E18)

€

Pe=Ve+e’ [QHeM + 2 (uﬁ(l +v) -2 - 1)i)}

e 2 de
n,-ve v —3 ve [(—4v? — 120+ 12
+64[n€( - )(_2( - )+(1+u)v§>+§( >
—4v? — 4y — 12 8(1 e Ve)?
+— p v v? 4 ( +V)q(n ve) +3v§(u2+3u+1))]. (E19)

We recall that p. denote momenta per unit reduced mass (indicated without the tilde, for convenience).

2) (Qh,vh) & (q67pe)

_ 9 2—|—1/_Z 9 _
e = qn + € o 2th) v(Qn - vi)Vh

et Ku(nu —3) 4 v(19+9) 2 3v(5v — 3) (- v + v(v — 19)) @

8 Yh 8qn 8qn 4q;,
N (1/(71/2— 1)U}QL B 31/(?;(; 51/)) (an .Vh)vh}
b vy 2 [3;;2(% S (1 —221/1)]21 - 3u(i;5u)> Vh]
L {(nh vy (%q:y)(nh ) - 2312 ;;u — 41}% N 1507 +4(2]§1/+ 12)
N [<§ Cony 31/2) o= 2112 -;q?: - 241)}21 3 V(l?é/q:- 25) (0 - vi)?
V2 _21;211/ + 3] Vh} . (E20)

9 vV o v+2
an = Qe + € || 5P~ 5 de + (qe - Pe)Pe

4 w417 o v(l4v) 4 v@r-1) 5, v -19)
+6 |:qe ( 8qe (ne pE) 8 p€ + 8q8 € 4qg

v—1, v—19
+I/(qe'pe) 2 pe+ 4q Pe

Vi = po + €2 _31/+2(n pon. + _V—|—4+2V—1p2 P
e 2qe e e)lle 2qe 2 e e

3v(bv +1) w2 +23v —4 32— 9v —4
e (B e - B - )




(ne 'pe) +

(15u2—29u—8 s 3-8v , TP-4lwv+8 , I/2—15V—1) }
R U + Pe

8de 5 8. ° T 22
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(E21)

Let us consider now the transformation law of the fundamental scalars X4 and X% as represented by X% =

ACTS(X ), with
1 X' =1CP5(Xq), with 1O = b1,

Che=—1+20 O =-%£-2 Che=-3v-1,

and finally
he _ .2 he _ v: _ 55 . 4 he _ _ 17,2 1, ., 2
10 =v" —=3rv+1 Clfs=FT—pv+t3 101G =—prt+srts
he _ _v: | 17 5 _ 5,2, 1 h 3.2, 29 7
10l = +3v+35 1035 =307+ v 10953 = qv° + v +3
2. X%L = QCﬁg(Xi), With che = 523,
2015 = —5+20  20f=-2 504 =-3-2,
and finally
2 1 _ 5.2 _ 25 he _ 7,2, 17 2
20l = 20" = 2w+ 3 2C123—_ZV TVl 20 =g+ vt 3
2
20122 = —31/2 +v 0222 = 2 2051363 = % + %V + 4.

3. Xél = 3Cﬁ%(Xi), With 301%6 = 533,
3015 = =% 3035 =—% 304 =1+4%,

and finally

M

&

he _ v v he __ v _ 7
O =% +5 3015 =1 3Cls = —Hv(1+v)
|14

he __ he _ 5.2, 13 _ 2 15
30933 = 5 30953 = — gV~ + 5V 30333—7—IV+1-

Similarly, for the transformation X4 = ACff}),( X" we have
L Xf =10 (Xh), with 1Ol = 615,
Ch=1-2v (Cih=%+2 C§h=3v+1,
and finally

_ ho_ 2592 7 8 o1
10111 = 7V — 51/"‘ 1 101813 = _EV — ZV+ 3 1Cf23 = _F —
o7 ho= 1324 43
1Cily = Sv 4”"’ 3 105 = qv(l+v) 10533 = v+ %

2. X5 = QCf%(Xﬁ), with oC&" = 8255,

2O =520 2055 =20 2055 =3+2,

and finally

20112 = 607 — —V + 20123 = —%Iﬁ - —V —|— 3 0223 = 2621/2 + £

20122 = 52 + v 20222 = 4v? 20233 =224 169V +6.

