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The gravitational-wave signal from inspiralling neutron-star–neutron-star (or black-hole–neutron-
star) binaries will be influenced by tidal coupling in the system. An important science goal in the
gravitational-wave detection of these systems is to obtain information about the equation of state
of neutron star matter via the measurement of the tidal polarizability parameters of neutron stars.
To extract this piece of information will require accurate analytical descriptions both of the motion
and the radiation of tidally interacting binaries. We improve the analytical description of the late
inspiral dynamics by computing the next-to-next-to-leading order relativistic correction to the tidal
interaction energy. Our calculation is based on an effective-action approach to tidal interactions, and
on its transcription within the effective-one-body formalism. We find that second-order relativistic
effects (quadratic in the relativistic gravitational potential u = G(m1 + m2)/(c

2r)) significantly
increase the effective tidal polarizability of neutron stars by a distance-dependent amplification
factor of the form 1 + α1 u+ α2 u

2 + · · · where, say for an equal-mass binary, α1 = 5/4 = 1.25 (as
previously known) and α2 = 85/14 ≃ 6.07143 (as determined here for the first time). We argue
that higher-order relativistic effects will lead to further amplification, and we suggest a Padé-type
way of resumming them. We recommend testing our results by comparing resolution-extrapolated
numerical simulations of inspiralling-binary neutron stars to their effective one body description.

PACS numbers: 04.30.-w, 04.25.Nx
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I. INTRODUCTION

Inspiralling binary neutron stars are among the most
promising sources for the advanced versions of the cur-
rently operating ground-based gravitational-wave (GW)
detectors LIGO/Virgo/GEO. These detectors will be
maximally sensitive to the inspiral part of the GW signal,
which will be influenced by tidal interaction between two
neutron stars. An important science goal in the detection
of these systems (and of the related mixed black-hole–
neutron-star systems) is to obtain information about the
equation of state of neutron-star matter via the mea-
surement of the tidal polarizability parameters of neu-
tron stars. The analytical description of tidally interact-
ing compact-binary systems (made of two neutron stars
or one black hole and one neutron star) has been initi-
ated quite recently [1–8]. In addition, these analytical
descriptions have been compared to accurate numerical
simulations [5, 9–11], and have been used to estimate
the sensitivity of GW signals to the tidal polarizability
parameters [11–15].

Here, we shall focus on one aspect of the analytical
description of tidally interacting relativistic binary sys-
tems, namely the role of the higher-order post-Newtonian
(PN) corrections in the tidal interaction energy, as de-

scribed, in particular, within the effective one body
(EOB) formalism [16–19]. Indeed, the analysis of Ref. [5],
which compared the prediction of the EOB formalism
for the binding energy of tidally interacting neutron
stars to (nonconformally flat) numerical simulations of
quasi-equilibrium circular sequences of binary neutron
stars [20, 21], suggested the importance of higher-order
PN corrections to tidal effects, beyond the first post-
Newtonian (1PN) level, and their tendency to signifi-

cantly increase the “effective tidal polarizability” of neu-
tron stars.

In the EOB formalism, the gravitational binding of a
binary system is essentially described by a certain “radial
potential” A(r). In the tidal generalization of the EOB
formalism proposed in Ref. [5], the EOB radial potential
A(r) is written as the sum of three contributions,

A(r) = ABBH(r) +Atidal
A (r) +Atidal

B (r) , (1.1)

where ABBH(r) is the radial potential describing the dy-
namics of binary black holes, and where Atidal

A (r) and
Atidal

B (r) are the additional radial potentials associated,
respectively, with the tidal deformations of body A and
body B. [For binary neutron-star systems both Atidal

A

and Atidal
B are present, while for mixed neutron-star–

black-hole systems only one term, corresponding to the
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neutron star, is present; see following]. Here, we consider
a binary system of (gravitational) masses mA and mB,
and denote

M ≡ mA +mB , ν ≡ mAmB

(mA +mB)2
. (1.2)

[A labelling of the two bodies by the letters A and B will
be used in this Introduction for writing general formulas.
We shall later use the alternative labelling A = 1, B = 2
when explicitly dealing with the metric generated by the
two bodies.] The binary black-hole (or point mass) po-
tential ABBH(r) is known up to the third post-Newtonian
(3PN) level [18], namely

ABBH
3PN (r) = 1− 2 u+ 2 ν u3 + a4 ν u

4 , (1.3)

where a4 = 94/3− (41/32)π2 ≃ 18.68790269, and

u ≡ GM

c2 r
, (1.4)

with c being the speed of light in vacuum and G the
Newtonian constant of gravitation.
It was recently found [22, 23] that an excellent descrip-

tion of the dynamics of binary black-hole systems is ob-
tained by augmenting the 3PN expansion Eq. (1.3) with
additional fourth post-Newtonian (4PN) and fifth post-
Newtonian (5PN) terms, and by Padé resumming the
corresponding 5PN Taylor expansion.

The tidal contributions Atidal
A,B (r) can be decomposed

according to multipolar order ℓ, and type, as

Atidal
A (r) =

∑

ℓ≥2

{
A

(ℓ) LO
A electric(r) Â

(ℓ)
A electric(r)

+A
(ℓ) LO
Amagnetic(r) Â

(ℓ)
Amagnetic(r) + . . .

}
. (1.5)

Here, the label “electric” refers to the gravito-electric
tidal polarization induced in body A by the tidal field
generated by its companion, while the label “magnetic”
refers to a corresponding gravito-magnetic tidal polar-
ization. On the other hand, the label LO refers to the
leading-order approximation (in powers of u) of each
(electric or magnetic) multipolar radial potential. For
instance, the gravito-electric contribution at multipolar
order ℓ is equal to [5]

A
(ℓ) LO
A electric(r) = −κ(ℓ)A u2ℓ+2 (1.6)

where

κ
(ℓ)
A = 2 k

(ℓ)
A

mB

mA

(
RA c

2

G(mA +mB)

)2ℓ+1

. (1.7)

Here, RA denotes the radius of body A, and k
(ℓ)
A de-

notes a dimensionless “tidal Love number”. [Note that

k
(ℓ)
A was denoted kAℓ in our previous work. Here we

shall always put the multipolar index ℓ within paren-
theses to avoid ambiguity with our later use of the la-
belling A,B = 1, 2 for the two bodies.] The correspond-
ing leading-order radial potential of the gravito-magnetic

type is proportional to u2ℓ+3 (instead of u2ℓ+2), and

to j
(ℓ)
A R2ℓ+1

A , where j
(ℓ)
A denotes a dimensionless “mag-

netic tidal Love number”. It was found [3, 4] that both
types of Love numbers have a strong dependence upon
the compactness CA ≡ GmA/(c

2RA) of the tidally de-

formed body, and that both k
(ℓ)
A and j

(ℓ)
A contain a factor

1− 2 CA, so that they would formally vanish in the limit
where body A becomes as compact as a black hole (i.e.
CA → CBH = 1

2 ). This is consistent with the decomposi-
tion Eq. (1.1), where the binary black-hole radial poten-
tial ABBH(r) is the only remaining contribution when one
formally takes the limit where both CA and CB tend to
the black-hole value CBH = 1/2. Finally, the supplemen-

tary factors Â
(ℓ)
A electric(r) and Â

(ℓ)
Amagnetic(r) denote the

distance-dependent amplification factors of the leading-
order tidal interaction by higher-order PN effects. They
have the general form

Â
(ℓ)
A electric(r) = 1 + α

A(ℓ)
1 electricu+ α

A(ℓ)
2 electricu

2 + . . . , (1.8)

Â
(ℓ)
Amagnetic(r) = 1 + α

A(ℓ)
1magneticu+ . . . , (1.9)

where u is defined by Eq. (1.4).

The main aim of the present investigation will be to

compute the electric-type amplification factors Â
(ℓ)
A electric,

for ℓ = 2 (quadrupolar tide) and ℓ = 3 (octupolar tide),

at the second order in u, i.e. to compute both α
A(ℓ)
1 electric

and α
A(ℓ)
2 electric. We shall also compute the magnetic-type

amplification factor Â
(ℓ)
Amagnetic, for ℓ = 2, at the first

order in u.

The analytical value of the first-order electric amplifi-

cation coefficient α
A(ℓ)
1 electric was computed some time ago

for ℓ = 2 (see Ref. [29] in [5]) and was reported in Eq. (38)
of [5], namely

α
A(ℓ=2)
1 electric =

5

2
XA , (1.10)

where XA ≡ mA/(mA + mB) is the mass fraction of
body A. The analytical result (1.10) has been recently
confirmed [6]. On the other hand, several comparisons of
the analytical description of tidal effects with the results
of numerical simulations have indicated that the ampli-

fication factor Â
(ℓ=2)
A electric(r) is larger that its 1PN value

1+α
A(ℓ=2)
1 electric u, and have suggested that the higher-order

coefficients α
A(ℓ)
2 electric, . . . take large, positive values. More

precisely, the analysis of Ref. [5] suggested (when taking
into account the value (1.10) for α1) a value of order

α
A(ℓ=2)
2 electric ∼ +40 (for the equal-mass case) from a com-

parison with the numerical results of Refs. [20, 21] on
quasi-equilibrium adiabatic sequences of binary neutron
stars. Recently, a comparison with dynamical simula-
tions of inspiralling binary neutron stars confirmed the
need for such a large value of αA

2 electric [9, 10]. [Note
that, while the comparison to the highest resolution nu-
merical data suggests the need of even larger values of
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α
A(ℓ=2)
2 electric, of order + 100, the comparison to approximate

resolution-extrapolated data call only for α2 values of or-
der + 40. See Fig. 13 in [10].]

II. EFFECTIVE ACTION APPROACH TO
TIDAL EFFECTS

A. Finite-size effects and nonminimal worldline
couplings

It was shown long ago [24], using the technique of
matched asymptotic expansions, that the motion and ra-
diation of N (non-spinning) compact objects can be de-
scribed, up to the 5PN approximation, by an effective
action of the type

S0 =

∫
dDx

c

c4

16 πG

√
g R(g) + Spointmass , (2.1)

where R(g) represents the scalar curvature associated
with the metric gµν , with determinant −g, and where

Spointmass = −
∑

A

∫
mA c

2 dτA (2.2)

is the leading order skeletonized description of the com-
pact objects, as point masses. Here dτA denotes the
proper time along the worldline yµA(τA) of A, namely

dτA ≡ c−1(−gµν(yA) dyµA dyνA)1/2. To give meaning to
the notion of point mass sources in General Relativity
one needs to use a covariant regularization method. The
most convenient one is dimensional regularization, i.e.
analytic continuation in the value of the spacetime di-
mension D = 4 + ε, with ε ∈ C being continued to zero
only at the end of the calculation. The consistency and
efficiency of this method has been shown in the calcula-
tions of the motion [25, 26] and radiation [27] of binary
black holes at the 3PN approximation.

It was also pointed out in Ref. [24] that finite-size
effects (linked to tidal effects, and the fact that neu-
tron stars have, contrary to black holes, non-zero Love

numbers k
(ℓ)
A ) enter at the 5PN level. In effective field

theory, finite-size effects are treated by augmenting the
point-mass action of Eq. (2.2) by nonminimal world-
line couplings involving higher-order derivatives of the
field [28–30]. In a gravitational context this means
considering worldline couplings involving the 4-velocity
uµA ≡ dyµA/dτA (satisfying gµν u

µ
A u

ν
A = −c2) together

with the Riemann tensor Rαβµν and its covariant deriva-
tives. To classify the possible worldline scalars that can
be constructed one can appeal to the relativistic theory of
tidal expansions [31–33]. In the notation of Refs. [32, 33]
the tidal expansion of the “external metric” felt by body
A can be entirely expressed in terms of two types of exter-
nal tidal gradients evaluated along the central worldline
of this body: the gravito-electric GA

L(τA) ≡ GA
a1...aℓ

(τA)

and gravito-magnetic HA
L (τA) ≡ HA

a1...aℓ
(τA) symmet-

ric trace-free (spatial) tensors, together with their time-
derivatives. [The spatial indices ai = 1, 2, 3 refer to a
local frame X0

A ≡ c τA, X
a
A attached to body A.] This

implies that the most general nonminimal worldline ac-
tion has the form

Snonminimal =
∑

A

∑

ℓ≥2

{
1

2

1

ℓ!
µ
(ℓ)
A

∫
dτA(G

A
L(τA))

2

+
1

2

ℓ

ℓ+ 1

1

ℓ!

1

c2
σ
(ℓ)
A

∫
dτA(H

A
L (τA))

2

+
1

2

1

ℓ!

1

c2
µ
′(ℓ)
A

∫
dτA(Ġ

A
L(τA))

2

+
1

2

ℓ

ℓ+ 1

1

ℓ!

1

c4
σ
′(ℓ)
A

∫
dτA(Ḣ

A
L (τA))

2

+ . . .

}
, (2.3)

where ĠA
L(τA) ≡ dGA

L/dτA, and where the ellipsis refer
either to higher proper-time derivatives ofGA

L andHA
L , or

to higher-than-quadratic invariant monomials made from
GA

L , H
A
L and their proper-time derivatives. For instance,

the leading-order non-quadratic term would be
∫
dτA GA

ab G
A
bc G

A
ca . (2.4)

Note that the allowed monomials in GL, HL and their
time derivatives are restricted by symmetry constraints.
When considering a non-spinning neutron star (which is
symmetric under time and space reflections) one should
only allow monomials invariant under time and space re-
versals. For instance Gab Ġab and GabHab are not al-
lowed.

B. Tidal coefficients

The electric-type tidal moments GA
L are normalized

in a Newtonian way, i.e. such that, in lowest PN or-
der, they reduce to the usual Newtonian tidal gradi-
ents: GA

L = [∂L U(Xa)]Xa=0 + O
(

1
c2

)
, where U(X) is

the Newtonian potential and ∂L ≡ ∂i1∂i2 . . . ∂iℓ repre-
sents multiple ordinary space derivatives. The magnetic-
type ones HA

L are defined (in lowest PN order) as re-
peated gradients of the gravitomagnetic field c3g0a. With

these normalizations the coefficients µ
(ℓ)
A and σ

(ℓ)
A in the

nonminimal action in Eq. (2.3) both have dimensions
[length]2ℓ+1/G. They are related to the dimensionless

Love numbers k
(ℓ)
A and j

(ℓ)
A , and to the radius of body A,

via [3]

Gµ
(ℓ)
A =

1

(2ℓ− 1)!!
2 k

(ℓ)
A R2ℓ+1

A , (2.5)

Gσ
(ℓ)
A =

ℓ− 1

4(ℓ+ 2)

1

(2ℓ− 1)!!
j
(ℓ)
A R2ℓ+1

A . (2.6)
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Note that the coefficients associated with the first time
derivatives of GA

L and HA
L have dimensions Gµ

′(ℓ)
A ∼

[length]2ℓ+3 ∼ Gσ
′(ℓ)
A . The nonminimal action in Eq.

(2.3) has a double ordering in powers of RA and in pow-
ers of 1/c2. The lowest-order terms in the RA expansion
are proportional to R5

A and correspond to the electric
and magnetic quadrupolar tides, as measured by GA

ab and
HA

ab, respectively.

C. Tidal tensors

We have written the most general nonminimal action
Eq. (2.3) in terms of the irreducible symmetric trace-free
spatial tensors [with respect to the local space associated
with the worldline yµA(τA)] describing the tidal expan-
sion of the “external metric” felt by body A, as defined
in Ref. [32]. These tidal tensors played a useful role in
simplifying the (1PN-accurate) relativistic theory of tidal
effects. In our present investigation, it will be convenient
to express them in terms of the Riemann tensor and its
covariant derivatives. Eq. (3.40) in Ref. [32] shows that
(in the case where one can neglect corrections propor-
tional to the covariant acceleration of the worldline) the
first two electric spatial tidal tensors, Gab and Gabc, are
simply equal (modulo a sign) to the non-vanishing spatial
components (in the local frame) of the following space-
time tensors (evaluated along the considered worldline)

Gαβ ≡ −Rαµβν u
µ uν , (2.7)

Gαβγ ≡ − Symαβγ(∇⊥
α Rβµγν)u

µ uν . (2.8)

Here the notation Gαβ for (minus) the electric part
of the curvature tensor should not be confused with the
Einstein tensor, Symαβγ denotes a symmetrization (with

weight one) over the indices αβ γ, while ∇⊥
α ≡ P (u)µα ∇µ

denotes the projection of the spacetime gradient ∇µ or-
thogonally to uµ (P (u)µν ≡ δµν + c−2 uµ uν). [Note that
in the Newtonian limit uµ ≃ c δµ0 so that the Newto-
nian limit of Gαβ is − c2Rα0β0, where the factor c2 can-
cels the O(1/c2) order of the curvature tensor.] By con-
trast, the presence of the extra term − 3 c−2E∗

〈aE
∗
b〉 on

the right-hand side of Eq. (3.40) in Ref. [32] shows
that the ℓ = 4 electric spatial tidal tensor Gabcd =
∂〈abcE

∗
d〉 would differ from the symmetrized spatial pro-

jection of (∇α∇β Rγµδν)u
µ uν by a term proportional to

G〈αγ Gβδ〉. (Here, the angular brackets denote a (spatial)
symmetric trace-free projection.) In addition, the electric

time derivatives, such as Ġab can be replaced by corre-
sponding spacetime tensors such as uµ ∇µGαβ . Similarly
to Eqs. (2.7), (2.8), one finds that the ℓ = 2 and ℓ = 3
magnetic tidal tensors (as defined in Refs. [32, 33]) are
equal to the nonvanishing local-frame spatial components
of the spacetime tensors

Hαβ ≡ +2 cR∗
αµβν u

µ uν , (2.9)

Hαβγ ≡ +2 c Symαβγ(∇⊥
α R

∗
βµγν)u

µ uν , (2.10)

where R∗
µναβ ≡ 1

2 ǫµνρσ R
ρσ

αβ is the dual of the curva-
ture tensor, ǫµνρσ denoting here the Levi-Civita tensor
(with ǫ0123 = +

√
g). Note the factor +2 entering the

link between the magnetic tidal tensorsHαβ , . . . (normal-
ized as in Refs. [32, 33]) and the dual of the curvature
tensor, which contrasts with the factor −1 entering the
corresponding electric tidal-tensor links, Eqs. (2.7), (2.8).
(The definition of BA

αβ in the text below Eq. (5) of Ref.

