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The gravitational-wave signal from inspiralling neutron-star-neutron-star (or black-hole-neutron-
star) binaries will be influenced by tidal coupling in the system. An important science goal in the
gravitational-wave detection of these systems is to obtain information about the equation of state
of neutron star matter via the measurement of the tidal polarizability parameters of neutron stars.
To extract this piece of information will require accurate analytical descriptions both of the motion
and the radiation of tidally interacting binaries. We improve the analytical description of the late
inspiral dynamics by computing the next-to-next-to-leading order relativistic correction to the tidal
interaction energy. Our calculation is based on an effective-action approach to tidal interactions, and
on its transcription within the effective-one-body formalism. We find that second-order relativistic
effects (quadratic in the relativistic gravitational potential u = G(m1 4 ms2)/(c*r)) significantly
increase the effective tidal polarizability of neutron stars by a distance-dependent amplification
factor of the form 14 a1 u + a2 u? 4 - - where, say for an equal-mass binary, a; = 5/4 = 1.25 (as
previously known) and ap = 85/14 ~ 6.07143 (as determined here for the first time). We argue
that higher-order relativistic effects will lead to further amplification, and we suggest a Padé-type
way of resumming them. We recommend testing our results by comparing resolution-extrapolated
numerical simulations of inspiralling-binary neutron stars to their effective one body description.
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I. INTRODUCTION

Inspiralling binary neutron stars are among the most
promising sources for the advanced versions of the cur-
rently operating ground-based gravitational-wave (GW)
detectors LIGO/Virgo/GEQO. These detectors will be
maximally sensitive to the inspiral part of the GW signal,
which will be influenced by tidal interaction between two
neutron stars. An important science goal in the detection
of these systems (and of the related mixed black-hole—
neutron-star systems) is to obtain information about the
equation of state of neutron-star matter via the mea-
surement of the tidal polarizability parameters of neu-
tron stars. The analytical description of tidally interact-
ing compact-binary systems (made of two neutron stars
or one black hole and one neutron star) has been initi-
ated quite recently [1H8]. In addition, these analytical
descriptions have been compared to accurate numerical
simulations [5, [9-11], and have been used to estimate
the sensitivity of GW signals to the tidal polarizability
parameters [11H15].

Here, we shall focus on one aspect of the analytical
description of tidally interacting relativistic binary sys-
tems, namely the role of the higher-order post-Newtonian
(PN) corrections in the tidal interaction energy, as de-

scribed, in particular, within the effective one body
(EOB) formalism |16-119]. Indeed, the analysis of Ref. [5],
which compared the prediction of the EOB formalism
for the binding energy of tidally interacting neutron
stars to (nonconformally flat) numerical simulations of
quasi-equilibrium circular sequences of binary neutron
stars |20, 21], suggested the importance of higher-order
PN corrections to tidal effects, beyond the first post-
Newtonian (1PN) level, and their tendency to signifi-
cantly increase the “effective tidal polarizability” of neu-
tron stars.

In the EOB formalism, the gravitational binding of a
binary system is essentially described by a certain “radial
potential” A(r). In the tidal generalization of the EOB
formalism proposed in Ref. [5], the EOB radial potential
A(r) is written as the sum of three contributions,

A(r) = APPH(r) + A4S (r) + AR (r) (1.1)

where ABBH(r) is the radial potential describing the dy-
namics of binary black holes, and where A%94(r) and
Atidal(y) are the additional radial potentials associated,
respectively, with the tidal deformations of body A and
body B. [For binary neutron-star systems both Aff‘dal
and A%dal are present, while for mixed neutron-star—
black-hole systems only one term, corresponding to the
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neutron star, is present; see following]. Here, we consider
a binary system of (gravitational) masses m4 and mp,
and denote

mamp
(ma+mp)?’

[A labelling of the two bodies by the letters A and B will
be used in this Introduction for writing general formulas.
We shall later use the alternative labelling A =1, B = 2
when explicitly dealing with the metric generated by the
two bodies.] The binary black-hole (or point mass) po-
tential ABBH (1) is known up to the third post-Newtonian
(3PN) level [18], namely

M=ma+mp, v (1.2)

AZR(r) =1—-2u+2vu’ +agvu®,  (1.3)
where a4 = 94/3 — (41/32) 72 ~ 18.68790269, and
GM
= 1.4
u= (1.4

with ¢ being the speed of light in vacuum and G the
Newtonian constant of gravitation.

It was recently found [22,[23] that an excellent descrip-
tion of the dynamics of binary black-hole systems is ob-
tained by augmenting the 3PN expansion Eq. (L3)) with
additional fourth post-Newtonian (4PN) and fifth post-
Newtonian (5PN) terms, and by Padé resumming the
corresponding 5PN Taylor expansion.

The tidal contributions Af},f‘lgl(r) can be decomposed
according to multipolar order ¢, and type, as

ida/ £) LO N
Af4d I(T) = Z{Agllectric(r) Afél)electric(’r)
£>2

£) LO ne
+ Ag)rr%agnctic(’r) Aginagnctic(r) +.. } . (15)

Here, the label “electric” refers to the gravito-electric
tidal polarization induced in body A by the tidal field
generated by its companion, while the label “magnetic”
refers to a corresponding gravito-magnetic tidal polar-
ization. On the other hand, the label LO refers to the
leading-order approximation (in powers of u) of each
(electric or magnetic) multipolar radial potential. For
instance, the gravito-electric contribution at multipolar
order ¢ is equal to [5]

¢) LO Vi
AE‘lLlectric(T) = _554) u2£+2 (16)
where
2 20+1
O =g B <L) , 1.7

Here, R4 denotes the radius of body A, and kff) de-
notes a dimensionless “tidal Love number”. [Note that

kff) was denoted kf‘ in our previous work. Here we
shall always put the multipolar index ¢ within paren-
theses to avoid ambiguity with our later use of the la-
belling A, B = 1,2 for the two bodies.] The correspond-
ing leading-order radial potential of the gravito-magnetic

type is proportional to u2‘*3 (instead of u?*2), and
to j%)R%H, where jff) denotes a dimensionless “mag-
netic tidal Love number”. It was found [3, |4] that both
types of Love numbers have a strong dependence upon

the compactness Ca = Gma/(c?Ra) of the tidally de-

formed body, and that both kff) and jff) contain a factor
1 —2Ca, so that they would formally vanish in the limit
where body A becomes as compact as a black hole (i.e.
Cq — Cug = %) This is consistent with the decomposi-
tion Eq. (IIJ), where the binary black-hole radial poten-
tial ABBH(r) is the only remaining contribution when one
formally takes the limit where both C4 and Cp tend to
the black-hole value Cpy = 1/2. Finally, the supplemen-
tary factors A\Ef)clcctric(r) and gff)magnetic(r) denote the
distance-dependent amplification factors of the leading-
order tidal interaction by higher-order PN effects. They
have the general form

Nt AL AL
E4)electric(r) =1+ @y éle)ctricu + o) éle)ctricu2 +o (18)
N AL
Ag)rnagnctic(r) =1+ @y Igligneticu o (19)

where u is defined by Eq. (I4).

The main aim of the present investigation will be to

compute the electric-type amplification factors gff)clcctric,

for £ = 2 (quadrupolar tide) and ¢ = 3 (octupolar tide),
A(e)

at the second order in u, i.e. to compute both o] ;o iric

and oz’;éfe)ctric. We shall also compute the magnetic-type

amplification factor gff)magnctic, for £ = 2, at the first

order in w.
The analytical value of the first-order electric amplifi-
. . A(f) .
cation coefficient o) ;. Was computed some time ago
for £ = 2 (see Ref. [29] in [5]) and was reported in Eq. (38)

of 5], namely

A(£=2 5
Qq électzic = 5 Xa ’ (110)
where X4 = my/(ma + mp) is the mass fraction of

body A. The analytical result (IZI0) has been recently
confirmed [6]. On the other hand, several comparisons of
the analytical description of tidal effects with the results
of numerical simulations have indicated that the ampli-

fication factor A\=2) (r) is larger that its 1PN value

- A electric
14 aféf;fr)i . 4, and have suggested that the higher-order

coeflicients 0/24 élemi o> - - - take large, positive values. More
precisely, the analysis of Ref. [5] suggested (when taking
into account the value ([LI0) for ay) a value of order

?C(f;?r)ic ~ +40 (for the equal-mass case) from a com-
parison with the numerical results of Refs. [20, [21] on
quasi-equilibrium adiabatic sequences of binary neutron
stars. Recently, a comparison with dynamical simula-
tions of inspiralling binary neutron stars confirmed the
need for such a large value of af' ... 19, [10]. [Note
that, while the comparison to the highest resolution nu-
merical data suggests the need of even larger values of



?c(f;fr)ic, of order + 100, the comparison to approximate

resolution-extrapolated data call only for aiy values of or-
der 4 40. See Fig. 13 in [10].]

II. EFFECTIVE ACTION APPROACH TO
TIDAL EFFECTS

A. Finite-size effects and nonminimal worldline
couplings

It was shown long ago [24], using the technique of
matched asymptotic expansions, that the motion and ra-
diation of N (non-spinning) compact objects can be de-
scribed, up to the 5PN approximation, by an effective
action of the type

dPr ¢t

c 167G

So =

\/ER(Q> + Spoint mass » (21)

where R(g) represents the scalar curvature associated
with the metric g,,, with determinant —g, and where

2
Spointmass = _Z/mAC dta
A

is the leading order skeletonized description of the com-
pact objects, as point masses. Here dr4 denotes the
proper time along the worldline y%(74) of A, namely
dra = ¢ (g (ya) dy'y dy4)'/?. To give meaning to
the notion of point mass sources in General Relativity
one needs to use a covariant regularization method. The
most convenient one is dimensional regularization, i.e.
analytic continuation in the value of the spacetime di-
mension D = 4 + ¢, with ¢ € C being continued to zero
only at the end of the calculation. The consistency and
efficiency of this method has been shown in the calcula-
tions of the motion [25, [26] and radiation [27] of binary
black holes at the 3PN approximation.

It was also pointed out in Ref. [24] that finite-size
effects (linked to tidal effects, and the fact that neu-
tron stars have, contrary to black holes, non-zero Love

numbers k%)) enter at the 5PN level. In effective field
theory, finite-size effects are treated by augmenting the
point-mass action of Eq. (22) by nonminimal world-
line couplings involving higher-order derivatives of the
field [28-30]. In a gravitational context this means
considering worldline couplings involving the 4-velocity
uly = dyfy/dra (satisfying g, v’y vy = —c?) together
with the Riemann tensor R,g,, and its covariant deriva-
tives. To classify the possible worldline scalars that can
be constructed one can appeal to the relativistic theory of
tidal expansions [31-33]. In the notation of Refs. [32,133]
the tidal expansion of the “external metric” felt by body
A can be entirely expressed in terms of two types of exter-
nal tidal gradients evaluated along the central worldline
of this body: the gravito-electric G2 (74) = G4, ,,(74)

(2.2)

and gravito-magnetic Hy'(t4) = HZ , (Ta) symmet-
ric trace-free (spatial) tensors, together with their time-
derivatives. [The spatial indices a; = 1,2,3 refer to a
local frame X9 = c74, X4 attached to body A.] This
implies that the most general nonminimal worldline ac-

tion has the form

=22 {% ) [ty

(11
—f—goﬁf)/dTA(Hf(TA))Q

Snonminimal

(2.3)

where G4(14) = d G4 /dr4, and where the ellipsis refer
either to higher proper-time derivatives of G4 and H3}, or
to higher-than-quadratic invariant monomials made from
G’L“, H f and their proper-time derivatives. For instance,
the leading-order non-quadratic term would be

/ dra G2 G G& . (2.4)
Note that the allowed monomials in GG, Hy, and their
time derivatives are restricted by symmetry constraints.
When considering a non-spinning neutron star (which is
symmetric under time and space reflections) one should
only allow monomials invariant under time and space re-
versals. For instance Ggp Gqp and Ggp Hgp are not al-
lowed.

B. Tidal coefficients

The electric-type tidal moments Gf are normalized
in a Newtonian way, i.e. such that, in lowest PN or-
der, they reduce to the usual Newtonian tidal gradi-
ents: G = [0, U(X")]xe—0 + O (&%), where U(X) is
the Newtonian potential and Jr, = 0;,0;, ...0;, repre-
sents multiple ordinary space derivatives. The magnetic-
type ones Hj are defined (in lowest PN order) as re-
peated gradients of the gravitomagnetic field c3go,. With

these normalizations the coefficients ,uff) and aff) in the
nonminimal action in Eq. (23) both have dimensions

[length]?‘*!/G. They are related to the dimensionless

Love numbers kff) and jff), and to the radius of body A,

via |3

¢ 1 ¢
o'y = TV 2k RAH, (2.5)
0_ _t-1 L 0 p2ent
Gox =TTy pi—nunda (26)



Note that the coefficients associated with the first time
derivatives of G’L4 and H f have dimensions Guif

length]?+3 ~ Go'\”. The nonminimal action in Eq.
[23) has a double ordering in powers of R4 and in pow-
ers of 1/c%. The lowest-order terms in the R4 expansion
are proportional to R and correspond to the electric
and magnetic quadrupolar tides, as measured by Gfb and
H ;‘}7, respectively.

C. Tidal tensors

We have written the most general nonminimal action
Eq. (Z3) in terms of the irreducible symmetric trace-free
spatial tensors [with respect to the local space associated
with the worldline y’j(74)] describing the tidal expan-
sion of the “external metric” felt by body A, as defined
in Ref. [32]. These tidal tensors played a useful role in
simplifying the (1PN-accurate) relativistic theory of tidal
effects. In our present investigation, it will be convenient
to express them in terms of the Riemann tensor and its
covariant derivatives. Eq. (3.40) in Ref. [32] shows that
(in the case where one can neglect corrections propor-
tional to the covariant acceleration of the worldline) the
first two electric spatial tidal tensors, G4, and Ggpe, are
simply equal (modulo a sign) to the non-vanishing spatial
components (in the local frame) of the following space-
time tensors (evaluated along the considered worldline)

Gaop = — Rappy u* u”, (2.7)

Gapy = —Sym, 5. (Ve Rppp) ul u” . (2.8)

afy

Here the notation G.p for (minus) the electric part
of the curvature tensor should not be confused with the
Einstein tensor, Sym,, 4., denotes a symmetrization (with
weight one) over the indices a 3+, while VL = P(u), V,,
denotes the projection of the spacetime gradient V,, or-
thogonally to u (P(u)% = 6" + ¢ ?u*u,). [Note that
in the Newtonian limit u# ~ ¢df so that the Newto-
nian limit of Gug is — ¢ Raopo, where the factor ¢? can-
cels the O(1/c?) order of the curvature tensor.] By con-
trast, the presence of the extra term — 3¢ 2 E7, E{:> on
the right-hand side of Eq. (3.40) in Ref. [32] shows
that the ¢ = 4 electric spatial tidal tensor Ggpeq =
abe E;> would differ from the symmetrized spatial pro-
jection of (V4 Vg Ry ,5.) u* u” by a term proportional to
Gay Gps). (Here, the angular brackets denote a (spatial)
symmetric trace-free projection.) In addition, the electric
time derivatives, such as Gqp can be replaced by corre-
sponding spacetime tensors such as u* V,, Gog. Similarly
to Egs. (21), 23], one finds that the { = 2 and ¢ = 3
magnetic tidal tensors (as defined in Refs. |32, 133]) are
equal to the nonvanishing local-frame spatial components
of the spacetime tensors

Hop =+2cR;, 5, u"u”, (2.9)

Hapy = +2cSyma67(Vi‘ Rj,,.,) ut u” (2.10)
where waaﬁ = %ewpg RP? ,p is the dual of the curva-

ture tensor, €,,,0 denoting here the Levi-Civita tensor
(with €123 = +\/§) Note the factor +2 entering the
link between the magnetic tidal tensors Hqg, . . . (normal-
ized as in Refs. |32, 133]) and the dual of the curvature
tensor, which contrasts with the factor —1 entering the
corresponding electric tidal-tensor links, Eqs. (2.71), ([2.8]).
(The definition of Bg‘ﬁ in the text below Eq. (5) of Ref.
[5] should have included such a factor 2 in its right-hand
side. On the other hand, the corresponding magnetic-
quadrupole tidal action, Eq. (13) there, was computed
with Hy,, and was correctly normalized.) Let us also note
that the expressions in Eqs. ([2.7)—(210) assume that the
Ricci tensor vanishes (e.g. to ensure the tracelessness of
Gap). One could have, alternatively, defined Gap etc. by
using the Weyl tensor Cy,,3, instead of R,,3,. However,
as discussed in Ref. [29], the terms in an effective action
which are proportional to the (unperturbed) equations of
motion (such as Ricci terms) can be eliminated (modulo
contact terms) by suitable field redefinitions.

