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Abstract

BPS spectra give important insights into the non-perturbative regimes of supersymmetric
theories. Often from the study of BPS states one can infer properties of the geometrical or
algebraic structures underlying such theories. In this paper we approach this problem from
the perspective of persistent homology. Persistent homology is at the base of topological data
analysis, which aims at extracting topological features out of a set of points. We use these
techniques to investigate the topological properties which characterize the spectra of several
supersymmetric models in field and string theory. We discuss how such features change upon
crossing walls of marginal stability in a few examples. Then we look at the topological properties
of the distributions of BPS invariants in string compactifications on compact threefolds used to
engineer black hole microstates. Finally we discuss the interplay between persistent homology
and modularity by considering certain number theoretical functions used to count dyons in string
compactifications and by studying equivariant elliptic genera in the context of the Mathieu
moonshine.
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1 Introduction

In supersymmetric theories one often can gain deep insights by studying the properties of pro-
tected states. States which preserve a fraction or all of the supersymmetries can be used to get
exact results about quantities of physical interest. Such states are usually directly related to geo-
metrical quantities, such as enumerative invariants, or to the mathematical structures underlying
the physical models.

For example the BPS spectral problem in quantum field theories is deeply related to the structure
of the quantum vacuum and plays an important role in understanding various dualities [I]. In
black hole physics, the exact enumeration of microstates is a problem of prime importance as it
provides a quantum statistical derivation of gravitational thermodynamics [2, B]. Furthermore in
many cases the duality properties of a theory directly imply modular properties of the partition
functions. In all these cases the counting problem has roots in various areas of mathematics and
has important physical consequences.

In general one is lead to investigate the structures underlying such counting problems. For example
if the counting can be organized according to the representation theory of some group or algebra,
then one has identified a fundamental principle in the physical theory. The typical situation is
however less direct and often a consequence of several structures simultaneously.

Consider for example the case of N' = 2 SU(N) super Yang-Mills theories on R® x S'. The
moduli space of vacua is the Hitchin moduli space and is hyperKéhler [4]. The latter condition
is guaranteed by the fact that the BPS spectrum of the theory obeys a wall-crossing formula [5].
The latter originates from the theory of generalized Donaldson-Thomas invariants, which encodes
the behavior of stable objects in a (derived) category under a change of stability conditions [6].
As a consequence the moduli space of vacua is locally a (generalized) cluster variety, the overlap
transformations between charts being dictated by a cluster algebra [7]. The BPS spectrum can also
be seen as the set of stable representations of the quiver underlying this cluster algebra [8] and has
a deep connection with integrable systems [9].

In many physical cases the situation is similar and the study of the structure of the set of super-
symmetric states leads to several layers of increasing complexity. In this paper we take a step back
and ask the following question: is there any structure at the topological level? In particular we
can consider a collection of supersymmetric states simply as a set and study its properties using
topological methods. The purpose of this note is to investigate the presence (or absence) of any
noticeable topological feature in certain samples of supersymmetric states. In particular we will
be interested in how these features change as the parameters of the theory are changed, or if one
considers a similar problem in different settings.

To be more precise, with topological features we mean the properties of the spectra as seen from
the perspective of persistent homology [10, IT]. Persistence is a relatively new approach to ho-
mological features of a space or a set, and is at the core of what is by now known as topological
data analysis [12), [13], [14]. This field proposes to handle multidimensional and large sets of data
using methods based on topology. This approach has been quite useful in disparate fields, such as
biology, neuroscience or complex systems [15, [16] 17, I8, [19]. In this note we will apply such meth-
ods to supersymimetric spectra, computed directly or extracted from certain number theoretical



functions.

In essence topological data analysis is a multi-scale approach to extracting homological features out
of a set of data, focused on identifying those features which persist over a long range of scales. The
idea consists in defining a family of simplicial complexes which depend on a continuous proximity
parameter €. For each value of € one can pass to the homology of the complex and study how
it varies as a function of e. At each length scale the homology is characterized by its homology
classes; as the length scale changes new homology classes can form or already existing classes can
disappear, depending on the evolution of the underlying simplicial complex. The set of data is
characterized by the lifespans, or persistence, of said homology classes. These lifespans can be
more easily visualized as a collection of intervals on the € line, which begin at the value of € at
which the homology class appears and end when it disappear. Such collections of intervals are
called barcodes.

We will consider a supersymmetric spectrum as a dataset, where each point is labelled by the
charges or the relevant quantum numbers of a state, and by its degeneracy, or BPS enumerative
invariant. We will then proceed to apply the methods of topological data analysis to compute
the homology of this set as a function of a proximity parameter ¢ and compute its barcodes for
each non-trivial homology group. The set of barcodes gives a complete characterization of the
persistent homological features of the supersymmetric spectra. We will then discuss how these
topological characteristics vary between different datasets. Roughly speaking we will do so in two
ways: or by comparing spectra obtained within the same physical theory but as the parameters
are varied; or by studying different models which can be however associated with a very similar
physical problem.

We will discuss at length how the expected physical features show up in the topological analysis.
In many cases this will be apparent from the barcodes, in others a bit more care will be required.
Overall we will learn how to apply the methods of topological data analysis to BPS counting
problems and argue which kind of information we can hope to extract. We will do so with many
examples. In this paper we will focus more in detail on supersymmetric spectra, but the formalism
is more general and can be applied to other counting problems. Applications of persistent homology
to the study of string vacua will appear in [20].

To keep this note readable we have included very brief reviews of the physical problems at hand.
This material is known, but we have chosen to present it in such a way as to highlight the role
played by BPS invariants. All the computations in persistent homology have been done with the
program MATLAB using the library JAVAPLEX, made available in [22]. The accompanying software
and datasets are available in [2I]. For the extraction of the BPS invariants and the manipulations
of the relevant series we have used MATHEMATICA.

This paper is organized as follows. Section [2] will give some background about BPS states, their
wall-crossing behavior and their enumerative interpretation. In Section [3]we will give an elementary
introduction to the ideas of persistence and discuss the methods of topological data analysis. This
Section is meant to be readable by non-experts and to quickly convey the main ideas. Section [4]
contains our first application, to N' = 2 SU(3) super Yang-Mills, where we compare the topological
features of the BPS spectrum in the weak coupling chamber with those in a wild chamber. The
interplay between persistent homology and wall-crossing is also the focus of Section [6] which dis-



cusses the case of the conifold in detail, using some approximation schemes introduced in Section
Section [7] takes a different approach; here we compute the Donaldson-Thomas invariants for
a few distinct one parameter compact Calabi-Yaus, compare their distributions and discuss the
implications for black hole physics. Section [§]is about a different class of black holes, in N' = 4
string compactifications. In this case the relevant partition functions have modular properties and
we discuss the interplay between modularity and topology. Section [J] takes a similar approach,
now in the context of elliptic genera in the Mathieu moonshine correspondence. In this case, the
technical details of the topological analysis are postponed to the Appendix [A] We summarize our
finding in Section

2 BPS states and wall-crossing

In this note we will consider certain field and string theories with extended supersymmetry. In this
Section we will quickly review some general properties and postpone a more detailed description
to later Sections on a case by case basis. The theories we shall consider all have moduli spaces
of quantum vacua M. These moduli spaces often have a direct geometrical interpretation, for
example parametrizing deformation of a compactification manifold or solutions of certain differential
equations. Determining M captures the vacuum structure of the theory. In theories with extended
supersymmetry one can often give a remarkably precise local description of the moduli spaces M,
in the form of an answer determined at weak coupling plus a series of quantum corrections.

On top of the geometry of M, there is other physical information which can be computed exactly.
In this note we will be interested in the spectrum of BPS states, which is very closely related to
the series of quantum corrections which determine the moduli space of quantum vacua M. These
quantities are particularly important because due to the amount of supersymmetry preserved, they
allow for the extrapolation of weakly coupled computations to strong coupling. In other words they
are one of the few available sources of non-perturbative information in quantum theories.

Supersymmetric theories have a Hilbert space of states H upon which the supersymmetry gener-
ators act as operators. States in H can be organized according to the representation theory of
the supersymmetry algebra. BPS states are characterized by the fact that a certain number of
supersymmetry generators are represented trivially. The fact that a BPS state is annihilated by
certain operators is a rather strong constraint, in many cases strong enough to reduce quantum
corrections to a computable form.

To be concrete consider N/ = 2 theories in four dimensions. We denote by T' the lattice of electric
and magnetic conserved charges, as measured at spatial infinity and at a point in the moduli space
of vacua. For example in a string theory compactification or engineering, this lattice can be realized
as the homology of a certain variety. The lattice of charges is endowed with the antisymmetric Dirac
pairing

(, ): I'xI'—7Z. (2.1)

This pairing vanishes identically on the charges of particles which are mutually local. The conserved
charges of I' divide the Hilbert space of states into superselection sectors. The BPS degeneracies
Q(~;u) count with signs the number of BPS states with charge v € I'. They are defined as traces
over the single particle BPS Hilbert space HES = @ver ’Hﬁf 9, filtered by the charge measured
at spatial infinity.