3. X5 = 30t (X}), with 3CF = d3p
sCih =% 305 =% 3Csh=-%-1,
and finally
2
30ty = =3P+ % 30 =% + v 30y = v° + v
V2 _ 37,2 7

__ 23
30223 =3 30233 = ﬂV — ﬂl/ 30333 = IV + 1.

(E22)

(E23)

(E24)

(E25)

(E26)

(E27)

(E28)

(E29)

(E30)

(E31)

(E32)

(E33)
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3. EOB vs ADM coordinates

EOB vs ADM phase space vector 2PN-transformations (see e.g., sec. VI, Egs. (6.22) of ref. [1]) are the following:

1) (qa,Va) & (qeupe)

9 Vo, 1 v
e =qq +€ —§pa+—(1+§) 9o — (a * Pa)VPa

a

4 v V\ Pq v (Qa'pa)2 1 1
+et [<§(1—I/)pi+z (5—5) q_a+y(1+§) — Z(l—?u—l—u )E> o

a

+(da - Pa) E(l s+ o (1-7) qi} pa]
2 (1

) v

1
pe:pa+€2 [( pa)q (1+2)qa+ pa

+etfian o) |20 -t + 3 u(8+3u>( e e A
qa L8 "1 da
n <§(—1 +3u)pl — gu (3+ 2) ZZ - %(16—}-5@% £(3+ 11u)q1§> pa} (E34)
Qo =qc+€ Kgpﬁ “w (1+ 2)> qe + v(qe -pe)pe}
+et { {—%(1 +uv)pt+ %I/ (g — 1) z—f —v <2+ 21/) (qe;ﬁpe)Q + v +47V_ 1;—3} e
+(de - pe) [V(VZ_ Lt . ( 5+ 2) (H pe}
Pa =P+ € {— (1+g) (qe-pe)éqe+(—§pe+— ) ]
+64{(qe-pe)é [%V(%—l)p%gﬂ(qg p.)” +< g —Z )(H
+ [I/(%?W)pg—%(l—i—;l/)i;—g—i-u(l—i— 8) (qeq§€) + (g—% +V;> 1] } (E35)

Let us consider now the transformation law of the fundamental scalars X§ and X§ as represented by X4 = 4aT75(X9),
with ’

L X¢ =1 T95(X5), with \Tg¢ = 01,

T =—v T =1+%  Tg=-5-1, (E36)
and finally
1Ty =12+ v 1Ty = =1 —3v T =qv(1+v) (E37)
2
T =20 - v+ 2 Ty =2 1Ty = —5v° +3v — 3.

2. X§ = oT5(XY), with T8¢ = dop,

oIy =5 oTpy = —2v, (E38)
and finally
M =g oTif = v+ gv 2T =g v (E39)
oToy = —gv° + v oI55 =4v oI55y = —gV° + v —5 -



3. Xg = 3Tﬂ§(XIe4), with 3Ta6 = 533,

36

3Tfy = -7 3Ty =—35 3T =5+1, (E40)
and finally
2
s3T5 = Vg +35 sTis=15 31753 = _2%’/2 -1 (E41)
31553 = 5 sTg = —gp° + v 3T =% —jv+3
Similarly, for the transformation law X4 = 4 H{%(X§) we have
L. X{ =1H{%(Xg), with 1 Hg' = 015,
1Hit =v  H§=-5-1 1H58 =5 +1, (E42)
and finally
2
Hify =02 - % VHify = —550° = Gv 1Higs = 51 (E43)
1Higs =5+ gv+ 3§ Hsgy =507+ 20 1Hsgs =5 — v —3.
2. X§ = oH{$(XY), with o HE = 025,
2 H§ = —% oHSY = 2v (E44)
and finally
v v 1.2 5
2Hily = 1 olisy = —v" — 5 oHi53 = —zv° + 5V
QHSS?) = %VQ — %V 2H2eél2 = 41/2 2H26§3 = %VQ — %V + % . (E45)
3 X§ = 3Hﬁ%(XZ), with 3Ta6 = 533,
sliy =57 sy =5 sHyg=-5-1, (E46)
and finally
Hea:V_Q_L Hea, — v Hee —U—Z—EI/
313 = 7§ — 21 3M123 13 341733 8§ 1 (E47)
sl = 5 sHily =~ —3v  sH§y = Jv+7.