[5] should have included such a factor 2 in its right-hand
side. On the other hand, the corresponding magnetic-
quadrupole tidal action, Eq. (13) there, was computed
with Hab and was correctly normalized.) Let us also note
that the expressions in Eqs. (2.7)–(2.10) assume that the
Ricci tensor vanishes (e.g. to ensure the tracelessness of
Gαβ). One could have, alternatively, defined Gαβ etc. by
using the Weyl tensor Cαµβν instead of Rαµβν . However,
as discussed in Ref. [29], the terms in an effective action
which are proportional to the (unperturbed) equations of
motion (such as Ricci terms) can be eliminated (modulo
contact terms) by suitable field redefinitions.

D. Covariant description of tidal interactions

Finally, the covariant form of the effective action de-
scribing tidal interactions reads

Stot = S0 + Spointmass + Snonminimal (2.11)

where S0 and Spointmass are given by Eqs. (2.1), (2.2),
and where the covariant form of the nonminimal world-
line couplings starts as

Snonminimal =
∑

A

{
1

4
µ
(2)
A

∫
dτAG

A
αβ G

αβ
A

+
1

6 c2
σ
(2)
A

∫
dτAH

A
αβ H

αβ
A

+
1

12
µ
(3)
A

∫
dτAG

A
αβγ G

αβγ
A

+
1

4 c2
µ
′(2)
A

∫
dτA(u

µ
A∇µG

A
αβ)(u

ν
A∇νG

αβ
A )

+ . . .

}
, (2.12)

where Gαβ
A ≡ gαµ gβν GA

µν , etc. [evaluated along the A
worldline].

In principle, one can then derive the influence of tidal
interaction on the motion and radiation of binary sys-
tems by solving the equations of motion following from
the action of Eqs. (2.11), (2.12). More precisely, this
action implies both a dynamics for the worldlines where
the geodesic equation is modified by tidal forces [com-
ing from δSnonminimal/δ y

µ
A(τA)], and modified Einstein
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equations for the gravitational field of the type

Rµν − 1

2
Rgµν =

8πG

c4
{
T pointmass
µν + T nonminimal

µν

}
,

(2.13)
where the new tidal sources T µν

nonminimal(x) =

(2c/
√
g) δSnonminimal/δ gµν(x) are, essentially, sums

of derivatives of worldline Dirac-distributions:

Tnonminimal(x) ∼
∑

A

∑

ℓ

∂ℓ δ(x− yA) .

E. A simplifying, general property of reduced actions

The task of solving the coupled dynamics of the world-
lines and of the gravitational field, both being modified
by tidal effects, at the second post-Newtonian (2PN)
level, i.e. at the next-to-next-to-leading order in tidal
effects, and then of computing the looked for higher-
order terms in the amplification factors of Eqs. (1.8),
(1.9) is quite non-trivial. Happily, one can drastically
simplify the needed work by using a general property of
reduced actions. Indeed, we are interested here in know-
ing the influence of tidal effects on the reduced dynam-
ics of a compact binary, that is, the dynamics of the
two worldlines yµA(τ), y

µ
B(τ), obtained after having “in-

tegrated out” the gravitational field (i.e., after having
explicitly solved gµν(x) as a functional of the two world-
lines). When considering, as we do here, the conservative
dynamics of the system (without radiation reaction), it
can be obtained from a reduced action, which is tradi-
tionally called the “Fokker action”. See Ref. [28] and
references therein for a detailed discussion (using a dia-
grammatic approach) of Fokker actions (at the 2PN level,
and with the inclusion of scalar couplings in addition to
the pure Einsteinian tensor couplings). If we denote the
fields mediating the interaction between the worldlines
y = {yA, yB} as ϕ (in our case ϕ = gµν), the reduced
worldline action Sred[y] (a functional of the worldlines y)
that corresponds to the complete action S[ϕ, y] describ-
ing the coupled dynamics of y and ϕ is formally defined
as:

Sred [y] ≡ S [ϕsol [y], y] , (2.14)

where ϕsol [y] is the functional of y obtained by solving
the ϕ-field equation,

δ S [ϕ, y]/δϕ = 0 , (2.15)

considered as an equation for ϕ, with given source-
worldlines. (This must be done with time-symmetric
boundary conditions and, in the case of gµν , the addi-
tion of a suitable gauge-fixing term; see Ref. [28] for
details.)

Having recalled the concept of reduced (or Fokker) ac-
tion, let us now consider the case where the complete
action is of the form

S [ϕ, y] = S(0)[ϕ, y] + ǫ S(1)[ϕ, y] , (2.16)

where ǫ denotes a “small parameter”. In our case, ǫ
can be either a formal parameter associated with all
the nonminimal tidal terms in Snonminimal, Eq. (2.12),
or, more concretely, any of the tidal parameters entering

Eq. (2.12): µ
(ℓ=2)
A , µ

(ℓ=2)
B , etc. As said previously, when

turning on ǫ, the equations of motion, and therefore the
solutions of both ϕ and y get perturbed by terms of or-
der ǫ : ϕ = ϕ(0) + ǫ ϕ(1) + . . ., y = y(0) + ǫ y(1) + . . ., but
a simplification occurs when considering the reduced ac-
tion Eq. (2.14). Indeed, it is true that the field equation
(2.15) for ϕ gets modified into

0 =
δ S [ϕ, y]

δ ϕ
=
δ S(0)[ϕ, y]

δ ϕ
+ ǫ

δ S(1)[ϕ, y]

δ ϕ
, (2.17)

so that its solution ϕsol [y] gets perturbed:

ϕsol [y] = ϕ
(0)
sol [y] + ǫ ϕ

(1)
sol [y] +O(ǫ2) . (2.18)

However, when inserting the perturbed solution of Eq.
(2.18) into the complete, perturbed action of Eq. (2.16),
one finds

Sred [y] = S [ϕ
(0)
sol [y] + ǫ ϕ

(1)
sol [y] +O(ǫ2), y]

= S [ϕ
(0)
sol [y], y] + ǫ ϕ

(1)
sol [y]

δ S

δ ϕ
[ϕ

(0)
sol [y], y] +O(ǫ2)

= S [ϕ
(0)
sol [y], y]

+ǫ ϕ
(1)
sol [y]

δ S(0)

δ ϕ
[ϕ

(0)
sol [y], y] +O(ǫ2)

= S [ϕ
(0)
sol [y], y] +O(ǫ2) , (2.19)

because, by definition, ϕ
(0)
sol is a solution of δ S(0)/δ ϕ = 0.

Note that, in Eq. (2.19), while the functional S is the
complete, perturbed action, the functional argument is
the unperturbed solution. Decomposing the functional S
into its unperturbed plus perturbed parts [see Eq. (2.16)]
then leads to the final result:

Sred [y] = S(0)[ϕ
(0)
sol [y], y] + ǫ S(1)[ϕ

(0)
sol [y], y] +O(ǫ2)

= S
(0)
red [y] + ǫ S(1)[ϕ

(0)
sol [y], y] +O(ǫ2) . (2.20)

In words: the order O(ǫ) perturbation

ǫ S
(1)
red [y] ≡ Sred [y]− S

(0)
red [y]

of the reduced action is correctly obtained, modulo terms
of order O(ǫ2), by replacing in the O(ǫ) perturbation

ǫ S(1) [ϕ, y]

of the complete (unreduced) action the field ϕ by its un-

perturbed solution ϕ
(0)
sol [y].

In our case, the ordering parameter ǫ is either the col-

lection µ
(2)
A , µ

(2)
B , µ

(3)
A , µ

(3)
B , . . . , σ

(2)
A c−2, . . . , µ

′(2)
A c−2, . . .,

or the corresponding sequence of powers of RA and
RB : R5

A, R
5
B , R

7
A, R

7
B, . . . The terms quadratic in ǫ would
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therefore involve at least ten powers of the radii (and
would mix with higher-than-quadratic worldline contri-
butions akin to (2.4)). Neglecting such terms, we con-
clude that the higher-PN corrections to the tidal effects
are correctly obtained by replacing in Eq. (2.12), con-
sidered as a functional of gµν(x) and y

µ
A(τA), the metric

gµν(x) by the point-mass metric obtained by solving Ein-
stein’s equations with point-mass sources. [This was the
method used by one of us (T.D.) to compute the 1PN
coefficient of Eq. (1.10) from the calculation by Damour,
Soffel and Xu of the 1PN-accurate value of Gab [34, 35].]

III. THE 2PN POINT-MASS METRIC AND ITS
REGULARIZATION

A. Form of the 2PN point-mass metric

The result of the last Section allows one to compute
the tidal corrections to the reduced action for two tidally
interacting bodies A,B with the same accuracy at which
one knows the metric generated by two (structureless)
point masses mA, y

µ
A;mB, y

µ
B. The metric generated by

two point masses has been the topic of many works over
many years. It has been known (in various forms and
gauges) at the 2PN approximation for a long time [36–
38]. Here, we shall use the convenient, explicit harmonic-
gauge form of Ref. [39], with respect to the (harmonic)
coordinates xµ = (x0 ≡ ct, xi), i.e. the metric

ds2 = g00(dx
0)2 + 2 g0i dx

0dxi + gij dx
idxj , (3.1)

where, at 2PN, the metric components are written as

g00 = −1 + 2 ǫ2 V − 2 ǫ4 V 2

+ 8 ǫ6
(
X̂ + δij ViVj +

1

6
V 3

)
+O(8) ,

g0i = − 4 ǫ3 Vi − 8 ǫ5R̂i +O(7) ,

gij = δij
(
1 + 2 ǫ2 V + 2 ǫ4 V 2

)
+ 4 ǫ4 Ŵij +O(6) .

(3.2)

Here, as below, we sometimes use the alternative notation
ǫ ≡ 1/c for the small PN parameter. We used also the
shorthand notation O(n) ≡ O(ǫn) ≡ O(c−n).

The various 2PN brick potentials V, Vi, Ŵij , R̂i and X̂
are the (time-symmetric) solutions of

✷V = − 4 πGσ ,

✷Vi = − 4 πGσi ,

✷ Ŵij = − 4 πG(σij − δij σkk)− ∂iV ∂jV ,

✷ R̂i = − 4 πG(V σi − Viσ)− 2 ∂kV ∂iVk − 3

2
∂tV ∂iV ,

✷ X̂ = − 4 πGV σii + 2Vi ∂t ∂iV + V ∂2t V +
3

2
(∂tV )2

− 2 ∂iVj ∂jVi + Ŵij ∂ijV , (3.3)

where ∂t denotes a time derivative (while we remind that
∂i, for instance, denotes a spatial one), and where the
compact-supported source terms are [40]

σ ≡ T 00 + T ii

c2
, σi ≡

T 0i

c
, σij ≡ T ij , (3.4)

with T µν being the stress-energy tensor of two point
masses:

T µν = µ1(t) v
µ
1 (t) v

ν
1 (t) δ(x− y1(t)) + 1 ↔ 2 , (3.5)

where

µ1(t) = m1

[
g−1/2(gµν v

µ
1 v

ν
1/c

2)−1/2
]
1
. (3.6)

Here, vµ1 =
dyµ

1

dt = (c, vi1) and the index 1 on the bracket
in Eq. (3.6) refers to a regularized limit where the field
point xi tends towards the (point-mass) source point yi1.
Note that, in this section, we shall generally label the
two particles as (m1, y

i
1), (m2, y

i
2), instead of (mA, y

i
A),

(mB, y
i
B) as above. The notation 1 ↔ 2 means adding

the terms obtained by exchanging the particle labels 1
and 2.

The explicit forms of the 2PN-accurate brick potentials
V , Vi, Ŵij , R̂i, X̂ were given in Ref. [39]. Their time-
symmetric parts are recalled in Appendix A. These brick
potentials are expressed as explicit functions of r1 ≡ x−
y1, r1 ≡ |r1|, n1 ≡ r1/r1, r2 ≡ x − y2, etc., y12 ≡
y1 − y2, r12 ≡ |y12|, n12 ≡ y12/r12, v12 ≡ v1 − v2,
(n12 v1) ≡ n12 · v1. Note the appearance of the auxiliary
quantity S, which denotes the perimeter of the triangle
defined by x, y1 and y2, viz

S ≡ r1 + r2 + r12 . (3.7)

In all the PN expressions, the spacetime points
xµ, yµ1 , y

µ
2 (and the velocities vµA) are taken at the same

instant t, i.e. x0 = y01 = y02 = ct.

B. Regularization of the 2PN metric and of the
2PN tidal actions

Let us now discuss in more detail the crucial oper-
ation (already implicit in Sec. II above) of regulariza-
tion of all the needed field quantities, such as gµν(x),
g(x), Rµανβ(x), . . ., when they are to be evaluated on a
worldline: xµ → yµA. As mentionned at the beginning of
Sec. II, all the quantities [Gµν(x)]1, . . . , [Rµανβ(x)]1 are
defined by dimensional continuation. It was shown long
ago [24, 41] that, at 2PN, dimensional regularization is
equivalent to the Riesz’ analytic regularization, and is
a technical shortcut for computing the physical answer
obtained by the matching of asymptotic expansions. In
addition, because of the restricted type of singular terms
that appear at 2PN [see Eqs. (25), (30) and (33) in Ref.
[24]], the analytic-continuation regularization turns out
to be equivalent to Hadamard regularization (used, at
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2PN, in Refs. [38, 39, 42]); see below. Here, it will be
technically convenient to use Hadamard regularization
(which is defined in D = 4) because the explicit form of
Eqs. (A1)–(A5) of the 2PN metric that we shall use ap-
plies only in the physical dimension D = 4 and has lost
the information about its dimensionally continued kin in
D = 4 + ε.

Let us summarize here the (Hadamard-type) defini-
tion of the regular part of any field quantity ϕ(x) (which
might be a brick potential, V (x), Vi(x), . . ., a component
of the metric gµν(x), or a specific contribution to a tidal
moment, Gαβ , . . .). We consider the behavior of ϕ(x)
near particle 1, i.e. when r1 = |x − y1| → 0. To ease
the notation, we shall provisionally put the origin of the
(harmonic) coordinate system at y1 (at some instant t),
i.e. we shall assume that y1 = 0, so that r1 = |x| ≡ r
and n1 = r1/r1 = x/r ≡ n. We consider the expan-
sion of ϕ(x) in (positive and negative) integer powers k
of r1 = r, and in spherical harmonics of the direction
n1 = n, say (for k ∈ Z, ℓ ∈ N, N ∈ N)

ϕ(x) =
∑

k≥−N

∑

ℓ≥0

rk n̂L fk
L , (3.8)

where n̂L ≡ n̂a1...aℓ denotes the symmetric trace-free pro-
jection of the tensor nL ≡ na1 . . . naℓ . [The angular func-

tion fk
L n̂

L is equivalent to a sum of
+ℓ∑

m=−ℓ

cm Yℓm.] We

(uniquely) decompose the field ϕ(x) in a regular part (R)
and a singular one (S),

ϕ(x) = R [ϕ(x)] + S [ϕ(x)] , (3.9)

by defining (n ∈ N)

R [ϕ(x)] ≡
∑

ℓ≥0

∑

n≥0

rℓ+2n n̂Lf ℓ+2n
L , (3.10)

S [ϕ(x)] ≡
∑

k 6=ℓ+2n

rk n̂Lfk
L . (3.11)

Note that R [ϕ(x)] can be rewritten as a sum of infinitely
differentiable terms of the type x̂L(x2)n. By contrast
S [ϕ(x)] is such that it (if N , in Eq. (3.8), is strictly
positive), or, one of its (repeated) spatial derivatives,
tends towards infinity as r → 0. Note also that the
R+S decomposition commutes with linear combinations
(with constant coefficients), as well as with spatial deriva-
tives, in the sense that R [aϕ(x)+ b ψ(x)] = aR [ϕ(x)]+
bR [ψ(x)], S [aϕ(x) + b ψ(x)] = aS [ϕ(x)] + b S [ψ(x)],
R [∂i ϕ(x)] = ∂iR [ϕ(x)] and S [∂i ϕ(x)] = ∂i S [ϕ(x)].
By contrast, the R+S decomposition (as defined above,
in the Hadamard way) does not commute with nonlin-
ear operations (e.g. R [ϕψ] 6= R [ϕ]R [ψ]), nor even
with multiplication by a smooth (C∞) function f(x) (e.g.
R [fϕ] 6= f R [ϕ]). This is a well-known inconsistency of
the Hadamard regularization, which created many am-
biguities when it was used at the 3PN level [43, 44].

One might worry that our present calculation (which
aims at regularizing nonlinear quantities quadratic in
Rµανβ ∼ ∂2g+ g−1 ∂g ∂g) might be intrinsically ambigu-
ous already at the 2PN level. Actually, this turns out
not to be the case because of the special structure of
the 2PN metric which is at work in the Riesz-analytic-
continuation derivation of the 2PN dynamics in Ref. [24].
This structure guarantees, in particular, that the Rie-
mann tensor (or its derivatives) is regularized unambigu-
ously.