D. Covariant description of tidal interactions

Finally, the covariant form of the effective action de-
scribing tidal interactions reads

Stot = SO + Spoint mass T Snonminimal (211)

where Sp and Spointmass are given by Eqgs. (210), (22),
and where the covariant form of the nonminimal world-
line couplings starts as

1 o
Shonminimal = Z{Z ,UE42) /dTA Géﬁ GAﬁ
A

1 @ A proB
+ @0’14 /dTAHaﬁHA

1 a
+ Eﬂf)/dTA Géﬁ’y GAB’Y

L
+ To2 Ma

b

where Gzﬁ = g g G;‘U, ete. [evaluated along the A
worldline].

[ matwiv, 6w v.6y)

(2.12)

In principle, one can then derive the influence of tidal
interaction on the motion and radiation of binary sys-
tems by solving the equations of motion following from
the action of Eqs. (@2I1)), (ZI2). More precisely, this
action implies both a dynamics for the worldlines where
the geodesic equation is modified by tidal forces [com-
ing from 0Shonminima1/d ¥4 (74)], and modified Einstein



equations for the gravitational field of the type

1 8t G . imal
R,uv _ 5 Rgl“’ _ ” {Tﬁsmt mass + Tﬁsnmlnlma ,
(2.13)
where the new tidal sources Th .. (z) =

(2¢/./g) §Snenminimal /5 g () are, essentially, sums

of derivatives of worldline Dirac-distributions:

Tnonminimal(x) ~ Z Z al 5($ - yA) .
A ¢

E. A simplifying, general property of reduced actions

The task of solving the coupled dynamics of the world-
lines and of the gravitational field, both being modified
by tidal effects, at the second post-Newtonian (2PN)
level, i.e. at the next-to-next-to-leading order in tidal
effects, and then of computing the looked for higher-
order terms in the amplification factors of Egs. (L8,
(T3 is quite non-trivial. Happily, one can drastically
simplify the needed work by using a general property of
reduced actions. Indeed, we are interested here in know-
ing the influence of tidal effects on the reduced dynam-
ics of a compact binary, that is, the dynamics of the
two worldlines v/} (), y/5(7), obtained after having “in-
tegrated out” the gravitational field (i.e., after having
explicitly solved g, () as a functional of the two world-
lines). When considering, as we do here, the conservative
dynamics of the system (without radiation reaction), it
can be obtained from a reduced action, which is tradi-
tionally called the “Fokker action”. See Ref. [28] and
references therein for a detailed discussion (using a dia-
grammatic approach) of Fokker actions (at the 2PN level,
and with the inclusion of scalar couplings in addition to
the pure Einsteinian tensor couplings). If we denote the
fields mediating the interaction between the worldlines
y = {ya,yB} as ¢ (in our case ¢ = g, ), the reduced
worldline action Syeq[y] (a functional of the worldlines y)
that corresponds to the complete action S[p,y] describ-
ing the coupled dynamics of y and ¢ is formally defined
as:

Sred [y] = S [pso [Y], Y] s (2.14)

where g1 [y] is the functional of y obtained by solving
the p-field equation,

68 [p,yl/op =0,

considered as an equation for ¢, with given source-
worldlines. (This must be done with time-symmetric
boundary conditions and, in the case of g,,, the addi-
tion of a suitable gauge-fixing term; see Ref. [28] for
details.)

Having recalled the concept of reduced (or Fokker) ac-
tion, let us now consider the case where the complete
action is of the form

Slp,y) = SOp,y] +eSV[p, 4],

(2.15)

(2.16)

where € denotes a “small parameter”. In our case, €
can be either a formal parameter associated with all
the nonminimal tidal terms in Syonminimal, Eq. 212,
or, more concretely, any of the tidal parameters entering
Eq. 212): uff:2), ugZQ), etc. As said previously, when
turning on €, the equations of motion, and therefore the
solutions of both ¢ and y get perturbed by terms of or-
dere: o= +e® 4. y=yO £ey® 4 . but
a simplification occurs when considering the reduced ac-
tion Eq. (2I4)). Indeed, it is true that the field equation
@I3) for ¢ gets modified into

_ 98l _ 08yl | 65D e,y

0= 2.17
so that its solution g [y] gets perturbed:
pot 1) = 00 W] +e@ld W] +O(). (218)

However, when inserting the perturbed solution of Eq.
([2I1) into the complete, perturbed action of Eq. (2.14)),
one finds

Srealy] = S W]+ e [y] + O(e), 9]

05
= S [yl y] + el) ] 5o 0% [y, 5] + O(2)

= S [y). )

5500
+eplgl ) =5 - [l 1) ] + O(€)

= S[P) [yl.y] + O, (2.19)

because, by definition, cpégf is a solution of § S /6 ¢ = 0.
Note that, in Eq. (2I9), while the functional S is the
complete, perturbed action, the functional argument is
the unperturbed solution. Decomposing the functional S
into its unperturbed plus perturbed parts [see Eq. (Z10])]

then leads to the final result:

Srealy] = SOU [yl 9] + e SV ], ] + O(e?)
= SOyl + e SV [y 4] + O() . (2.20)

sol

In words: the order O(e) perturbation

€ S]Eelg [y] = Srcd [y] - S}ES& [y]

of the reduced action is correctly obtained, modulo terms
of order O(e?), by replacing in the O(e) perturbation

eSW (g, y]

of the complete (unreduced) action the field ¢ by its un-
: (0)
perturbed solution ¢ ; [y].
In our case, the ordering parameter € is either the col-

lection uf),ug),uf),ug), ceey Jf) 2., ,uif) c2 ..

or the corresponding sequence of powers of R4 and
Rp: R5,R%, R", RL, ... The terms quadratic in € would



therefore involve at least ten powers of the radii (and
would mix with higher-than-quadratic worldline contri-
butions akin to (24)). Neglecting such terms, we con-
clude that the higher-PN corrections to the tidal effects
are correctly obtained by replacing in Eq. (2I2), con-
sidered as a functional of g,, (z) and v’ (74), the metric
9w (x) by the point-mass metric obtained by solving Ein-
stein’s equations with point-mass sources. [This was the
method used by one of us (T.D.) to compute the 1PN
coefficient of Eq. (LI0) from the calculation by Damour,
Soffel and Xu of the 1PN-accurate value of Gy [34, 135].]

IIT. THE 2PN POINT-MASS METRIC AND ITS
REGULARIZATION

A. Form of the 2PN point-mass metric

The result of the last Section allows one to compute
the tidal corrections to the reduced action for two tidally
interacting bodies A, B with the same accuracy at which
one knows the metric generated by two (structureless)
point masses ma,y'y; mp,ys. The metric generated by
two point masses has been the topic of many works over
many years. It has been known (in various forms and
gauges) at the 2PN approximation for a long time [36-
38]. Here, we shall use the convenient, explicit harmonic-
gauge form of Ref. [39], with respect to the (harmonic)
coordinates x# = (2° = ct, z?), i.e. the metric

ds® = goo(da®)? + 2 go; dz’dax’ + g;j dx'da?,  (3.1)

where, at 2PN, the metric components are written as
goo = —14+22V -2 V2
+ 8¢ <X+5ij ViV + %v3> +0(8),
goi = —43V; =8 R + O(7),

9ij =05 (1+2EV + 2 V) + 4 W, + 0(6).
(3.2)
Here, as below, we sometimes use the alternative notation

e = 1/c for the small PN parameter. We used also the
shorthand notation O(n) = O(e") = O(¢™™).

The various 2PN brick potentials V. V;, Wij, R; and X
are the (time-symmetric) solutions of

OV =—4nGo,
oV, =—4nGo;,
DWZ-J- = —47TG(UU —51'3' Ukk) —8iV8jV,
R 3
DRi = —47TG(VO'1 —‘/ZO') — 28kV81Vk — iatV&V,
N 3
OX =—47GVoy+2V; 0,0,V + VIV + 3 (0, V)?

— 2 8ZVJ (%Vl + Wij 8ZJV , (33)

where 0; denotes a time derivative (while we remind that
9;, for instance, denotes a spatial one), and where the
compact-supported source terms are [40]

TOO + Tii

2 )

TOi

0 = )
C

o oy =T,

(3.4)

C

with TH” being the stress-energy tensor of two point
masses:

TH = py(t) o () v (t) 0(x —ya (1)) +1 2,  (3.5)
where

i) = mn [ 2 g ol /D] L 36)

Here, v} = % = (c,v!) and the index 1 on the bracket

in Eq. (B.6]) refers to a regularized limit where the field
point z* tends towards the (point-mass) source point y.
Note that, in this section, we shall generally label the
two particles as (mq,yi), (m2,ys), instead of (ma,y),
(mp,y%) as above. The notation 1 <+ 2 means adding
the terms obtained by exchanging the particle labels 1
and 2.

The explicit forms of the 2PN-accurate brick potentials
V, Vi, Wi;, Riy, X were given in Ref. [39]. Their time-
symmetric parts are recalled in Appendix A. These brick
potentials are expressed as explicit functions of 7y = x —
Y1, 11 = |ri|, ny = rifri, r2 = T — Yo, ete, Y12 =
Y1 — Y2, "2 = |y12|, ni2 = y12/7°127 V12 = U1 — V2,
(n12v1) = n12 - v1. Note the appearance of the auxiliary
quantity S, which denotes the perimeter of the triangle

defined by «, y; and ys, viz

S=ri+ratra. (3.7)

In all the PN expressions, the spacetime points
zM, yi',yh (and the velocities v’}) are taken at the same
instant ¢, i.e. 2° =y = y9 = ct.

B. Regularization of the 2PN metric and of the
2PN tidal actions

Let us now discuss in more detail the crucial oper-
ation (already implicit in Sec. [[Il above) of regulariza-
tion of all the needed field quantities, such as g, (z),
9(z), Ruavs(x),..., when they are to be evaluated on a
worldline: z# — y%. As mentionned at the beginning of
Sec. [} all the quantities [G (2)]1, ..., [Ruavs(x)]1 are
defined by dimensional continuation. It was shown long
ago [24, [41] that, at 2PN, dimensional regularization is
equivalent to the Riesz’ analytic regularization, and is
a technical shortcut for computing the physical answer
obtained by the matching of asymptotic expansions. In
addition, because of the restricted type of singular terms
that appear at 2PN [see Egs. (25), (30) and (33) in Ref.
[24]], the analytic-continuation regularization turns out
to be equivalent to Hadamard regularization (used, at



2PN, in Refs. |38, 139, 142]); see below. Here, it will be
technically convenient to use Hadamard regularization
(which is defined in D = 4) because the explicit form of
Eqgs. (AI)-(A3) of the 2PN metric that we shall use ap-
plies only in the physical dimension D = 4 and has lost
the information about its dimensionally continued kin in
D=4+e.

Let us summarize here the (Hadamard-type) defini-
tion of the regular part of any field quantity ¢(z) (which
might be a brick potential, V(z), V;(z), ..., a component
of the metric g, (), or a specific contribution to a tidal
moment, Gug,...). We consider the behavior of ¢(z)
near particle 1, i.e. when r; = |z — y1| — 0. To ease
the notation, we shall provisionally put the origin of the
(harmonic) coordinate system at y; (at some instant t),
i.e. we shall assume that y; = 0, so that r1 = || = r
and n1 = r1/r1 = x/r = n. We consider the expan-
sion of ¢(x) in (positive and negative) integer powers k
of r1 = r, and in spherical harmonics of the direction
ny =mn,say (for k€Z, ¢ eN, N eN)

pl@)= > > rkat i,

k>—N ¢>0

(3.8)

where A = 7% % denotes the symmetric trace-free pro-

jection of the tensor n = n® ...n%. [The angular func-
44

tion fFal is equivalent to a sum of > ¢ Yom.] We
m=—~

(uniquely) decompose the field ¢(x) in a regular part (R)

and a singular one (S),

p(x) = Rlp(x)] + S[p(x)], (3.9)
by defining (n € N)
Rlp(x)] = Z Z Pt fLLf£+2", (3.10)
£>0 n>0
Sp(x)] = Z rkpl k. (3.11)

k#L+2n

Note that R [¢(x)] can be rewritten as a sum of infinitely
differentiable terms of the type 2% (x?)". By contrast
S [p(x)] is such that it (if N, in Eq. B3], is strictly
positive), or, one of its (repeated) spatial derivatives,
tends towards infinity as  — 0. Note also that the
R+ S decomposition commutes with linear combinations
(with constant coefficients), as well as with spatial deriva-
tives, in the sense that R [a p(x)+by(x)] = a R[p(x)]+
bR[P(z)], Slap(®)+bi(x)] = aS[e(x)] +bS[P(x)),
R[0; p(®)] = 0; Rlp(x)] and S[0;p(z)] = ;5 [p(z)).
By contrast, the R+ S decomposition (as defined above,
in the Hadamard way) does not commute with nonlin-
ear operations (e.g. R[pt] # R[] R[Y]), nor even
with multiplication by a smooth (C'*°) function f(x) (e.g.
R[f¢] # f R]p]). This is a well-known inconsistency of
the Hadamard regularization, which created many am-
biguities when it was used at the 3PN level |43, 144].

One might worry that our present calculation (which
aims at regularizing nonlinear quantities quadratic in
Ryavp ~ 0%+ g~ 0g g) might be intrinsically ambigu-
ous already at the 2PN level. Actually, this turns out
not to be the case because of the special structure of
the 2PN metric which is at work in the Riesz-analytic-
continuation derivation of the 2PN dynamics in Ref. [24].
This structure guarantees, in particular, that the Rie-
mann tensor (or its derivatives) is regularized unambigu-
ously.