The single particle Hilbert spaces H.., and the BPS degeneracies €2(v;u) depend explicitly on a
point u € M. The constraints arising from supersymmetry are such that {2(-y; u) has a very specific
dependence on u € M: it is a piecewise constant function, almost independent on the physical
parameters except for certain codimension one walls in M, at which it jumps suddenly. This is the
wall-crossing phenomenon. At walls of marginal stability the change in the BPS degeneracies Q(~; u)
describe physical processes of fusion or fission of BPS particles from or into elementary constituents.
The wall-crossing of the BPS degeneracies is a very strong constraint on the consistency of a theory
at the quantum level [I]. The moduli space of vacua M is divided by the walls of marginal stability
into chambers €. Solving the BPS spectrum of a theory amounts in finding the Q(v;u) in each
chamber.

Walls of marginal stability MS are defined as the loci in moduli space where the central charges of
two or more BPS particles become parallel. In theories with extended supersymmetry the central
charge is realized as an holomorphic function over the moduli space M,

Z: M — Hom(I';C) . (2.2)

For example, a two body decay of a state with charge v into two elementary constituents ~; and

vz is kinematically allowed at the locus
MS(71,72) = {u € M | arg Z,,(u) = arg Z,,(u)} - (2.3)

In many cases the central charge function has a very explicit description: in four dimensional
quantum field theories is given by the integral of the Seiberg-Witten differential A over a cycle of
the Seiberg-Witten curve whose homology class correspond to a charge v € I'. Similarly in Calabi-
Yau compactifications of the type II string it is given by an integral of the holomorphic (3, 0)-form
over 3-cycles.

More formally we can usually describe BPS states as objects in some abelian category A. In concrete
examples A could be the category of representations of a certain quiver with potential rep (Q, W),
or the category of coherent sheaves on a Calabi-Yau threefold X, coh(X). This is not completely
correct as a more precise account would require objects in the bounded derived category D(A), but
for the purpose of this Section we will neglect these issues. In these cases there is an isomorphism
which identifies the lattice of conserved charges I" with the topological Grothendieck group K (A).
In the above cases the isomorphism is given by the Chern character in the case of coh(X) and by
the identification of the simple representations with a basis of BPS states in the case of rep (Q, W).
In any case we can regard the central charge as a stability function on A, at fixed u € M

Z,: K(A) — C, (2.4)

which to any object E € A associates a complex number Z,(E). We say that a BPS state described
by an object E is Z-stable if arg Z,(F') < arg Z,(F) for any proper sub-object F' of E. Note that
the stability condition explicitly depends on u € M and therefore on the parameters of the theory.
As these parameters are varied, the stability condition changes and a stable object may become
unstable.

Since all that matters is the phase of the complex number Z,(E), we will loosely speak of a BPS



state as a BPS ray ¢, associated with the BPS state of charge v, a vector in the complex plane C
(which we will refer as the central charge plane), as is by now common use [5] [§].

The change in Q(v;u) across a wall of marginal stability is governed by a wall-crossing formula
[0, 23] 24]. The Kontsevich-Soibelman wall-crossing formula (KSWCF) states that a certain product
of operators, which depends on the stable BPS charges and on the BPS degeneracies, remains
invariant across walls of marginal stability as to compensate for the change in the degeneracies
Q(v;u). To describe the KSWCF we need a few more ingredients. We introduce the torus Tr =
I' ®z C* and formal variables X, for each v € I', which enjoy the property

X X’Yj = (_1)<%’W> X’Yi+’Yj . (2.5)
The operators K, are automorphisms of the algebra of functions on Tr which act as
I (Xs) = (1= (=)0 X)) X, (2.6)

To state the KSWCF we choose an angular sector A in the central charge plane. Then the KSWCF
states that the phase ordered product

H IC?WU) (2.7)

v:arg Z,(u)€A

is invariant across walls of marginal stability, under the assumptions that no BPS state enter or
leaves the sector A. See [25] for a more in depth review.

The situation for N/ = 4 theories is similar. One can still define a central charge function Z as
a moduli dependent function which at a point in the moduli space associates to a state a charge
dependent complex vector. The BPS condition now depends on the amount of supersymmetry
preserved. It is customary to use the notation (P,Q) to indicate the charge of a generic 1/4
BPS dyon, while 1/2 BPS states are necessarily purely electrically or magnetically charged. The
degeneracies of BPS states can be defined as certain helicity supertraces over the Hilbert space of
states. The main difference in the wall-crossing behavior respect to the N' = 2 case is that now
only two bodies decays are allowed, namely of a 1/4 dyon into two 1/2 BPS states.

In this Section we have review very briefly some basic properties of BPS states in supersymmetric
theories. The set of stable BPS states has clearly a lot of structure, which has lead to deep physical
insights and beautiful mathematics. These structures have deep algebraic and geometrical origin
in the theory of generalized Donaldson-Thomas invariants and of wall-crossing structures [0, 26].
In this note we want to investigate their features from a rather different perspective: we will look
at the set of BPS states as a distribution of points and try to understand its topological properties,
and how these change upon crossing walls of marginal stability. But first we have to set up the
appropriate tools.

3 Persistent homology

In this Section we will introduce the concept of persistent homology and explain its uses in the
context of topological data analysis. The idea behind persistence is to study topological features



of a space as a function of the length scale [10} [IT]. When applied to a set of datas, the topological
analysis extract qualitative features, which are independent on any particular metric or coordinate
system used, and robust to noise. In our exposition we will mainly follow the reviews [12 [13]
14].

The techniques of topological data analysis are increasingly common in many fields such as biology,
neuroscience, complex systems or the study of language, see [15] [16], 17 18], [19] for a sample of the
literature. An application of these techniques to the study of string vacua appears in [20].

3.1 Homology of simplicial complezes

Homology captures intrinsic topological information of a space. To a topological space X we assign
a collection of abelian groups H;(X) whose independent elements formally correspond to topological
features of X, such as its number of components or holes. The computation of the homology of a
space is a standard procedure to study its topology. There are several ways to do this, as well as
several homology theories which can be defined.

A very convenient approach uses simplicial compleres. We can think of a simplicial complex as a
triangulation of a space, whose elements are vertices, edges and faces and so on, and which can be
studied with combinatorial or algebraic techniques. A simplicial complex S is a pair consisting of
a finite set V of vertices and a family 3 of non-empty subsets of V. The collection ¥ is defined
by the property that if ¢ € ¥ and 7 C o, then 7 € X, which for example implies that if a certain
simplex is part of X, so are its faces. The k-simplexes of ¥ form the subset Xj of simplexes with
cardinality k + 1.

For example a standard simplicial complex associated to a metric space X is the Cech complex.
Let Bc(z) be the standard ball of radius € centered at x € X. Assume that we can find aset V C X
so that X = J,cy Be(v). Then the Cech complex is defined as

k
Cech (X) = {J = [voy ...,V | ﬂBE(Ui) # (Z)} . (3.1)

i=0
This is a particular example of the nerve construction.
In this note we will be interested in a version of this construction, applied to a very particular case.

We define a point cloud X as a collection of points {x; };cs in RY. To a point cloud X we associate
the Vietoris-Rips complex VR((X) as

VRc(X) = {o = [vo,...,vx] | d(vi,v;) < e forall 4,5}, (3.2)

where d( , ) is the standard distance function on R". In other words a simplex is identified by the
pairwise intersection of radius €/2 balls. Note that we can generalize immediately the definition of
the Cech complex to point clouds. The fact that the Vietoris-Rips complex VR, (X) is defined only
in terms of pairwise intersection makes it much more amenable to algorithmic computations than
the Cech complex (v:eche(X). These complexes are related by the inclusions

Cech((X) C VRye(X) C Cechygc(X) (3.3)



which imply that the Vietoris-Rips complex is a good approximation to the Cech complex. Note
also that the two complexes have a natural orientation which follows by declaring that a k-simplex
[vo, - -+, vg] changes sign under an odd permutation.

To a simplicial complex .S we can associate its homology as follows. We define the group of k-chains
C) by taking formal linear combinations of k-simplices as ¢ = ), a;0; where a; € Z, for a prime
number p. On C} we define the boundary operator 9y : Cp — Cr_1

k

Bk ([1)0,1)1, cee ,Uk]) = Z(—l)i[vo, e ,@i, e ,Uk] y (34)
=0

where the element ©¢; is omitted in the right-hand side. This operator can be used to define the
chain complex
e — Cpy1 — Cp — Cpg — -+ (35)

and out of this the homology of S. To this end we introduce the spaces of k-cycles Zy(S) = ker 9
and of k-boundaries B(S) = Im Oiy1. Then the k-th homology group Hy(S) is defined as the
quotient Z(S)/Bg(S). The Betti numbers are the ranks of the homology groups, by, = dim H(S) =
dim Z(S) — dim By(.S), and measure the number of k-cycles which are not k-boundaries.