C. On the special structure of the 2PN metric
guaranteeing its unambiguous regularization

Let us first recall why the Riesz-analytic-continuation
method, or, equivalently (when considering the reg-
ularization of the metric and its derivatives), the
dimensional-continuation method, is consistent under
nonlinear operations. The dimensional-continuation ana-
log of Eqs. (3.9)–(3.11) consists of distinguishing, within
ϕ(x), the terms that (in dimension 4 + ε) contain pow-
ers of r of the type rk−nε, with n = 1, 2, 3, . . . [which
define the ε-singular part of ϕ(x)], and the terms that
are (formally) C∞ in 4 + ε dimensions [which define
the ε-regular part of ϕ(x)]. It is then easily seen in di-
mensional continuation (simply by considering the con-
tinuation to large, negative values of the real part of
ε) that the ε-singular terms give vanishing contribu-
tions when evaluated at r → 0, and that they do so
consistently in nonlinear terms such as ∂ϕ∂ψ. Let
us now indicate why the special structure of the 2PN
metric ensures that the decomposition into ε-singular
parts and ε-regular parts of the various brick potentials
V (x), Vi(x), . . . coincides with their above-defined decom-
position into Hadamard-singular (S [V (x)], S [Vi(x)], . . .)
and Hadamard-regular parts (R [V (x)], R [Vi(x)], . . .) in
the four-dimensional case. This is trivially seen to be
the case for most of the 2PN contributions to the brick
potentials (because one easily sees how those contribu-
tions smoothly evolve when analytically continuing the
dimension). However, the most nonlinear contributions

to the 2PN metric, namely the terms, say X̂(V V V ), in X̂
that are generated by the cubically nonlinear terms con-

tained in the last source term, Ŵ
(V V )
ij ∂ijV , on the right

hand-side of the last Eq. (3.3) (where Ŵ
(V V )
ij is the part

of Ŵij generated by −∂iV ∂jV ) are more delicate to dis-

cuss. Actually, among the contribution X̂(V V V ), only the
terms proportional either to m2

1m2 or to m1m
2
2, i.e., the

terms whose cubically nonlinear source ∼ ∂2V∆−1∂V ∂V
involve two V potentials generated by one worldline and
one V potential generated by the other worldline, such as
X̂(V1V1V2) ∝ m2

1m2, pose a somewhat delicate problem.
More precisely, it is easily seen that the only danger-
ous part in X̂(V1V1V2), considered near the first world-

line, is of the form f(x)/r
(2+2ε)
1 in dimension 4 + ε,

where f(x) denotes a smooth function. [Here, we add
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back the particle label indicating whether the expan-
sions Eqs. (3.10), (3.11) refer to the first (A = 1),
or the second (A = 2) particle. The appropriate la-
bel should be added both on r and n in Eqs. (3.10),
(3.11): rk n̂L → rkA n̂

L
A.] The problem is that the power

of 1/r1 in this ε-singular term becomes an even inte-

ger when ε → 0. When inserting the Taylor expan-
sion of f(x), say f(x) ∼ ∑

rℓ+2n
1 n̂L

1 f
ℓ+2n
L , some of the

terms in the ε-singular contribution f(x)/r
(2+2ε)
1 might

be of the form rℓ+2n′−2ε
1 n̂L

1 , with n′ = n − 1 ≥ 0, and
might then contribute to the Hadamard-regular part of
X̂(V1V1V2) in the limit ε → 0. This would mean that
the Hadamard-regular part of X̂(V1V1V2) would not co-
incide with its ε-regular part. We already know from
Refs. [38, 39]), which used Hadamard regularization to
derive the 2PN-accurate dynamics and found the same
result (modulo gauge effects) as the analytic-continuation
derivation of Ref. [24], that this is not the case for the

regularized values of X̂(V1V1V2) and of its first derivatives
on the first worldline. [Indeed, these quantities enter
the computation of the equations of motion.] On the
other hand, the computations that we shall do here in-
volve higher spatial derivatives of X̂, and it is important
to check that we can safely use Hadamard regulariza-
tion to evaluate them. This can be proven by using the
techniques explained in Ref. [24], based on iteratively

considering the singular terms in Ŵ
(V V )
ij and X̂(V V V )

generated by the singular local behaviour (near the first
worldline) of their respective source terms. One finds
then that the smooth function f(x) entering the dan-

gerous terms f(x)/r
(2+2ε)
1 in X̂(V1V1V2) is of the special

form f(x) ∼
∑
cℓGLr

ℓ
1 n

L
1 in dimension 4+ε, with ℓ ≥ 1,

where GL ≡ ∂LV2 denotes the ℓ-th tidal gradient (consid-
ered near the first worldline) of the V potential generated
by the second worldline. When working (as we do) at the
2PN accuracy, we can take V at Newtonian order, and

the gradients GL ≃ [∂L(Gm2/r
(1+ε)
2 )]1 are then trace-

less: GL = Ga1a2···aℓ
= G〈a1a2···aℓ〉. As a consequence,

it is immediately seen that, in the limit ε → 0, the po-

tentially dangerous term f(x)/r
(2+2ε)
1 in X̂(V1V1V2) does

not give any contribution to the Hadamard-regular part
of X̂. This means that we can compute the ε-regularized
reduced tidal action in (2.12) by replacing, from the start,
the brick potentials V (x), Vi(x), . . ., by their Hadamard-
regularized counterparts, R [V (x)], R [Vi(x)], . . .

Summarizing: The A-worldline part of the tidal action
Eq. (2.12) can be obtained by computing all its elements
(dτA = c−1(−gµν(yA) dyµA dyνA)1/2, GA

αβ , . . .) within the

A-regular metric gA−reg
µν (x) obtained by replacing each

2PN brick potential V (x), Vi(x), . . . by its A-Hadamard-
regular part RA[V (x)], RA[Vi(x)], . . .

As a check on our results (and on the many compli-
cated algebraic operations needed to derive them) we
have also re-computed the electric-quadrupole tidal La-

grangian, L
µ
(2)
A

= 1
4 (dτA/dt) G

A
αβ G

αβ
A by effecting the

Hadamard regularization in a different way. Our alter-
native computation was done by separately Hadamard-
regularizing each factor entering the Lagrangian, L

µ
(2)
A

,

when it is expressed in terms of dτA/dt, the contravari-
ant metric, the covariant Riemann tensor, and the con-
travariant 4-velocity. More precisely, we first calculated
Gαβ(yA) as −RA[Rαµβν ]RA[u

µ]RA[u
ν ], then we com-

puted [G2
ab](yA) ≡ Gαβ(yA)Gµν(yA)RA[g

αµ]RA[g
βν ],

which we inserted into the expression of L
µ
(2)
A

just written. The remaining factor, (dτA/dt)/4,
was taken to be RA[dτ/dt]/4. Note in passing
that, while one can a priori prove that the alter-
native regularization of Gαβ(yA) (and subsequently
[G2

ab](yA) ≡ Gαβ(yA)Gµν(yA)RA[g
αµ]RA[g

βν]) just ex-
plained, must coincide with the one explained above,
namely (Gαβ G

αβ)[RA(V ), RA(Vi), . . .] (because both of
them agree with the Riesz-analytic-regularization and/or
dimensional-regularization) a different result would have
been obtained if one had postponed the Hadamard
regularization of the squared tidal quadrupole to the
last moment, i.e. if one had computed RA[Gαβ G

αβ ].
[Such a difference occurs because of the appearance of
a dangerous nonlinear mixing of Hadamard-regular and
Hadamard-singular parts in ∂ijV ∂ijX̂

(V1V1V2) (with the

special structure of the delicate terms in X̂(V1V1V2) given
above). This shows again the consistency problems of
the Hadamard regularization, when it is used beyond
the types of calculations where it is equivalent to the
Riesz analytic regularization (or to dimensional regular-
ization).]

D. Explicit rules for computing the regular parts
of the 2PN brick potentials

Let us now give some indications on the computa-
tion of the regular parts of the various brick potentials
V (x), Vi(x), . . .

1. Regularizing V and Vi

The situation is very simple for the “linear poten-
tials” V and Vi, which satisfy linear equations with delta-
function sources [see Eqs. (3.3)]. Near, say, the particle
A = 1, the A-regular parts of V and Vi are the terms in
Eqs. (A1), (A2) which are generated by the source terms
∝ δ(x−y2) of the second particle. It is indeed easily seen
[from the definition in Eq. (3.10)] that the 1-regular part
of all the terms explicitly written in Eq. (A1) vanishes,
while all the non-explicitly written terms obtained by the
1 ↔ 2 exchange are regular near the particle 1. The same
is true for Vi, Eq. (A2). A simple rule for obtaining these
results is to note that, from the definition in Eq. (3.11),
any term of the form

r2k+1
1 f(x) , k ∈ Z , (3.12)
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where f(x) is a smooth function of xµ (near x = y1

at fixed instant t), and where the power of r1 is odd, is
purely singular.
The situation is more complicated for the higher-order

potentials Ŵij and R̂i, whose sources contain both com-
pact terms ∝ δ(x−yA), and quadratically nonlinear non-
compact ones ∝ ∂V ∂V , and still more complicated for
the X̂ potential whose source even depends on the pre-
vious Ŵij potential.

2. Regularizing Ŵij

The potential Ŵij can be decomposed in powers of the
masses. It contains terms proportional tom1,m2,m

2
1,m

2
2

and m1m2. It is easily seen that while the terms propor-
tional to m1 and m2

1 are 1-singular, the terms propor-
tional to m2 and m2

2 are 1-regular. It is more delicate to
decompose the mixed terms ∝ m1m2 into 1-regular (R1)
and 1-singular (S1) parts. More precisely the m1m2 part

of Ŵij has the form

Ŵ
[m1m2]
ij = Ŵ

[m1m2]
ij(0) +

˜̂
W

[m1m2]
ij(0) (3.13)

where

Ŵij
[m1m2]
(0) =

1

r12S
δij +

{
1

S2

(
n
(i
1 n

j)
2 + 2n

(i
1 n

j)
12

)

− ni
12n

j
12

(
1

S2
+

1

r12S

)}

≡ 1

r12S
P (n12)

ij

+
1

S2

(
n
(i
1 n

j)
2 + 2n

(i
1 n

j)
12 − ni

12n
j
12

)
, (3.14)

˜̂
Wij

[m1m2]
(0) =

1

r12S
δij +

{
1

S2

(
n
(i
2 n

j)
1 − 2n

(i
2 n

j)
12

)

− ni
12n

j
12

(
1

S2
+

1

r12S

)}

≡ 1

r12S
P (n12)

ij

+
1

S2

(
n
(i
2 n

j)
1 − 2n

(i
2 n

j)
12 − ni

12n
j
12

)
, (3.15)

and where P (n12)
ij ≡ δij −ni

12 n
j
12 denotes the projector

orthogonal to the unit vector n12. [The decomposition
in Eq. (3.13) simply corresponds to the decomposition
of Eq. (A4) into an explicitly written term and its 1 ↔ 2
counterpart.] Here we see that there appear (modulo
x-independent factors, such as r−1

12 , n
i
12, P (n12)

ij , . . .)
terms of the type

1

S
,

1

S2
,

ni
1

S2
,

ni
2

S2
,

ni
1 n

j
2

S2
, (3.16)

where we recall that S ≡ r1 + r2 + r12. Near particle 1,
ni
2 is a smooth function, while ni

1 = ri1/r1 is the ratio of

a smooth function (ri1 = xi − yi1) by r1. In other words,
the five terms listed in Eq. (3.16) are of three different
types:

1

S
,

f(x)

S2
and

f(x)

r1 S2
, (3.17)

where f(x) denotes a generic smooth function near parti-
cle 1. [As we always consider the neighborhood of particle
1, we do not add an index to f(x) to recall that it is 1-
regular, but might be singular near particle 2.] Because
S = r1+r2+r12 is a function of “mixed character” (partly
regular and partly singular), it is not immediate to de-
compose the functions in Eq. (3.17) into 1-regular and
1-singular parts. [This mixed character of S is deeply
linked with the fact that it enters the 2PN metric be-
cause of the basic fact that a solution of ∆g = r−1

1 r−1
2

is g = ln S.] A simple (though somewhat brute-force)
way of extracting the regular parts of the functions in
Eq. (3.17) consists of decomposing S into

S ≡ S0 + r1 = S0

(
1 +

r1
S0

)
, (3.18)

with

S0 ≡ r2 + r12 , (3.19)

(note that S0 is a smooth function near particle 1), and
then expanding S−n in powers of r1/S0. Namely

1

S
=

1

S0

(
1− r1

S0
+
r21
S2
0

− r31
S3
0

+ . . .

)
, (3.20)

1

S2
=

1

S2
0

(
1− 2

r1
S0

+ 3
r21
S2
0

− 4
r31
S3
0

+ . . .

)
, (3.21)

and more generally

1

Sn
=

1

Sn
0

(
1− n

r1
S0

+
(n+ 1)n

2

(
r1
S0

)2

− (n+ 2)(n+ 1)n

3!

(
r1
S0

)3

+
(n+ 3)(n+ 2)(n+ 1)n

4!

(
r1
S0

)4

+ . . .

)
,

n = 1, 2, . . . (3.22)

Using these expansions, together with the rule that terms
of the form in Eq. (3.12) are purely singular, it is easy to
derive the following results for the 1-regular parts of func-
tions of the type in Eq. (3.17), and, more generally, of the
types f(x)/S, f(x)/S2, f(x)/(r1 S) and f(x)/(r1 S

2):

(
f(x)

S

)

R

=
f(x)

S0

(
1 +

(
r1
S0

)2

+

(
r1
S0

)4

+

(
r1
S0

)6

+ . . .

)
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≡ f(x)

(
1

S

)

R

, (3.23)

(
f(x)

S2

)

R

=
f(x)

S2
0

(
1 + 3

(
r1
S0

)2

+ 5

(
r1
S0

)4

+ 7

(
r1
S0

)6

+ . . .

)

≡ f(x)

(
1

S2

)

R

, (3.24)

(
f(x)

r1S

)

R

= −f(x)
S2
0

(
1 +

(
r1
S0

)2

+

(
r1
S0

)4

+ . . .

)

≡ f(x)

(
1

r1S

)

R

, (3.25)

(
f(x)

r1S2

)

R

= −f(x)
S3
0

(
2 + 4

(
r1
S0

)2

+ 6

(
r1
S0

)4

+ 8

(
r1
S0

)6

+ . . .

)

≡ f(x)

(
1

r1S2

)

R

. (3.26)

Here, we use a lower R subscript (ϕ(x))R to denote
the 1-regular part of a function ϕ(x) (above denoted as
R [ϕ(x)]). (We omit decorating R with a label 1, but one
should remember that we are always talking about the
1-regular part of ϕ(x).)

Note that, as indicated, all the terms above have the
simple property that the regular-projection operator R
commutes with the multiplication by a smooth function,
e.g. R [f(x)S−1] = f(x)R [S−1]. Beware that this prop-
erty is true only for the special singular terms considered
here. We shall later see that more-complicated singu-
lar terms (entering the X̂ potential) do not satisfy this
simple commutativity property.

Note that the number of terms one needs to retain in
the above expansions depends on the quantity one wants
to evaluate on the first worldline. For instance, when
evaluating G1

αβ , which involves the curvature tensor, and

therefore two spatial derivatives of the metric (and, in

particular, of R [Ŵij ]), we need to include enough terms

to ensure that R [Ŵij ] is C
2 near x = y1. Actually, we

shall push our calculations up to the level of G1
αβγ , which

depends on the first covariant derivative of the curvature
tensor, and we shall therefore need all the brick potentials
to be at least C3 near x = y1.

The application of the above results yields the follow-
ing explicit expressions for the 1-regular part of the two
separate O(m1m2) delicate contributions to Ŵij [defined
in Eqs. (3.13)–(3.15)]:

[Ŵij
[m1m2]
(0) ]R =

P (n12)
ij

r12

1

S0

(
1 +

r21
S2
0

+
r41
S4
0

+ . . .

)

+
r
(i
1 n

j)
2

S2
0

(
− 2

S0
− 4

r21
S3
0

− 6
r41
S5
0

+ . . .

)

+ 2
r
(i
1 n

j)
12

S2
0

(
− 2

S0
− 4

r21
S3
0

− 6
r41
S5
0

+ . . .

)

− ni
12n

j
12

1

S2
0

(
1 + 3

r21
S2
0

+ 5
r41
S4
0

+ . . .

)
,

(3.27)

[
˜̂
Wij

[m1m2]
(0) ]R =

P (n12)
ij

r12

1

S0

(
1 +

r21
S2
0

+
r41
S4
0

+ . . .

)

+
n
(i
2 r

j)
1

S2
0

(
− 2

S0
− 4

r21
S3
0

− 6
r41
S5
0

+ . . .

)

− 2n
(i
2 n

j)
12

1

S2
0

(
1 + 3

r21
S2
0

+ 5
r41
S4
0

+ . . .

)

− ni
12n

j
12

1

S2
0

(
1 + 3

r21
S2
0

+ 5
r41
S4
0

+ . . .

)
.

(3.28)

3. Regularizing R̂i

As the potential R̂i has a source of the same type as
Ŵij (namely δ(x − yA) terms plus a non-compact term
quadratic in the V potentials), the calculation of its reg-

ular part can be done in exactly the same way as Ŵij . R̂i

contains terms ∝ m2
1,m

2
2 and m1m2. The O(m2

1) piece
is purely singular, the O(m2

2) one is purely regular, while
the O(m1m2) one is a mix of regular and singular terms.

As above, we can decompose the m1m2 part of R̂i in two
pieces, say

R̂
[m1m2]
i = R̂

[m1m2]
i(0) +

˜̂
R

[m1m2]
i(0) , (3.29)

where

R̂i
[m1m2]
(0) = ni

12

{
− (n12v1)

2S

(
1

S
+

1

r12

)

− 2(n2v1)

S2
+

3(n2v2)

2S2

}

+ ni
1

1

S2

(
2(n12v1)−

3(n12v2)

2

+ 2(n2v1)−
3(n2v2)

2

)

+ vi1

(
1

r1r12
+

1

2r12S

)
− vi2

1

r1r12
, (3.30)

˜̂
Ri

[m1m2]
(0) = −ni

12

{
(n12v2)

2S

(
1

S
+

1

r12

)

− 2(n1v2)

S2
+

3(n1v1)

2S2

}
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+ ni
2

1

S2

(
−2(n12v2) +

3(n12v1)

2

+ 2(n1v2)−
3(n1v1)

2

)

+ vi2

(
1

r2r12
+

1

2r12S

)
− vi1

1

r2r12
. (3.31)

Applying the above results then yields the following
expressions for the 1-regular parts of these quantities:

[R̂i
[m1m2]
(0) ]R = ni

12

{[
− (n12v1)

2
− 2(n2v1)

+
3(n2v2)

2

](
1

S2

)

R

− (n12v1)

2r12

(
1

S

)

R

}

+

(
2(n12v1)−

3(n12v2)

2
+ 2(n2v1)

−3(n2v2)

2

)
r
i
1

(
1

r1S2

)

R

+
vi1
2r12

(
1

S

)

R

, (3.32)

[
˜̂
Ri

[m1m2]
(0) ]R = −ni

12

{
(n12v2)

2

((
1

S2

)

R

+
1

r12

(
1

S

)

R

)
− 2(r1v2)

(
1

r1S2

)

R

+
3

2
(r1v1)

(
1

r1S2

)

R

}

+ ni
2

[(
−2(n12v2) +

3(n12v1)

2

)(
1

S2

)

R

+

(
2(r1v2)−

3(r1v1)

2

)(
1

r1S2

)

R

]

+ vi2

(
1

r2r12
+

1

2r12

(
1

S

)

R

)
− vi1

1

r2r12
.

(3.33)

One should substitute the expansions in Eqs. (3.23)–
(3.26) into these results to get their explicit forms.