C. On the special structure of the 2PN metric
guaranteeing its unambiguous regularization

Let us first recall why the Riesz-analytic-continuation
method, or, equivalently (when considering the reg-
ularization of the metric and its derivatives), the
dimensional-continuation method, is consistent under
nonlinear operations. The dimensional-continuation ana-
log of Egs. (B.9)—@BI1]) consists of distinguishing, within
©(x), the terms that (in dimension 4 + ¢) contain pow-
ers of  of the type r*~"¢ with n = 1,2,3,... [which
define the e-singular part of ¢(x)], and the terms that
are (formally) C* in 4 + ¢ dimensions [which define
the e-regular part of ¢(x)]. It is then easily seen in di-
mensional continuation (simply by considering the con-
tinuation to large, negative values of the real part of
) that the e-singular terms give vanishing contribu-
tions when evaluated at r — 0, and that they do so
consistently in nonlinear terms such as dpdi. Let
us now indicate why the special structure of the 2PN
metric ensures that the decomposition into e-singular
parts and e-regular parts of the various brick potentials
V(x),Vi(z),... coincides with their above-defined decom-
position into Hadamard-singular (S [V ()], S [Vi(z)],...)
and Hadamard-regular parts (R [V (z)], R[V;(x)],...) in
the four-dimensional case. This is trivially seen to be
the case for most of the 2PN contributions to the brick
potentials (because one easily sees how those contribu-
tions smoothly evolve when analytically continuing the
dimension). However, the most nonlinear contributions
to the 2PN metric, namely the terms, say X(VVV), in X
that are generated by the cubically nonlinear terms con-

tained in the last source term, Wi(jVV) 0i;V, on the right

hand-side of the last Eq. (B3] (where Wi(JVV) is the part
of Wi; generated by —;V ;) are more delicate to dis-

cuss. Actually, among the contribution XVVV) only the
terms proportional either to m?ms or to mim3, i.e., the
terms whose cubically nonlinear source ~ 92?VA~19V oV
involve two V potentials generated by one worldline and
one V potential generated by the other worldline, such as
XWiviva) m2ms, pose a somewhat delicate problem.
More precisely, it is easily seen that the only danger-
ous part in X(V1V1V2) ' considered near the first world-

line, is of the form f(w)/rf“s) in dimension 4 + e,
where f(x) denotes a smooth function. [Here, we add



back the particle label indicating whether the expan-
sions Eqs. @BI0), GII) refer to the first (A = 1),
or the second (A = 2) particle. The appropriate la-
bel should be added both on r and n in Eqs. BI0),
@GID): »* Al — KAL) The problem is that the power
of 1/ry in this e-singular term becomes an even inte-
ger when ¢ — 0. When inserting the Taylor expan-
sion of f(x), say f(z) ~ S riT al i3 some of the

terms in the e-singular contribution f(x)/ r§2+26) might

be of the form rf+2"/_28 ¥, with n’ =n —1 > 0, and
might then contribute to the Hadamard-regular part of
X(iViVa) in the limit ¢ — 0. This would mean that
the Hadamard-regular part of XViViV2) would not co-
incide with its e-regular part. We already know from
Refs. [38, 139]), which used Hadamard regularization to
derive the 2PN-accurate dynamics and found the same
result (modulo gauge effects) as the analytic-continuation
derivation of Ref. [24], that this is not the case for the
regularized values of XWiVaVa) and of its first derivatives
on the first worldline. [Indeed, these quantities enter
the computation of the equations of motion.] On the
other hand, the computations that we shall do here in-
volve higher spatial derivatives of X, and it is important
to check that we can safely use Hadamard regulariza-
tion to evaluate them. This can be proven by using the
techniques explained in Ref. [24], based on iteratively

considering the singular terms in Wi(jVV) and X(VVV)
generated by the singular local behaviour (near the first
worldline) of their respective source terms. One finds

then that the smooth function f(x) entering the dan-
gerous terms f(w)/r§2+2€) in X(V1ViV2) ig of the special
form f(x) ~ 3 ¢,Grr{nl in dimension 4+¢, with £ > 1,
where G, = 91,V denotes the ¢-th tidal gradient (consid-
ered near the first worldline) of the V' potential generated
by the second worldline. When working (as we do) at the
2PN accuracy, we can take V' at Newtonian order, and
the gradients G ~ [8L(Gm2/’f‘él+5))]1 are then trace-
less: G = Gayay-ap = Gayas-ap)- AS a consequence,
it is immediately seen that, in the limit ¢ — 0, the po-
tentially dangerous term f(:c)/r§2+2s) in X(ViViV2) (dpes
not give any contribution to the Hadamard-regular part
of X. This means that we can compute the e-regularized
reduced tidal action in ([ZI2]) by replacing, from the start,
the brick potentials V(x), V;(x), ..., by their Hadamard-
regularized counterparts, R [V ()], R [Vi(z)], - ..

Summarizing: The A-worldline part of the tidal action
Eq. (ZI2) can be obtained by computing all its elements
(dra = ¢ H—gu(ya) dys dy’y)*/?, Gﬁﬁ, ...) within the
A-regular metric g;?,j reg(x) obtained by replacing each
2PN brick potential V' (z), V;(z), ... by its A-Hadamard-
regular part Ra[V (2)], Ra[Vi(x)],...

As a check on our results (and on the many compli-
cated algebraic operations needed to derive them) we
have also re-computed the electric-quadrupole tidal La-

grangian, L ) = 3 (dra/dt) Géﬁ Giﬁ by effecting the
Ha

Hadamard regularization in a different way. Our alter-

native computation was done by separately Hadamard-

regularizing each factor entering the Lagrangian, Lu(z),
A

when it is expressed in terms of dr4/dt, the contravari-
ant metric, the covariant Riemann tensor, and the con-
travariant 4-velocity. More precisely, we first calculated
Gop(ya) as —Ra[Raupy] Ralu*]Ra[u”], then we com-
puted [G7](ya) = Gap(ya)Guv(ya)Ralg*|Ralg"],
which we inserted into the expression of LH@)

just  written. The remaining factor, (dra/dt) /él,
was taken to be Ru[d7r/dt]/4. Note in passing
that, while one can a priori prove that the alter-
native regularization of G,g(ya) (and subsequently
[G2)(ya) = Gap(ya)Guu(ya)Ralg®|Ra[g?]) just ex-
plained, must coincide with the one explained above,
namely (Go5 G)[Ra(V), Ra(V;),...] (because both of
them agree with the Riesz-analytic-regularization and/or
dimensional-regularization) a different result would have
been obtained if one had postponed the Hadamard
regularization of the squared tidal quadrupole to the
last moment, i.e. if one had computed Ra[Gas5 G*?].
[Such a difference occurs because of the appearance of
a dangerous nonlinear mixing of Hadamard-regular and
Hadamard-singular parts in 0;;V 0;; X ("iViva) (with the
special structure of the delicate terms in X(ViViVz) given
above). This shows again the consistency problems of
the Hadamard regularization, when it is used beyond
the types of calculations where it is equivalent to the
Riesz analytic regularization (or to dimensional regular-
ization).]

D. Explicit rules for computing the regular parts
of the 2PN brick potentials

Let us now give some indications on the computa-
tion of the regular parts of the various brick potentials
V(z),Vi(z),...

1. Regularizing V and V;

The situation is very simple for the “linear poten-
tials” V and V;, which satisfy linear equations with delta-
function sources [see Eqgs. ([B3])]. Near, say, the particle
A =1, the A-regular parts of V' and V; are the terms in
Egs. (A1), (A2) which are generated by the source terms
x §(x—1y-2) of the second particle. It is indeed easily seen
[from the definition in Eq. (8I0)] that the 1-regular part
of all the terms explicitly written in Eq. (AJ]) vanishes,
while all the non-explicitly written terms obtained by the
1 <+ 2 exchange are regular near the particle 1. The same
is true for V;, Eq. (A2)). A simple rule for obtaining these
results is to note that, from the definition in Eq. BIII),
any term of the form

i (@),

keZ, (3.12)



where f(z) is a smooth function of z# (near x = vy
at fixed instant t), and where the power of r1 is odd, is
purely singular.

The situation is more complicated for the higher-order
potentials Wu and Rl, whose sources contain both com-
pact terms o (& —y4), and quadratically nonlinear non-
compact ones oc 9V 9V, and still more complicated for
the X potential whose source even depends on the pre-
vious W;; potential.

2. Regularizing Wij

The potential Wij can be decomposed in powers of the
masses. It contains terms proportional to m1, mo, m%, m%
and mj mo. It is easily seen that while the terms propor-
tional to m; and m? are l-singular, the terms propor-
tional to my and m3 are 1-regular. It is more delicate to
decompose the mixed terms o my ms into 1-regular (R;)
and 1-singular (S7) parts. More precisely the mq mqy part
of Wij has the form

W[mlmz] W[m1m2] + W[ml"nZ]

i i4(0) J(0) (3.13)

where

7 mim ) 1 ) )
Wij )" = — S&J { = (i3 +2nini))

S 1 1
—nigniy | @ T <
52 7‘125

P(n12)ij

T12S

1 i
+ 5 (ng nd) + 2n{'nd) - lenJu) , (3.14)

2 [mim " 1 i i
WijEQ)l = T1286J {82 (né njl) - Qné n?z)

. 1 1
—nigniy | @ T <
52 7‘125

P(’nlg)ij

T12S
1 i Py
+ 52 (”é ”1) - 2”§ njl)z ”1271]12) ;. (3.15)

and where P(ni2)¥ = §% —ni,nl, denotes the projector
orthogonal to the unit vector n1s. [The decomposition
in Eq. (I3) simply corresponds to the decomposition
of Eq. (A4)) into an explicitly written term and its 1 < 2
counterpart.] Here we see that there appear (modulo
z-independent factors, such as ry5, niy, P(n12)¥,...)
terms of the type
1 1 ni  nb  nind

S’ §27 §27 g2 S2 7
where we recall that S = r; + T2 + 12 Near particle 1,
n% is a smooth function, while n} = r{/ry is the ratio of

(3.16)

a smooth function (r{ = ' — yi) by r1. In other words,
the five terms listed in Eq. BI6]) are of three different

types:

1 fz)
§ s F and

f(z)
1 52 ’

(3.17)

where f(x) denotes a generic smooth function near parti-
cle 1. [As we always consider the neighborhood of particle
1, we do not add an index to f(x) to recall that it is 1-
regular, but might be singular near particle 2.] Because
S = r1+ra+ri2 is a function of “mixed character” (partly
regular and partly singular), it is not immediate to de-
compose the functions in Eq. @I7) into 1-regular and
1-singular parts. [This mixed character of S is deeply
linked with the fact that it enters the 2PN metric be-
cause of the basic fact that a solution of Ag = v ry!
is g = In S.] A simple (though somewhat brute-force)
way of extracting the regular parts of the functions in
Eq. BI1) consists of decomposing S into

S:So+T1—S0<1+T—1),
So

(3.18)
with
So =71y + 112, (3.19)

(note that Sy is a smooth function near particle 1), and
then expanding S™" in powers of r1/Sy. Namely

1 1 1 r% r%

ooy 2

S &( ST omt) B0
1 1 r3
—=—(1-2—=+3-L —4-L 21
52 sg< SO+352 I ) (3.21)

and more generally
R B R R GRS N A
Sn S" So 2 So
(n+2)(n+1n (r\°
So

3!
(n+3)(n+2)(n+1n [\
csdnepeie (1), ),

(3.22)

n=12,...

Using these expansions, together with the rule that terms
of the form in Eq. [B.I2) are purely singular, it is easy to
derive the following results for the 1-regular parts of func-
tions of the type in Eq. (8I1), and, more generally, of the

types f()/S, f(2)/S?, f(x)/(r18) and f(z)/(r1 5?):
(), ()
+



(), ) e5)

Here, we use a lower R subscript (¢(z))g to denote
the 1-regular part of a function ¢(z) (above denoted as
R[p(x)]). (We omit decorating R with a label 1, but one
should remember that we are always talking about the
1-regular part of ¢(x).)

(3.26)

Note that, as indicated, all the terms above have the
simple property that the regular-projection operator R
commutes with the multiplication by a smooth function,
e.g. R[f(x)S~' = f(x) R[S™!]. Beware that this prop-
erty is true only for the special singular terms considered
here. We shall later see that more-complicated singu-
lar terms (entering the X potential) do not satisfy this
simple commutativity property.

Note that the number of terms one needs to retain in
the above expansions depends on the quantity one wants
to evaluate on the first worldline. For instance, when
evaluating G}l 8 which involves the curvature tensor, and
therefore two spatial derivatives of the metric (and, in

particular, of R [Wj;]), we need to include enough terms
to ensure that R[W;;] is C? near @ = y;. Actually, we
shall push our calculations up to the level of G, By which
depends on the first covariant derivative of the curvature
tensor, and we shall therefore need all the brick potentials
to be at least C® near = y;.

The application of the above results yields the follow-
ing explicit expressions for the 1-regular part of the two
separate O(mymz) delicate contributions to W;; [defined

in Egs. B.13)-@B.15)):

77 mim P(?’ng)ij 1 r2 r4
Wylmemal, = D2 2 (G T T
Wi = = 5 g T e

10

(¢,.9) 2 4
2
+ 02 (———4r—1—6r—1+ )

Sg So Sg Sg’
(i, 7) 2 4
ryn 2 T T

+ 21712 <———4—1—6—1+...)
Sg So Sg Sg

a1 r2 rd
— niondy—=5 (1 4+3=5 +5— +...
N1aM79 Sg < + Sg + 561 + )

(3.27)

%)I

[m1ma] _ P(n12)ij 1 (1 T% Téll >
= =2 (1421 +2L+. ..
[ J(O) ]R T12 SQ Sg 561
e (—3 4 —6ﬁ+...)
S2 So S3 SP
2 4
(i j) 1 i T
) —(1+32L +5-L 4+ ..
bty (1435 +55 +-)

i g1 7’% 7’%
- n12n{2s—§<1+3s—§+5s—3+... .