A very important feature of this construction is its functoriality. A simplicial map f between two
simplicial complexes S; and S2, is a map between the corresponding vertex sets such that a simplex
o of S1 is mapped into a simplex f(o) of So. A simplicial map takes a p-simplex into a k-simplex,
with k£ < p. A simplicial map f : S — S induces a map between the vector spaces of p-chains,
Cp(f) : Cp(S1) — Cp(S2). Collecting all the induced maps we form the chain map C,(f), that is
a collection of maps

o
—=Cp(S1) —= Cp1(S1) —= -+ (3.6)
iCp(f) icp—l(f)
852

s Cp(S1) —= Cp1(S1) — -

such that
Cp1(f) 005" = 952 0 Cy(f) . (3.7)

In particular a chain map C,(f) induced by the simplicial map f, induces a map between homology
groups

It will be important for us the case when the simplicial map f is the inclusion. Then by functoriality
f« keeps track of the individual homology classes of H;(S1) inside H;(S2), that is it contains the
information whether an homology class remains non-trivial or not.

3.2 Persistent homology and barcodes

In order to define persistent homology we need to introduce a few preliminary notions. Consider a
field K. An N-persistence K-vector space (or module) is a collection of vector spaces {V}, }nen over
K indexed by a natural number n € N together with a collection of morphisms p; ; : V; — V; for



every ¢ and j so that ¢ < j. We further require a compatibility condition, that is p;x - px; = pi,;
whenever i < k < j. Morphisms between N-persistence vector spaces {V,,} and {W,,} are naturally
defined as a collection of maps f; : V; — W, such that the diagrams

% % (3.9)
lfi lf]’
Wi T W,

commute. The same construction can be generalized to abelian groups, simplicial complexes, chain
complexes and so on. More formally a version of these arguments can be applied to any category
Cat to define the category of N-persistence objects Npe,s(Cat).

There is a particular class of N-persistence modules which are of interest in topological data analysis.
A persistence module {V;};en is called tame if: i) each V; is finite dimensional, and ) pnpt1 :
Vin — V41 is an isomorphism for large enough n. The reason such modules are interesting is that
N-persistence tame K-modules are in one to one correspondence with finitely generated modules
over the graded ring K[¢t]. The fact that the latter are finitely generated allows for a classification
theorem for persistence modules, in terms of their barcodes [11].

In order to explain this classification theorem, we define the N-persistence module K (m, n) as

0, if i < ) >
K(m,n):{ ife<morz>n (3.10)

K otherwise

where m < n are two integers, m is non-negative and n can be infinity. The morphism p is simply
pij = idg for m < i < j < n. K(m,n) is also known as an interval module, which assigns a
non-trivial vector space only to a certain interval.

The classification theorem then states that a given tame N-persistence K-module admits the unique
(up to ordering of factors) decomposition

N
{Viti ~ P K (my,ny). (3.11)
j=0

A tame persistence module is therefore completely specified by a collection of N intervals, for
a certain N € N, to which we assign a non-trivial vector space. An important consequence of
this theorem is that we can completely specify a persistence module by its barcode. A barcode
is simply the collection of non-negative integers (m;,n;), where 0 < m < n and eventually n can
be +oo, which specify when the persistence module is non-trivial. This classification result is
a generalization of the well known fact from elementary algebra that ordinary vector spaces are
classified up to isomorphisms by their dimension. In a similar fashion persistence modules are
characterized by a sequence of intervals. We will represent graphically such a collection of intervals
by drawing a series of bars (hence the name barcode).

The reason these facts are important for us is that the persistent homology of a point cloud (or of
any topological space) gives a persistent module. Then a barcode becomes a very effective tool to



summarize and visualize homological features.

Consider a point cloud X, a collection of points in RY. We denote by X, the point cloud X where
every point x € X has been replaced by a ball B.(x) of radius € centered at x. We regard X, as a
continuous family of topological spaces indexed by the real variable € € R>q, with Xg = X. For any
fixed collection of values 0 = ¢y < €1 < €5 < - -+, we have the sequence of inclusions

Xep = Xey = Xy -+ - (3.12)

Similarly for each X, we construct the associated Vietoris-Rips complex VR, /2(X). Again this is a
continuous family of simplicial complexes parametrized by e. On the other hand only for certain
values of e the simplicial complexes will be distinct, and again for those parameters we have a
sequence of inclusions

VR, (X) = VR, (X) <> VR, (X) = -+ . (3.13)

For each VR((X) we construct the associated chain complex with coefficients in Z,, with p a prime.
Then passing to the i-th homology gives the N-persistence module

H;(VR¢,(X); Zp) — H;i(VR¢, (X); Zp) — Hij(VRey (X); Zp) < -+ . (3.14)

Technically both VR.(X) and the H;(VR((X);Z,) are really R-persistence modules, indexed by the
real variable e. However only for a finite number of €’s these complexes are really distinct, and
we can therefore talk of N-persistence modules. More formally we pick any order preserving map
N — R and construct the N-persistence modules out of the R-persistence modules we have just
defined, as explained more in detail in [12].

Note that all this construction relies essentially on the functoriality of homology. The maps in
are those induced by the inclusions of . Without these maps would just be a
collection of vector spaces. It is immediate to see, and follows just from the definition of homology
and from its functoriality, that these maps obey all the required properties to define a persistence
module.

In particular this means that for every i the N-persistence module in (3.14) is completely charac-
terized by a collection of barcodes. These barcodes capture topological features of the point cloud

X.

In this case we can also give a perhaps more direct description of the barcodes. The inclusions
between topological spaces lift to maps between the homology groups; we call this map

£ Hy(VR., (X); Zp) — Hi(VR.,(X); Z,) (3.15)

for ¢, < ¢,. Then we define the i-th persistent homology group H?’b = Im fl-a ’b, or more explic-
itly

Zi(VRe, (X))
Bi(VR¢, (X)) N Zi(VRe, (X))’

where for simplicity we have not written down the inclusions. The i-th persistent Betti number is

Heb = (3.16)

naturally defined as S} b = rank H?’b. The persistent Betti number ;' b is given by the number of
barcodes of H;(VR(X);Z,) which span the whole interval [e,, €)].

10



3.8 Barcodes and topological features

Let us expand a bit on the interpretation of the barcodes. Barcodes are a visual device which
represent the number of persistent generators in the i-th homology group H;(VR((X);Z,). Given
two values of the proximity parameter €; < e, a persistent homology class along the interval [eq, €3]
is a non-trivial homology class in H;(VR, (X);Z,) which is mapped into a non-trivial homology
class in H;(VR¢,(X); Zp).

Consider the barcodes at a fixed value of €. This means that we are looking at the point cloud X
at a certain characteristic scale given by e. At this scale the generators of H;(VR((X);Z,) capture
topological features of the data set: they represent i-dimensional configurations of points shaped
as cycles which are not boundaries, meaning delimiting “holes” which are not filled up by other
points. The persistence of these generators is a measure of how long these holes last as the value of
the proximity parameter € increases. Intuitively the clearer is the topological feature, for example
if a certain hole contains none or very few points in its interior, the longer the persistent homology
class lasts. A non-trivial long-lived persistent class in H;(VR((X);Z,) indicates that the points in
the data set cluster around a i-cycle without “filling it up”.

For example persistent homology classes in Ho(VR¢(X); Z,) measure the number of connected com-
ponents in the point cloud as a function of the length scale. At very small values of € each barcode
correspond to a point in the original point cloud X. As e increases, neighbor points will form a
single connected component. Long-lived barcodes are evidence for clustering of data into different
regions. This could indicate for example that the data have a tendency to accumulate towards a
certain point or area. A clear division into connected areas with similar behavior, for example the
repetition of the same pattern in the barcodes, could also be regarded as evidence of an existing
symmetry in the underlying physical problem.

A similar reasoning holds for higher homology groups. A persistent generator of Hi(VR((X);Z,)
which is long-lived implies that at different length scales a certain area of the point cloud X is
naturally well approximated by a one-dimensional manifold with the topology of an empty circle
St. Similarly non-trivial elements of H;(VR(X);Z,) will generically suggest that a certain region
of the point cloud X can be approximated by a higher dimensional manifold with a given topology.
The fact that data live on a certain shape can for example suggest a good coordinate system to
approximate the point cloud; in general the presence of non-trivial persistent topologies in X is a
hint of the existence of correlations between the data points, for example in the form of a set of
equations which constrain regions of X.

When discussing the barcode distribution for H;(VR((X);Z,), we will loosely use the terminology:
barcodes at Betti number i, barcodes in degree i, or barcodes for H;.

3.4 An example

Before we proceed to apply these techniques to the study of BPS states, let us go through a simple
example. We take for our point cloud X the simple configuration of points shown in Figure [I} We
want to understand its topological features using persistent homology, and in the process explain
how to apply the relevant techniques step by step.
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The configuration of points in Figure[l|has a clear hexagonal shape. From a topological perspective
this is equivalent to say that the points are distributed along a circle. While this is clear just by
looking at the Figure, we would like to abstract this information in a collection of barcodes. What
we gain in this abstraction will be clear in the following Sections, where we will have to confront
higher dimensional point clouds where no simple visualization tool is available. We draw the

Hexagon Barcodes (Betti 0)

250 0 05 1 15 2 25 3 35 4
Hexagon Barcodes (Betti 1)

15} _

L L . L L . L |
0 05 1 15 2 25 3 35 4
Hexagon Barcodes (Betti 2)

Figure 1: Left. A configuration of points which form the vertices of an hexagon. Right. The corresponding
barcodes computed from the Vietoris-Rips complex. The non-trivial barcode at Betti number 1 makes precise
the statement that the six points look like an hexagon, which is topologically a circle.

relevant barcodes in Figure [I] on the right. As with all the persistent homology computations in
this paper, to obtain the barcodes we wrote a MATLAB program available in [21]. Let us follow the
formation and demise of persistent homology classes in “time” e.