4. Regularizing X̂

Finally, we come to the most complicated 2PN brick
potential, namely X̂ . It contains contributions propor-
tional to m2

1,m1m2,m
2
2; m

3
1,m

2
1m2,m1m

2
2 and m3

2 (see
Eq. (A5)). The terms in m2

1,m
2
2,m

3
1,m

3
2 are easily dealt

with (they are either purely singular or purely regular).
Many, but not all, of the m1m2 terms can be dealt with
in the same way as the m1m2 terms in Ŵij and R̂i. If

we again decompose X̂ [m1m2] in two pieces

X̂ [m1m2] = X̂
[m1m2]
(0) +

˜̂
X

[m1m2]
(0) , (3.34)

we have the following results for their regular parts:

[X̂
[m1m2]
(0) ]R = v21

[(
1

r1S

)

R

+
1

r12

(
1

S

)

R

]
+ v22

[(
1

r1S

)

R

+
1

r12

(
1

S

)

R

]
− (v1v2)

(
2

(
1

r1S

)

R

+
3

2r12

(
1

S

)

R

)

−(n12v1)
2

((
1

S2

)

R

+
1

r12

(
1

S

)

R

)
− (n12v2)

2

((
1

S2

)

R

+
1

r12

(
1

S

)

R

)

+
3(n12v1)(n12v2)

2

((
1

S2

)

R

+
1

r12

(
1

S

)

R

)
+ 2(n12v1)(r1v1)

(
1

r1S2

)

R

−5(n12v2)(r1v1)

(
1

r1S2

)

R

− (r1v1)
2

(
1

r21S
2
+

1

r31S

)

R

+ 2(n12v2)(r1v2)

(
1

r1S2

)

R

+2(r1v1)(r1v2)

(
1

r21S
2
+

1

r31S

)

R

− (r1v2)
2

(
1

r21S
2
+

1

r31S

)

R

− 2(n12v2)(n2v1)

(
1

S2

)

R

+2(r1v2)(n2v1)

(
1

r1S2

)

R

− 3

2
(r1v1)(n2v2)

(
1

r1S2

)

R

, (3.35)

[
˜̂
X

[m1m2]
(0) ]R = v22

(
1

r2r12
+

1

r2

(
1

S

)

R

+
1

r12

(
1

S

)

R

)
+ v21

(
− 1

r2r12
+

1

r2

(
1

S

)

R

+
1

r12

(
1

S

)

R

)

−(v1v2)

(
2

r2
+

3

2r12

)(
1

S

)

R

− (n12v2)
2

((
1

S2

)

R

+
1

r12

(
1

S

)

R

)

−(n12v1)
2

((
1

S2

)

R

+
1

r12

(
1

S

)

R

)
+

3(n12v2)(n12v1)

2

((
1

S2

)

R

+
1

r12

(
1

S

)

R

)
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−2(n12v2)(n2v2)

(
1

S2

)

R

+ 5(n12v1)(n2v2)

(
1

S2

)

R

−(n2v2)
2

((
1

S2

)

R

+
1

r2

(
1

S

)

R

)
− 2(n12v1)(n2v1)

(
1

S2

)

R

+2(n2v2)(n2v1)

((
1

S2

)

R

+
1

r2

(
1

S

)

R

)
− (n2v1)

2

((
1

S2

)

R

+
1

r2

(
1

S

)

R

)

+2(n12v1)(r1v2)

(
1

r1S2

)

R

+ 2(n2v1)(r1v2)

(
1

r1S2

)

R

− 3

2
(n2v2)(r1v1)

(
1

r1S2

)

R

. (3.36)

One should substitute the expansions in Eqs. (3.23)–
(3.26) into the corresponding terms in Eqs. (3.35), (3.36).
However, these equations involve new types of terms, not
discussed above. These new terms are of the form

f(x)

(
1

r21 S
2
+

1

r31 S

)
. (3.37)

The fact that we have a specific combination of r−2
1 S−2

and r−3
1 S−1 simplifies things. Indeed, using the expan-

sions in Eqs. (3.20), (3.21) above we have

f(x)

r21 S
2
=
f(x)

S4
0

[
S2
0

r21
− 2

S0

r1
+ 3− 4

r1
S0

+ 5
r21
S2
0

+ . . .

]
,

(3.38)

f(x)

r31 S
=
f(x)

S4
0

[
S3
0

r31
− S2

0

r21
+
S0

r1
− 1 +

r1
S0

− r21
S2
0

+ . . .

]
.

(3.39)
When summing these two equations we see that the terms
∝ 1/r21 cancel. We shall deal later with these terms,
which turn out to be delicate to handle but, anyway, in
the sum of Eqs. (3.38) and (3.39), they cancel out. The
remaining terms contain either an odd power of r1 [and
are therefore purely singular, Eq. (3.12)] or a positive,
even power of r1 (which makes them purely regular). As
a consequence, the regular part of the combination of Eq.
(3.37) reads

[
f(x)

(
1

r21S
2
+

1

r31S

)]

R

=
f(x)

S4
0

(
2 + 4

(
r1
S0

)2

+6

(
r1
S0

)4

+ 8

(
r1
S0

)6

+ . . .

)

≡ f(x)

(
1

r21S
2
+

1

r31S

)

R

.

(3.40)

Note that, thanks to the cancellation of the 1/r21
terms, we have again a property of commutativity
R [f(x)ϕ(x)] = f(x)R [ϕ(x)], for the special type of
terms ϕ(x) entering Eq. (3.37).

Concerning the m1m
2
2 contribution to X̂, it is the sum

of

X̂
[m1m

2
2]

(0) = − 1

2r312
+

r2
2r1r312

− 1

2r1r212
(3.41)

and

˜̂
X

[m1m
2
2]

(0) =
1

2r32
+

1

16r31
+

1

16r22r1
− r21

2r22r
3
12

+
r31

2r32r
3
12

− r22
32r31r

2
12

− 3

16r1r212
+

15r1
32r22r

2
12

− r21
2r32r

2
12

− r1
2r32r12

− r212
32r22r

3
1

. (3.42)

Using the rule of Eq. (3.12), we easily see that each
term clearly is either purely regular or purely singular.
Computing the regular part of X̂ [m1m2] is then easy.

The most delicate contribution to X̂ is its O(m2
1m2)

one, which can again be written as the sum of

X̂
[m2

1m2]

(0) =
1

2r31
+

1

16r32
+

1

16r21r2
− r22

2r21r
3
12

+
r32

2r31r
3
12

− r21
32r32r

2
12

− 3

16r2r212
+

15r2
32r21r

2
12

− r22
2r31r

2
12

− r2
2r31r12

− r212
32r21r

3
2

(3.43)

and

˜̂
X

[m2
1m2]

(0) = − 1

2r312
+

r1
2r2r312

− 1

2r2r212
. (3.44)

Actually the part
˜̂
X

[m2
1m2]

(0) is easy to discuss: Its reg-

ular part is obtained simply by discarding the term:

r1/(2 r2 r
3
12). Similarly, most of the terms in X̂

[m2
1m2]

(0)

are easy to treat, being either purely regular or purely
singular because of Eq. (3.12). However, the third,
fourth, eighth and last terms in the right hand side of
Eq. (3.43) are somewhat tricky. [These terms correspond

to the “dangerous terms” in X̂(V1V1V2) that were dis-
cussed in Sec. III when making the link between the
ε-regularization and the Hadamard one.] The third term
is

Q ≡ 1

16 r21 r2
, (3.45)

while the sum of the fourth, eighth and last terms reads

P ≡ − r22
2 r21 r

3
12

+
15 r2

32 r21 r
2
12

− r212
32 r21 r

3
2

. (3.46)
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Both Q and P are of the form f(x)/r21 (but we shall see
that Q is special compared with P ). The computation
of the regular part of f(x)/r21 is a bit subtle. It can,
however, be done by brute force, namely by replacing the
smooth function f(x) by its Taylor expansion around y1:

f(x) = f(y1) + ri1 ∂i f(y1) +
1

2!
ri1 r

j
1 ∂ij f(y1)

+
1

3!
ri1 r

j
1 r

k
1 ∂ijk f(y1) + . . . (3.47)

When replacing ri1 → r1 n
i
1 and dividing by r21 , one sees

that the regular part of f(x)/r21 will only come from the

terms rL1 ≡ ri1i2...iℓ1 with ℓ = 2, 4, 6, . . . Moreover, by
decomposing rL1 = rℓ1 n

L
1 in irreducible tensorial parts, as

in

rij1 = r21 n
ij
1 = r21

[
n
〈ij〉
1 +

1

3
δij
]
, (3.48)

where n
〈ij〉
1 ≡ n̂ij

1 ≡ nij
1 − 1

3 δ
ij denotes the symmetric

trace-free projection of nij
1 ≡ ni

1 n
j
1, we see [in view of the

definition in Eq. (3.10)] that only the pieces containing
at least one Kroneker δ in the decomposition of nL

1 will
contribute to the regular part. For instance, in the case
ℓ = 2, only the δij in Eq. (3.47) will contribute to the
regular part of f(x)/r21 . More generally, we have that
R[rL1 /r

2
1 ] = (rL1 − r̂L1 )/r

2
1 .

Applying this method yields the following result (here
written with the simplified notation used around Eq.
(3.8)) for the regular part of f(x)/r21 :

(
f(x)

r2

)

R

=
1

6
∆f(0) +

1

10
xi∂i∆f(0) +

1

28
x̂ij∂ij∆f(0)

+
1

120
r2∆2f(0) +

1

108
x̂ijk∂ijk∆f(0)

+
1

280
r2xi∂i∆

2f(0) +O(x4) . (3.49)

As one sees in Eq. (3.49) (and as can be proven to
all orders), all the terms on the right-hand side of Eq.
(3.49) are derivatives of the Laplacian of f(x) (taken at
x = y1). As a consequence, in the particular case where
∆f(x) = 0, the regular part of f(x)/r21 is exactly zero.

This is the case for the term Q in X̂ [m2
1m2], Eq. (3.45).

[Let us point out in passing that the discussion in Sec.
IIIC of the link between the ε-regularization and the
Hadamard one essentially consisted in remarking that all

the “dangerous” terms in X̂ [m2
1m2] had this innocuous

structure f(x)/r
(2+2ε)
1 with ∆f(x) = 0.] Therefore, we

have simply

QR = 0 . (3.50)

On the other hand, this is not the case for the term
P , Eq. (3.46). The evaluation of the regular part of P
needs to appeal to the result in Eq. (3.49) and yields

(modulo terms of order O(r4
1) that will not be needed in

our calculations)

PR = − 1

2r312

(
r22
r21

)

R

+
15

32r212

(
r2
r21

)

R

− r212
32

(
1

r21r
3
2

)

R

= − 3

8r312
+

1

r512

[
3

224
r21 −

15

112
(r1n12)

2

]

+
5

12r612
(r1n12)

[
(r1n12)

2 − 3

8
r21

]
. (3.51)

Summarizing: We have explicitly displayed all the
rules needed to compute (near particle 1) the regular

parts of the various brick potentials V, Vi, Ŵij , R̂i, X̂ en-

tering the 2PN metric. By replacing V → VR, . . . , X̂ →
X̂R, in Eq. (3.2), we define a regularized version of the
2PN metric generated by two point masses, gRµν(x) ≡
gµν [VR(x), . . . , X̂R(x)], which is smooth near particle 1.

IV. COMPUTATION OF THE INVARIANTS
ENTERING THE TIDAL ACTION

As we explained above, when neglecting terms
quadratic in the tidal parameters µ(ℓ), etc., the tidal part
of the two-body action is simply obtained by evaluating
the Snonminimal, Eq. (2.12), as a function of the world-
lines, by replacing the metric gµν(x) entering the right-
hand side of Eq. (2.12) by the (regular part of the) point-
mass metric gpointmass

µν (x, y1, y2,m1,m2). This reduced

action is a sum over the various tidal parameters, µ
(ℓ)
A ,

σ
(ℓ)
A , µ

′(ℓ)
A , . . .. We can therefore compute separately the

part of the reduced action associated with each of them.
This is what we shall do in this section for the actions
associated with the parameters µ

(ℓ=2)
A=1 , µ

(ℓ=3)
A=1 , σ

(ℓ=2)
A=1 and

µ
′(ℓ=2)
A=1 . [We shall only explicitly write down the results

for A = 1 but, evidently, they also yield the results for
A = 2 by exchanging 1 ↔ 2.]

First, let us note that each action, say, associated with
the parameter µ1 related to the first worldline, is of the
form

µ1

∫
dt Lµ1(y1,y2,v1,v2) (4.1)

where the Lagrangian Lµ1 is the product of a geometrical
invariant by dτ1/dt. For instance

L
µ
(2)
1

=
1

4

dτ1
dt

[
Gαβ G

αβ
]
1
≡ 1

4

dτ1
dt

[
G2

ab

]
1
. (4.2)

We shall separately evaluate each geometrical invari-
ant, G2

ab, G
2
abc, . . ., before multiplying it by the (regular-

ized) proper-time redshift factor dτ1/dt (“Einstein time
dilation”). Note also that we systematically work with
the order-reduced 2PN metric, i.e. the 2PN metric in
which the higher time derivatives of y1 and y2 have
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been expressed in terms of positions and velocities only,
(y1,y2,v1,v2), by iterative use of the (harmonic-gauge)
equations of motion. As was discussed long ago, such an
order reduction of the action is allowed, when it is under-
stood that it corresponds to a certain additional change
of coordinate gauge [45–47]. As we shall ultimately be
interested in computing gauge-invariant quantities asso-
ciated with the EOB reformulation of the dynamics, we
do not need to keep track of this coordinate change.

A. Explicit 2PN-accurate tidal actions for general
orbits

Let us start by discussing the simplest (and physically
most important) geometric invariant, namely the one as-
sociated with the electric-type quadrupolar tide, say

J2e ≡ [GabGab]1 = [Gαβ G
αβ ]1

= [Rαµβν Rγκδλ g
αγ gβδ uµ uν uκ uλ]1 , (4.3)

where uµ1 ≡ dyµ1 /dτ1 = (c,v1) dt/dτ1, and where the sub-
script 2e on J2e refers to “ℓ = 2 electric.” Using two
independently written codes (one based on the Maple
system, and the other one based on the Mathematica
software supplemented by the package xAct [48]) we
have computed the right-hand side of Eq. (4.3) within
the (regularized) 2PN metric. (Actually, as explained
above, the Mathematica code alternatively regularized,
à la Hadamard, the value of Gαβ computed with the full
(non-regularized) 2PN metric.)

As the PN expansion of the quadrupolar tidal tensor
Eq. (2.7) starts as

Gab = − c2Ra0b0 + . . .

= +
1

2
c2(∂ab g00 − ∂a0 gb0 − ∂b0 ga0 + ∂00 gab)

+ . . . ,

one sees that the 2PN-accurate metric [i.e., the knowl-
edge of g00 up to O(1/c6) terms included, of g0a up to
O(1/c5), and of gab up to O(1/c4)] is exactly what is
needed to be able to compute Gab to the 2PN (frac-
tional) accuracy, i.e., Gab = + ∂abV +c−2(. . .)+c−4(. . .).
The same is true for the higher electric tidal moments
Gabc, . . .. However, one can easily see that one loses
a PN order when evaluating either the magnetic tidal
moments Hab, Habc, . . . or the time-differentiated electric
one Ġab, . . .. The result we obtained, for general orbits,
is

J2e =
6G2m2

2

r612

{
1 +

1

c2

(
− 3(n12v12)

2 − 3(n12v2)
2 + 3v212

− G

r12
(5m1 + 6m2)

)

+
1

c4

[
3(n12v12)

4 + 12(n12v2)
2(n12v12)

2 + 6(n12v2)
4

−9v212(n12v12)
2 − 6(n12v12)

2(v2v12)

−6(n12v2)(n12v12)(v2v12)− 3v22(n12v12)
2

−9v212(n12v2)
2 − 3v22(n12v2)

2 + 6v412
+6v212(v2v12) + 3(v2v12)

2 + 3v22v
2
12

+
Gm1

r12

(
− 109

4
(n12v12)

2 +
41

2
(n12v2)

2 +
21

4
v212

)

+
Gm2

r12

(
6(n12v12)

2 + 21(n12v2)
2 − 6v212

)

+
G2

r212

(365m2
1

28
+

125m1m2

2
+ 21m2

2

)]}
. (4.4)

Similarly, we computed the further geometrical invariants
“ℓ = 3 electric”

J3e ≡
[
G2

abc

]
1
=
[
Gαβγ G

αβγ
]
1
, (4.5)

and “ℓ = 2 magnetic”

J2m ≡ 1

4

[
H2

ab

]
1
=

1

4

[
Hαβ H

αβ
]
1

= c2
[
R∗

αµβν R
∗
γκδλ g

αγ gβδ uµ uν uκ uλ
]
1
.(4.6)

Note the factor 1
4 , introduced in the definition of

J2m to have J2m = (cR∗
αµβνu

µuν)2, analogously to

J2e = (Rαµβνu
µuν)2. Let us also note in passing that,

in evaluating J3e, i.e., the square of the electric oc-
tupole Gαβγ , Eq. (2.8), it is important to use the or-
thogonally projected covariant derivative ∇⊥

α . If, in-
stead of (Gαβγ)

2, one evaluates (Cαβγ)
2 where Cαβγ =

Symαβγ ∇αRβµγν u
µ uν , one finds a result which differs

from (Gαβγ)
2 by a term proportional to J2̇e = (Ġab)

2

[see Eq. (6.51)].
The results for these invariants (along general orbits)

are

J3e =
90G2m2

2

r812

{
1 +

1

c2

[
− 2(n12v12)

2 − 4(n12v2)
2 + 3v212

−G(4m1 + 10m2)

r12

]

+
1

c4

[
10(n12v2)

2(n12v12)
2 + 10(n12v2)

4

−14

3
v212(n12v12)

2 − 4(n12v12)
2(v2v12)

−12v212(n12v2)
2 − 4(n12v2)(n12v12)(v2v12)

−2v22(n12v12)
2 − 4v22(n12v2)

2

+
17

3
v412 + 6v212(v2v12) + 3(v2v12)

2 + 3v22v
2
12

+
Gm1

r12

(
− 32(n12v12)

2 + 2(n12v2)(n12v12)

+22(n12v2)
2 +

16

3
v212

)

+
Gm2

r12

(
12(n12v12)

2 + 45(n12v2)
2 − 18v212

)

+
G2

r212

(
9m2

1 +
259m1m2

3
+ 54m2

2

)]}
, (4.7)
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and

J2m =
18G2m2

2

r612

{
− (n12v12)

2 + v212

+
1

c2

[
(n12v12)

4 + 4(n12v2)
2(n12v12)

2

−3v212(n12v12)
2 − 2(n12v12)

2(v2v12)− v22(n12v12)
2

−2(n12v2)(n12v12)(v2v12)− 3v212(n12v2)
2

+2v412 + 2v212(v2v12) + (v2v12)
2 + v22v

2
12

+
2G

r12

(m1

3
+m2

)(
(n12v12)

2 − v212

)]}
. (4.8)

The result Eq. (4.4), after multiplication by the red-
shift factor

dτ1
dt

=

(
− g00 − 2 g0i

vi1
c

− gij
vi1 v

j
1

c2

)1/2

, (4.9)

which evaluates to (we use again the notation ǫ ≡ 1/c,
and henceforth often set Newton’s constant to one)

dτ1
dt

= 1− ǫ2
(
1

2
v21 +

m2

r12

)

+ ǫ4
[
−1

8
v41 +

m2

r12

(
1

2
(n12v2)

2 − 3

2
v21

+ 4(v1v2)− 2v22

)
+

m2

2r212
(3m1 +m2)

]
, (4.10)

provides the O(µ
(ℓ=2)
1 ) piece (“gravitoelectric tidal

quadrupole”) of the reduced two-body action at the 2PN
approximation level; i.e., including tidal correction terms
that are (v/c)4 smaller than the leading order tidal La-

grangian which is simply given by J
(0)
2e = 6m2

2/r
6
12. Sim-

ilarly, multiplying the results of Eqs. (4.7) and (4.8)
by the redshift factor in Eq. (4.10) provides the re-
duced tidal actions associated with J3e ≡ [G2

abc]1 and
J2m ≡ 1

4 [H
2
ab]1, at the 2PN approximation for the

electric-octupole term J3e, and at the 1PN approxima-
tion for the magnetic-quadrupole term J2m.