(3.28)

3. Regularizing R

_As the potential R; has a source of the same type as
W;; (namely 6(x — ya) terms plus a non-compact term
quadratic in the V' potentials), the calculation of its reg-

ular part can be done in exactly the same way as W;;. R;
contains terms o< m?, m3 and mj ma. The O(m?) piece
is purely singular, the O(m3) one is purely regular, while
the O(my mg) one is a mix of regular and singular terms.
As above, we can decompose the my mq part of R; in two

pieces, say

[mima] _ plmimsa] :[mm]
R; e _Ri(O; 2 +Ri(0; 2 (3.29)
where
5 [mima] _ g (nigv1) (1 1
_ 2(”2’1}1) 3(”2’1}2)
52 252
o1 3(n1av
+ nllﬁ (2(”121)1) _ %
3
+ 2(7121)1) - (H;U2)>
- 1 1 |
+v) | —— + — v, , 3.30
! (7“17“12 27‘125> 2ririe (8:30)

5 fmims] i [ (nagve) (11
Rz(o) = N9 { 29 (S + 12
_ 2(”1’1}2) 3(”1’1}1)

S2 252
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1] 3(nyav : 3(nyav 1
+ né@ <—2(n1202) + % +ngy K—?(nuvz) + %) <§> N
3(”1’1}1) 3(1‘1’01) 1
+ 2(nqv2) 5 ) + (2(1‘1’02) — 5 st )
) 1 1 | ) 1 1 1 o1
+ v} + — vt . 3.31 P — 4+ —— [ = — .
2 (7”27"12 2T125> Lroria ( ) T (7“27“12 * 2r12 <S>R> i 2712
(3.33)

Applying the above results then yields the following

expressions for the 1-regular parts of these quantities:
One should substitute the expansions in Eqgs. B23)-

. i (n12v1) (B26) into these results to get their explicit forms.
iy = iy { [ -2~ 2
J3awe) | (1 (g (1
2 52 R 2112 S)gr N
3(n1202) 4. Regularizing X
+ (2(7112’01) — T + 2(7121)1)
3(nava)\ 1 Finally, we come to the most complicated 2PN brick
- 1 otential, namel X. It contains contrlbutlons Topor-
) e P y prop
. " R tional to m%,ml ma,m3; m3, m? ma, my m3 and m3 (see
N vi (1 (3.32) Eq. (A5)). The terms in m?%, m3, m$, m3 are easily dealt
2rig \S /) 5’ ' with (they are either purely singular or purely regular).
Many, but not all, of the m; mg terms can be dealt with
in the same way as the m; mg terms in W;; and R;. If
[éiggz)lmg]]R - { (m;vg) ((%) we again decompose X [™1™2] in two pieces
R
1 /1 1 > [mam [muma] | §lmame]
“a(5),) -2 (5), el = Xl X @)
3 1 . .
+§(r1v1) 5 we have the following results for their regular parts:
1 R

ot (3, 04, ) e, 0)
(%), + 25 (3),) oo (), 75 (3),)
+3(”12U+("12U2) <<%)R + % <%>R> + 2(n12v1)(r101) (rgg)R
—5(n12v2)(r1v1) (#) — (r1v1)? <2L52 + @%) R + 2mzva)(rivz) (TTSQ) R
+2(r101) (r1v2) ( -+ 7”:1%) (riv2) 2 ( %18 318) — 2(n12v2)(n2vy) (%)R
> — ) (naea) (ﬁ%)R (3.35)
(

Rl = ( ), (5)) o (5), m (5),)
G e (3 ()
o () (1)) el () 1 (1))

—|—2(I‘1’02 nov1 <

| —

1
r
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—2(n12v2) (ngv2) (Si> + 5(n1201)(n2v2) (%)R

e ((8),
2(ngvs)(ngvn <( )

One should substitute the expansions in Eqs. (B23)—

BZ0) into the corresponding terms in Eqs. (339), (334).

However, these equations involve new types of terms, not
discussed above. These new terms are of the form

1 1
1o (74 7).

The fact that we have a specific combination of r; 2 S~2
and r{ 3 6~ simplifies things. Indeed, using the expan-

sions in Eqs. (3220), B.21I]) above we have

(3.37)

flx)  flx) [S5 . So
- _920 s s
252 = st |2 A TR so+5s2+
(3.38)
f(z) f(z) So So So
- 2020 20 g .
r3 S 5’4 r o or? + 1 +3 S’o 52 +
(3.39)

When summing these two equations we see that the terms
o 1/r? cancel. We shall deal later with these terms,
which turn out to be delicate to handle but, anyway, in
the sum of Eqs. (338) and ([B39)), they cancel out. The
remaining terms contain either an odd power of 71 [and
are therefore purely singular, Eq. (BI2)] or a positive,
even power of r1 (which makes them purely regular). As
a consequence, the regular part of the combination of Eq.

@37) reads
e (v )], = 5 (o0 (5)
4 6

(3.40)
Note that, thanks to the cancellation of the 1/r?
terms, we have again a property of commutativity

R[f(x) p(x)] = f(z) Rp(x)],
terms ¢(x) entering Eq. (B:37)

for the special type of

Concerning the m; m3 contribution to X, it is the sum
of

Slmim3] _ 1 T2 1
X ™ =~ +

(3.41)

3 2
2rirmyy 2117y

(1) ) — 2(n12v1)(n2v1) <%>R

+2(n12v1)(r1v2) <T152 > . +2(nav1)(r102) (Tg?)

- > v (raon) <ﬁ%>R . (3.36)

and
T R
X 2 = — —
(0) 2r3 + 1673 + 16r3r;  2r3r3,
r:f T% 3 151
2r3rdy  32rrdy, 1673, 32riri,
3 r? o %y (3.42)

2r3rdy,  2r3re 32r3rf '

Using the rule of Eq. (BI2), we easily see that each
term clearly is either purely regular or purely singular.
Computing the regular part of X172 is then easy.

The most delicate contribution to X is its O(m?2 my)
one, which can again be written as the sum of

o mZma] 1 1 1 T%
RO A i i
1 2 12 1712
3 _ r? 3 1579
2rrdy  32r3rdy,  16rori,  32riri,
2 2
5 ro Ty
— — — 3.43
2r3r2y,  2r3riy 32123 (3.43)
and
[m ma] 1 1 1
X! = — — . 3.44
(0) 2r3, + 2rordy  2ror?, (3.44)

Actually the part X ([gﬁmﬂ is easy to discuss: Its reg-
ular part is obtained simply by discarding the term:
r1/(2ra73,). Similarly, most of the terms in X([g; im]
are easy to treat, being either purely regular or purely
singular because of Eq. ([BI2). However, the third,
fourth, eighth and last terms in the right hand side of
Eq. (343) are somewhat tricky. [These terms correspond
to the “dangerous terms” in XWViVa) that were dis-
cussed in Sec. III when making the link between the
e-regularization and the Hadamard one.] The third term
is
1

=—— 3.45
@ 16 r% re’ ( )
while the sum of the fourth, eighth and last terms reads
r2 1579 r?
P=-——-2 - =2 3.46
2rird, + 32r2rd,  32rird ( )



Both @ and P are of the form f(x)/r? (but we shall see
that @ is special compared with P). The computation
of the regular part of f(z)/r? is a bit subtle. It can,
however, be done by brute force, namely by replacing the
smooth function f(x) by its Taylor expansion around y;:

1
2 rl Tl 81] f(yl)

1
+ 31 i 7“1 e ik f (Y1) + .

f@) = flyr)+ri0i f(yr) +

(3.47)

When replacing i — 71 n} and dividing by r#, one sees
that the regular part of f(z)/r? will only come from the
terms ri = r*"?" with £ = 2,4,6,... Moreover, by
decomposing r¥ = r{ n¥ in irreducible tensorial parts, as
in

P =2l :rl[ <”>+ 6”} (3.48)

(i) — ~if — 4j

where ni”?’ = Ay = nY — 167 denotes the symmetric

trace-free projection of n%? = ni nd, we see [in view of the

definition in Eq. (@I0)] that only the pieces containing
at least one Kroneker ¢ in the decomposition of n¥ will
contribute to the regular part. For instance, in the case
¢ = 2, only the §% in Eq. (@.47) will contribute to the
regular part of f(x ) /r?. More generally, we have that
Rlr{/ri] = (rf —7)/ri.

Applying this method yields the following result (here
written with the simplified notation used around Eq.

[B3.3)) for the regular part of f(z)/r?:

<f(w)

r2

1 1 . 1 ..
P et __3UAH..
) = GASO)+ G AAL0) + i 05050
L 2pe 1
T A0 15

1 % 2 4
+520" 229, A% £(0) + O(a*) .

7% 0, Af(0)

(3.49)

As one sees in Eq. (8:49) (and as can be proven to
all orders), all the terms on the right-hand side of Eq.
BQ) are derivatives of the Laplacian of f(z) (taken at
x = y1). As a consequence, in the particular case where
Af(x) = 0, the regular part of f(z)/r? is exactly zero.
This is the case for the term Q in X[mim2] Eq. (345).
[Let us point out in passing that the discussion in Sec.
ITIC of the link between the e-regularization and the
Hadamard one essentially consisted in remarking that all
the “dangerous” terms in X[mimal had this innocuous
structure f(x)/r§2+2s) with Af(z) =
have simply

0.] Therefore, we

Qr=0. (3.50)

On the other hand, this is not the case for the term
P, Eq. (346). The evaluation of the regular part of P
needs to appeal to the result in Eq. (B49) and yields
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(modulo terms of order O(r}) that will not be needed in
our calculations)

1 (13 15 (1 r? 1
Prn = ——_ 2 T2
" 27?2 (T1> 327, 32T12 (T1>R 32 T%TS’ R
3 [ 1[3 ., 15 ,
S8, h [224 e 112(r1n12) }
5 2 3,
T 30 (rini2) |(riniz) — 3| (3.51)
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Summarizing: We have explicitly displayed all the
rules needed to compute (near particle 1) the regular

parts of the various brick potentials V|V, WU,R“ X en-

tering the 2PN metric. By replacing V' — Vg, ... X —
Xg, in Eq. 32), we define a regularized version of the
2PN metric generated by two point masses, g[f (z) =

9 [Vr(), ..., Xg(z)], which is smooth near particle 1.

IV. COMPUTATION OF THE INVARIANTS
ENTERING THE TIDAL ACTION

As we explained above, when neglecting terms
quadratic in the tidal parameters (9, etc., the tidal part
of the two-body action is simply obtained by evaluating
the Shonminimal, Eq. (Z12), as a function of the world-
lines, by replacing the metric g, (x) entering the right-
hand side of Eq. (ZI2)) by the (regular part of the) point-
mass metric gggi“tma“(m,yl,yg,ml,mg). This reduced
action is a sum over the various tidal parameters, uff),

ff), u;(f), .... We can therefore compute separately the
part of the reduced action associated with each of them.
This is what we shall do in this section for the actions

associated with the parameters ,uff f), ,uff_f), aff 12) and

I 14(‘2:12). [We shall only explicitly write down the results
for A = 1 but, evidently, they also yield the results for
A = 2 by exchanging 1 < 2.]

First, let us note that each action, say, associated with
the parameter p; related to the first worldline, is of the
form

M1 /dth (Y1,y2, 01, v2) (4.1)

where the Lagrangian L, is the product of a geometrical
invariant by dr /dt. For instance

1d7’1
4 dt

o 1dr
[Ga,@G ﬁ]l 4 dtl [Gab]

We shall separately evaluate each geometrical invari-
ant, G2,,G?,, ..., before multiplying it by the (regular-
ized) proper-time redshift factor dr /dt (“Einstein time
dilation”). Note also that we systematically work with
the order-reduced 2PN metric, i.e. the 2PN metric in

which the higher time derivatives of y; and yo have

Lo = (4.2)



been expressed in terms of positions and velocities only,
(y1, Y2, v1,v2), by iterative use of the (harmonic-gauge)
equations of motion. As was discussed long ago, such an
order reduction of the action is allowed, when it is under-
stood that it corresponds to a certain additional change
of coordinate gauge [45-47]. As we shall ultimately be
interested in computing gauge-invariant quantities asso-
ciated with the EOB reformulation of the dynamics, we
do not need to keep track of this coordinate change.

A. Explicit 2PN-accurate tidal actions for general
orbits

Let us start by discussing the simplest (and physically
most important) geometric invariant, namely the one as-
sociated with the electric-type quadrupolar tide, say

J2e = [Gab Gab]l - [Gaﬁ Gaﬂ]l

= [Rauﬂu Rvm;)\ ga'y 966 ut u” u” ’U/)\]l ) (43)
where u}' = dy!'/dr1 = (¢,v1)dt/dr, and where the sub-
script 2e on Ja. refers to “¢ = 2 electric.” Using two
independently written codes (one based on the Maple
system, and the other one based on the Mathematica
software supplemented by the package xAct [48]) we
have computed the right-hand side of Eq. (3]) within
the (regularized) 2PN metric. (Actually, as explained
above, the Mathematica code alternatively regularized,
a la Hadamard, the value of G5 computed with the full
(non-regularized) 2PN metric.)

As the PN expansion of the quadrupolar tidal tensor
Eq. (270) starts as

Gap = _CzRaObO+
1
= + = *(Oab 900 — Fa0 950 — Fp0 gao + o0 Gab)

2
+...,

one sees that the 2PN-accurate metric [i.e., the knowl-
edge of goo up to O(1/c%) terms included, of go, up to
O(1/c®), and of g. up to O(1/c*)] is exactly what is
needed to be able to compute G, to the 2PN (frac-
tional) accuracy, i.e., Gap = + 0apV +c72(...)+c74(...).
The same is true for the higher electric tidal moments
Gabe, - - .- However, one can easily see that one loses
a PN order when evaluating either the magnetic tidal
moments Hyp, Hape, - . . or the time-differentiated electric

one Ggup, . ... The result we obtained, for general orbits,
is
6G2m? 1
Joe = — 5 2 {1 Tz ( — 3(n12v12)? — 3(n12v2)” + 3,
12

G
(B + 6m2))

1
+ a [3(71121)12)4 + 12(n12v2)* (n12v12)? + 6(n12v2)*

—9v7,(n12012)? — 6(n12v12) (V2012)
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—6(n1202) (n12v12) (v2v12) — 303 (N12012)?
—90%5(n19v2)? — 302 (n12v2)? + 6],
+6035(v2v12) + 3(v2v12)? 4 3v3vi,

+Gm1 ( 109 41 21 , )

- T(nmvm)z + ?(n12v2)2 + IU12

T12

Gm
+T22 (6(71121)12)2 =+ 21(7112’02)2 — 61)%2)

G2 3657’)’1% 125m1m2
& 21 2) . (44
rfz( 55 T g T4 H (4.4)

Similarly, we computed the further geometrical invariants
“¢ = 3 electric”

Jse = (G2, = [Gapy G77], (4.5)

and “/ = 2 magnetic”

1

1 (e}
Jom 1 [Hgbh 1 [HaﬂH 5}1

= & [R} 5 Risn %7 97wt u¥ ut u?] | .(4.6)

Note the factor %, introduced in the definition of
Jom to have Jo,, = (CRZHBUUHUV)z, analogously to
Joe = (Rappoutu?)?. Let us also note in passing that,
in evaluating J3., i.e., the square of the electric oc-
tupole Gogy, Eq. (Z8), it is important to use the or-
thogonally projected covariant derivative V2. If, in-
stead of (Gagy)?, one evaluates (Copy)? where Cppy =

Symg gy Va Rpuyw v u”, one finds a result which differs

from (Gap,)? by a term proportional to Jy, = (Gap)?