4. Transformation of the angular momentum
variables

While the conserved angular momentum of the system,
J, has its usual, simple expression in ADM and EOB
variables, namely (in reduced form j = J/uM)

J = da X Pa = Qe X Pe, (E48)

its expression in harmonic variables involves an extra PN-
correcting factor f, = 1+ O(1/c?), namely
J=/ndn X Vn, (E49)

where

fn=1+¢ (—%(31/ ~ DX+ v+ 3)X§)

1
+e* Z(4u2 + 14 — 410) X1

1 1
—5(91/2 +10v — )Xy — 5(51/2 +2v) X1

3
+5(1+ 1302 — Tv)Xh (E50)

Appendix F: Some reminders of Newtonian theory

The relative motion of two bodies with masses m and
ms can be treated as that of a single body with effective
mass u = mims/(my + ms). Indeed, after separation of
the motion of the center of mass (with M = m; + mz)

miX1 + maXsg

R =
M

(F1)



one gets the following Lagrangian for the dynamics of the
relative motion

1. GM
‘CO = U (51'2 —+ T) 5 (F2)
where r = x; — x2 and r = |r|, from which follow the
momenta
p=put =pv (F3)

and then the Hamiltonian

2
9] GM

We systematically use a “tilde notation” for quantities
per unit reduced mass; for example

Lo = Lo/,

The conservation of the angular momentum

Ho = Ho/p. (F5)

J=rxp=prxv=ul, (Fo6)

allows one to study the motion in the z —y orbital plane
(orthogonal to J = Je,). Using polar coordinates z* =
(r, ¢) leads to the Lagrangian per unit reduced mass

- . 1 . GM
Lo(r#6,0) = 5 +1°¢") + —=,  (F7)
so that
oL . oL .
pr:a—;:ur, pqs:a—;zw% (F8)
and
- 1 [, P3\ GM
HO(pTv T, Pgs ¢) - 2/142 (pr + T2 ) - r . (Fg)

The dynamics simplifies if we use the following rescaled
variables

7277" __pr . Py tA*t
) VA I e) Ve) VAN el Vi
(F10)

The Hamiltonian corresponding to these scaled variables
is

Ho(p A'qﬁ)f1 ~2+£ ! (F11)
o\Pr,75 7, - 9 Dy 72 P
and the equations of motion read
i dp  j dp P 1
— =Py, — = = — F12
ai 7 dt 72 dt 7 72 (F12)

The integration of the radial equation fully determines
the orbit

N _# )
T(¢)_1+eocos¢’ p=7j°, (F13)

37

or
Aj2 =1+egcosg, (F14)
()
also implying
dr ey .
== 7,031n¢). (F15)
eop being the eccentricity of the orbit given by
eo(E,j) = 1+ 2E57; (F16)

where E = H, is the conserved energy per unit reduced
mass.

One has now to distinguish among the various types of
orbits: elliptic (0 < egp < 1; 9 = 0 in the circular case),
parabolic (eg = 1) and hyperbolic (eg > 1).

e Elliptic orbits The solution of the equations of mo-
tion can be given in terms of the eccentric anomaly
u as follows

At —ty) =u —epsinu,
7

aop(1 — eg cosu),

1 i— Zz tan (g)] (F17)

¢ — ¢ = 2arctan [

where
(F18)

Go being the scaled semimajor axis of the ellipse,
dp = ap/(GM). Other useful relations are