In view of their complexity, the results of Eqs. (4.4),
(4.7), (4.8), which provide the action for general orbits,
are not very useful as they are. In what follows, we shall
extract the physically most useful information they con-
tain by: (i) focusing our attention on circular orbits and
(ii) reformulating our results in terms of the EOB de-
scription of binary systems. Note in passing that though
circular orbits are only special solutions of binary dynam-
ics, they are the ones of prime physical importance in
many situations, most notably radiation-reaction-driven
inspiralling binary systems.

B. Tidal actions along circular orbits

In the following, we shall therefore restrict our atten-
tion to circular motions. [However, we shall show below

how this restricted result can crucially inform the EOB
description of tidally interacting binary systems.] We
shall also focus on the relative dynamics in the center of
mass frame. As we see in Eqs. (4.4), (4.7), (4.8), (4.10),
the various Lagrangians depend only on the relative po-
sition y12 = y1 −y2 and start depending on (individual)
velocities only at 1PN (for general orbits), and even at
2PN for the invariants themselves (in the case of circu-
lar orbits). This implies that we shall not really need to
use to its full 2PN accuracy the relation between center-
of-mass variables yCM

1 ,yCM
2 ,vCM

1 ,vCM
2 , and relative ones

y12,v12, namely (in the circular case)

yi1 =

[
X2 + 3

(
M

r12 c2

)2

ν X12

]
yi12 ,

yi2 =

[
−X1 + 3

(
M

r12 c2

)2

ν X12

]
yi12 , (4.11)

and the corresponding velocity relations obtained by
time-differentiating them, using the fact that y12 =
r12 n12 where r12 is constant and n12 rotates with an
angular velocity given by

Ω2 =
M

r312

[
1 + ǫ2(ν − 3)

M

r12

+ǫ4
(
6 +

41

4
ν + ν2

)(
M

r12

)2
]
. (4.12)

Here and below we use the notation

X1 ≡ m1

M
, X2 ≡ m2

M
, ν ≡ X1X2 , X12 ≡ X1−X2 ,

(4.13)
(recall that M ≡ m1 +m2 so that X1 +X2 = 1). In our
calculations, the ǫ4 = 1/c4 contributions in Eqs. (4.11),
(4.12) do not matter, and can be neglected from the start.

Using such an additional circular (and center-of-mass)
reduction, we get a much simplified result for the electric-
quadrupole invariant J2e, Eq. (4.3), namely,

J
(circ)
2e =

6M2X2
2

r612

[
1 + ǫ2

(X1 − 3)M

r12

−ǫ4 M2

28r212
(713X2

1 − 805X1 − 336)

]
. (4.14)

In a similar manner, one gets much simplified results for
the other (subleading) geometrical invariants of tidal sig-
nificance, namely the magnetic quadrupolar term J2m,
Eq. (4.6), the electric octupolar term J3e, Eq. (4.5), and
also for the time-differentiated electric-quadrupole cou-
pling, say,

J2̇e ≡
[
Ġ2

ab

]
1
=
[
(uµ ∇µGαβ)(u

ν ∇ν G
αβ)
]
1
. (4.15)

Among these invariants, the 2PN accurate metric allows
one (as for G2

ab) to calculate to 2PN fractional accuracy
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only the electric-octupole term J3e. The other ones can
be computed only at 1PN fractional accuracy because
of their “magnetic,” or “∂0 = c−1∂t” character. Our
explicit “circular” results for J2m, J3e and J2̇e are

J
(circ)
2m =

18X2
2M

3

r712

[
1 + ǫ2

M

3r12
(3X2

1 +X1 − 9)

]
,

(4.16)

J
(circ)
3e =

90X2
2M

2

r812

[
1 + ǫ2(6X1 − 7)

M

r12

−ǫ4 M
2

3r212
(61X2

1 + 4X1 − 98)

]
, (4.17)

J
(circ)

2̇e
=

18X2
2M

3

r912

[
1 + ǫ2(X2

1 − 7)
M

r12

]
. (4.18)

To complete the above results, and allow one to com-
pute the corresponding associated Lagrangians, let us
note that the circular value of the redshift factor is

dτ1
dt

≡ 1

Γ1
= 1− M(X1 − 1)(X1 − 3)

2r12
ǫ2

+
M2(X1 − 1)

8r212
(3X3

1 − 9X2
1 + 13X1 − 3)ǫ4 . (4.19)

Let us also quote the value of the inverse redshift factor,
Γ1 (analog to a Lorentz γ-factor γ = 1/

√
1− v2/c2),

namely

Γ1 ≡ dt

dτ1
= 1 +

M(X1 − 1)(X1 − 3)

2r12
ǫ2

− M2

8r212
(X1 − 1)(X3

1 + 5X2
1 − 17X1 + 15)ǫ4 . (4.20)

V. EOB DESCRIPTION OF THE TIDAL
ACTION

We have computed above the effective actions associ-

ated with the tidal parameters µ
(2)
1 , µ

(3)
1 , σ

(2)
1 and µ

′(2)
1 .

Before the restriction to circular motions (in the center-
of-mass frame) they have the general form

µ1

∫
dt Lµ1(y12,v1,v2) , (5.1)

where µ1 denotes a generic tidal parameter, and y12 =
y1 − y2. In this section we discuss how one can de-
scribe the actions of Eq. (5.1) within the EOB formal-
ism. Let us recall that the EOB formalism [16–19] re-
places the (possibly higher-order) Lagrangian dynamics
of two particles by the Hamiltonian dynamics of an “effec-
tive particle” embedded within some “effective external
potentials.” For non-spinning [66] bodies, the original

(velocity-dependent) two-body interactions become re-
formulated (and simplified by means of a suitable contact
transformation in phase space) in terms of three “EOB
potentials”: A(reff), B̄(reff) and Q(reff , p

eff). The first
two potentials, A(reff) and B̄(reff), parametrize an “ef-
fective metric”

ds2eff = gµν(xeff) dx
µ
eff dx

ν
eff

= −A(reff) c2 dt2eff + B̄(reff) dr
2
eff

+r2eff(dθ
2
eff + sin2 θeff dϕ

2
eff) , (5.2)

and its associated Hamilton-Jacobi equation, while the
third potential Q(reff , p

eff) (which necessarily appears
at 3PN [18]), describes additional contributions to the
(Hamilton-Jacobi) mass-shell condition,

0 = µ2 + gµνeff (xeff) p
eff
µ peffν +Q(reff , p

eff) (5.3)

[where µ ≡ m1m2/M ≡ νM is the reduced mass of the
binary system], that are higher than quadratic in the ef-
fective momentum peff . Following the EOB-simplifying
philosophy of Ref. [18], we shall assume that the third po-
tential has been reduced (by a suitable canonical trans-
formation) to a form where it vanishes with the radial
momentum peffr .

In addition, EOB theory introduces a dictionary be-
tween the original dynamical variables (positions, mo-
menta, angular momentum, energy) and the effective
ones. A crucial entry of this dictionary is a non-trivial
transformation between the original “real” energy, i.e.,
the value of the original (total) Hamiltonian H , and the
“effective” energy −peff0 ≡ Heff entering the mass-shell
condition of Eq. (5.3). Because of this transformation,
the final EOB-form of the (original, real) Hamiltonian
reads (here we set c = 1 for simplicity)

HEOB(xeff ,peff) =M

√
1 + 2 ν

(
Heff

µ
− 1

)
, (5.4)

where Heff = Heff(xeff ,peff) is given by

Heff =

√
A(reff)

(
µ2 +

J2
eff

r2eff
+

(peffr )2

B̄(reff)
+Q(reff , peff)

)
.

(5.5)
Here Jeff ≡ xeff×peff denotes the effective orbital angular
momentum, which, by the EOB dictionary, is actually
identified with the original, total (center of mass) orbital
angular momentum J of the binary system: Jeff ≡ J .

A. EOB reformulation of tidal actions: general
orbits

Let us now discuss what the various possible meth-
ods are for reformulating an original action of the
type L0(y12,v1,v2, . . .) + µ1 Lµ1(y12,v1,v2) [where µ1
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stands for a sum over a collection of tidal pa-

rameters µ
(2)
1 , µ

(2)
2 , µ

(3)
1 , µ

(3)
2 , . . .] into corresponding µ1-

deformations of EOB potentials: A0(reff) + µ1Aµ1 (reff),
B̄0(reff) + µ1 B̄µ1(reff), Q0(reff , p

eff) + µ1Qµ1(reff , p
eff).

The main difficulty in finding the perturbed EOB po-
tentials Aµ1 , B̄µ1 , and Qµ1 that encode the dynamics of
Lµ1 is that such a dynamical equivalence is obtained only
after some a priori unknown phase-space contact trans-
formation between the EOB phase-space coordinates, say
ξeff = (xeff ,peff), and the original (harmonic-coordinate-
related) ones, say ξh = (y12,v12). For simplicity, we
assume that we have already performed the reduction of
the original harmonic-coordinate dynamics to its center-
of-mass version, in which one can express v1 and v2

in terms of the relative velocity v12 ≡ v1 − v2 and of
y12 ≡ y1 − y2. On the other hand, we do not imme-
diately assume that the original Lagrangian dynamics is
expressed in Hamiltonian form. (Let us recall that, as
was found long ago [24, 49], starting at the 2PN level,
the harmonic-coordinate dynamics does not admit an
ordinary Lagrangian, L(y, ẏ), but only a higher-order
one, L(y, ẏ, ÿ). In order to express the 2PN dynamics
in Hamiltonian form, one already needs some (higher-
order) contact transformation. However, this transfor-
mation is well-known, e.g., Ref. [46], and we do not need
to complicate our discussion by explicitly mentionning it.
Nonetheless, it will be taken into account in our calcula-
tions below.)

The transformation T between ξeff and ξh will have the
general structure

ξh = T0(ξeff) + µ1 Tµ1(ξeff) . (5.6)

The unperturbed part T0(ξeff) is known from the pre-
vious EOB work [16, 18], but the O(µ1) perturbed part
Tµ1(ξeff) is unknown, and, actually, is part of the prob-
lem which must be solved for reformulating the (per-
turbed) harmonic-coordinate dynamics in EOB form.
This means, in particular, that it would not be correct to
try to compute Aµ1 , B̄µ1 and Qµ1 , simply by replacing
in the tidal action in Eq. (5.1) the harmonic variables ξh
by their unperturbed expression T0(ξeff) in terms of the
effective variables ξeff .

For the general case of non-circular orbits, a universal,
correct method for transforming the original Lagrangian
L(ξh) = L0(ξh) + µ1 Lµ1(ξh) in EOB form consists (as
explained in Ref. [16]) of the following steps: (i) to trans-
form the original Lagrangian L(ξh) in Hamiltonian form
H(ξH) = H0(ξH) + µ1Hµ1(ξH), where ξH = (q, p) are
canonical coordinates; (ii) to extract the gauge-invariant
content of H(ξH) by expressing it in terms of action vari-

ables Ia = 1
2π

∮
pa dqa, which yields the Delaunay Hamil-

tonian H(I) = H0(I) + µ1Hµ1(I); (iii) to do the same
thing for the EOB Hamiltonian, i.e. to compute, as a
functional of the unknown EOB potentials, its Delaunay
form HEOB(I) = HEOB

0 (I) + µ1H
EOB
µ1

(I); and finally
(iv) to identify the known H(I) to HEOB(I), which de-
pends on the unknown functions Aµ1 , B̄µ1 , Qµ1 . This

last step yields (functional) equations for Aµ1 , B̄µ1 , Qµ1

and thereby allows one to determine them. [In prac-
tice, the functional dependence on A, B̄,Q is replaced
by a much simpler parameter-dependence by using the
method of undetermined coefficients for parametrizing
general forms of A, B̄,Q.] An alternative (and equally
universal) method for transforming L(ξh) in EOB form
(as used in Ref. [18]) is to add the transformation
ξh = T (ξeff) to the list of unknowns (using the method
of undetermined coefficients), and to directly solve the
set of constraints for T,A, B̄ and Q coming from the re-
quirement that HEOB(ξeff , A, B̄, Q) = H(T (ξeff)). [One
must then take into account that T is constrained to be
a canonical transformation.]

B. EOB reformulation of tidal actions: circular
orbits

The 2PN-accurate results, given for several tidal in-
teractions in the case of general orbits, in the previous
section, can, in principle, be transformed within the EOB
format by using any of the two methods we just ex-
plained. However, from the point of view of current astro-
physical applications, one is mainly interested in knowing
the EOB description of (quasi)-circular motions. In this
case, we know a priori that it is only the A radial po-
tential which matters. Knowing this, the question arises
how to compute the tidal perturbation Aµ1 of the EOB A
potential in the most efficient manner, possibly without
having to go through the rather involved, general univer-
sal methods recalled above. Fortunately, it is possible to
do so by using the following facts.

The first useful fact concerns the relation between the
tidal perturbation (in harmonic coordinates) of the La-
grangian of the binary system, say

δLh(yh, vh) = µ1 Lµ1(y12,v1,v2) , (5.7)

and the corresponding tidal perturbation (in harmonic-
related phase-space coordinates) of the Hamiltonian, say

δHh(yh, ph) ≡ Hh
full(yh, ph)−Hh

tidal-free(yh, ph) . (5.8)

[Strictly speaking, as we recalled above, the harmonic-
related (q, p) = (yh, ph) phase-space coordinates involve
a supplementary O(1/c4) gauge transformation linked to
the order reduction of L2PN(y, ẏ, ÿ) into Lred

2PN(y
′, ẏ′).]

Note that here and in the following the notation δQ(ξ)
will always refer to the tidal contribution to some func-
tion of specified variables, i.e. δQ(ξ) ≡ Qfull(ξ) −
Qtidal-free(ξ). One has to be careful about which variables
are fixed as, for instance, the transformation between La-
grangian (q, q̇) and Hamiltonian (q, p) coordinates does
contain a tidal contribution [because δtidalL(yh, ẏh) does
depend on velocities]. This being made clear, we have
the well-known universal result about first-order defor-
mations of Lagrangians by small parameters, L(q, q̇) =
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L0(q, q̇) + µ1 Lµ1(q, q̇), namely

δHh(yh, ph) = − δLh(yh, vh) (5.9)

which follows from the properties of the Legendre trans-
form.

Let us now apply the second method recalled
above for transforming the “harmonic” Hamiltonian
Hh

full(yh, ph) = Hh
0 (yh, ph) + δHh(yh, ph) (where the in-

dex 0 refers to the unperturbed, tidal-free dynamics)
into its corresponding EOB formHEOB

full (xEOB, pEOB), de-
fined in Eqs. (5.4), (5.5) above. [For clarity, we denote
here the effective-one-body phase-space coordinates by
xEOB, pEOB, instead of xeff , peff as above.] The crucial
point is that the EOB potentials entering the definition
of HEOB

full must be the full, tidally-completed values of
A, B̄ and Q, e.g.

Afull(rEOB) = A0(rEOB) + µ1Aµ1(rEOB)

≡ A0(rEOB) + δA(rEOB) . (5.10)

In other words δHEOB(xEOB, pEOB) ≡
HEOB

full (xEOB, pEOB) − HEOB
0 (xEOB, pEOB) is ob-

tained by varying the functions A, B̄ and
Q (i.e. A(rEOB) = A0(rEOB) + δA(rEOB),
etc.) in the definition in Eqs. (5.4), (5.5) of
HEOB

full [xEOB, pEOB;A(rEOB), B̄(rEOB), Q(rEOB, p
EOB)].

This second method for mapping Hh
full(ξh)

into HEOB
full (ξEOB) [where ξh ≡ (yh, ph), ξEOB ≡

(xEOB, pEOB)] consists of looking for a full, i.e., per-
turbed, (time-independent) contact transformation
ξh = Tfull(ξEOB) = T0(ξEOB) + µ1Tµ1(ξEOB) that
transforms Hh

full(ξh) into H
EOB
full (ξEOB), i.e., such that

Hh
full[Tfull(ξEOB)] = HEOB

full (ξEOB) . (5.11)

Rewriting the full transformation Tfull as the composi-
tion T ′ ◦ T0 of the known unperturbed (tidal-free) con-
tact transformation ξ0h = T0(ξEOB) mapping Hh

0 (ξ
0
h) into

HEOB
0 (ξEOB) with an unknown near-identity additional

transformation, ξh = T ′(ξ0h) = ξ0h + µ1{Gµ1(ξ
0
h), ξ

0
h}

[where {f, g} denotes a Poisson bracket and where
µ1Gµ1(ξ

0
h) is the first-order generating function associ-

ated with the canonical transformation T ′], and expand-
ing all functions in Eq. (5.11) into unperturbed plus tidal
contributions (Hh = Hh

0 + δHh, T = (1 + δT ′) ◦ T0,
HEOB = HEOB

0 + δHEOB), leads to the condition

[
δHh(ξ0h) + {δG(ξ0h), Hh(ξ0h)}

]
ξ0
h
=T0(ξEOB)

= δHEOB(ξEOB) , (5.12)

where δG(ξ0h) = µ1Gµ1(ξ
0
h).