[see Eq. (E5))].
The results for these invariants (along general orbits)
are

90G?m?2
J3e = %

1
{1 + —2 |: — 2(7112’012)2 — 4(7’),12’02)2 + 3’()%2
19 C

B G(4my + lOmg)}

12

1
+C—4 [10(7112112)2(”12?)12)2 4 10(n12v9)*

—;—411%2@121;12)2 — 4(n12v12)? (vav12)

—120%2(7112112)2 - 4(”1202)(7112012)(1121)12)

—202(n12v12)? — 403 (n1209)>

—I—gvﬁ + 6035 (v2v12) + 3(v2v12)? + 3v3Vi,
Gmy

T12

+

( — 32(n12012)? + 2(n12v2) (n12012)

16
+22(n1202)2 + ?1}%2)

Gm
n 2

(12(”121)12)2 + 45(11121)2)2 — 18’1}%2)
12

G? 259
5 (omt + 2 o sang) |
19 3



and
18G?*m3
Jom = %{ — (n12v12)? + v3
T12

1
+ 0_2 {(n12v12)4 + 4(71121)2)2(71121)12)2

—3vy(n12v12)? — 2(n12v12)? (V2v12) — V3 (N12v12)

—2(n12v2) (n12v12) (V2v12) — 3055 (N1202)
+2vil2 + 20%2(1)21)12) + (U2U12)2 + USU%Q

T12

The result Eq. (4], after multiplication by the red-
shift factor

d i i,J 1/2
T1 V] ()
— = - —2490i — — Gij —=— , 4.9
dt ( goo 90 - Gij 02> (4.9)

which evaluates to (we use again the notation e = 1/c,
and henceforth often set Newton’s constant to one)

dT1 2 1 2 mo
— =1 _ _“
dt ¢ (2U1+T12

1 mo (1 3
+ et [—gvéf o, (5(7112?12)2 - 5”%

+ 4(vivg) — 2v§) + 2”:—22(3m1 +ma)|, (4.10)
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provides the O(uge:ﬂ) piece (“gravitoelectric tidal
quadrupole”) of the reduced two-body action at the 2PN
approximation level; i.e., including tidal correction terms
that are (v/c)* smaller than the leading order tidal La-
grangian which is simply given by JQ(S) =6m3/rf,. Sim-
ilarly, multiplying the results of Eqgs. (@1) and (&3]
by the redshift factor in Eq. (@I0) provides the re-
duced tidal actions associated with J3., = [Gibc]l and
Jom = %[Hgb]l, at the 2PN approximation for the
electric-octupole term Js., and at the 1PN approxima-
tion for the magnetic-quadrupole term Ja,,.

In view of their complexity, the results of Eqs. (@),
#0), (£3), which provide the action for general orbits,
are not very useful as they are. In what follows, we shall
extract the physically most useful information they con-
tain by: (i) focusing our attention on circular orbits and
(ii) reformulating our results in terms of the EOB de-
scription of binary systems. Note in passing that though
circular orbits are only special solutions of binary dynam-
ics, they are the ones of prime physical importance in
many situations, most notably radiation-reaction-driven
inspiralling binary systems.

B. Tidal actions along circular orbits

In the following, we shall therefore restrict our atten-
tion to circular motions. [However, we shall show below

+E (% + mz) ((”12?112)2 - Ufz)] } - (4.8
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how this restricted result can crucially inform the EOB
description of tidally interacting binary systems.] We
shall also focus on the relative dynamics in the center of
mass frame. As we see in Eqs. (@4)), (£1), (48), @I0),
the various Lagrangians depend only on the relative po-
sition Y12 = y1 — y2 and start depending on (individual)
2 velocities only at 1PN (for general orbits), and even at
2PN for the invariants themselves (in the case of circu-
lar orbits). This implies that we shall not really need to
use to its full 2PN accuracy the relation between center-
of-mass variables y{™, y$™ ™ M and relative ones
)ylg, V12, namely (in the circular case)

M \? .
SRS S

i M \° i
[—X1+3<r12c2> I/X12‘| Y12 (411)

<
N
|

and the corresponding velocity relations obtained by
time-differentiating them, using the fact that yi2 =
r12 M2 where r15 is constant and mqs rotates with an
angular velocity given by

0? = % |:1+62(V—3)%

19 T12

+¢* <6+%V+V2) (%)2] . (4.12)

Here and below we use the notation

m2
XQE—,

Xlz_a M

i VEXlXQ,

X0 = X1 —-Xo,

(4.13)
(recall that M = my + mg so that X7 + Xo = 1). In our
calculations, the ¢! = 1/c* contributions in Eqs. (@I,
(#12) do not matter, and can be neglected from the start.

Using such an additional circular (and center-of-mass)
reduction, we get a much simplified result for the electric-
quadrupole invariant Jo., Eq. ([@3]), namely,

cirey  6MZ2X2 X, —3)M
J2(e ) = TQ 1 + 62¥
12 T12
M2
—et 55,2 (713X2 — 805X, — 336)| . (4.14)
12

In a similar manner, one gets much simplified results for
the other (subleading) geometrical invariants of tidal sig-
nificance, namely the magnetic quadrupolar term Js,,,
Eq. (@8], the electric octupolar term J3., Eq. (£H), and
also for the time-differentiated electric-quadrupole cou-
pling, say,

Ty, = [sz} = [V, Gap)w Vv, 6], L (415)

Among these invariants, the 2PN accurate metric allows
one (as for G2,) to calculate to 2PN fractional accuracy



only the electric-octupole term Js.. The other ones can
be computed only at 1PN fractional accuracy because
of their “magnetic,” or “9y = ¢~ 10;” character. Our
explicit “circular” results for Ja,,, J3. and J;, are

Cer 18—X2M3 M
Jige) - 202 [1 T+ (3X24 X — 9)]
T12 3ri2
(4.16)
X2M? M
J(CITC) _ 9072 1+ €2 (6X1 _ 7)_
3e 3
12 T12
M
—e! o (61X +4X) — 98)} . (4.17)
T12
circ 18X2M3 M
T = 2 {1—!—62()(12—7)—} . (4.18)
D) 12

To complete the above results, and allow one to com-
pute the corresponding associated Lagrangians, let us
note that the circular value of the redshift factor is

dno _ 1, M -DX-3)
dt o Fl o 27”12 ¢
M2(X; -1
+ %(3){? —9X? 4+ 13X, — 3)e*. (4.19)
712

Let us also quote the value of the inverse redshift factor,

I’y (analog to a Lorentz ~-factor v = 1/4/1 —v2/c?),

namely
dt M(X; - 1D(X; —
MHh=—=1+ (X1 - D 3>€2
dTl 2’/‘12
M2 3 2 4
— 5z (X1 = D(XT +5X7 — 17X, +15) . (4.20)
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V. EOB DESCRIPTION OF THE TIDAL
ACTION

We have computed above the effective actions associ-
ated with the tidal parameters uf), u§3), a§2) and u/1(2).
Before the restriction to circular motions (in the center-

of-mass frame) they have the general form

M1 /dth (Y12, v1,v2), (5.1)

where p1 denotes a generic tidal parameter, and y15 =
Y1 — y2. In this section we discuss how one can de-
scribe the actions of Eq. (5 within the EOB formal-
ism. Let us recall that the EOB formalism [16-19] re-
places the (possibly higher-order) Lagrangian dynamics
of two particles by the Hamiltonian dynamics of an “effec-
tive particle” embedded within some “effective external
potentials.” For non-spinning [66] bodies, the original
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(velocity-dependent) two-body interactions become re-
formulated (and simplified by means of a suitable contact
transformation in phase space) in terms of three “EOB
potentials”: A(reg), B(reg) and Q(res,pt). The first
two potentials, A(reg) and B(reg), parametrize an “ef-
fective metric”

Guv (Tet) dry dgy
—A(reg) c dtQH + B(reg) dr
+rcﬁ(d6‘2ﬁ + sin? O dgocﬁ)

2 _
dSeﬂ‘ =

(5.2)

and its associated Hamilton-Jacobi equation, while the
third potential Q(reg,p®™) (which necessarily appears
at 3PN [18]), describes additional contributions to the
(Hamilton-Jacobi) mass-shell condition,

0= 41 + g (wer) P57 P5T + Q(resr, p°) (5.3)
[where p = mymo/M = vM is the reduced mass of the
binary system], that are higher than quadratic in the ef-
fective momentum p°®. Following the EOB-simplifying
philosophy of Ref. [18], we shall assume that the third po-
tential has been reduced (by a suitable canonical trans-
formation) to a form where it vanishes with the radial
momentum pﬁﬁ.

In addition, EOB theory introduces a dictionary be-
tween the original dynamical variables (positions, mo-
menta, angular momentum, energy) and the effective
ones. A crucial entry of this dictionary is a non-trivial
transformation between the original “real” energy, i.e.,
the value of the original (total) Hamiltonian H, and the
“effective” energy —pS! = H.q entering the mass-shell
condition of Eq. (53). Because of this transformation,
the final EOB-form of the (original, real) Hamiltonian
reads (here we set ¢ = 1 for simplicity)

) ()

H
HEOB(weffupeff) = M\/1+2V< ;H

where Hog = Het(@Teft, Post) 1S given by

Heg = 1| A(regt) (u + Je“f + = ih)? + Q(reﬂ,peﬂ)) :
Teﬂ' B(TCH)
(5.5)
Here Jeg = T X Per denotes the effective orbital angular
momentum, which, by the EOB dictionary, is actually
identified with the original, total (center of mass) orbital
angular momentum J of the binary system: Jeg = J.

A. EOB reformulation of tidal actions: general
orbits

Let us now discuss what the various possible meth-
ods are for reformulating an original action of the
type Lo(y12,v1,v2,...) + p1 Ly, (Y12, v1,v2) [where pi



stands for a sum over a collection of tidal pa-
rameters uﬁz),uéz),u§3),u§3), ...] into corresponding p1-
deformations of EOB potentials: Ag(reg) + p1 Ay, (Test),
Bo(rett) + p1 By, (rest), Qol(resr, p°™) + 11 Qpy (resr, p°).
The main difficulty in finding the perturbed EOB po-
tentials A,,, B,,, and @, that encode the dynamics of
L, is that such a dynamical equivalence is obtained only
after some a priori unknown phase-space contact trans-
formation between the EOB phase-space coordinates, say
Eeft = (Tefr, Pett), and the original (harmonic-coordinate-
related) ones, say &, = (y12,v12). For simplicity, we
assume that we have already performed the reduction of
the original harmonic-coordinate dynamics to its center-
of-mass version, in which one can express v; and vs
in terms of the relative velocity v12 = v; — vy and of
Y12 = y1 — y2. On the other hand, we do not imme-
diately assume that the original Lagrangian dynamics is
expressed in Hamiltonian form. (Let us recall that, as
was found long ago [24, |49], starting at the 2PN level,
the harmonic-coordinate dynamics does not admit an
ordinary Lagrangian, L(y,y), but only a higher-order
one, L(y,y,%). In order to express the 2PN dynamics
in Hamiltonian form, one already needs some (higher-
order) contact transformation. However, this transfor-
mation is well-known, e.g., Ref. [46], and we do not need
to complicate our discussion by explicitly mentionning it.
Nonetheless, it will be taken into account in our calcula-
tions below.)

The transformation T" between &g and &, will have the
general structure

&n = To(geff) + TMI (geff) . (5'6)

The unperturbed part Tp(€err) is known from the pre-
vious EOB work [16, [18], but the O(uy) perturbed part
Ty, (éerr) is unknown, and, actually, is part of the prob-
lem which must be solved for reformulating the (per-
turbed) harmonic-coordinate dynamics in EOB form.
This means, in particular, that it would not be correct to
try to compute A, , Bm and @, simply by replacing
in the tidal action in Eq. (&) the harmonic variables &,
by their unperturbed expression Tp(&et) in terms of the
effective variables &eg.

For the general case of non-circular orbits, a universal,
correct method for transforming the original Lagrangian
L(&,) = Lo(&n) + p1 Ly, (&) in EOB form consists (as
explained in Ref. |16]) of the following steps: (i) to trans-
form the original Lagrangian L(£) in Hamiltonian form
H(§n) = Ho(§m) + pa Hy, (§1), where §g = (q,p) are
canonical coordinates; (ii) to extract the gauge-invariant
content of H (&) by expressing it in terms of action vari-
ables I, = % fpa dqq, which yields the Delaunay Hamil-
tonian H(I) = Ho(I) + p1 H,, (I); (iii) to do the same
thing for the EOB Hamiltonian, i.e. to compute, as a
functional of the unknown EOB potentials, its Delaunay
form Hgrop(I) = HEOB(I) + 1 HEIOB(I); and finally
(iv) to identify the known H(I) to Hgop(I), which de-
pends on the unknown functions A,,, By,, Q. This

17

last step yields (functional) equations for A, By, , Q.
and thereby allows one to determine them. [In prac-
tice, the functional dependence on A, B,(Q is replaced
by a much simpler parameter-dependence by using the
method of undetermined coefficients for parametrizing
general forms of A, B,Q.] An alternative (and equally
universal) method for transforming L(£) in EOB form
(as used in Ref. [18]) is to add the transformation
& = T'(Eemr) to the list of unknowns (using the method
of undetermined coefficients), and to directly solve the
set of constraints for T, A, B and @ coming from the re-
quirement that Hrop (&, A, B, Q) = H(T ((eg)). [One
must then take into account that T is constrained to be
a canonical transformation. |

B. EOB reformulation of tidal actions: circular
orbits

The 2PN-accurate results, given for several tidal in-
teractions in the case of general orbits, in the previous
section, can, in principle, be transformed within the EOB
format by using any of the two methods we just ex-
plained. However, from the point of view of current astro-
physical applications, one is mainly interested in knowing
the EOB description of (quasi)-circular motions. In this
case, we know a priori that it is only the A radial po-
tential which matters. Knowing this, the question arises
how to compute the tidal perturbation A4, of the EOB A
potential in the most efficient manner, possibly without
having to go through the rather involved, general univer-
sal methods recalled above. Fortunately, it is possible to
do so by using the following facts.

The first useful fact concerns the relation between the
tidal perturbation (in harmonic coordinates) of the La-
grangian of the binary system, say

SL™(yn, vn) = p1 Ly, (y12,v1,v2) (5.7)
and the corresponding tidal perturbation (in harmonic-
related phase-space coordinates) of the Hamiltonian, say

SH" (yn, pn) = Hiy (s pr) — Hiigareseee(Wnson) - (5.8)
[Strictly speaking, as we recalled above, the harmonic-
related (¢,p) = (yn,pr) phase-space coordinates involve
a supplementary O(1/c*) gauge transformation linked to
the order reduction of Lopn(y,9,%) into LS\ (y',9').]
Note that here and in the following the notation §Q(€)
will always refer to the tidal contribution to some func-
tion of specified variables, i.e. dQ(¢) = Qam(§) —
Qtidal-free (€). One has to be careful about which variables
are fixed as, for instance, the transformation between La-
grangian (g, ) and Hamiltonian (g,p) coordinates does
contain a tidal contribution [because 6“9 L(yy,, 7) does
depend on velocities]. This being made clear, we have
the well-known universal result about first-order defor-
mations of Lagrangians by small parameters, L(q,q) =



Lo(q,q¢) + p1 Ly, (g, ), namely

5Hh(yh,ph) = —6Lh(yh,vh) (5.9)

which follows from the properties of the Legendre trans-
form.

Let us now apply the second method recalled
above for transforming the “harmonic” Hamiltonian
Hf]}Jll(yhaph) = Hél(yhvph) + 5Hh(yh7ph) (Where the in-
dex 0 refers to the unperturbed, tidal-free dynamics)
into its corresponding EOB form Hf}::ﬁB (zEoB; PEOB), de-
fined in Eqgs. (&4), (5X) above. [For clarity, we denote
here the effective-one-body phase-space coordinates by
TEOB, PEOB, instead of Zeg,peg as above.] The crucial
point is that the EOB potentials entering the definition
of HEQB must be the full, tidally-completed values of
A, B and Q, e.g.