=8, (F19)
V—2E
implying
p=j"=ao(l—ef), (F20)
and
& =7 cos(¢ — ¢o) = Go(cosu — eg)
§ = #sin(@ — do) = do\/1 — cAsinu.  (F21)

The circular orbit case,i.e. 7 = 0 = ¥, corresponds
to eg = 0, that is

~ 1
E:__Av
27

5 RN
.] =T,

(F22)

14+2E52=0. (F23)



e Parabolic orbits The parabolic case (E’ = 0) is ob-
tained from the elliptic one taking “consistently”
the limit £ — 0. For instance, in Eq. (EI7) one
poses

U=V —2FEx

and takes the limit £ — 0~ keeping x fixed. The
result is

(F24)

~ ~ JJS
t— OZ?
f_x_z_j2(¢—¢o)2
9 8
¢—¢o:i—‘f”. (F25)

Hyperbolic orbits Transition to the hyperbolic case
is accomplished by the substitution

(F26)

u = 1U,
in the elliptic case relations, so that
ﬁ(t — to) = —u-+e€o smh(ﬁ)

7 = do(1 — e cosh(@))
eg+1 U

- tanh (5)] . (F27)

¢ — ¢o = 2arctan [

€y —
with

. 1
ap=——=.

= (F28)

~3

The “parameter” p entering the polar form of the
orbits is still given by

p=j%=ap(l—el). (F29)
The scattering angle is given by [54]
1 1
tan X (F30)

2_\/63—1_\/2Ej2,

where eg = /1 + 2F 'j2. Note also the equivalent

relations (whose 2PN analogs we often use in the
main text)

X 1 us
— =arccos | —— | — =
2 €0 2
(%)
— arcsin | — .
€o

The scattering angle can also be expressed in terms
of 7(min) and P(max)- Indeed, at the point of mini-
mal distance (periastron) r = T(min) ON€ has p. =0

(F31)

38

and ﬁ(max) = ﬁqﬁ/rmin = jGM/rmin = ]/f(mm)

Hence,
Jj= f(min)ﬁ(max) )
~ 1 4 1
E = 5p(max) . (F32)
so that
14 2E5° = (Blmasx) Pmin) — 1)°, (F33)

which can be replaced in Eq. (E30) if one wishes
to express tan y/2 in terms of ﬁ%max)f(min).

Anticipating applications of our framework to numer-
ical relativity simulations of hyperbolic encounters, let
us indicate an estimate of the simulation time #(sop)
(counted from the periastron passage) necessary for ex-
tracting from the corresponding polar angle ¢4 (¢(stop))
(counted from the periastron) the scattering angle x with
some prescribed accuracy € = 107V <« 1.

Consider the Newtonian relations for hyperbolic mo-
tion with to = 0 = ¢y, i.e.,

egsinhu —u = nt

10) _ Jeo+ 1 U
tan (5 = €0 — 1 tanh (5) y

|73/2

(F34)

where 1. = |ag . The asymptotic value for ¢ corre-
sponds to 4 — 400, that is

oxs _ Jeo+ 1
tan( 5 ) Ve 1 (F35)
From Eq. (F33) also follows
tangy = —y/ed — 1, (F36)
so that
X 1
t =) =- . F37
a ( 2 ) tan ¢4 (F37)

Let us define an “incompleted” instantaneous scattering
angle x(t) by
T x(®)

From Eq. (F34), x(t) satisfies (when it is large and pos-
itive)

(F38)

2 2 )Tten
~ cot (%") (1—2¢7%) (F39)
or
cot (%) _a
2)_ a1 -2 (F40)



From the “time” equation (F34); evaluated for large u,
ie.,

oy nt (F41)
we have
.y €0
e v — F42
2nt ( )
so that
t (X
© Xi) ~1-2 (F43)
cot (T) nt

39

The condition for the left hand side of Eq. (F43)) to differ
from 1 only within some precision € = 10~ is then

€0

107N ~ - (F44)
M (stop)
that is
R \/1+2E;2
t(stop) X —=———10". (F45)

(2E)3/2
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