In general, δG(ξ0h) is part of the unknown functions
that must be looked for when writing the condition in
Eq. (5.12). However, another simplifying fact occurs in
the case where one focusses on circular motions: The
supplementary term {δG,Hh} happens to vanish. In-
deed, δG(ξ0h) is a scalar function and the Poisson bracket
{δG,Hh} is equal to the time derivative of δG(ξ0h) along
the Hh-dynamical flow, which clearly vanishes along cir-
cular motions. This allows one to conclude that, along
circular motions, we have the simple condition

[
δHh(ξ0h)

]circ
ξ0
h
=T0(ξEOB)

=
[
δHEOB(ξEOB)

]circ
, (5.13)

where the left-hand side is, in principle, fully known.

C. Link between the circular tidal action and the
tidal contribution to the EOB A potential

Let us now evaluate the right-hand side of Eq. (5.13).
When restricting the definition of Eqs. (5.4), (5.5) of
the EOB Hamiltonian to circular motions, the terms
(pEOB

r )2/B̄ and Q(rEOB, p
EOB) disappear (because one

works with a gauge-reduced Q which vanishes with
pEOB
r ). As a consequence, Hcirc

EOB(rEOB, J) only de-
pends on the A potential. The difference, δHcirc

EOB ≡
Hcirc

EOB[rEOB, J, Afull] − Hcirc
EOB[rEOB, J, A0], can then be

simply computed by varying A (Afull = A0 + δA) within
Hcirc

EOB[A]. To write explicitly the result of this varia-
tion, it is convenient to work with dimensionless vari-
ables. We can replace the two phase-space variables
rEOB, p

EOB
ϕ ≡ J that enter Hcirc

EOB by their dimension-
less counterparts

u ≡ GM

c2 rEOB
≡ G(m1 +m2)

c2 rEOB
, (5.14)

and

j ≡ c J

GM µ
≡ c J

Gm1m2
. (5.15)

In terms of these variables, the explicit expression of[
HEOB

full

]circ
reads

[
HEOB

full (u, j)
]circ

=M c2
√
1 + 2 ν

(
−1 +

√
A(u)(1 + j2 u2)

)
. (5.16)

Varying A(u) in Eq. (5.16) then yields the following ex-
plicit expression for the right-hand side of Eq. (5.13):
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[
δHEOB(u, j)

]circ
=

1

2
M ν c2

√√√√ 1 + j2 u2

A(u)
[
1 + 2 ν

(
− 1 +

√
A(u)(1 + j2 u2)

)] δA(u) . (5.17)

In addition, one must take into account the constraint
coming from the reduction to circular motions, namely,
from ṗEOB

r = −∂HEOB/∂ rEOB, the fact that ∂u[A(u)(1+
j2 u2)] = 0, i.e. the fact that j2 is the following function
of u (using a prime to denote the u-derivative):

j2 = j2circ(u) ≡ − A′(u)

(u2A(u))′
. (5.18)

Note that this relation depends on the value of the radial
potential A(u). If one is considering the full, tidally-
perturbed circular motions one must use Afull(u) =
A0 + δA in Eq. (5.18). On the other hand, as we are
now interested in considering the (first-order) tidal per-
turbations δHh and δHEOB, and their link in Eq. (5.13),
we can evaluate δHEOB

circ with sufficient accuracy by re-

placing in the coefficient of δA(u), on the right-hand side
of Eq. (5.17), A(u) and j2 by their unperturbed, tidal-
free expressions A0(u) and j

2
A0

(u) (obtained by replacing
A → A0 on the right-hand side of Eq. (5.18). [This re-
mark applies to several other results below; notably Eqs.
(5.20) and (5.22)].

Combining our results of Eqs. (5.9), (5.13) and (5.17),
we finally get a very simple link between the tidal vari-
ation of the harmonic-coordinate Lagrangian δL(yh, vh)
and the corresponding tidal variation δA(u) of the EOB
A potential, namely,

δA(u) = − 2

M ν c2

√
F (u) [δL(yh, vh)]

circ
rh=T0(u)

, (5.19)

where

F (u) ≡
[

A(u)

1 + j2 u2

(
1 + 2 ν

(
−1 +

√
A(u)(1 + j2 u2)

))]circ

A=A0

. (5.20)

Here, the superscript “circ” means that j2 must be re-
placed by j2circ(u), Eq. (5.18). (Note that the replacement
A → A0 indicated as a subscript must be done both in
the explicit occurrence of A in Eq. (5.20) and in the def-
inition in Eq. (5.18) of j2circ(u)). Finally, if we introduce
the short-hand notation

Ã(u) ≡ A(u) +
1

2
uA′(u) , (5.21)

F (u), Eq. (5.20), can be rewritten in the explicit form

F (u) = Ã(u)


1 + 2 ν


−1 +

A(u)√
Ã(u)




 , (5.22)

which is valid along circular orbits, and applies for any
relevant (exact or approximate) value of the A potential.
On the other hand, as we computed δL only to the 2PN
fractional accuracy, it is sufficient to use a value of F (u)
which is also only fractionally 2PN-accurate. One might
think a priori that this would mean using for A(u) in
Eq. (5.22) the tidal-free approximation A0(u) truncated
at the 2PN order, namely A2PN

0 (u) = 1 − 2 u + 2 ν u3.
However, the contribution 2 ν u3 = 2 ν(GM/(c2 rEOB))

3

is O(1/c6) compared to one, which is the leading-order
value of F (u), which starts as F (u) = 1 + O(u) = 1 +

O(1/c2). The same consideration applies to Ã(u). [The
situation would have been different if F (u) had been,
say, ∝ A′(u).] This means that, at the 2PN fractional
accuracy, we can use the value of F (u) obtained from
the leading-order, “Schwarzschild-like” value of A0(u),

namely A1PN
0 (u) = 1−2 u. The corresponding Ã function

is then: Ã1PN
0 (u) = 1− 3 u, so that

F 2PN(u) = (1 − 3 u)

[
1 + 2 ν

(
− 1 +

1− 2 u√
1− 3 u

)]
.

(5.23)
Consistently with the fractional 2PN accuracy, and re-
membering, that u = O(1/c2), we could as well use
the 2PN-accurate series expansion of Eq. (5.23), say
F 2PN(u) = 1 + f1(ν)u + f2(ν)u

2 + O(u3). However,
it is better to retain the information contained in Eq.
(5.23) that, in the test-mass limit ν → 0 (where A0(u) →
1 − 2 u), the exact value of F (u) becomes 1 − 3 u (see
later).

There remains only one missing piece of information
to be able to use our result in Eq. (5.19) for computing
the various tidal contributions to A(u). We need to work
out the explicit form of the unperturbed transformation
T0 between rEOB and rh.

A first method for getting the transformation T0 (at
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2PN) is to compose the transformation ξ0h → ξADM (ob-
tained at 2PN in Ref. [46], and at 3PN in Ref. [50]) with
the transformation ξADM → ξEOB (obtained at 2PN in
Ref. [16], and at 3PN in Ref. [18]). For our present
purpose, it is enough to restrict these transformations to
the circular case, i.e. to transformations rh → rADM and
rADM → rEOB.

The transformation h → ADM starts at 2PN,
i.e., yh

A = xADM
A + c−4 Y 2PN

A (xADM,pADM), with
Y 2PN
A (xADM,pADM) given, e.g., in Eq. (4.5) of Ref. [50].

Its circular, and center-of-mass, reduction (with n12 ·
pA = 0, p1 = −p2 ≡ p, and (p/µ)2 = GM/r12+O(1/c

2))
yields at 2PN

rh12 = rADM
12

[
1 +

(
1

4
+

29

8
ν

)(
GM

c2 r12

)2
]
. (5.24)

On the other hand the transformation ADM → EOB
starts at 1PN. To determine the corresponding radial
transformation rADM

12 → rEOB, one could think of us-
ing Eq. (6.22) of Ref. [16]. However, this equation
needs to be completed by the knowledge of the circularity
condition relating (pADM/µ)2 to GM/rADM

12 at the 1PN
level included. This 1PN-accurate circularity condition
can, e.g., be obtained from combining the 1PN-accurate
rADM = rADM(j) relation given in Ref. [51] (see be-
low), with the fact that (setting uADM ≡ GM/(c2 rADM))
(pADM/(µc))

2 = j2 u2ADM. This yields (pADM/(µc))
2 =

uADM + 4 u2ADM, and therefrom the relation between
rADM and rEOB.
Another method (which we have checked to give the

same result) for determining the rADM
12 → rEOB transfor-

mation does not need to use Eq. (6.22) of Ref. [16]. It
consists of directly eliminating the dimensionless angular
momentum j between the two relations rADM = rADM(j)
and rEOB = rEOB(j). The former relation was derived
at 3PN in Ref. [51] and reads, at 2PN,

rADM
12 =

GM

c2
j2
[
1− 4

j2
− 1

8
(74− 43 ν)

1

j4

]
, (5.25)

while the latter one is obtained by inverting the 2PN-
accurate version of Eq. (5.18), namely, using A2PN(u) =
1− 2 u+ 2 ν u3:

1

j2
=
u(1− 3 u+ 5 ν u3)

1− 3 ν u2
. (5.26)

Inserting Eq. (5.26) into Eq. (5.25) yields (at 2PN)

GM

c2 rADM
12

= u

[
1 + u+

(
5

4
− 19

8
ν

)
u2
]
. (5.27)

Then, combining Eq. (5.27) and Eq. (5.24) yields the
looked for transformation rEOB → rh12, at 2PN accuracy,

rh12 +
GM

c2
= rEOB

(
1 + 6 ν

(
GM

c2 rEOB

)2
)
, (5.28)

or, setting uh ≡ GM/(c2 rh12) by analogy with u ≡
GM/(c2 rEOB),

uh =
u

1− u
(1 − 6 ν u2) . (5.29)

We have written the transformation of Eqs. (5.28), (5.29)
so as to exhibit the exact form of the transformation
rh → rEOB in the extreme mass ratio limit ν → 0, namely
rh = rEOB −GM/c2 +O(ν).

Summarizing: The (first-order) tidal contribution
δA(u) = µ1Aµ1(u) to the main EOB radial po-
tential, associated with any tidal parameter µ1 (=

µ
(2)
1 , µ

(2)
2 , µ

(3)
1 , . . .), is given in terms of the correspond-

ing harmonic-coordinate tidal contribution to the ac-
tion δL(yh, vh) = µ1Lµ1(yh, vh), for circular motion, by
Eq. (5.19), where F (u) is given (at 2PN) by Eq. (5.23),
and where the transformation between the harmonic
radial separation rh12 and the EOB radial coordinate
rEOB ≡ GM/(c2 u) is given by Eqs. (5.28) or (5.29).

VI. EOB DESCRIPTION OF TIDAL ACTIONS

A. Tidal actions for comparable-mass systems

We have explained in the previous section how to con-
vert each contribution ∼ µ1 Lµ1(yh, vh) to the (reduced)
tidal action into a corresponding additional contribution
µ1Aµ1(u) to the main EOB radial potential A(u). For
instance, if we consider the dominant tidal parameter,

i.e. the electric quadrupolar one, µ
(ℓ=2)
1 (or µ

(ℓ=2)
2 , af-

ter exchanging 1 ↔ 2), the combination of the result of
Eq. (4.2) for the associated Lagrangian, with Eq. (5.19)
yields

µ
(2)
1 A

µ
(2)
1
(u) = − 1

2 c2
µ
(2)
1

Mν

√
F (u)

dτ1
dt

[Gαβ G
αβ ]1 .

(6.1)
In other words, apart from a (negative) numerical coeffi-

cient, and the rescaled tidal parameter µ
(2)
1 /(Mν) (where

Mν = µ = m1m2/(m1 +m2) is the reduced mass of the
system), the corresponding tidal contribution to A(u) is

the product of three factors:
√
F (u), dτ1/dt and the ge-

ometrical invariant associated with the considered tidal
parameter, e.g., [Gαβ G

αβ ]1 for the electric quadrupole
along the first worldline. In addition, two of these fac-
tors, dτ1/dt and the geometrical invariant, must be re-
expressed as functions of the EOB coordinates by using
Eq. (5.28).

Let us start by applying this procedure to the dom-
inant tidal action term: the electric-quadrupole one in
Eq. (6.1). We have given above, in Eq. (4.14), the 2PN-
accurate value of J2e ≡ [Gαβ G

αβ ]1 in harmonic coordi-
nates. Using the transformation of Eq. (5.29) to replace
1/rh12 in terms of 1/rEOB leads to

J
(circ)
2e =

6M2X2
2

r6EOB

[
1 + ǫ2

(X1 + 3)M

rEOB
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+ǫ4
M2

28r2EOB

(295X2
1 − 7X1 + 336)

]
. (6.2)

In addition the reexpression of the time-dilation factor
dτ1/dt, Eq. (4.19), in terms of 1/rEOB yields

dτ1
dt

=
1

Γ1
= 1− 1

2
(X1 − 1)(X1 − 3)uǫ2

+
3

8
u2(X1 − 1)(X3

1 − 3X2
1 + 3X1 + 3)ǫ4 . (6.3)

Their product yields the electric-quadrupole tidal La-

grangian (stripped of its prefactor 1
4 µ

(2)
1 ) in EOB co-

ordinates, at the 2PN accuracy, namely

G2
ab

dτ1
dt

=
J
(circ)
2e

Γ1
=

6(X1 − 1)2u6

M4
L̂2e , (6.4)

where

L̂2e = 1− 1

2
u(X2

1 − 6X1 − 3)ǫ2 (6.5)

+
u2

56
(21X4

1 − 112X3
1 + 744X2

1 + 238X1 + 357)ǫ4 .

Adding the further factor
√
F (u), as well as the prefac-

tor, leads to the corresponding contribution to the EOB
A potential, namely

µ
(2)
1 A

µ
(2)
1
(u) = A

(2)LO
1 electric(rEOB) Â

(2)
1 electric(u) , (6.6)

where

A
(2)LO
1 electric(rEOB) = − 3G2

c2
µ
(2)
1 M

ν

X2
2

r6EOB

, (6.7)

and

Â
(2)
1 electric(u) =

√
F (u) L̂2e = 1+ α2e

1 u+ α2e
2 u2 +O(u3) ,

(6.8)
with

α2e
1 =

5

2
X1 , (6.9)

α2e
2 =

337

28
X2

1 +
1

8
X1 + 3 . (6.10)

The leading-order (i.e., Newtonian-level) A potential of
Eq. (6.7) is equivalent to Eqs. (1.6) and (1.7) above (i.e.,
Eqs. (23), (25) of Ref. [5]), using the link

Gµ
(ℓ)
A =

1

(2ℓ− 1)!!
2 k

(ℓ)
A R2ℓ+1

A . (6.11)

The term of order u (i.e., 1PN) in the relativistic ampli-

fication factor Â
(2)
1 electric(u), Eq. (6.8), coincides with the

result computed some time ago (see Eq. (38) in Ref. [5]).

By contrast, the (2PN) term of order u2 in Â
(2)
1 electric(u) is

the main new result of our present work. Let us discuss
its properties.

Similarly to the 1PN coefficient α2e
1 = 5

2 X1, which was
positive, and monotonically increasing (from 0 to 5/2) as
X1 ≡ m1/M varies between 0 and 1, the 2PN coefficient
α2e
2 is also positive, and increases as X1 varies between

0 and 1. When X1 = 0 (i.e. in the limit m1 ≪ m2), α
2e
2

takes the value + 3, while when X1 = 1 (i.e., in the limit
m1 ≫ m2), it takes the value

α2e
2 (X1 = 1) =

849

56
= 15.16071429 . (6.12)

Note that this is about 5 times larger than its value when
X1 = 0. Of most interest (as neutron stars are expected
to have rather similar masses∼ 1.4M⊙) is the equal-mass
value of α2e

2 , which is

α2e
2

(
X1 =

1

2

)
=

85

14
= 6.071428571 . (6.13)

In other words, the distance-dependent amplification
factor of the electric quadrupole reads, in the equal-mass
case

[
Â

(2)
1 electric(u)

]equal-mass

= 1 +
5

4
u+

85

14
u2 +O(u3)

= 1 + 1.25 u+ 6.071429 u2

+O(u3) . (6.14)

We will comment further on these results for Â
(2)
1 electric(u)

and on the recent comparisons between numerical simu-
lations and the EOB description of tidal interactions be-
low. For the time being, let us give the corresponding
results of our analysis for some of the sub-leading tidal
interactions.

The EOB-coordinate value of the electric octupole in-

variant, J
(circ)
3e , Eq. (4.17), reads

J
(circ)
3e =

90X2
2M

2

r8EOB

[
1 + ǫ2(6X1 + 1)

M

rEOB

+ǫ4
M2

3r2EOB

(83X2
1 + 14X1 + 17)

]
. (6.15)

Its corresponding action (stripped of its prefactor) is

G2
abc

dτ1
dt

=
J
(circ)
3e

Γ1
=

90X2
2u

8

M6
L̂3e (6.16)

with

L̂3e = 1− 1

2
(X2

1 − 16X1 + 1)uǫ2 (6.17)

+
1

24
(9X4

1 − 108X3
1 + 994X2

1 − 56X1 + 73)u2ǫ4

while the corresponding contribution to the EOB A po-
tential reads

µ
(3)
1 A

µ
(3)
1
(u) = A

(3)LO
1 electric(rEOB) Â

(3)
1 electric(u) , (6.18)
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where

A
(3)LO
1 electric(rEOB) = − 15G2

c2
µ
(3)
1 M

ν

X2
2

r8EOB

, (6.19)

and

Â
(3)
1 electric(u) =

√
F (u) L̂3e = 1+ α3e

1 u+ α3e
2 u2 +O(u3) ,

(6.20)
with

α3e
1 =

15

2
X1 − 2 , (6.21)

α3e
2 =

110

3
X2

1 − 311

24
X1 +

8

3
. (6.22)

Here, both results in Eqs. (6.21) and (6.22) are new.
Note that, contrary to the quadrupolar case where α1 and

α2 were always both positive (so that Â
(2)
1 electric(u) was al-

ways an amplification factor) the electric-octupole factor

Â
(3)
1 electric(u) is smaller than 1 (for large separations) when

X1 <
4
15 ≃ 0.2667. Moreover, while the X1-variation of

α3e
1 is monotonic (going from − 2 to 11

2 as X1 increases

from 0 to 1), α3e
2 (X1) first decreases from α3e

2 (0) = 8
3 =

2.666667 to α3e
2 (Xmin

1 ) = 42853/28160 = 1.521768 as X1

increases from 0 toXmin
1 = 311/1760 = 0.1767046, before

increasing as X1 goes from Xmin
1 to 1, to reach the final

value α3e
2 (1) = 211/8 = 26.375 for X1 = 1. Note, how-

ever, that when (as expected) the two masses are nearly

equal the factor Â
(3)
1 electric(u) is an amplification factor.