A (reoB) = Ao(reoB) + 14, (rEOB)
= Ao(rgos) + dA(reoB) -

In other words SHEOB(2r0oB, pEOB)
HEQB(zpos,pros) — HEP(zpoB,proB) is  ob-
tained by varying the functions

A,B and
Q (e A(rgoB) = Ao(reos) + 6A(reos),
etc.)

in the definition in Eqs. (&4), (EH) of
HERP[reoB, proB; A(rEoB), B(reos), @(reos, p™OF)].
This second method for mapping H} (&)
into Hi3®(Emos) [where &, = (yn,pn), &eoB =
(zroB, prOB)] consists of looking for a full, i.e., per-
turbed, (time-independent) contact transformation

& = Tra(€eos) = To(feos) + 11Ty, (gos) that
transforms H,,(¢,) into HEQB(Egog), i.e., such that

(5.10)

Hiyn[Tran(éeor)] = Hiait® (o) - (5.11)

Rewriting the full transformation 7%, as the composi-
tion 7" o Ty of the known unperturbed (tidal-free) con-
tact transformation &) = Ty (épop) mapping HP(£D) into
HECB(¢gop) with an unknown near-identity additional
transformation, & — T'(€) — €0 + p{Gy (€2),€0)
[where {f,g} denotes a Poisson bracket and where
G, (€)) is the first-order generating function associ-
ated with the canonical transformation T7”], and expand-
ing all functions in Eq. (E11]) into unperturbed plus tidal
contributions (H" = H}' + §H", T = (1 + §T") o Ty,
HEOB = [EOB 1 § HEOB) leads to the condition

[SH"(€0) + {0G(£2), Hh(ﬁg)}]gg:To(EmB)

= 6H"OB(¢pop), (5.12)

where 6G(£)) = 111G, (£)).

18

In general, 6G(£)) is part of the unknown functions
that must be looked for when writing the condition in
Eq. (BI2). However, another simplifying fact occurs in
the case where one focusses on circular motions: The
supplementary term {6G, H"} happens to vanish. In-
deed, §G(£)) is a scalar function and the Poisson bracket
{6G, H"} is equal to the time derivative of 6G(£))) along
the H"-dynamical flow, which clearly vanishes along cir-
cular motions. This allows one to conclude that, along
circular motions, we have the simple condition

circ

[BH" (€] ep—ry ceom) = [0H R (S | NN GRE)

where the left-hand side is, in principle, fully known.

C. Link between the circular tidal action and the
tidal contribution to the EOB A potential

Let us now evaluate the right-hand side of Eq. (.13
When restricting the definition of Eqs. (&4), (&3) of
the EOB Hamiltonian to circular motions, the terms
(pECB)2/B and Q(rros,p®©B) disappear (because one
works with a gauge-reduced () which vanishes with
pEOB).  As a consequence, HE:(reop,J) only de-
pends on the A potential. The difference, dHESE =
HEx [reoB, J, Aran] — HESs[reoB, J, Ao, can then be
simply computed by varying A (Amn = Ao + JA) within
HEEBIA]. To write explicitly the result of this varia-
tion, it is convenient to work with dimensionless vari-
ables. We can replace the two phase-space variables
TEOB, ngB = J that enter H%; by their dimension-

less counterparts

u= GM = Gy + ms) , (5.14)
c? TEOB c? TEOB
and
J J
j= -2 ¢ (5.15)

GM,LLE Gmlmg'

In terms of these variables, the explicit expression of
[Hf}?ﬁB]mC reads

[HEQ® (u, )]
_ Mc2\/1 +2u (—1 + VAW +j2u2)) . (5.16)

Varying A(u) in Eq. (&I06) then yields the following ex-
plicit expression for the right-hand side of Eq. (.13):
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1

1+ 52 u?

[5HEOB(u,j)]CirC =3 Muvc?

In addition, one must take into account the constraint

coming from the reduction to circular motions, namely,
from pEOB = —~9HECB /9 rgop, the fact that 9, [A(u)(1+

T

j2u?)] = 0, i.e. the fact that j2 is the following function
of u (using a prime to denote the u-derivative):

2 .2 — A'(u)

J = jcirc(u) — (ug A(U))/ . (518)
Note that this relation depends on the value of the radial
potential A(u). If one is considering the full, tidally-
perturbed circular motions one must use Agn(u) =
Ao + dA in Eq. (BI8). On the other hand, as we are
now interested in considering the (first-order) tidal per-
turbations 6 H" and § H®CB, and their link in Eq. (5.13)),
we can evaluate SHEOB with sufficient accuracy by re-

circ

A(u)
1+ 52 u?

Here, the superscript “circ” means that j2 must be re-
placed by j2,.(u), Eq. (5I8). (Note that the replacement
A — A indicated as a subscript must be done both in
the explicit occurrence of A in Eq. (5.20) and in the def-
inition in Eq. (BIR) of j%,.(u)). Finally, if we introduce
the short-hand notation

1
A(u) = A(u) + B uA'(u), (5.21)
F(u), Eq. (520), can be rewritten in the explicit form

F(U)ZA(U) 1+2v —1+M 7

A(u)

(5.22)

which is valid along circular orbits, and applies for any
relevant (exact or approximate) value of the A potential.
On the other hand, as we computed 0L only to the 2PN
fractional accuracy, it is sufficient to use a value of F'(u)
which is also only fractionally 2PN-accurate. One might
think a priori that this would mean using for A(u) in
Eq. (522) the tidal-free approximation Ag(u) truncated
at the 2PN order, namely A2FN(u) = 1 — 2u + 2vud.
However, the contribution 2vu® = 2v(GM/(c? rgos))?
is O(1/c%) compared to one, which is the leading-order
value of F(u), which starts as F(u) = 14+ O0(u) = 1+

A) [1+20 (=14 VAT + 7))

(1+zy(_1+¢m))]

SA(u). (5.17)

placing in the coefficient of §A(u), on the right-hand side
of Eq. (5.I7), A(u) and j2 by their unperturbed, tidal-
free expressions Ag(u) and j3 (u) (obtained by replacing
A — Ap on the right-hand side of Eq. (5I]). [This re-
mark applies to several other results below; notably Egs.

(5:20) and (522).
Combining our results of Egs. (5.9), (513) and (5.17),

we finally get a very simple link between the tidal vari-
ation of the harmonic-coordinate Lagrangian 6 L(yp, vy)
and the corresponding tidal variation 0 A(u) of the EOB
A potential, namely,

2 F B o) g+ (5:19)

Muvc?

0A(u) =

where

circ
. (5.20)
A=Ay

O(1/c?®). The same consideration applies to A(u). [The
situation would have been different if F'(u) had been,
say, o« A’(u).] This means that, at the 2PN fractional
accuracy, we can use the value of F(u) obtained from
the leading-order, “Schwarzschild-like” value of Ag(u),
namely A{PN(u) = 1—2u. The corresponding A function
is then: A}PN(u) =1 — 3w, so that

F?PN(y) = (1 - 3u) [1+2u<—1+%>] .

(5.23)
Consistently with the fractional 2PN accuracy, and re-
membering, that v = O(1/c?), we could as well use

the 2PN-accurate series expansion of Eq. (G.23]), say
F?PN(y) = 1+ filv)u + fo(v)u? + O(u?). However,
it is better to retain the information contained in Eq.
(E23) that, in the test-mass limit v — 0 (where Ag(u) —
1 — 2u), the exact value of F(u) becomes 1 — 3u (see
later).

There remains only one missing piece of information
to be able to use our result in Eq. (BI9) for computing
the various tidal contributions to A(u). We need to work
out the explicit form of the unperturbed transformation
To between rgop and 74,.

A first method for getting the transformation Ty (at



2PN) is to compose the transformation &) — £apm (ob-
tained at 2PN in Ref. [46], and at 3PN in Ref. [50]) with
the transformation éapym — &eop (obtained at 2PN in
Ref. [16], and at 3PN in Ref. [18]). For our present
purpose, it is enough to restrict these transformations to
the circular case, i.e. to transformations r, — rapm and
TADM — TEOB-

The transformation h — ADM starts at 2PN,
e, yh = zAPM 4 A YEPN(gADM pADM) - with
YN (gAPM pADM) given e.g., in Eq. (4.5) of Ref. [50].
Its circular, and center-of-mass, reduction (with 4o -
pa=0,p1 = —p2 =p, and (p/p)* = GM/ri2+0(1/c?))

yields at 2PN
1+ l + @ v GM \*
4 8 02 12

On the other hand the transformation ADM — EOB
starts at 1PN. To determine the corresponding radial
transformation rPM — rEOB_ one could think of us-
ing Eq. (6.22) of Ref. [16]. However, this equation
needs to be completed by the knowledge of the circularity
condition relating (pAPM/u)? to GM/riPM at the 1PN
level included. This 1PN-accurate circularity condition
can, e.g., be obtained from combining the 1PN-accurate
pADM — ADM(5) relation given in Ref. [51] (see be-
low), with the fact that (setting uapn = GM/(c? rapm))
(Papm/(pe))® = j? uipy. This yields (papm/(pc))? =
uapMm + 4uipy, and therefrom the relation between
rapMm and TEoB.

Another method (which we have checked to give the
same result) for determining the rP™ — rgop transfor-
mation does not need to use Eq. (6.22) of Ref. [16]. It
consists of directly eliminating the dimensionless angular
momentum j between the two relations rAPM = pADM ()
and rPOB = rEOB(5)  The former relation was derived
at 3PN in Ref. [51] and reads, at 2PN,

h _ . ADM
T2 = T2

(5.24)

GM 4 1 1
rigM=——j?|1- < - - (74-43v)— |, (5.25)
8 J
while the latter one is obtained by inverting the 2PN-
accurate version of Eq. (BI8), namely, using Aspn(u) =
1—2u+2vud:

1 uw(l-3u+5vud)

1-3vu?
Inserting Eq. (220) into Eq. (525) yields (at 2PN)
GiM—u 14+u4+ §—1—9V u?
c2pAPM 4 8 '

Then, combining Eq. (5217) and Eq. (&24) yields the

looked for transformation r®0B — rh, " at 2PN accuracy,

GM GM \°
h EOB
1o + = =7 (1 +6v (02 TEOB) ) ,  (5.28)

(5.27)
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or, setting up, = GM/(c*r?y) by analogy with u
GM/(C2 TEOB);

u

(1—6vu?). (5.29)

Uy =
h 1—u
We have written the transformation of Eqgs. (5.28)), (5:29)
so as to exhibit the exact form of the transformation
rp, — rEoB In the extreme mass ratio limit v — 0, namely
Th = TEOB — GM/C2 + O(V)

Summarizing: The (first-order) tidal contribution
JA(u) = mA, (u) to the main EOB radial po-
tential, associated with any tidal parameter p; (=
u§2),u§2),u§3), ...), is given in terms of the correspond-
ing harmonic-coordinate tidal contribution to the ac-
tion dL(yn,vn) = p1 Ly, (Yn, vn), for circular motion, by
Eq. (519), where F(u) is given (at 2PN) by Eq. (5.23)),
and where the transformation between the harmonic
radial separation 77, and the EOB radial coordinate

reos = GM/(c?u) is given by Egs. (5.28) or (5.29).

VI. EOB DESCRIPTION OF TIDAL ACTIONS
A. Tidal actions for comparable-mass systems

We have explained in the previous section how to con-
vert each contribution ~ 1 Ly, (Y, vp) to the (reduced)
tidal action into a corresponding additional contribution
1Ay, (u) to the main EOB radial potential A(u). For
instance, if we consider the dominant tidal parameter,
i.e. the electric quadrupolar one, Mge:z) (or u§4:2)7 af-
ter exchanging 1 <> 2), the combination of the result of
Eq. (£2) for the associated Lagrangian, with Eq. (519)

yields

(2)

(2) __ L w7 spy i op

In other words, apart from a (negative) numerical coeffi-

cient, and the rescaled tidal parameter ugz) /(Mv) (where
My = p = myima/(m1 4+ ma) is the reduced mass of the
system), the corresponding tidal contribution to A(u) is
the product of three factors: \/F(u), dr/dt and the ge-
ometrical invariant associated with the considered tidal
parameter, e.g., [Gag G*?]; for the electric quadrupole
along the first worldline. In addition, two of these fac-
tors, drp/dt and the geometrical invariant, must be re-
expressed as functions of the EOB coordinates by using
Eq. (&28).

Let us start by applying this procedure to the dom-
inant tidal action term: the electric-quadrupole one in
Eq. (61). We have given above, in Eq. ([@I4]), the 2PN-
accurate value of Jor = [Gag G*#]; in harmonic coordi-
nates. Using the transformation of Eq. (5:29) to replace
1/rh, in terms of 1/rgop leads to

6M2 X2 L (X1 +3)M
€
o8 TEOB

Jz(zirc) _ 1+



M2

7X, + 336
281205 1+336)

.(6.2)

In addition the reexpression of the time-dilation factor
dr /dt, Eq. @I9), in terms of 1/rgop yields

dTl 1 1

3
+ qu(Xl —1)(X? -3X7+3X;+3)*.  (6.3)
Their product yields the electric-quadrupole tidal La-
grangian (stripped of its prefactor %,ug?)) in EOB co-
ordinates, at the 2PN accuracy, namely

dry  JS (X —1)2u8
G2, 2L =2 _ e 6.4
bt I, M4 e (64)
where
R 1
Lo = 1— —u(Xl2 —6X; —3)e? (6.5)

+ — (21X} — 112X + 744X2 + 238X + 357)¢

56(
Adding the further factor y/F(u), as well as the prefac-
tor, leads to the corresponding contribution to the EOB
A potential, namely

/141 )A (2)( ) Agzc)lcctrlc(rEOB)Ag lcctrlc(u)7 (66)
where
(2)L 3G2 2 X2
Al clcctnc(rEO ) 2 v T%OB ) (67)
and
Agzclcctrlc ) =V F(U’) ﬁ?e =1+ O‘%e U+ age u2 + O(US) )
(6.8)
with
5
it = SXi, (6.9)
337
2e
= —Xx? X 3. 6.10
a5 55 X1 + g1 + (6.10)

The leading-order (i.e., Newtonian-level) A potential of
Eq. (67) is equivalent to Eqs. (L8) and (7)) above (i.e.,
Egs. (23), (25) of Ref. [5]), using the link

GM(E) _

2k R (6.11)

(20— 1!
The term of order u (i.e., 1PN) in the relativistic ampli-
fication factor A1 clcctrlc( ), Eq. ([G.8)), coincides with the
result computed some time ago (see Eq (38) in Ref. [5]).
By contrast, the (2PN) term of order u? in A1 elecmc( u) is

the main new result of our present work. Let us discuss
its properties.
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Similarly to the 1PN coefficient o3® = 2 X1, which was
positive, and monotonically increasing (from 0 to 5/2) as
X1 = my /M varies between 0 and 1, the 2PN coefficient
o3¢ is also positive, and increases as X varies between
0 and 1. When X; = 0 (i.e. in the limit m; < ms), a3®
takes the value 4 3, while when X7 =1 (i.e., in the limit
mp 3> mg), it takes the value

849

=5 = 1516071429, (6.12)

Note that this is about 5 times larger than its value when
X1 = 0. Of most interest (as neutron stars are expected
to have rather similar masses ~ 1.4 M) is the equal-mass
value of o3¢, which is

1 85
st (Xl = —) = — =6.071428571.

) =10 (6.13)

In other words, the distance-dependent amplification
factor of the electric quadrupole reads, in the equal-mass
case

~(2 equal-mass 5 85
[Agglectricu} = 1+Zu+ﬂu +O( )
= 14 1.25u+ 6.071429 u>
+0(u?). (6.14)

We will comment further on these results for Ag dlectri (u)
and on the recent comparisons between numerical simu-
lations and the EOB description of tidal interactions be-
low. For the time being, let us give the corresponding
results of our analysis for some of the sub-leading tidal
interactions.