We draw different stages of the e evolution in Figure 2l At ¢ = 0 we just have the original six
points and there is nothing worth noticing: the homology obviously gives six distinct connected
components and no further feature. At e = 1 two edges form, as shown in Figure[2] As a consequence
the first homology of the Vietoris-Rips complex should capture the four connected components of
Xe=1. Indeed we see that precisely at ¢ = 1 two homology classes disappear, corresponding to the
formation of two edges connecting the respective vertices. Therefore immediately before e = 1 there
are six persistent homology classes in degree 0 corresponding to six barcodes; immediately after
two of these classes have become trivial in homology (two vertices are the boundary of an edge)
and only four barcodes are left.

At € = 1.5 we see that a 1-cycle form has formed. Any point has an edge connecting it to its two
nearest neighbors. By now each individual zeroth homology class but one has died by merging
into a single class, and the only barcode left for Hy signals the only connected component of the
simplex. On the other hand we see a non trivial barcode for Hi, corresponding to the non-trivial
cycle in the Vietoris-Rips complex.

When we reach ¢ = 2.5 each one of the six original points of the hexagon is now at a distance less
then € from each other point. As a consequence a face of the simplex has formed. The persistent
homology class of H; has already disappeared, corresponding to the fact that the non-trivial one
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Figure 2: The Vietoris-Rips complex (in blue) at various values of the proximity parameter € as shown by
the red line in the barcodes’ plot. In yellow the balls around the points of the point cloud X, whose radius
€/2 is determined by the proximity parameter. At e = 1 we see the formation of two edges and at e = 1.5 a
complete one-cycle. As we increase € new simplexes form and the one-cycle becomes the boundary of a face
in the Vietoris-Rips complex, thus disappearing from the homology.

cycle we saw at € = 1.5 is now the boundary of the face shown in Figure

In this way the persistent homology of the point cloud X captures its essential topological features:
the number of points is determined by the Hy barcodes at small values of the proximity parameters;
the existence of a long-lived persistent homology class at Hj is tantamount to the statement that
the point cloud X has “the shape of a circle”; finally the number of Hy barcodes present at large
values of €, in this case just one, is an information on the number of clusters in the distribution of
points.

Note that whether we call a class long-lived or short-lived depends somewhat on the context. In
this case we could identify the barcode at H; directly as an interesting topological feature of the
hexagonal point cloud X because we knew of its shape. In general one needs some physical input
from the problem at hand, as we will see repeatedly in the following Sections.

4 BPS spectra in theories of class S[Ax]

We have discussed techniques to extract topological information out of a distribution of points.
In this Section we will apply these techniques to BPS states in supersymmetric quantum field
theory. We will consider N' = 2 SU(3) super Yang-Mills and construct two point clouds X out of
the distribution of BPS states in two different chambers. Then we will use the tools of persistent
homology to compare their features. We will also learn how to extract physical information out of
the barcodes.

Most of the recent progress in understanding BPS spectra has been focussed on theories of class
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S[Ak]. These theories can be seen as the low energy limit of the compactification on R*! x C of
the six dimensional NV = (2,0) superconformal theory. This perspective provides an alternative
description of many physical quantities in terms of the geometry of the curve C.

In this context the moduli space of quantum vacua is the Coulomb branch B which parametrizes
tuples u = (g2, - - , ¢ ) of meromorphic differentials with prescribed singularities. The Wilsonian
effective action of the theory in the Coulomb branch is completely determined by a family of curves
Y, which are K-fold branched coverings of C. X, inherits a natural holomorphic one form A,
which descends from the Liouville one-form on C.

The lattice of electric and magnetic charges T' is identified with a quotient of Hj(X,;Z) by the
lattice of flavor charges. For any state of charge v € ', the central charge is given by

Z,(u) = / Mo (4.1)

where we have identified the charge v with an homology class in H;(X,;7Z). Given the pair (X, Ay)
the central charge is in principle known at any point u € B.

The BPS spectra of theories of class S[Ax]| have striking and unexpected features for K > 2.
Firstly these theories will generically have higher spin BPS supermultiplets at generic points in
their Coulomb branch. Secondly, and more surprisingly, they have wild spectra: chambers where
the number of BPS states with mass less or equal to a given mass M grows exponentially with
M. These features were demonstrated explicitly for SU(3) super Yang-Mills with N' = 2 in [27]
and are believed to hold generically. This phenomenon gives a striking example of the type of
understanding of quantum field theory that we gain by studying the wall-crossing behavior of BPS
states. With these techniques available to perform controlled computations at various values of the
coupling constant, even a relatively simple quantum field theory such as SU(3) Yang-Mills with
N =2 is full of surprises.

We will now apply the formalism outlined in Section [3| to this theory. In particular we will discuss
the topological features of the BPS spectrum in a weak coupling chamber and study their behavior
as we cross a wall of marginal stability into a wild chamber. We will see that the differences are
quite striking, even at the topological level.

In this particular case, the Seiberg-Witten curve ¥ is a three sheeted covering of C, which has the
topology of a cylinder, with six ramification points:

A —Z2A+<ZQ+Z3+Z4>_0. (4.2)

One way to compute the BPS spectra is to start from a chamber where the spectrum is known and
then apply the wall-crossing formula . The strong coupling region is characterized by small
values of the moduli ug and us and has a finite spectrum consisting of six hypermultiplets. The
spectrum generator decomposes as

Krs Kns Kot ]C'Yl +73 Ko Kry - (4.3)

For this theory the rank of the charge lattice I' is four and we have picked a basis {~;}, with
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i=1,2,3,4, so that (y1,72) = (72,73) = (73,74) = —2 and (y1,73) = (72,74) = 1 and all the other
parings are vanishing.

From a mathematical perspective the study of the BPS spectrum can be recast in terms of quiver
representation theory [§]. In this case the relevant quiver has the form

Bs
S %
C1
4.4
v T e (4.4)
By
[ p—— 1]
Ay
with superpotential
W:(BQ¢—¢B1) Cl+(A2w—¢A1) Csy. (45)

We have labelled the nodes of the quiver such that the simple representation at a node e; corresponds
to a BPS hypermultiplet of charge +;. The signed number of arrows connecting the node e; with
the node e; is the pairing (s, ;).

We can be a bit more precise with the enumerative problem we are considering. Given a certain
quiver Q, we consider the path algebra of the quiver CQ over C as the algebra of paths, where
the product is defined as concatenation of paths in Q whenever possible, or zero otherwise. The
Jacobian algebra _#)y = CQ/(0W) arise by considering the quotient by the equations of motion
which follow from the superpotential YW. Then physical states are described in terms of the category
of left modules _#yy — mod, which is equivalent to the category of quiver representations with
relations rep(Q, W).

We can use the central charge Z,(u) at a point u € B to impose stability conditions on the physical
states. More precisely identifying the simple representations of Q with a basis of charges gives an
isomorphism between I and K (rep(Q)) so that we can let the central charge act on representations
of Q. Since the central charge is linear, it is enough to specify its action on a the objects of rep(Q)
corresponding to a basis of I'. In particular at a point u € B, the central charge function Z,(u)
specifies an ordering for the phases of the objects corresponding to a basis of charges of I'. Since
what defines the walls of marginal stability are the phases of the central charge for the physical
states, this identifies a chamber ¥ in the moduli space B.

Therefore at any point in v € B we know, in principle, the value of the central charge and we
can identify stable BPS states with Z-stable representations of Q, modulo isomorphisms classes of
representations. We denote by ///dZ(Q) the moduli space which parametrizes isomorphism classes
of Z-stable representations of Q with dimension vector d. The dimension vector determines the
charge of a BPS state as v = ), d; i, where the sum runs over a basis of I'. Then we obtain
the physical moduli space of BPS states .ZF (Q, W) as the scheme-theoretical critical locus of the
superpotential W.

Finally we identify the BPS degeneracies with the Donaldson-Thomas invariants of .Z7 (Q, W)

Q(v;u) = DTa(Q, W) = xvir (AT (Q.W)) (4.6)
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defined as the virtual Euler characteristics of the moduli space of stable BPS states [28]. The
virtual Euler characteristic of a scheme X is defined as

walX) = [ oxdy= Y nx (), (4.7)

neE”L

as an integral against the FKuler characteristic of Behrend’s constructible function vx : X — Z.
At a smooth point of X, vx is just a sign. The Donaldson-Thomas invariant is basically an
Euler characteristic weighted with signs, similarly to the physical definition of degeneracies as a
trace over an Hilbert space weighted with signs.