In particular, its equal-mass value is

[
Â

(3)
1 electric(u)

]equal-mass

= 1 +
7

4
u+

257

48
u2 +O(u3)

= 1 + 1.75 u+ 5.354167 u2

+O(u3) (6.23)

which is similar to its corresponding quadrupolar coun-
terpart, Eq. (6.14).

Let us finally give the corresponding results for the
magnetic quadrupole and time-differentiated electric
quadrupole. For the magnetic quadrupole (at the 1PN
fractional accuracy), we found

1

4
H2

ab ≡ J
(circ)
2m (6.24)

=
18X2

2M
3

r7EOB

[
1 + ǫ2

M

3rEOB
(3X2

1 +X1 + 12)

]
,

1

4
H2

ab

dτ1
dt

≡ 18X2
2

M4
u7L̂2m , (6.25)

L̂2m = 1 +
1

6
(X1 + 3)(3X1 + 5)uǫ2 , (6.26)

Â
(2)
1magnetic(u) =

√
F (u) L̂2m = 1 + α2m

1 u+O(u2) ,

(6.27)

with

α2m
1 = X2

1 +
11

6
X1 + 1 . (6.28)

Here α2m
1 (X1) is always positive, and monotonically in-

creases from α2m
1 (0) = 1 to α2m

1 (1) = 23
6 = 3.833333, its

equal-mass value being α2m
1

(
1
2

)
= 13

6 = 2.166667.

Finally, for the time-differentiated electric quadrupole,
we got

Ġ2
ab = J

(circ)

2̇e
=

18X2
2M

3

r9EOB

[
1 + ǫ2(X2

1 + 2)
M

rEOB

]
,

(6.29)

Ġ2
ab

dτ1
dt

=
18X2

2

M6
u9 L̂2̇e , (6.30)

L̂2̇e = 1 +
1

2
uǫ2(X2

1 + 4X1 + 1) , (6.31)

Â
(2)

1Ġ
(u) =

√
F (u) L̂2̇e = 1 + α2̇e

1 u+O(u2) , (6.32)

with

α2̇e
1 =

1

2
(X1 + 2)(2X1 − 1) . (6.33)

B. Tidal actions of a tidally-deformable test mass

One of the characteristic features of the EOB formal-
ism for point-mass systems is the natural incorporation
of the exact test-mass limit ν → 0. Indeed, in this
limit the effective metric in Eq. (5.2) describing the
relative dynamics reduces to the Schwarzschild metric:

limν→0 A(u) = 1− 2 u =
(
limν→0 B̄(u)

)−1
. Let us study

the test-mass limit of tidal effects, with the aim of incor-
porating it similarly in their EOB description. When
considering the nonminimal worldline action of parti-
cle 1, the simplest test-mass limit to study is the limit
m1/m2 → 0. [When considering tidal effects within body
2, the permutation 1 ↔ 2 of our results below allow them
to describe the limit m2/m1 → 0. We leave to future
work a study of the limit m2/m1 → 0, when consid-
ering tidal effects taking place within body 1.] In the
limit investigated here, one is considering a tidally de-

formable test-mass (m1, µ
(ℓ)
1 , . . .) moving around a large

mass m2 ≫ m1. The effective action of body 1 is then
exactly obtained by evaluating the A = 1 contribution
of the general (two-body) effective action of Eq. (2.12)
within the background metric generated by the (non-
tidally deformable) large mass m2, at rest, i.e. within
a Schwarzschild metric of mass m2. The latter reads

ds2(m2) = −
(
1− 2

Gm2

c2 rs

)
c2 dt2 +

dr2s
1− 2 Gm2

c2 rs

+r2s(dθ
2 + sin2 θ dϕ2) (6.34)
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in “Schwarzschild”, or areal, coordinates, and

ds2(m2) = −
1− Gm2

c2 rh

1 + Gm2

c2rh

c2 dt2 +
1 + Gm2

c2 rh

1− Gm2

c2rh

dr2h

+

(
rh +

Gm2

c2

)2

(dθ2 + sin2 θ dϕ2) (6.35)

in harmonic coordinates: rh = rs −Gm2/c
2. As a check

on the results below (and on our codes), we have com-
puted them both in Schwarzschild coordinates and in har-
monic ones.

The geometrical invariants J2e = G2
ab, etc., take the

following values in this Schwarzschild limit, and when
considering as above circular motions (we again set G
and c to one for simplicity):

G
(S)
ab

2 = J̄
(S)
2e =

6m2
2(m

2
2 + r2h −m2rh)

(rh − 2m2)2(rh +m2)6

∼ 6m2
2

r6h

[
1− 3m2

rh
+

12m2
2

r2h
+ . . .

]

=
6u6S
m4

2

1

(1− 3uS)

[
1 +

3u2S
(1− 3uS)

]

=
6u6S
m4

2

[
1 + 3uS

(1− 2uS)

(1 − 3uS)2

]
, (6.36)

1

4
H

(S)
ab

2 = J̄
(S)
2m =

18m3
2(rh −m2)

(rh − 2m2)2(rh +m2)6

∼ 18m3
2

r7h

[
1− 3m2

rh
+

11m2
2

r2h
+ . . .

]

=
18u7S
m4

2

[
1 +

uS(4 − 9uS)

(1− 3uS)2

]
, (6.37)

G
(S)
abc

2 = J̄
(S)
3e =

30m2
2(rh −m2)(2m

2
2 + 3r2h − 3m2rh)

(rh − 2m2)2(rh +m2)9

∼ 90m2
2

r8h

[
1− 7

m2

rh
+

98

3

m2
2

r2h
+ . . .

]

=
90u8S
m6

2

(1− 2uS)

(1− 3uS)

[
1 +

8u2S
3(1− 3uS)

]
,

(6.38)

Ġ
(S)
ab

2 = J̄
(S)

2̇e
=

18m3
2(rh −m2)

2

(rh − 2m2)2(rh +m2)9

=
18m3

2

r9h

[
1− 7

m2

rh
+ 32

m2
2

r2h
+ . . .

]

=
18u9S
m6

2

(1− 2uS)
2

(1− 3uS)2
, (6.39)

where uS ≡ Gm2/(c
2 rs). We have indicated above the

expansions in powers of the inverse harmonic radius rh as
checks of our 2PN-accurate results, written in harmonic
coordinates; see Eqs. (4.14), (4.16)–(4.18).
In the following, we shall focus on the transformation

of the exact test-mass geometrical invariants above into

corresponding contributions to the EOB A potential. As
explained previously, Eqs. (5.19), (6.1), apart from the
universal prefactor − 2/(M ν c2) and the specific original
tidal coefficient multiplying the considered geometrical

invariant (such as 1
4 µ

(2)
1 for the electric quadrupole), the

contribution toA(u) associated with some given invariant
is obtained by multiplying it by two extra factors: (i)
the time-dilation factor dτ1/dt and (ii) the EOB-rooted

factor
√
F (u). Let us discuss their values in the test-mass

limit m1 ≪ m2 that we are now considering.

The first factor is the square-root of

(
dτ1
dt

)2

= 1− 2Gm2

c2 rs
− 1

c2
r2s

(
dϕ

dt

)2

. (6.40)

Denoting, as above, uS ≡ Gm2/(c
2 rs), and us-

ing the well-known Kepler law for circular orbits in
Schwarzschild coordinates, Ω2 = Gm2/r

3
s , simply yields

(
dτ1
dt

)test-mass

circ

=
√
1− 3 uS . (6.41)

The exact test-mass limit of the second factor is ob-
tained by taking the limit ν → 0 in the exact expression
of Eq. (5.22). In this limit, A(u) → 1 − 2 u, so that

Ã(u) → 1− 3 u, and

(√
F (u)

)test-mass

circ
=

√
1− 3 u . (6.42)

In addition, as the EOB coordinates reduce to
Schwarzschild coordinates in the test-mass limit ν → 0,
and M = m1 +m2 → m2, we have simply

uS ≡ Gm2

c2 rs
→ u ≡ GM

c2 rEOB
. (6.43)

In other words, the two extra factors in Eqs. (6.41),
(6.42) become both equal to

√
1− 3 u. As a consequence

the A contribution corresponding to the various geomet-
rical invariants of Eqs. (6.36)–(6.39) is obtained (apart
from a constant prefactor) by multiplying these invari-

ants by
(√

1− 3 u
)2

= 1 − 3 u = 1 − 3 uS. Including the

universal factor −2/(M ν c2) and the various tidal coef-

ficients 1
2

1
ℓ! µ

(ℓ)
1 , 1

2
ℓ

ℓ+1
1
ℓ!

σ
(ℓ)
1

c2 , . . . (as well as the factor

4 in H2
ab = 4J2m) yields the following exact, test-mass

contributions

µ
(2)
1 Atest-mass

µ
(2)
1

(u) = − 3
G2

c2
µ
(2)
1

m1

(m2)
2

r6EOB

(
1 +

3 u2

1− 3 u

)
,

(6.44)

µ
(3)
1 Atest-mass

µ
(3)
1

(u) = − 15
G2

c2
µ
(3)
1

m1

(m2)
2

r8EOB

(1− 2 u)×

×
(
1 +

8

3

u2

1− 3 u

)
, (6.45)
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σ
(2)
1 Atest-mass

σ
(2)
1

(u) = − 24
G3

c4
σ
(2)
1

m1

(m2)
3

r7EOB

1− 2 u

1− 3 u
,

(6.46)

µ
′(2)
1 Atest-mass

µ
′(2)
1

(u) = − 9
G3

c4
µ
′(2)
1

m1

(m2)
3

r9EOB

(1 − 2 u)2

1− 3 u
.

(6.47)
One easily sees that the various exact, test-mass am-

plification factors Â(u) exhibited here are compatible
with the X1 → 0 limit of the 2PN-expanded ones ∼
1 + α1u+ α2 u

2 +O(u3) derived above.

C. Light-ring behavior of test-mass tidal actions

A striking feature of all the amplification factors
present in Eqs. (6.44)–(6.47), such as

Â
(2) test-mass
1 electric (u) = 1 + 3

u2

1− 3 u
, (6.48)

is that they all formally exhibit a pole ∝ 1/(1 − 3 u)
mathematically located at 3 u = 1, i.e. corresponding
to formally letting particle 1 tend to the last unstable
circular orbit, located at 3Gm2/c

2 (“light-ring” orbit).
This behavior has a simple origin.

The invariant that is simplest to consider in order to
see this is J2e = G2

ab. From Eq. (4.3) its covariant ex-
pression reads

G2
ab = Rαµβν R

α β
•κ • λ u

µ uν uκ uλ . (6.49)

Let us study its mathematical behavior in the formal
limit where particle 1 tends to the light-ring orbit.
Using the language of Special Relativity, we consider
the Schwarzschild coordinates as defining a “lab-frame.”
With respect to this lab-frame, particle 1 becomes ultra-
relativistic as it approaches the light ring. More pre-
cisely, near the light ring the lab-frame components of
the 4-velocity uµ = (dt/dτ1)(c, v

i) tend towards infin-
ity proportionally to dt/dτ1 = Γ1 = 1/

√
1− 3 u, while

the lab-frame components of Rαµβν (and of the met-
ric) stay finite. As G2

ab is quartic in the lab-frame com-
ponents of uµ, it will tend towards infinity like Γ4

1 =
(dt/dτ1)

4 = (1 − 3 u)−2. The corresponding contribu-
tion to A(u) is obtained by multiplying G2

ab by the factor

(dτ1/dt)
2 = Γ−2

1 = (1−3 u)+1, which reduces the blow-up
of G2

ab to the milder (1−3 u)−2+1 = (1−3 u)−1 behavior
that is apparent in Eqs. (6.44) or (6.48).

A different way of phrasing this result uses the law
of transformation of the electric and magnetic compo-
nents of the Weyl tensor, Gab and Hab, under a boost.
Using, for instance, the fact that, under a boost with ve-
locity β = tanhϕ in the x direction, the complex ten-
sor Fab = Gab + iHab undergoes a complex rotation
of angle ψ = i ϕ in the yz plane [52], one easily finds
that the transverse traceless components of Fab (in the
yz plane) acquire, under such a boost, a factor of order

cos2 ψ = cosh2 φ = (1− β2)−1 ≡ Γ2
1. Because of the spe-

cial structure of the tensor Fab ∝ diag (−1,−1, 2), with
the third axis z labelling the radial direction, this rea-
soning shows that boosts in the radial (z) direction leave
Fab invariant. However, we are mainly interested here in
boosts in a “tangential” direction, say x, associated with
the fast motion of a circular orbit, and therefore orthogo-
nal to the radial direction, which do introduce a factor Γ2

1

in some of the boosted components of Fab. For complete-
ness, let us indicate that because of this special structure
of Fab, the invariant J2e = G2

ab for general, non-circular
orbits is equal to

J2e = G2
ab =

6m2
2

r6s

(
1 + 3u2

tg + 3u4
tg

)
, (6.50)

where u
2
tg ≡ r2s((u

θ)2 + sin2 θ(uφ)2) is the square of the
part of the 4-velocity uµ that is tangent to the sphere.
[The radial component of the 4-velocity brings no contri-
bution to J2e.]

The behavior near the light ring of the magnetic-
quadrupole invariant J2m = 1

4H
2
ab is understood in the

same way as that of J2e = G2
ab. Concerning the other

invariants, one can note that J3e = G2
abc can be written

as the sum

J3e = G2
abc = Cαβγ C

αβγ +
1

3 c2
J2̇e (6.51)

where

Cαβγ = Symαβγ ∇αRβµγν u
µ uν , (6.52)

and

J2̇e = Ġ2
ab = Ġαβ Ġ

αβ (6.53)

with

Ġαβ = uλ ∇λRαµβν u
µ uν . (6.54)

Similarly to G2
ab, Eq. (6.49), the term C2

αβγ in Eq. (6.51)
is quartic in uµ and is therefore expected to blow up like
Γ4
1. On the other hand, though Ġαβ , Eq. (6.54), is cubic

in uµ, it only blows up like Γ2
1 (so that J2̇e ∼ Γ4

1 and J3e ∼
C2+J2̇e ∼ Γ4

1) because of the special geodetic-precession
properties of the proper-time derivative operator∇/dτ =
uλ ∇λ (see, e.g., Sec. 3.6 of Ref. [53]).

D. A suggested “resummed” version of
comparable-mass tidal actions

Having understood that the formal pole-like behav-
ior, ∼ (1 − 3 u)−1, in the test-mass limit of the electric-
quadrupole A potential is linked to simple boost proper-
ties of Gab near the light-ring orbit, and knowing that the
EOB formalism predicts the existence of a formal analog
of the usual Schwarzschild light ring at the EOB dimen-
sionless radius r̂LR ≡ 1/uLR, defined as the solution of

Ã(uLR) = 0 , (6.55)
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with Ã(u) defined in Eq. (5.21), it is natural to expect
the (unknown) exact two-body version of the electric-
quadrupole A potential to mathematically exhibit an
analogous pole-like behavior of the form ∼ (1− r̂LR u)−1.
As we shall discuss elsewhere, such a mathematical be-
havior, linked to considering (within the EOB-simplifying
approach advocated in Ref. [18]) what would happen if
one formally considered (unstable) circular orbits with
u → uLR, does not mean that there is a real physical
singularity in the EOB dynamics near u = uLR, but
it indicates that higher-than-2PN contributions to the

electric-quadrupole amplification factor Â
(2)
1 electric(u) =

1 + α2e
1 u+ α2e

2 u2 + α2e
3 u3 + · · · will probably be slowly

convergent, and will tend to amplify further the corre-
sponding tidal interaction. Such an extra amplification
might, for instance, be physically important in the last
orbits of comparable-mass neutron-star binaries (which
will reach contact for values of u smaller than uLR).
This leads us to suggest that a more accurate value (for

u < uLR) of the electric-quadrupole amplification factor
is the following “resummed” version of Eq. (6.8):

Â
(2)
1 electric(u) = 1 + α2e

1 u+ α2e
2

u2

1− r̂LR u
, (6.56)

where α2e
1 and α2e

2 are given by Eqs. (6.9) and (6.10), and
where r̂LR ≡ 1/uLR is the solution of Eq. (6.55). Simi-
lar resummed versions of the other amplification factors
can be defined by incorporating in their PN-expanded
versions the formal light-ring behaviors exhibited by the
exact test-mass results of Eqs. (6.44)–(6.47).