The EOB-coordinate value of the electric octupole in-
variant, J(Cm) Eq. (@I1), reads

circ 90X2M2 M
TS = T2 1 26X 4 1)
TRoB TEOB
+et (83X7 + 14X, +17)| .(6.15)
TRoB

Its corresponding action (stripped of its prefactor) is

dr IS 90X 2ud
wegy = 7 = o Lee  (616)
with
; 1
L3, = 1—§(X12—16X1+1)UE2 (6.17)

1
+ 57 (9K — 108X} +994X7 — 56X, + 73)u’e’

while the corresponding contribution to the EOB A po-

tential reads
M§3)A#(13)( ) A(3 LO "(3

1 ClCCtI‘lC(TEOB) Al c)lcctric(u) ’ (618)



where
3)
(3)L _ G M X2
Al clcctru:(,rEOB) - 2 v TEOB ) (619)
and
Agge)lectrlc \/ LBe = 1+041 U+012 u +O((6 2())),
with
1
iy = ;Xl 2, (6.21)
110 311 8
= XTI Xa 4o 22
@2 3 1T T3 (6.22)

Here, both results in Eqs. (@ZI) and ([@22]) are new.
Note that, contrary to the quadrupolar case where oy and

ag were always both positive (so that Ag Jectric (W) was al-

ways an amplification factor) the electric-octupole factor
Agge)lectr C( u) is smaller than 1 (for large separations) when

X1 < 15 = 0.2667. Moreover, while the Xi-variation of

@3¢ is monotonic (going from — 2 to 1 7 as X; increases
from 0 to 1), a3¢(X1) first decreases from a3°(0) = § =
2.666667 to oe%e(X{nin)_ = 42853/28160 = 1.521768 as X1
increases from 0 to X{"" = 311/1760 = 0.1767046, before
increasing as X1 goes from X™" to 1, to reach the final
value a3¢(1) = 211/8 = 26.375 for X; = 1. Note, how-

ever, that when (as expected) the two masses are nearly

equal the factor A1 electm(u) is an amplification factor.
In particular, its equal-mass value is

~(3 equal-mass 7 257
|:A§ e)lectric(u):| =1+ Z u + K u? + O( )
= 1+ 1.75u+ 5.354167 u?
+0(u?) (6.23)

which is similar to its corresponding quadrupolar coun-
terpart, Eq. (GI4).

Let us finally give the corresponding results for the
magnetic quadrupole and time-differentiated electric
quadrupole. For the magnetic quadrupole (at the 1PN
fractional accuracy), we found

1 ClI‘C
THao = I3 (6.24)
18X2M3
= —=2—|1+¢€ (3X? + X, +12)
"EOB TEOB
1, ., dn _18X3 .,
Ha 7 =3 ¢ Lom (6.25)
Lowm =1+ 6(X1 +3)(3X1 + 5)ue (6.26)
Agzglagnetic U’) =V F(u) E2m =1 + Oé%m u+ O(u2) R

(6.27)
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with
11
= X7+ XL (6.28)
Here a2™(X1) is always positive, and monotonically in-

creases from a3™(0) = 1 to a™(1) = 2 = 3.833333, its

equal-mass value being o™ (3) = 13 = 2.166667.
Finally, for the time-differentiated electric quadrupole,

we got

18X2M°3 M
G2y = ) = B 1 2(xE 1 2) } ,

2e TEOB TEOB

(6.29)
. dT1 18 X2 4
2, - = M62 u’ L, (6.30)
R 1
Ly, =1+ 5ueQ(Xf +4X;+1), (6.31)
= VFW) Ly, =1+ u+0®w?), (6.32)
with
1

ale = 2(X1 +2)(2X; - 1). (6.33)

B. Tidal actions of a tidally-deformable test mass

One of the characteristic features of the EOB formal-
ism for point-mass systems is the natural incorporation
of the exact test-mass limit v — 0. Indeed, in this
limit the effective metric in Eq. (G2) describing the
relative dynamics reduces to the Schwarzschild metric:
lim, 0 A(u) =1 — 2u = (lim, 0 B(u))il. Let us study
the test-mass limit of tidal effects, with the aim of incor-
porating it similarly in their EOB description. When
considering the nonminimal worldline action of parti-
cle 1, the simplest test-mass limit to study is the limit
mq/mg — 0. [When considering tidal effects within body
2, the permutation 1 <> 2 of our results below allow them
to describe the limit mo/m; — 0. We leave to future
work a study of the limit mo/m; — 0, when consid-
ering tidal effects taking place within body 1.] In the

limit investigated here, one is considering a tidally de-

formable test-mass (mq, ,ug ), ...) moving around a large

mass mo > my. The effective action of body 1 is then
exactly obtained by evaluating the A = 1 contribution
of the general (two-body) effective action of Eq. ([2I2)
within the background metric generated by the (non-
tidally deformable) large mass ms, at rest, i.e. within
a Schwarzschild metric of mass mo. The latter reads

Gm dr?
2 _ 2 7,2 s
dS (mg) = (1—202TS>C dt +W
+r2(d6? + sin® 0 dp?) (6.34)



in “Schwarzschild”, or areal, coordinates, and

Gmg

2 1- SQTQ 2 1,2 + c2r 2
ds®(mg) = —7Gm’; ¢ dt” + 7Gm’; drj.
1 + c2ry, o c2ry,
Gms\® 2 4 g2 2
+ e+ — (dO” +sin“0dy°)  (6.35)
c

in harmonic coordinates: r, = r; — Gmgy/ c®. As a check
on the results below (and on our codes), we have com-
puted them both in Schwarzschild coordinates and in har-
monic ones.

The geometrical invariants Jo. = G2, etc., take the
following values in this Schwarzschild limit, and when
considering as above circular motions (we again set G
and ¢ to one for simplicity):

a2 _ ) _ 6m3(m3 + rj — mory)
ab 2e (Th _ 2m2)2(Th + m2)6

6mS3 3 12m3

~ 2 {1— Tz T2+...]
r Th Ty

I SR Y
m3 (1 — 3ug) (1 —3ug)
6ul (1 —2ug)

= [1+3u5m] , (6.36)

18m3(r, — ma)
(rn — 2m2)2(rn, + m2)8
18m3 3m 11m?2
~ 72[1— 2 + 22+...]
T Th 7
18} [1 ug(4 — ug)

m (1 — 3ug)?

1 s =S
ZHéb)Q = J2(m) =

} . (6.37)

a®2 _ 78 _ 30m3(rp, — ma)(2m3 + 3r2 — 3mary,)
de (rn, — 2m2)?(rp + m2)?

abc

G(S)2 _ j.(s) _ 18m§(7‘h — m2)2
ab 2e (rn — 2m2)2(rp + m2)?
18 3 2
_ 18my [1_7@+32£;+..}
ry Th 7
18ul (1 — 2ug)?

et (6.39)

where ug = Gma/(c?rs). We have indicated above the
expansions in powers of the inverse harmonic radius ry, as
checks of our 2PN-accurate results, written in harmonic
coordinates; see Eqs. (4.14]), (A.16])-{.18).

In the following, we shall focus on the transformation
of the exact test-mass geometrical invariants above into
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corresponding contributions to the EOB A potential. As
explained previously, Eqs. (5.19), ([©1]), apart from the
universal prefactor —2/(M v ¢?) and the specific original
tidal coefficient multiplying the considered geometrical
invariant (such as % M§2) for the electric quadrupole), the
contribution to A(u) associated with some given invariant
is obtained by multiplying it by two extra factors: (i)
the time-dilation factor dri/dt and (ii) the EOB-rooted
factor y/ F'(u). Let us discuss their values in the test-mass
limit m1 < mo that we are now considering.

The first factor is the square-root of

d7’1 2 1 2G mo 1 2 dgﬁ 2

— ) =l-—=——-=r (=] .

dt c2rg c2 *\ dt
Denoting, as above, us = Gmz/(c? 1), and us-

ing the well-known Kepler law for circular orbits in
Schwarzschild coordinates, 2% = G my /73, simply yields

(6.40)

test-mass
<d“) = VI—3us. (6.41)

dt circ

The exact test-mass limit of the second factor is ob-
tained by taking the limit ¥ — 0 in the exact expression
of Eq. (522). In this limit, A(u) — 1 — 2u, so that
A(u) = 1 —3u, and

(7o)

In addition, as the EOB coordinates reduce to
Schwarzschild coordinates in the test-mass limit v — 0,
and M = mj 4+ mo — me, we have simply

test-mass

=V1-3u. (6.42)

circ

Gm2 GM
us = —

(6.43)

c2rg T 2rgos
In other words, the two extra factors in Egs. (G4Il),
([6-22) become both equal to v/1 — 3 u. As a consequence
the A contribution corresponding to the various geomet-
rical invariants of Eqs. (G30)—-([639) is obtained (apart

from a constant prefactor) by multiplying these invari-
ants by (\/1 - 3u)2 =1-3u=1-3ug. Including the
universal factor —2/(M v ¢?) and the various tidal coef-

11,0 1 ¢ 10"

M s 3T e (as well as the factor

4in H 317 = 4.J5,,) yields the following exact, test-mass
contributions

ficients

o G2 (2) 2 3u2
) ey = 3 5 A Gl (1 B
1

& mi Thop 1-3u
(6.44)
(3) jtest-mass G2 p” (ma)?
1 Ate(bst)—mabb (u) = —15 — Lt S (1-2u) x
By ¢* M1 Tgop

8 wu?
X (1+§ 1—3u> , (6.45)



-mass G3 o (my)? 1-2u
0_52) Azefzt) mdbb(u) — _ 240_4 Tnl_1 ( 2)

T’EOB 1—3u’
(6.46)

L a3 /@ 3 (1_94)2
/14/1(2) Ate,?gmdbb(u) —_9 = My (732) ( u) '
Hy ¢t m1 rpop 1—3u
(6.47)

One easily sees that the various exact, test-mass am-
plification factors A(u) exhibited here are compatible
with the X; — 0 limit of the 2PN-expanded ones ~
1+ aqu + ag u? + O(u?) derived above.

C. Light-ring behavior of test-mass tidal actions

A striking feature of all the amplification factors
present in Eqs. (6.44)—(@.4T), such as

2

7(2) test-mass o U
Al electric (u) =143 1—3u )

(6.48)

is that they all formally exhibit a pole o 1/(1 — 3u)
mathematically located at 3u = 1, i.e. corresponding
to formally letting particle 1 tend to the last unstable
circular orbit, located at 3G ma/c? (“light-ring” orbit).
This behavior has a simple origin.

The invariant that is simplest to consider in order to
see this is Jy, = sz. From Eq. ([{3) its covariant ex-
pression reads

G?, = Raypy R25, \ ut u? uu? (6.49)

Let us study its mathematical behavior in the formal
limit where particle 1 tends to the light-ring orbit.
Using the language of Special Relativity, we consider
the Schwarzschild coordinates as defining a “lab-frame.”
With respect to this lab-frame, particle 1 becomes ultra-
relativistic as it approaches the light ring. More pre-
cisely, near the light ring the lab-frame components of
the 4-velocity u* = (dt/dr)(c,v') tend towards infin-
ity proportionally to dt/dr = 'y = 1/4/1 — 3 u, while
the lab-frame components of R, (and of the met-
ric) stay finite. As G2, is quartic in the lab-frame com-
ponents of u#, it will tend towards infinity like I'f =
(dt/dm)* = (1 — 3u)~2. The corresponding contribu-
tion to A(u) is obtained by multiplying G2, by the factor
(dry/dt)? =T7? = (1-3u)t!, which reduces the blow-up
of G2, to the milder (1 —3u)~2"! = (1—3u)~! behavior
that is apparent in Eqs. ([€44) or ([G.48).

A different way of phrasing this result uses the law
of transformation of the electric and magnetic compo-
nents of the Weyl tensor, G, and Hgp, under a boost.
Using, for instance, the fact that, under a boost with ve-
locity 8 = tanh in the = direction, the complex ten-
sor Fyp, = Gup + i Hyp undergoes a complex rotation
of angle ¥ = i@ in the yz plane [52], one easily finds
that the transverse traceless components of Fy;, (in the
yz plane) acquire, under such a boost, a factor of order
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cos? 1 = cosh® ¢ = (1 — B2)~' = I'2. Because of the spe-
cial structure of the tensor F,, o diag(—1,—1,2), with
the third axis z labelling the radial direction, this rea-
soning shows that boosts in the radial (z) direction leave
F,p, invariant. However, we are mainly interested here in
boosts in a “tangential” direction, say x, associated with
the fast motion of a circular orbit, and therefore orthogo-
nal to the radial direction, which do introduce a factor I'?
in some of the boosted components of F,;. For complete-
ness, let us indicate that because of this special structure
of F,p, the invariant Jo, = sz for general, non-circular
orbits is equal to
2
Joe = G2, = @ (1 +3u?, +3ul,) |

6
s

(6.50)

where u?, = r2((u?)? + sin® §(u?)?) is the square of the
part of the 4-velocity u*” that is tangent to the sphere.
[The radial component of the 4-velocity brings no contri-
bution to Jae.]

The behavior near the light ring of the magnetic-
quadrupole invariant Js,, = $HZ, is understood in the
same way as that of Jo. = G2,. Concerning the other
invariants, one can note that J;. = G2, can be written

as the sum
1

Jse = G2, = Cop, CPY + 3 e (6.51)
where
Capy = Symyg, Va Ry ut u” (6.52)
and
Jso = Goy = Gap G°F (6.53)
with
Gap =tV Roppy vl u” . (6.54)

Similarly to G7,, Eq. (6.49), the term C 5. in Eq. (6.51)
is quartic in u# and is therefore expected to blow up like
I't. On the other hand, though G,g, Eq. (654)), is cubic
in u*, it only blows up like I'? (so that Js, ~ I'{ and J3e ~
C?+Js, ~ T'1) because of the special geodetic-precession
properties of the proper-time derivative operator V/dr =
u? Vy (see, e.g., Sec. 3.6 of Ref. [53]).

D. A suggested “resummed” version of
comparable-mass tidal actions

Having understood that the formal pole-like behav-
ior, ~ (1 —3u)™!, in the test-mass limit of the electric-
quadrupole A potential is linked to simple boost proper-
ties of Gi4p near the light-ring orbit, and knowing that the
EOB formalism predicts the existence of a formal analog
of the usual Schwarzschild light ring at the EOB dimen-
sionless radius 7Lg = 1/uLr, defined as the solution of

A(ULR) = 0, (655)



with A(u) defined in Eq. (5.21), it is natural to expect
the (unknown) exact two-body version of the electric-
quadrupole A potential to mathematically exhibit an
analogous pole-like behavior of the form ~ (1 —7pr u) L.
As we shall discuss elsewhere, such a mathematical be-
havior, linked to considering (within the EOB-simplifying
approach advocated in Ref. [18]) what would happen if
one formally considered (unstable) circular orbits with
u — ULR, does not mean that there is a real physical
singularity in the EOB dynamics near v = wurgr, but
it indicates that higher-than-2PN contributions to the

electric-quadrupole amplification factor flﬁ)lcctric(u) =
1+ a?u+ a3 u? + a3 u® + - - - will probably be slowly
convergent, and will tend to amplify further the corre-
sponding tidal interaction. Such an extra amplification
might, for instance, be physically important in the last
orbits of comparable-mass neutron-star binaries (which
will reach contact for values of u smaller than urg).