We will now apply this discussion to the quiver . For a point u € B the central charge function
Z(u) identifies a chamber and a stable BPS spectrum. We have shown the spectrum in the strong
coupling chamber in . By moving in B we cross walls of marginal stability and the BPS
spectrum changes accordingly. Each time we can compute the spectrum with the wall-crossing
formula . This allows us to determine the BPS degeneracies in the weak coupling chamber and
study the persistent homology of its distribution. From the weak coupling chamber we will move
in the wild chamber, where again the enumerative invariants can be computed (albeit not in closed
form) with the wall-crossing formula. We shall see that the distribution of Donaldson-Thomas
invariants in the wild chamber has striking features which are visible already at the level of the
barcodes. From a more mathematical viewpoint our results concern the topological variations in
the distribution of virtual Euler characteristics of moduli spaces of stable quiver representations,
as the stability condition changes.

4.1  Weak coupling chamber

From the strong coupling chamber we follow a path p in the Coulomb branch B towards the
region of weak coupling. This path crosses four walls of marginal stability: MS(y1 + v3,7v2 + 74),
MS(v1,72), MS(~3,74) and MS(1,7v2 + 74), in this order, ending within a chamber CKEU(B). For
each of these walls the two charges whose central charge becomes parallel have pairing equal to
two: each time the situation is a direct analog of the transition from strong to weak coupling in
pure SU(2) super Yang-Mills, and each time a similar spectrum is generated consisting of a vector
multiplet shrouded by an infinite cloud of hypermultiplets. In this chamber the spectrum can be
written down explicitly. Following [27] we introduce the notation

T (Yo 3) = | ] Ktorvyvarion | e | TT Kyt ey | (4.8)

where £ ' n means that the product is taken in order so that the value of k increases from left to
right starting from n, and similarly for k£ ~\, m. Then the spectrum in ‘515 ve) i

1O (73, 72) TOV (31 + 73,72 + 72) TOO (31,72 + 70) T (71, 70) (4.9)

This spectrum contains four vectormultiplets and an infinite series of dyonic stable hypermulti-
plets.
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Now we look at the topological structures of this spectrum, using the Rips-Vietoris complex. That

is we consider a point cloud X in R® where each vector has the form x = (d, ds, ds, ds, Q(y;u)),

®3)

where v = Z? d;y; is the charge of a stable particle and u € Cfls UG After constructing the filtered

SU3 weak chamber (Betti 0) SU3 weak chamber (Betti 1) SU3 weak Log (Betti 0) SU3 weak Log (Betti 1)
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Figure 3: Barcodes corresponding to the BPS spectrum in the weak coupling chamber %f ve), Left. The
point cloud X is constructed from vectors of the form x = (dy,ds, ds, dy, Q(y;u)). Right. The logarithm of
the degeneracies log |Q(7; u)| is now used in the point cloud.

Rips-Vietoris complex as explained in Section [3] we pass to the homology over Zo and compute the
barcodes. They are shown in Figure [3| The point cloud consists of 84 states and the construction
of the filtered Vietoris-Rips complex involves a total of 5348 simplicesﬂ Non-trivial persistent
homology classes are present only for Hy and Hi.

For future reference we show in Figure 3| on the right the barcodes with the logarithm of the (ab-
solute value of the) degeneracies, that is obtained from the point cloud (di, da, ds3, d4, log |Q(y; uw)]).
Note that this change does not really modify the BPS point cloud substantially, since all the non
vanishing degeneracies are 1 or —2 for hypermultiplets and vector multiplets respectively. On the
other hand the relative distance between points are now different and as a consequence the total
number of simplices changes, in this case increases to 13708. The distribution of barcodes does not
deviate significantly between Figure [3| on the left and on the right, as expected.

4.2 Wild chamber

Now we cross the wall MS(2v; + 2,72 + 74) to enter into the wild chamber %QSU(g). Note that
(271 + ¥2,72 + v4) = 3, which implies that in this chamber the BPS quiver has a representative
in its mutation class which contains the 3-Kronecker quiver as a subquiver. In crossing the wall

1This number is a function of the proximity parameter e, as well as of how many homology groups Hj, are included
in the computation, in the sense that if one decides to truncate the computation at some Hj, higher dimensional
simplices can be neglected. In the following we will by convention only show barcodes up to a value of the proximity
parameter € and of the Betti numbers, which contain interesting topological features, or at least the topological
features we want to discuss. We will use the terminology “number of simplices” in a similar way, referring only to
the simplices used in the homology computations under these conditions.
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a plethora of higher spin multiplets is generated with wild degeneracies. The spectrum is given
by

OO (73, 94) IOV (91 + 93,72 + 92) TOD (91,72 + 74) 2271 + 72,72 + 1) T (71,92) ,  (4.10)
where Z(27v1 + 2,72 + 74) is a so-called 3 cohort in [27]. The 3 cohort does not have a closed form

SU3 wild chamber (Betti 0) SU3 wild chamber (Betti 1) SU3 wild Log (Betti 0) SU3 wild Log (Betti 1)
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Figure 4: Barcodes for the BPS spectrum in the wild chamber ‘525 ve, Left. The point cloud is X con-
structed out of vectors of the form (dy,ds,ds,dy, Q(y;u)). Right. Vectors in the point cloud are of the type

(d17d27d3a d47log |Q(’Y7 U)D

expression and its BPS degeneracies have been computed in [27] only up to a total charge v of 15.
From this result we use to construct a sample of 144 points corresponding to as many BPS
states. The Vietoris-Rips complex runs over a total of 210156 simplices and its persistent homology
classes (again over Zy) are shown in the left in Figure{d] The exponential growth of the degeneracies
shows up as the presence of many very long-lived barcodes in degree 0. This is easy to understand;
due to the exponential growth of the point cloud the homology of the Vietoris-Rips complex sees
many points as individual connected components for very large values of the proximity parameter

€.

Since the degeneracies are exponentially growing it is useful to consider also the point cloud obtained
by taking the logarithm of the modulus of the degeneracies. This is merely a trick to simplify the
computations of the simplices. This significantly reduces the lifespan of long-lived homology classes,
also altering the number of simplices. On the other hand the features of the barcode distribution
are easier to visualize, and shown in Figure [f] on the right. The total number of simplices for which

there are interesting topological features is now reduced to 27766.

Across the wall we see distinctively a transition at the level of the topology of the point cloud.
This is clear for example in Figure [4] (left) where the barcodes for Hy are very long-lived. If we
compare with Figure |3| (left) we see that the wild chamber has a much larger number of connected
component at very large scales e. This is indeed a consequence of the exponential growth in the
number of states: since the degeneracies Q(v;u) grow exponentially the points are further and
further apart and therefore at the same scale € at which the points in Figure [3| are already grouped
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in a single cluster, the degeneracies in Figure [ still look like many connected components. In other
words at a certain threshold the values of the degeneracies begin to grow too far apart for the
Vietoris-Rips complex to form edges and the homology sees each point as an individual connected
component.

To have a more meaningful comparison, we turn to the logarithm of the degeneracies, so to damp
the exponential growth. We will see in the next Sections that there are more refined methods, but
for the moment this will be enough. We now compare the results in Figures [3| and 4] (right). The
transition between the two chambers is still very clear: the barcodes in the weak coupling chamber
are very regular and the dependence on the scale € rather mild. On the other hand we see in Figure
how persistent homology captures the wilderness of the BPS spectrum. The homological features
are very irregular, especially for H; and non-trivial 1-cycles persist at every e-scale. This features
terminate in Figure [4 at a certain value of € only because we are using a finite sample, with roughly
the same number of points as in the weak coupling chamber, but would continue indefinitely were
we to increase the number of degeneracies computed via the wall-crossing formula.

This is an example of the kind of information we can get on the BPS spectra using the formalism
of persistent homology. In this Section we have just compared the topological features of the
BPS spectrum in two different chambers. Topology gives a clear meaning to the statement that
these chambers are qualitatively different. The topological features of the two distributions are
captured by the basic topological invariants of the N-persistence modules, namely the barcodes.
It is remarkable that upon crossing the wall of marginal stability, the transition between the two
chambers is very sharp even at the topological level.

We will now discuss a similar problem in a string theory compactification, namely the BPS spectra
in various chambers of the conifold. But before that we need to refine our techniques in the next
Section.

5 Witness and lazy witness

We have shown how to use the Vietoris-Rips complex VR, to extract topological information from
the BPS spectra in the form of barcodes. The computation of the barcodes is done exactly by
evaluating the homology of the simplicial complex for any value of the proximity parameter e.
However in many cases the point cloud X is too large for a direct computation. In this cases certain
approximation schemes are available, which we will now describe. These approximation schemes
are suited to deal efficiently with large sets of data. The main idea is to use certain criteria to
select only a certain subset L of the point cloud X, which is then used to form a simplicial complex
which approximates the Vietoris-Rips complex [12].