Let us finally discuss several possible approximate val-
ues for r̂LR in the proposed Eq. (6.56). The simplest ap-
proximation consists of using the “Schwarzschild” value
r̂SLR = 3. However, a better value might be obtained by
taking a solution of Eq. (6.55) that incorporates more
physical effects. This might require solving Eq. (6.55)
numerically, with A(u) being the full A potential (con-
taining both Padé-resummed two-point-mass effects and
the various tidal contributions). In order to have a feel-
ing for the modification of r̂LR brought by incorporating
these changes, let us consider solving Eq. (6.55) when us-
ing the following approximation to the full A potential:

Aapprox(u) = 1− 2 u+ 2 ν u3 − κu6 (6.57)

where

κ = κ
(2)
1 + κ

(2)
2 = 2 k

(2)
1

m2

m1

(
R1 c

2

G(m1 +m2)

)5

+2 k
(2)
2

m1

m2

(
R2 c

2

G(m1 +m2)

)5

. (6.58)

Here, the term +2 ν u3 is the 2PN-accurate point-mass
modification of A(u), while the term −κu6 is the leading-
order tidal modification. Note that they have opposite
signs. The corresponding expression of Ã(u) reads

Ãapprox(u) = 1− 3 u+ 5 ν u3 − 4 κu6 . (6.59)

The corresponding value of uLR ≡ 1/r̂LR is the solution
close to 1/3 of the equation

uLR =
1

3

[
1 + 5 ν u3LR − 4 κu6LR

]
. (6.60)

If we could treat both ν and κ as small deformation
parameters, this would imply that, to first order in
these two deformation parameters, the value of uLR(ν, κ)
would be obtained by inserting the leading-order value
uLR ≃ 1/3 in the right-hand side of Eq. (6.60). This
would yield

uLR(ν, κ) =
1

3

[
1 +

5

33
ν − 4

36
κ+O(ν2, νκ, κ2)

]
,

(6.61)
and

r̂LR(ν, κ) = 3

[
1− 5

33
ν +

4

36
κ+O(ν2, νκ, κ2)

]
.

(6.62)
Note that while comparable-mass corrections (∝ ν) have
the effect of decreasing r̂LR, tidal ones (∝ κ) have the
opposite effect of increasing r̂LR. Let us focus on the tidal
effects, and consider the equal-mass case with R1 = R2

and k
(2)
1 = k

(2)
2 . One has a first order increase of r̂LR

equal to

δtidal r̂LR ≃ 16 k
(2)
1

(
R1 c

2

6Gm1

)5

= 16 k
(2)
1

1

(6 C1)5
, (6.63)

where C1 ≡ Gm1/(c
2R1) denotes the common compact-

ness of the two neutron stars. This simple approximate
analytical formula shows that δtidal r̂LR is very sensitive
to the value of the compactness of the neutron star. If
C1 = 1/6 = 0.166667, i.e., R1 = 6Gm1/c

2 (roughly cor-
responding to a radius of 12 km for a 1.4M⊙ neutron

star), then δtidal r̂LR = 1.44 (k
(2)
1 /0.09) will be of order

1 [the value k
(2)
1 = 0.09 being typical for C1 = 1/6;

see, e.g., Table II in Ref. [5]]. On the other hand, if

R̂1 ≡ R1 c
2/(Gm1) is slightly smaller than 6, δtidal r̂LR

will quickly become much smaller than 1, while if R̂1

is slightly larger than 6, δtidal r̂LR will quickly become
formally large (thereby invalidating the first-order ana-
lytical estimate of Eq. (6.63), which assumed δ r̂LR ≪ 3).
These rough estimates indicate that in many cases, tidal
effects on r̂LR will be quite important and will signifi-
cantly increase the numerical value of r̂LR. Note that
an increased value of r̂LR will, in turn, increase the
effect of the conjectured resummed 2PN contribution

α2e
2 u2/(1− r̂LR u) to Â

(2)
1 electric(u).

VII. SUMMARY AND CONCLUSIONS

Using an effective action technique, we have shown
how to compute the additional terms in the reduced

(Fokker) two-body Lagrangian L(y1,y2, ẏ1, ẏ2) that are
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linked to tidal interactions. Thanks to a general prop-
erty of perturbed Fokker actions [explained at the end
of Sec. II, see Eq. (2.20)], the additional tidal terms
are correctly obtained (to first order in the tidal per-
turbations) by replacing in the complete, unreduced ac-
tion S[gµν ; y1, y2] the gravitational field gµν by the so-
lution of Einstein’s equations generated by two struc-
tureless point masses m1,y1;m2,y2. This allowed us
to compute in a rather straightforward manner the re-
duced tidal action at the 2PN fractional accuracy by us-
ing the known, explicit form of the 2PN-accurate two-
point-mass metric [36–39]. The main technical subtlety
in this calculation is the regularization of the self-field ef-
fects associated with the computation of the various non-
minimal tidal-action terms ∼

∫
dτ(Rαµβν u

µ uν)2 + . . .,
where, e.g., Rαµβν(x; y1, y2) is to be evaluated on one
of the worldlines that generate the metric gµν (so that
Rαµβν(y1; y1, y2) is formally infinite). We explained
in detail (in Sec. III) one (algorithmic) way to per-
form this regularization, using Hadamard regularization
(which is equivalent to dimensional regularization at the
2PN level). We then computed the regular parts of
the brick potentials that parametrize the 2PN metric,
from which we derived the regularized values of sev-
eral of the geometrical invariants entering the nonmin-
imal worldline tidal action terms. [See Eqs. (4.4)–(4.10)
for the 2PN-accurate Lagrangians (for general orbits) of
the three leading tidal terms (electric quadrupole, elec-
tric octupole and magnetic quadrupole)]. We then fo-
cussed on the most physically useful information con-
tained in these actions, namely the corresponding con-
tributions to the EOB main radial potential, A(u), with
u = G(m1 + m2)/(c

2 rEOB). Our Eqs. (5.19), (5.20),
(5.28) gave the explicit transformation between the pre-
viously derived harmonic-coordinates tidal Lagrangians
and their corresponding contributions to the EOB A po-
tential. Using this transformation, we could finally ex-
plicitly compute the most important tidal contributions
to the EOB A potential to a higher accuracy than had
been known before: namely, we computed the quadrupo-
lar (ℓ = 2) and octupolar (ℓ = 3) gravito-electric tidal
contributions to 2PN fractional accuracy, i.e., with the
inclusion of a relativistic distance-dependent factor of
the type u2ℓ+2(1 + α1 u + α2 u

2) [see Eqs. (6.6)–(6.10)
and (6.18)–(6.22)]. We also computed the quadrupolar
gravito-magnetic tidal contribution, as well as a newly
introduced time-differentiated electric quadrupolar tidal
term, to 1PN fractional accuracy [see Eqs. (6.25)–(6.28),
(6.30)–(6.33)]. Of most interest among these results is
the obtention of the 2PN coefficient α2e

2 entering the
distance-dependence of the electric quadrupolar term.
We found that this coefficient, Eq. (6.10), is always pos-
itive and varies between + 3 and + 15.16071 as the mass
fraction X1 = m1/(m1 + m2) of the considered tidally
deformed body varies between 0 and 1. In the equal-
mass case, m1 = m2, i.e. X1 = 1

2 , we found that

α2e
2 = 6.07143. This value shows that, when the neu-

tron stars near their contact, 2PN effects are comparable

to 1PN ones. Indeed, contact occurs when the separa-
tion r ≃ R1 + R2 = Gm1/(c

2 C1) + Gm2/(c
2 C2) (where

CA ≡ GmA/(c
2RA), A = 1, 2, are the two compact-

nesses). In the equal-mass case (with C1 = C2), this shows
that, at contact, u = G(m1+m2)/(c

2 r) is approximately
equal to ucontact ≃ C1. If we consider as typical neutron
star a star of mass 1.4M⊙ and radius 12 km, we expect
C1 ∼ 1/6, i.e. ucontact ∼ 1/6. The successive PN con-
tributions to the distance-dependent amplification factor

Â
(2)2PN
1 electric(u) = 1+α2e

1 u+α2e
2 u2 of the electric quadrupo-

lar tidal interaction for the first body then becomes, at
contact,

Â
(2)2PN
1 electric(ucontact) ≃ 1 + α2e

1 C1 + α2e
2 C2

1

∼ 1 +
1.25

6
+

6.07143

62
, (7.1)

where one sees that the 2PN (O(u2)) contribution is nu-
merically comparable to the 1PN one. This suggests
that the PN-expanded form of the tidal amplification fac-

tor Â
(2)
1 electric(u) is slowly converging and could get com-

parable or even larger contributions from higher pow-
ers of u (i.e., 3PN and higher terms). In order to get
a feeling about the possible origin of this slow conver-
gence of the PN expansion, we followed the approach of
Ref. [54], i.e., we looked for the existence of a nearby
pole (in the complex u plane) within the formal ana-

lytic continuation of the considered function Â
(2)
1 electric(u).

[Ref. [54] considered the energy flux F as a function of
x = (GM Ω/c3)2/3; it pointed out that F (x) had (in the
test-mass limit) a pole at the light-ring value x = 1/3
and recommended improving the PN expansion of F (x)
(for x < 1/3) by a Padé-type resummation incorporating
the existence of this pole in F (x).] By computing the ex-

act test-mass limit of the function Â
(2)
1 electric(u), we found

that it formally exhibits a pole located at the light-ring
value utestmass

LR = 1/3 [see Eq. (6.44)]. Such a pole is also
present in other amplification factors [see Eqs. (6.45)–
(6.47)], and we discussed its origin. [Note that two equal-
mass neutron stars will get in contact before reaching this
pole. However the idea here is that the hidden presence
of this pole in the analytical continuation of the func-

tion Â
(2)
1 electric(u) is behind the bad convergence of the

Taylor expansion of this function in powers of u.] This
led us to suggest that one might get an improved value

of the tidal amplification factor Â
(2)
1 electric(u) by formally

incorporating the presence of this pole in the following
Padé-resummed manner:

Â
(2)
1 electric(u) = 1 + α2e

1 u+ α2e
2

u2

1− r̂LR u
, (7.2)

where r̂LR ≡ 1/uLR is the (EOB-defined) dimension-
less light-ring radius, i.e., the solution of Eq. (6.55),

with Ã(u) defined by Eq. (5.21). Let us point out that
Eq. (7.2) is equivalent to saying that the 2PN coeffi-
cient α2e

2 becomes replaced by the effective distance-
dependent coefficient αeff

2 (u) ≡ α2e
2 /(1 − r̂LR u). Note
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that αeff
2 (u) > α2e

2 . In particular, for the “typical” com-
pactness C1 = C2 ∼ 1/6 considered above, and when

using the unperturbed value of r̂LR, i.e. r̂
(0)
LR = 3,

the effective value αeff
2 (u) will, at contact (i.e. when

u = ucontact ≃ C1 ∼ 1/6), be equal to αeff
2 (ucontact) ≃

α2e
2 /(1 − 3 C1) ∼ α2e

2 /(1 − 3/6) ∼ 2α2e
2 ∼ 12. We re-

called in the Introduction that several comparisons be-
tween the analytical (EOB) description of tidal effects
and numerical simulations of tidally interacting binary
neutron stars [5, 9, 10] have suggested the need for sig-

nificant amplification factors Â
(2)
1 electric(u) parametrized

by rather large values of α2e
2 . However, up to now, the

numerical results that have been used have been affected
by numerical errors that have not been fully controlled.
In particular, in the recent comparisons [9, 10], one did
not have in hand sufficiently many simulations with dif-
ferent resolutions for being able to compute and subtract
the finite-resolution error. We hope that a more com-
plete analysis will be performed soon (see, in this respect,
Refs. [61, 62]). We recommend comparing resolution-
extrapolated numerical data to the pole-improved ampli-
fication factor of Eq. (7.2). As discussed in Sec. VI, it
might be necessary to use as value of r̂LR the improved
estimate obtained from the full (tidally modified) value
of the A potential. This suggests (especially for com-
pactnesses C1 . 1/6) as discussed above that r̂LR might
be significantly larger than 3, thereby further amplifying
the effective value of α2e

2 during the last stages of the
inspiral.

The present study has focused on the 2PN tidal ef-
fects in the interaction Hamiltonian. There is also a 2PN
tidal effect in the radiation reaction, which has contri-
butions from various tidally modified multipolar wave-
forms. The tidal contribution to each (circular) multipo-
lar gravitational waveform can be parametrized (follow-
ing Refs. [5, 10]) as an additional term of the form

htidalℓm (x) =
∑

J

h
(J) LO
ℓm (x) ĥ

(J) tail
ℓm (x) ĥ

(J) PN
ℓm (x) , (7.3)

where x ≡ (G(m1 + m2)Ω/c
3)2/3; J labels the various

tidal geometrical invariants, such as J2e ≡ Gαβ G
αβ ;

h
(J) LO
ℓm (x) denotes the leading-order (i.e., Newtonian-

order) tidal waveform; ĥ
(J) tail
ℓm (x) the effect of tails

[55, 56] and their resummed EOB form [57]; while

ĥ
(J) PN
ℓm (x) = 1 + β

(Jℓm)
1 x+ β

(Jℓm)
2 x2 + . . . (7.4)

denotes the effect of higher PN contributions. The 1PN

coefficient β
(J2e22)
1 is known [7, 15]. The other 1PN co-

efficients needed for deriving a 2PN-accurate flux can be
obtained from applying the simple 1PN-accurate formal-
ism of Eq. [40]. It is more challenging to compute the

2PN coefficient β
(J2e22)
2 . Indeed, this requires applying

the 2PN-accurate version [56] of the Blanchet-Damour-
Iyer wave-generation formalism [40, 58–60] to the tidal-
modified Einstein equations (2.13). Let us, however, note
that although from a PN point of view, the 2PN coef-

ficient β
(J2e22)
2 contributes to the phasing of coalescing

binaries at the same formal level as the dynamical 2PN
coefficient α2e

2 determined above, it has been found in

Refs. [9, 15] that (if β
(J2e22)
2 ∼ α2e

2 ) it has a significantly
smaller observable effect.

Let us finally point out that our general result in Eq.
(2.20) also opens the possibility of computing the 3PN co-
efficient α2e

3 in the PN-expanded amplification factor of

the electric quadrupolar tidal interaction Â
(2)
1 electric(u) =

1 + α2e
1 u + α2e

2 u2 + α2e
3 u3 + O(u4). This computation

would, however, be much more involved than the calcula-
tion of α2e

2 because of the technical subtleties in the reg-
ularization of self-field effects at the 3PN level [43, 63–65]
that necessitate using dimensional regularization [25, 26]
instead of Hadamard regularization.
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Appendix A: Explicit forms of the (time-symmetric)
2PN-accurate brick potentials

The explicit forms of the (time-symmetric) 2PN-
accurate brick potentials V , Vi, etc. are [39]

V =
Gm1

r1
+
Gm1

c2

(
− (n1v1)

2

2r1
+

2v21
r1

+Gm2

(
− r1
4r312

− 5

4r1r12
+

r22
4r1r312

))

+
Gm1

c4r1

(
3(n1v1)

4

8
− 3(n1v1)

2v21
2

+ 2v41

)
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+
G2m1m2

c4

{
v21

(
3r31
16r512

− 37r1
16r312

− 1

r1r12
− 3r1r

2
2

16r512
+

r22
r1r312

)

+v22

(
3r31
16r512

+
3r1
16r312

+
3

2r1r12
− 3r1r

2
2

16r512
+

r22
2r1r312

)

+(v1v2)

(
− 3r31
8r512

+
13r1
8r312

− 3

r1r12
+

3r1r
2
2

8r512
− r22
r1r312

)

+(n12v1)
2

(
− 15r31
16r512

+
57r1
16r312

+
15r1r

2
2

16r512

)

+(n12v2)
2

(
− 15r31
16r512

− 33r1
16r312

+
7

8r1r12
+

15r1r
2
2

16r512
− 3r22

8r1r312

)

+(n12v1)(n12v2)

(
15r31
8r512

− 9r1
8r312

− 15r1r
2
2

8r512

)

+(n1v1)(n12v1)

(
− 3r21
2r412

+
3

4r212
+

3r22
4r412

)
+ (n1v2)(n12v1)

(
3r21
4r412

+
2

r212

)

+(n1v1)(n12v2)

(
3r21
2r412

+
13

4r212
− 3r22

4r412

)
+ (n1v2)(n12v2)

(
− 3r21
4r412

− 3

2r212

)

+(n1v1)
2

(
− r1
8r312

+
7

8r1r12
− 3r22

8r1r312

)
+

(n1v1)(n1v2)r1
2r312

}

+
G3m2

1m2

c4

(
− r31
8r612

+
5r1
8r412

+
3

4r1r212
+
r1r

2
2

8r612
− 5r22

4r1r412

)

+
G3m1m

2
2

c4

(
− r31
32r612

+
43r1
16r412

+
91

32r1r212
− r1r

2
2

16r612
− 23r22

16r1r412
+

3r42
32r1r612

)
+O(6) + 1 ↔ 2 , (A1)

Vi =
Gm1v

i
1

r1
+ ni

12

G2m1m2

c2r212

(
(n1v1) +

3(n12v12)r1
2r12

)

+
vi1
c2

{
Gm1

r1

(
− (n1v1)

2

2
+ v21

)
+G2m1m2

(
− 3r1
4r312

+
r22

4r1r312
− 5

4r1r12

)}

+ vi2
G2m1m2r1

2c2r312
+O(4) + 1 ↔ 2 , (A2)

Ŵij = δij
(
−Gm1v

2
1

r1
− G2m2

1

4r21
+
G2m1m2

r12S

)
+
Gm1v

i
1v

j
1

r1
+
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1n
i
1n

j
1
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12

)
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12n
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12

(
1

S2
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1

r12S

)}
+O(2) + 1 ↔ 2 , (A3)

R̂i = G2m1m2n
i
12
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1

r12
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Here r1 ≡ x− y1, r1 ≡ |r1|, n1 ≡ r1/r1, r2 ≡ x− y2,
etc., y12 ≡ y1 − y2, r12 ≡ |y12|, n12 ≡ y12/r12, v12 ≡
v1 − v2, (n12 v1) ≡ n12 · v1. In addition, the notation
1 ↔ 2 means adding the terms obtained by exchanging
the particle labels 1 and 2, while the quantity S denotes

the perimeter of the triangle defined by x, y1 and y2,
viz.

S ≡ r1 + r2 + r12 . (A6)
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sional regularization of the third post-Newtonian dynam-
ics of point particles in harmonic coordinates, Phys. Rev.
D 69, 124007 (2004) [gr-qc/0311052].

[27] L. Blanchet, T. Damour, G. Esposito-Farèse and
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[38] G. Schäfer, The Gravitational Quadrupole Radiation Re-
action Force and The Canonical Formalism of ADM, An-
nals Phys. 161, 81 (1985).

[39] L. Blanchet, G. Faye and B. Ponsot, Gravitational field
and equations of motion of compact binaries to 5/2 post-
Newtonian order, Phys. Rev. D 58, 124002 (1998) [gr-
qc/9804079].

[40] L. Blanchet and T. Damour, Post-Newtonian Generation
Of Gravitational Waves, Annales Institut Henri Poincaré
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