This leads us to suggest that a more accurate value (for
u < urr) of the electric-quadrupole amplification factor
is the following “resummed” version of Eq. (€.8):

2

4(2) _ 2e 2e u
Al clcctric(u) =1 + al u+ a2 1_ 'fLR U I}

(6.56)
where o3¢ and o3¢ are given by Egs. (6.9) and (6.10), and
where f,g = 1/urg is the solution of Eq. (6.53). Simi-
lar resummed versions of the other amplification factors
can be defined by incorporating in their PN-expanded
versions the formal light-ring behaviors exhibited by the

exact test-mass results of Eqs. (6.44)—(6-4T]).

Let us finally discuss several possible approximate val-
ues for 71r in the proposed Eq. [6.50). The simplest ap-
proximation consists of using the “Schwarzschild” value
g = 3. However, a better value might be obtained by
taking a solution of Eq. (655) that incorporates more
physical effects. This might require solving Eq. (6.55)
numerically, with A(u) being the full A potential (con-
taining both Padé-resummed two-point-mass effects and
the various tidal contributions). In order to have a feel-
ing for the modification of #r,g brought by incorporating
these changes, let us consider solving Eq. (6.55]) when us-
ing the following approximation to the full A potential:

Aapprox(u) =1 —=2u+2vu® — kb (6.57)
where
9 5
_ @0 _gpeme (R
K Ki~ + Kg 1 - G(ml T m2)
5
mi R2 62

1ok L (7) 6.58
2 mao G(m1 + m2) ( )

Here, the term +2vu? is the 2PN-accurate point-mass
modification of A(u), while the term —x u® is the leading-
order tidal modification. Note that they have opposite
signs. The corresponding expression of A(u) reads

Aapprox(u) =1 —=3u+ S5vud —4kub. (6.59)
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The corresponding value of up,g = 1/71r is the solution
close to 1/3 of the equation

ULR = % [1+5vuiy —4ruly] . (6.60)
If we could treat both v and x as small deformation
parameters, this would imply that, to first order in
these two deformation parameters, the value of urg (v, k)
would be obtained by inserting the leading-order value
uLr ~ 1/3 in the right-hand side of Eq. (660). This
would yield

1 b) 4
uLr(v, k) = 3 [1 + [V 3R + 02, vk, I€2):| ,
(6.61)
and
N 5 4 2 2
fLr(v, k) =3 |1 — ﬁu—i—?ﬁ—i—O(u VK, KY)
(6.62)

Note that while comparable-mass corrections (o v) have
the effect of decreasing g, tidal ones (x k) have the
opposite effect of increasing 7,g. Let us focus on the tidal
effects, and consider the equal-mass case with Ry = Ro
and k§2) = k;z). One has a first order increase of frr
equal to

. Ric\°
6t1da1 fLr ~ 16 kgz) < 1€ ) =16 k§2) (663)

6Gm1 (6 C1)5 ’
where C; = Gmy/(c? R;) denotes the common compact-
ness of the two neutron stars. This simple approximate
analytical formula shows that 698! 7 is very sensitive
to the value of the compactness of the neutron star. If
Cy = 1/6 = 0.166667, i.e., Ry = 6 Gm1/c* (roughly cor-
responding to a radius of 12 km for a 1.4 My neutron
star), then 6%l p = 1.44 (k§2)/0.09) will be of order
1 [the value kiz) = 0.09 being typical for C; = 1/6;
see, e.g., Table IT in Ref. [5]]. On the other hand, if
Ry = Ry ®/(Gm,) is slightly smaller than 6, 6921 7 g
will quickly become much smaller than 1, while if Ry
is slightly larger than 6, ¢"92l ¢z will quickly become
formally large (thereby invalidating the first-order ana-
lytical estimate of Eq. ([G.63]), which assumed § fLr < 3).
These rough estimates indicate that in many cases, tidal
effects on 7 g will be quite important and will signifi-
cantly increase the numerical value of #rg. Note that
an increased value of rrr will, in turn, increase the
effect of the conjectured resummed 2PN contribution

. . ~(2
adu?/(1 — fLru) to Ag e)lectric(u).

VII. SUMMARY AND CONCLUSIONS

Using an effective action technique, we have shown
how to compute the additional terms in the reduced
(Fokker) two-body Lagrangian L(yi,y2,¥1,Y2) that are



linked to tidal interactions. Thanks to a general prop-
erty of perturbed Fokker actions [explained at the end
of Sec. II, see Eq. ([220)], the additional tidal terms
are correctly obtained (to first order in the tidal per-
turbations) by replacing in the complete, unreduced ac-
tion S[guv;y1,y2] the gravitational field g,, by the so-
lution of Einstein’s equations generated by two struc-
tureless point masses mi,y1;ma,y2. This allowed us
to compute in a rather straightforward manner the re-
duced tidal action at the 2PN fractional accuracy by us-
ing the known, explicit form of the 2PN-accurate two-
point-mass metric [36439]. The main technical subtlety
in this calculation is the regularization of the self-field ef-
fects associated with the computation of the various non-
minimal tidal-action terms ~ [ d7(Rapup, ut u”)? + ...,
where, e.g., Raugu(®;y1,y2) is to be evaluated on one
of the worldlines that generate the metric g,, (so that
Roupy(Y1;y1,y2) is formally infinite). We explained
in detail (in Sec. III) one (algorithmic) way to per-
form this regularization, using Hadamard regularization
(which is equivalent to dimensional regularization at the
2PN level). We then computed the regular parts of
the brick potentials that parametrize the 2PN metric,
from which we derived the regularized values of sev-
eral of the geometrical invariants entering the nonmin-
imal worldline tidal action terms. [See Eqgs. (£.4)—-(@I0)
for the 2PN-accurate Lagrangians (for general orbits) of
the three leading tidal terms (electric quadrupole, elec-
tric octupole and magnetic quadrupole)]. We then fo-
cussed on the most physically useful information con-
tained in these actions, namely the corresponding con-
tributions to the EOB main radial potential, A(u), with
u = Glmy +ms)/(rrop). Our Egs. (G.19), G20),
(E28) gave the explicit transformation between the pre-
viously derived harmonic-coordinates tidal Lagrangians
and their corresponding contributions to the EOB A po-
tential. Using this transformation, we could finally ex-
plicitly compute the most important tidal contributions
to the EOB A potential to a higher accuracy than had
been known before: namely, we computed the quadrupo-
lar (¢ = 2) and octupolar (¢ = 3) gravito-electric tidal
contributions to 2PN fractional accuracy, i.e., with the
inclusion of a relativistic distance-dependent factor of
the type u?*2(1 4+ oy u + az u?) [see Eqgs. (6.6)(6.10)
and ([@I8)-([622)]. We also computed the quadrupolar
gravito-magnetic tidal contribution, as well as a newly
introduced time-differentiated electric quadrupolar tidal
term, to 1PN fractional accuracy [see Eqs. (6:25)-(©.28)),
©30)-[©33)]. Of most interest among these results is
the obtention of the 2PN coefficient o3¢ entering the
distance-dependence of the electric quadrupolar term.
We found that this coefficient, Eq. ([GI0), is always pos-
itive and varies between + 3 and + 15.16071 as the mass
fraction X7 = my/(m1 4+ ms) of the considered tidally
deformed body varies between 0 and 1. In the equal-
mass case, m; = mg, ie. X; = %, we found that
a3® = 6.07143. This value shows that, when the neu-
tron stars near their contact, 2PN effects are comparable
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to 1PN ones. Indeed, contact occurs when the separa-
tion 7 ~ Ry + Ry = Gm1/(c*C1) + Gma/(c?C2) (where
Ca = Gma/(c®Ra), A = 1,2, are the two compact-
nesses). In the equal-mass case (with C; = Cs3), this shows
that, at contact, u = G(m1+msz)/(c?r) is approximately
equal to Ucontact =~ C1. If we consider as typical neutron
star a star of mass 1.4 M, and radius 12 km, we expect
C1 ~ 1/6, i.e. Ucontact ~ 1/6. The successive PN con-
tributions to the distance-dependent amplification factor

APPRPN (1) = 1402 u+a2° u? of the clectric quadrupo-

lar tidal interaction for the first body then becomes, at
contact,

Agze)]iiéjic(ucontact) ~1 + Oé%e Cl + Oége (/’12
1.25  6.07143

where one sees that the 2PN (O(u?)) contribution is nu-
merically comparable to the 1PN one. This suggests
that the PN-expanded form of the tidal amplification fac-
tor Afe)lectric(u) is slowly converging and could get com-
parable or even larger contributions from higher pow-
ers of u (i.e., 3PN and higher terms). In order to get
a feeling about the possible origin of this slow conver-
gence of the PN expansion, we followed the approach of
Ref. [54], i.e., we looked for the existence of a nearby
pole (in the complex u plane) within the formal ana-

lytic continuation of the considered function Agzc)lccmc(u).
[Ref. |54] considered the energy flux F' as a function of
= (GM Q/c)?/3; it pointed out that F(z) had (in the
test-mass limit) a pole at the light-ring value z = 1/3
and recommended improving the PN expansion of F(z)
(for x < 1/3) by a Padé-type resummation incorporating

the existence of this pole in F(x).] By computing the ex-

act test-mass limit of the function Agzc)lccmc(u), we found
that it formally exhibits a pole located at the light-ring
value ufSt ™% = 1/3 [see Eq. ([G.44))]. Such a pole is also
present in other amplification factors [see Eqs. (6.45)—
[6417)], and we discussed its origin. [Note that two equal-
mass neutron stars will get in contact before reaching this
pole. However the idea here is that the hidden presence
of this pole in the analytical continuation of the func-
tion Agzc)lcctric(u) is behind the bad convergence of the
Taylor expansion of this function in powers of w.] This
led us to suggest that one might get an improved value
of the tidal amplification factor flﬁ)lcctric(u) by formally
incorporating the presence of this pole in the following

Padé-resummed manner:

2

2(2 e e u

electric
where 7pg = 1/upLr is the (EOB-defined) dimension-
less light-ring radius, i.e., the solution of Eq. (6.53]),
with A(u) defined by Eq. (5.2I). Let us point out that
Eq. (C2) is equivalent to saying that the 2PN coeffi-
cient o3¢ becomes replaced by the effective distance-
dependent coefficient o (u) = a2¢/(1 — #Lru). Note



that a$(u) > a2¢. In particular, for the “typical” com-

pactness C; = Cy ~ 1/6 considered above, and when
using the unperturbed value of 7pg, i.e. fI(JOF){ = 3,

the effective value aSf(u) will, at contact (i.e. when
U = Ucontact =~ C1 ~ 1/6)7 be equal to agﬂ(ucontact) =
a3?/(1 —3Cy) ~ a3°/(1 —3/6) ~ 2a3° ~ 12. We re-
called in the Introduction that several comparisons be-
tween the analytical (EOB) description of tidal effects
and numerical simulations of tidally interacting binary
neutron stars [3, [9, [10] have suggested the need for sig-

nificant amplification factors A§2e)lectric(u) parametrized
by rather large values of a3¢. However, up to now, the
numerical results that have been used have been affected
by numerical errors that have not been fully controlled.
In particular, in the recent comparisons [9, [10], one did
not have in hand sufficiently many simulations with dif-
ferent resolutions for being able to compute and subtract
the finite-resolution error. We hope that a more com-
plete analysis will be performed soon (see, in this respect,
Refs. [61), 162]). We recommend comparing resolution-
extrapolated numerical data to the pole-improved ampli-
fication factor of Eq. (Z.2). As discussed in Sec. [V} it
might be necessary to use as value of 7 g the improved
estimate obtained from the full (tidally modified) value
of the A potential. This suggests (especially for com-
pactnesses C; < 1/6) as discussed above that 7rg might
be significantly larger than 3, thereby further amplifying
the effective value of a3® during the last stages of the
inspiral.

The present study has focused on the 2PN tidal ef-
fects in the interaction Hamiltonian. There is also a 2PN
tidal effect in the radiation reaction, which has contri-
butions from various tidally modified multipolar wave-
forms. The tidal contribution to each (circular) multipo-
lar gravitational waveform can be parametrized (follow-
ing Refs. [, [10]) as an additional term of the form

m

ida; J)LO ~(J) tail ~(J) PN
nid (@) = S RE O (@) AG) N @) B TN (@), (7.3)
J

where © = (G(my + ma) Q/c®)?/3; J labels the various
tidal geometrical invariants, such as Jy. = Gag GeB,

hgil) LO(:Z:) denotes the leading-order (i.e., Newtonian-

order) tidal waveform; fzgfrztail(:c) the effect of tails

[55, 56] and their resummed EOB form [57]; while

iAL(J) PN(:C) =1+ ﬂyzm)x + ﬂé”m):f +...

m

(7.4)

V = 5

1 c 2r1 1

G 3 4 3 2,2
mi ( (niv1) (n1vy)?vy +2v4)

+ s 2 1

ciry

Gmy + Gy (— (n1v1)” + ﬁ + Gmg (
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denotes the effect of higher PN contributions. The 1PN
coefficient ﬂ§J2622) is known [7, [15]. The other 1PN co-
efficients needed for deriving a 2PN-accurate flux can be
obtained from applying the simple 1PN-accurate formal-
ism of Eq. [40]. It is more challenging to compute the

2PN coefficient ﬂé‘hem). Indeed, this requires applying
the 2PN-accurate version |56] of the Blanchet-Damour-
Iyer wave-generation formalism [40, [58-60] to the tidal-
modified Einstein equations 2I3)). Let us, however, note
that although from a PN point of view, the 2PN coef-
ficient Bébﬁm) contributes to the phasing of coalescing
binaries at the same formal level as the dynamical 2PN
coefficient 3¢ determined above, it has been found in
Refs. [d,[15] that (if B/>*2 ~
smaller observable effect.

a2°) it has a significantly

Let us finally point out that our general result in Eq.
([220) also opens the possibility of computing the 3PN co-
efficient o3¢ in the PN-expanded amplification factor of

the electric quadrupolar tidal interaction Aﬁ)lectric(u) =
1+ a?u+ a3¢u? + a3 u® + O(u*). This computation
would, however, be much more involved than the calcula-
tion of a3¢ because of the technical subtleties in the reg-
ularization of self-field effects at the 3PN level |43, 163-65]
that necessitate using dimensional regularization [25, [26]

instead of Hadamard regularization.
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Appendix A: Explicit forms of the (time-symmetric)
2PN-accurate brick potentials

The explicit forms of the (time-symmetric) 2PN-
accurate brick potentials V| V;, etc. are [39]

1 5 7‘%
T + 3
9y Aririe 4riry,
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Here r1 =x —y1, r = |r1|, n1 = r1/r1, 12 = ¢ — yo,
etc., Y12 = Y1 — Y2, 112 = |Y12|, m12 = Y12/712, V12 =
v] — Vg, (N12v1) = nq2 - v1. In addition, the notation
1 <+ 2 means adding the terms obtained by exchanging
the particle labels 1 and 2, while the quantity S denotes

1 T2 1
GS 2 ( _
> e ( 27"?2 - 27"17"?2 27"17"%2)

(A5)

the perimeter of the triangle defined by x, y; and ys,
viz.

S=ri+re+ra. (A6)
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