The operator which performs such a choice is a landmark selector. The most used landmark selectors
are:

1. Random selector. The most straightforward way to choose a subset L C X is by picking a
number of points at random. This procedure is quite useful, although in practice it is better
to choose various random subsets L and perform homological computations for each one
separately. Indeed it is quite possible that a random selection would miss essential features
of a point cloud X. The limitations of random selection are well known from Monte Carlo
algorithms and will not be repeated here.
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2. Minmax selector. This operator selects a collection of points L which, in a very specific
sense, is as spread out as possible. The minmax algorithm works inductively by maximizing
the distance of a point from a previously chosen set. More in detail, the algorithm starts
from a randomly chosen point xp. Let d( , ) : X> — R be the standard distance function
between points (which is inherited from the ambient metric of RY where the point cloud is
embedded). The choice of the remaining points in the set L proceeds by induction. Denote
by L; the minmax selection of ¢ points in X. Then L;;; consist of the same set to which a
single point z is added, in such a way that the function d(x;, z) is maximized for each x; € L;.
Because of this inductive definition, the landmark selected set L will consists of points which
are spread apart from each other as much as possible. Therefore in general we expect this
selector to capture features of a point cloud X better than a random selector. On the other
hand one has to keep in mind that there are cases where this expectation will fail: for example
since the minmax selector will generically pick out outlier points, a random selector might
work better with very dense sets.

Having chosen a landmark set L, we can define a version of the Vietoris-Rips complex which is
based on it. We shall use two such simplicial complexes, the witness complexr W(X,L,¢) and the
lazy witness complex LW, (X, L, €). In both cases the vertex set is given by L; what changes is the
definition of the simplices. These are defined as follows:

1. Witness complex W(X,L,¢€). Let x be a point in X. Denote by di(x), for k& > 0, the distance
between x and its k+ 1-th closest landmark point. Now we declare that a collection of vertices
l; € Lfori=0,...,k form the simplex [ly,...,Ix] if all of its faces are in W(X, L, ¢) and there
exists a witness point x € X so that the following condition holds

max{d(lp, x), d(l1,%),...,d(lg,x)} < di(x) + €. (5.1)

2. Lazy Witness complex LW, (X,L,¢€). Let v € N, and let d,(x) be the distance between x and
the v-th closest landmark point (with d,(x) = 0 if v = 0). Then for |; and |y points of L,
[l1,12] is an edge in LW, (X,L,€) if there exists a witness point x € X so that the following
condition holds

max{d(l1,x),d(l2,x)} < dy,(x) + €. (5.2)

A higher dimensional simplex defines an element of LW, (X, L, €) if and only if all of its edges
are in LW, (X, L, ¢€)

These definitions are those implemented in JAVAPLEX. It is easy to see that if €; < €5, then we
have W(X,L,€e1) C W(X,L,e2) and LW, (X, L,€e1) C LW, (X, L, €2).

We can now use the same arguments of Section [3|to argue that by letting e vary we induce filtrations
of witness and lazy witness complexes and that taking the i-th homology of any such sequence as
a function of € defines a N-persistence module. Therefore we can easily define persistent homology
groups and barcodes and use the complexes W(X, L, €) and LW, (X, L, €) to study persistent topolog-
ical features of distributions of BPS states. Unless specified otherwise, when using the lazy witness
complex we will always set ¥ = 1 and omit it from the notation.

20



6 BPS invariants on the conifold

In our second example we consider BPS states in a local string theory compactification, the resolved
conifold. The geometry is given by the total space of the fibration X = O(—1)@® O(~1) — P! and
has one Kéhler modulus ¢, the complexified size of the base P'. We are interested in a particular
class of BPS states which are given by bound states of a gas of light DO branes and D2 branes
wrapping the P!, with a single D6 brane wrapping the full non compact total space. Such invariants
have been computed in quite some detail at any point of the moduli space [29, 30, B}, 32].

Since the geometry is non-compact, to properly define the charges it is necessary to embed it into a
compact Calabi-Yau and then take a local limit. This is done by considering a compact Calabi-Yau
X and taking the limit where the Kahler moduli of all the homology classes become large, with the
sole exception of the Kéahler class of a rigid rational curve.

Since we are taking a local limit, it is enough to consider the compact Calabi-Yau X in the large
radius approximation. BPS states are labeled by charge vectors v € I', where

v e D=I"aT° = (HO(X,Z)@Hz(XZ)) ® <H4(X,Z)®H6(X,Z)> . (6.1)

By Poincaré duality D-branes wrapping p-cycles correspond to charges as

Dp «— HSP?(X,Z)=H,X,Z), p=0,2,4,6. (6.2)

The Dirac-Schwinger-Zwanziger pairing has the geometric definition

<%79fiévAGM®WM. (6.3)

In the large radius limit the central charge of a BPS state with charge v is given by the integral

ZX(W;f):—/ yAe ! (6.4)

X

where t = B + i.J is the complexified Kihler form given by the background supergravity two-form
B-field and the Kéhler (1,1)-form .J of X.

Now we take the local limit, following [29]. We parametrize the Kahler form as
t=tp +Le'¥t, (6.5)

where tp1 and ¢, are classes in H2(X;C) such that

/thz, /tL: . (6.6)
P! Pl

Now we take the local limit by sending L. — 4-0c0.

In this limit the relevant BPS configurations are multi-centered solutions with core charge v, =
(1,0,0,0) and halo charge v, = (0,0, —3,n). Conventionally we write the latter as v, = (0,0, —m,n),
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where m denotes the number of times the class Wrapsﬂ the P!, 8 = m[P!]. Walls of marginal
stability can be computed explicitly as a function of m and n. In the local limit the central charges
retain some dependence on the parameter . Therefore the walls of marginal stability can be
parametrized on the space (z,¢), where the Kahler moduli space is extended by the parameter ¢
due to the local limit. Physically ¢ represent the density of the components of the B-field normal
to the exceptional locus.

The walls of marginal stability are [29] 30, 32]

sy = { (e o= Jarse+ 2+ 7 | (6.7)
s, = { () s o= ga(e = 2 | (6.5)
s = { () s o= ga(e+ 2 | (6.9)

with n > 0 and m > 0. We will denote a chamber between two walls as € [MS}"!, MS}2].

ny o
Now we will study the topological features of the BPS spectra in various chambers and compare
them. From a physical perspective this is similar to what we have done in Section [4] except that
the BPS spectra count states in string theory and not in quantum field theory (albeit we have
rendered gravity non-dynamical by taking a local limit).

This problem is also interesting from a mathematical perspective. Indeed a proper treatment of
BPS particles in string theory requires to work at the level of a derived category, in this case
D(coh(X)). However for practical computations one typically chooses to work in a simpler abelian
category. Indeed choosing a stability condition on D(coh(X)) corresponds to the choice of an
abelian category A and a stability condition on A. In this case we will discuss, for example, BPS
states computed from the moduli space of ideal sheaves at large radius, or from the moduli space of
cyclic modules of a quiver in a certain chamber. These objects are mathematically quite different,
yet describe the same physical setting up to wall-crossings. We will provide a new viewpoint using
persistent topology.

6.1 Chambers €MS,, 1, MS}]

We begin by considering the chambers of the form %[MS},,;,MS;.]. These chambers are directly
connected to the core region, where only the D6 brane exists as a stable state, situated near the
wall with ¢ = %argz + 5. The partition function in each chamber can be obtained by applying
the KSWCF . Because of the particularly simple charge configuration of the bound states,
the wall-crossing formula reduces to the semi-primitive version [33], which amounts in multiplying
the partition function by the partition function of a halo of DO and D2 branes. After crossing
the appropriate walls of marginal stability, the core D6 brane will be bound to a halo of charge
v = (0,0, —m,n). In decreasing ¢ from the core region, the first walls encountered are of the form

MS..

*We use a different notation from [29]: we call 8 the homology class of a curve, while in [29] 3 is the 4-form
Poincaré dual to the P'.
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We introduce the standard notation ¢ = e where \ is the topological string coupling, and Q = e ~2.

The resulting partition function in the chambers €'[MS},, |, MS}] is
i ke
Zu(a.Q) =[] (1= (-0*Q) . (6.10)
k=1

In these chambers the physical BPS spectrum is particularly simple and can be obtained simply by
expanding (6.10)) at any fixed n > 0.

6.2 Large radius

At large radius the effective dynamics of the bound states is captured by a six dimensional topolog-
ical field theory, which arise as the topological twist of the N’ = 2 supersymmetric abelian theory
obtained as low energy approximation to the DBI action on the D6 brane worldvolume [34], 35].
To reach this chamber one has to cross all the chambers of the form %[MS;Hl_l, MS, 1] by taking
smaller values for ¢, for n — oco. A notable feature of the large radius chamber, as well as other
chambers in local threefolds, is that walls of marginal stability accumulate towards it, leaving a
certain ambiguity to the statement “crossing all the walls”. The behavior is similar to what hap-
pens in quantum field theory with BPS rays, which accumulate to higher spin fields. Luckily in
this situation the limit can be taken analytically. The computation of the BPS spectrum can also
be done directly by other means, confirming the wall crossing prediction.

Indeed BPS bound states in this chamber can be realized as singular instanton configurations [34].
More precisely the relevant physical configurations correspond to ideal sheaves, torsion free sheaves
of rank one with trivial determinant. The partition function of the topological theory can be
computed explicitly using equivariant localization with respect to the natural toric action on the
moduli space of ideal sheaves, induced by the toric action on the resolved conifold. An equivalent
but more geometric perspective is obtained by recalling that an ideal sheaf 7 sits in the short exact
sequence

0 A Ox Oy —= 0, (6.11)

where Y is a subscheme of X. The sequence ([6.11)) identifies the moduli space of ideal sheaves with
fixed characteristic classes with the Hilbert scheme of points and curves Hilb,, 5(X) parametrizing
subschemes Y C X with no component of codimension one and such that

n = x(Oy) and =] € H:X,Z), (6.12)

where with xy we denote the holomorphic Euler characteristic.

The BPS degeneracies are given by the (ordinary) Donaldson-Thomas invariants of these moduli
spaces. In this case they can be computed directly via virtual integration

Qx(n, B) = DT, 4(X) = / 1. (6.13)

[Hilby, g (X)]Vir
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The gauge theory partition function

X k
Zgauge(QaQ) = Z q QB DTk,ﬁ(X) (6.14)
kp
can be evaluated explicitly by equivariant localization. In our notation Q° = e ™%, Such a

partition function receives contributions from point like instantons located at the toric fixed points,
say at the north and south pole of the base P!, as well as extended instantons fibered over the P!.
In the case of the conifold the result can be written in closed form as [34]

Zgnge(0:Q) = M(=9)* [ (1 = (—0)*Q)". (6.15)
k=1

We have used the partition function (6.15)) to compute a large number of enumerative invariants
and used them to construct a point cloud.

6.3 Noncommutative crepant resolution

In the noncommutative crepant resolution (NCCR) chamber, geometrical concepts are replaced by
algebraic ones. We reach this chamber by taking smaller and smaller values of ¢, crossing all walls
of the form MS_ ! until we reach the region %argz < ¢ < %arg(z —1). The conifold point lies at
the boundary of this region. Indeed in a noncommutative crepant resolution ordinary geometrical
notions don’t hold anymore and geometry is replaced by a certain algebra. Such a phenomenon
is generic in toric threefolds. This algebra is the Jacobian algebra of an appropriate quiver. The
center of this algebra is the equation of the singular limit of the threefold; in this sense the Jacobian
algebra is a “resolution” of the singularity. The physics of such resolutions can be understood in
terms of a certain deformation of a cohomological TQFT, called “stacky gauge theory”, which has
been discussed at length in [35] 36l 37]. We refer the interested reader to the review [38] for more
details.

In the case of the conifold the relevant BPS states can be understood in terms of the representation
theory of the framed quiver [31]

x (6.16)
e “ b
o [
— @ I
\ . /
with superpotential
W = aq b1 a9 bg — ai bQ as bl . (617)

The path algebra is given explicitly by
A = Cleo, eq]{a1, az, by, b2) / (b1ajby —bya;by, arbjag —azbja; | i=1,2) . (6.18)

where e, and e, are the trivial paths of length zero at the nodes o and e. In particular it is easy to
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see that the center of the algebra is the equation of the conifold singularity. In this sense the full
path algebra is a noncommutative resolution of the singularity.

Again we can define BPS invariants which correspond to the degeneracies of bound states of D-
branes, the noncommutative Donaldson-Thomas invariants. Physically we can describe bound
states of D2/D0 branes with a D6 brane as ground states of a supersymmetric quiver quantum
mechanics with superpotential derived from . The framing node represents the infinitely
massive non-compact D6 brane. From a representation theory perspective the simple representa-
tions at the unframed nodes correspond geometrically to the generators of K.(X), the K-theory
group of sheaves on the conifold with compact support (equivalently sequences of vector bundles
which are exact outside the exceptional locus). For more details of the correspondence between
representation theory of quivers and large radius geometry in the context of BPS state counting,
see [37].

The ground states of the supersymmetric quiver quantum mechanics are described in representation
theory by cyclic modules. More precisely, consider the framed representation space

Rep(Q,0)= €  Home(Vi, Vi) ® Home(Vs,C) (6.19)

(v—w)eQ1

which explicitly depends on the choice of the framed node o. Let Rep(Q,o; W) be the subscheme
of Rep(Q, o) cut out by the equations derived from the superpotential 9,V = 0. The moduli space
of cyclic modules is the smooth Artin stack

Mgy (Q) = [Rep(Q,0;W) / GL(ng,C) x GL(n1,C)] . (6.20)

This is precisely the situation described in Section 2] The BPS degeneracies are now defined as
(weighted) Euler characteristic of the moduli spaces .#,, », (Q). In particular they can be computed
explicitly using equivariant localization at the level of the quiver quantum mechanics, with respect
to the natural toric action which rescales all the field associated with the arrows, while keeping
the F-term equations 0,V = 0 invariant. The result can be summarized in the partition function
1)

Zveon(a@ = (-0* T] (1- -0 )" (1- (-0 @ )" (6:21)
k=1

Again we can compute the BPS degeneracies by a direct expansion and we will momentarily use
persistent homology to study their distribution.

6.4 Beyond the NCCR chamber

Now we move to the study of the chambers €[MS-L, MS~! ]. In those chambers, a different
qualitative phenomenon happens, namely the crossing of certain conjugation walls . after which
the core charge of the bound states, identified with the D6 brane at large radius, changes [30].
These conjugation walls are associated with particles becoming massless. As a consequence there
is a monodromy around the locus where the state becomes massless in the moduli space. Upon

crossing such walls the core charge changes according to the monodromy, while an extra halo of

25



particles appears to ensure charge conservation.

The partition function can be computed using the wall-crossing formula, giving [30]

Zn(q,Q) = (H(q Q) > q)° H ( ”)k ﬁ (1 — (=" Q)k : (6.22)

k=1 k=n+1

Here the presence of the factor (szl(qu)k) is a consequence of the monodromy

n

Ty — To— > (To,710) 711 (6.23)
=1

which a core charge I'y undergoes after crossing the conjugation walls .7(y1,I0) for i =1,...,n
Each time a conjugation wall .#(y;,T) is crossed, the core charge changes accordingly to the
above monodromy, and an halo appears, made of a filled Fermi sea of particles with charge 7.
Therefore the nature of the bound states changes in a qualitative fashion, and we are interested in
seeing how does this change affects the distribution of BPS invariants.

6.5 Topological analysis

As we have seen the structure of BPS states on the conifold has very distinctive features in each
chamber. We want now to understand at the qualitative level offered by the topological analysis
how the nature of the BPS bound states differs from one chamber to another. We use the partition
functions we have described above to generate a rather large number of BPS invariants, as the
coefficients of the expansion

Ze(,Q) = Y Q(y=(1,0,—m,k); € = (2,0)) ¢ Q™. (6.24)

k,meZ

In our case this partition function is given by (6.10)), (6.15]), (6.21]) and (6.22)) respectively. We have
shown explicitly the chamber dependence as well as the charge vector of a state.

Since for Calabi-Yau manifolds the degeneracies of BPS states grow rather fast, we take the
log of Q(v;%). Therefore in all the cases our point cloud X contains vectors of the form x =
(k,m,log |Q(~;€)|), where the chamber € is specified by the value of the moduli (z, ¢).

For each of the chambers under consideration we take around a thousands of BPS invariants. For
those partition functions in chambers % which depend on a choice of an integer n, namely
and , we chose this integer high enough to provide enough invariants. Due to the large
number of states, we employ the lazy witness complex LW(X, L, €), with 200 landmark points. The
computation of persistent homology leads to the barcode distributions shown in Figures [5 [6] and

@

Let us understand what kind of topological information we can infer. Consider firstly Figure
On the left we have the chambers close to the core region, while on the right the large radius
chamber. The transition is very clear and by looking at the homology in degree one, we see that
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Figure 5: Spectra of BPS states for the conifold. The barcodes have been obtained using the lazy witness
complex LW(X,L,¢) on a point cloud of the form x = (k,m,log|Q(v;%)|). Left. Chambers of the form

MS.] for n = 90. The point cloud is made out of 1093 BPS invariants and the filtered homology
computation involves 3457 simplices. Right. The large radius chamber. The point cloud is constructed with

%[MS;Jrlv
1183 invariants and the filtered homology computation involves 3632 simplices.

the large radius chamber presents many more topological features. In a sense moving towards large
radius there is an increase in complexity as more cycles form in an irregular pattern. We interpret
this as evidence that the stability condition which identifies the large radius chamber offers more
possibilities to construct BPS states, while the enumerative problem in chambers nearby the core
region is comparatively poorer. Interestingly the length of the long-lived persistent classes is roughly
comparable. Looking at the zeroth Betti number in both cases most homology classes have died

Chambers beyond NCCR (Betti 1)

Chambers beyond NCCR (Betti 0)

by € ~ 1.5.

NCCR chamber (Betti 1)

NCCR chamber (Betti 0)

||,,\|||||I|||‘.rH| I |
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Figure 6: Spectra of BPS states for the conifold. The barcodes have been obtained using the lazy witness
complex LW(X, L, €) on a point cloud of the form x = (k, m,log|Q(y; €)|). Left. The noncommutative crepant
resolution chamber. The point cloud is made of 1165 invariants and the number of simplices is 4361. Right.

~} ] for n = 45. The point cloud has 1230 points and the number of

Chambers of the kind €[MS~}, MS
simplices is 5095.
Also quite interesting are the similarities between the large radius chamber, Figure [5| on the right,
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where BPS invariants count ideal sheaves on the resolved conifold, and the noncommutative crepant
resolution chamber, Figure [6] on the left, where BPS invariants count cyclic modules over the path
algebra of the framed conifold quiver. Despite the difference between the enumerative problems the
shapes of the barcode diagrams are roughly comparable, the main dissimilarity being the presence
of more homology classes in degree zero which persist over € ~ 3 in the large radius region. Of
course while we are discussing the distribution of barcodes, the actual homology classes have a
different behavior in both cases, and it would be very interesting to try to interpret each interval,
especially in degree one. The abundance of non-trivial 1-cycles in both cases points out that, if we
try to interpret the point clouds as a discretization of an underlying geometry, at a generic point

within this geometry there should exist a canonical set of circle coordinate&ﬂ

Another intriguing phenomenon happens when
continuing beyond the noncommutative crepant
resolution chamber, to chambers of the form
%[MS:&L, MS:}L_I]. We have computed the per-
sistent homology in Figure [6] on the right and
Figure [7] for two values of the chamber label
n. As n increases the barcode distribution in-

terpolates between the noncommutative cham-
In Figure

Chambers beyond NCCR (Betti 1)

Chambers beyond NCCR (Betti 0)

.MH
|
|

..|||||,\|\H‘

ber and the large radius chamber.
the similarities with Figure [5] on the right,
are striking, despite the actual generating func-
tions being distinct. A physical interpretation
of these chambers is non straightforward; as ex-
plained in [30], proceeding by keeping z fixed
while sending ¢ to zero, makes the large radius

approximation to the periods used to compute
the central charges, less reliable. What we seem to be finding is that getting further and further

from the noncommutative chamber, one reproduces a similar structure to large radius. Indeed this
is reminiscent of the result of [3I] which relates the partition function of large radius Donaldson-
Thomas invariants, and the partition function of noncommutative Donaldson-Thomas invariants,
with the large radius partition function of the flipped conifold, where a topology changing transition
has replaced the exceptional divisor with a topologically distinct P'. According to this interpreta-
tion, the shape of the barcode distribution in Figure [7] seem to imply that the only difference with
the large radius BPS states is the core charge, which has changed due to crossing a large number of
conjugation walls .. It would be very interesting to have an independent check in the low energy

°

Figure 7: Chambers of the kind €[MS=%, MS~! ] for
n = 90. The point cloud has 1183 points and the

number of simplices is 3632.

effective theory.
7 Quantum geometry of compact threefolds

Now we want to discuss BPS invariants for a few compact Calabi-Yau varieties. So far we have fixed
an underlying compactification and we have studied how the BPS spectra are affected by crossing

3Canonical in the sense of being associated to the 1-form dual to the 1-cycle. More precisely, assuming there is
no torsion, one can lift cohomology from Zs to R, and then pick the harmonic representative of the 1-form, which

locally integrates to a smooth coordinate function.
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walls of marginal stability. We will now take a somewhat different perspective, by comparing BPS
spectra in different compactifications but in the “same” chamber, at large radius. What we mean
by the same chamber is as follows. The topological string on a compact Calabi-Yau X captures a
particular collection of BPS states which play a role in the microscopic description of certain five
dimensional black holes [3], the Gopakumar-Vafa invariants [39] [40]. It is generically believed, and
in some cases proven, that the generating function of Gopakumar-Vafa invariants coincides with
the generating function of Donaldson-Thomas invariants in a certain chamber, upon a change of
variables. This chamber captures physically BPS spectra of bound states of D0/D2 branes with
a single D6 brane. Having a single D6 brane means that the relevant moduli space is the moduli
space of ideal sheaves on X. Implicit in the definition of an ideal sheaf, is a notion of a chamber,
for which ideal sheaves represent stable objects. We will compare BPS spectra in such a chamber
for different Calabi-Yaus.

We have chosen certain one parameter varieties for which a great deal is known about Gopakumar-
Vafa invariants, and the topological string explicitly solved up to a certain genus [41]. Thanks
to Castelnuovo’s theory of curves, these results allow for the computation of several Donaldson-
Thomas invariants [42].

7.1 Topological strings on one parameter C'Y

We will discuss the distributions of BPS invariants on certain one-parameters models where the
topological string amplitudes were computed explicitly in [41] to high genus. These models have all
the form of complete intersection Calabi-Yaus in weighted projective spaces. Complete intersection
manifolds are constructed as the zero locus of a finite number of homogeneous polynomials in a
product of projective spaces. If we denote a weighted projective space by P*~!(wy,. .., wy,), then
a complete intersection CY of degree (dy,...,d;) will be denoted by X4, . 4, (w1,...,w,) and w™
will denote the m times repetition of the weight w. For example the quintic threefold X5(1) is
obtained as the zero locus of a single degree 5 polynomial in P*.

A collection of 13 such threefolds was discussed in [41]. All these one-parameter models have
the property that their mirror has a Picard-Fuchs system with three regular singular points. The
moduli spaces have the form M(X) = P!\ {0,1,00} where the point denoted by oo denotes the
point of maximal monodromy at large radius, where we will discuss BPS spectra of D-branes bound
states. The other two points correspond to a conifold point and a point with rational branching,
for example an orbifold point corresponding to a Gepner model. The constraints imposed by
modularity on the topological string amplitudes implies that these can be written as polynomials
over a ring generated by certain modular objects.

In particular the holomorphic ambiguity in the topological amplitude is fixed by the specific form
of the amplitude near the conifold and orbifold points; for example at the conifold points, the “gap
condition” determines the form of the poles in the amplitude via knowledge of the light BPS states,
and this structure is universal [41].
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7.2  BPS invariants

To the Calabi-Yaus X under consideration one can associate the partition function

co 29—2 (1)9“< 7= )Gvg,d
Zev(X:q,t H H —dt)rcvo,d H H <1_qg—l—1e—dt) l (7.1

The topological string free energy F(X;q,t) = log Zgv(X;q,t) was computed in [4I] using the
techniques outline above, up to high genus. Here ¢ represents the Kahler modulus of the Calabi-Yau,
while ¢ = e '}, with X the topological string coupling. The integers GV, 4 are the Gopakumar-Vafa
invariants of [39] 40]. The free energy F(X;q,t) has an interpretation as a certain coupling in the
low energy N = 2 supergravity. This term can be obtained by a one-loop computation in a constant
graviphoton background, where it receives contribution from BPS particles engineered by an M2
brane wrapping a degree d curve, in the M-theory limit of the type ITA string. The Gopakumar-
Vafa invariant GV, 4 is a twisted supersymmetric index which captures the contribution of these
particles to the effective coupling. The quantum numbers of these particles can be labelled by the
representation of the little group SO(4) ~ SU(2)r, ® SU(2)g. It turns out that only supersymmetric
particles with quantum number g associated with representations of SU(2)y, of the form

o (2)]° -

These couplings and the invariants GV, 4 play a very important role in the microscopical description

contribute to the index.

of black holes in quantum gravity. A five dimensional black hole can be engineered via an M-theory
compactification on a Calabi-Yau, by an M2 brane wrapping a curve § = dt € Hs(X,Z). The
microscopic degeneracies of such a black hole, with charge 5 and angular momentum m in SU(2)r,
can be computed as functions of the invariants GV, 4, and reproduce precisely the macroscopic
entropy [3].

In this Section we will be more interested in certain D-brane bound states which are dual to the
above description. We will study numerical Donaldson-Thomas invariants of the moduli space of
ideal sheaves of X which physically represent the degeneracies of BPS bound states of a D6 brane
wrapping X with a gas of DO/D2 branes. Conjecturally the duality has the form

Zpr(X5q,t Z DTpaq" e " = Zay(X;q,t) M(—q)*™), (7.3)

where oo
M(g)=J[a-¢H™ (7.4)

n=1

is the MacMahon function. Using the knowledge of the topological string amplitude computed in
[41] we will follow the approach of [42] to compute the BPS invariants DT, 4 up to a certain d.
By expanding (7.3) one sees that the invariant DT, 4 with fixed d, receives contributions from all
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the invariants GV, 4 with @’ < d, but arbitrary g. Therefore in principle one should know the full
right hand side of to compute the invariants DT, 4. However for the models at hand there
is an enormous simplification coming from Castelnuovo theory. Roughly speaking Castelnuovo’s
theory provides a bound on the genus g of a degree d curve in a projective space, and certain
generalizations thereof. For the models we are studying, the Castelnuovo bound is either known
or estimated in [42]. Due to the Castelnuovo bound, given a degree d, there is a gmq, so that for
9 > Gmaa all the GV, 4 are vanishing. For example for the quintic X5(1)

Grmaz < %o (10+5d+d?) . (7.5)

Taking as inputs the invariants GV, 4 of [41}, 42] and using Castelnuovo’s theory, we have computed
all the BPS degeneracies DT, 4 up to d = 9 and n = 9 for the complete intersection varieties X5(1),
X3,3(16), X472(16), X3,272(17), X2,272,2(18) and X4 3(1°,2), to have an homogenous set of data to use
as a point cloud. We have similar computations for the remaining of the 13 one parameter models,
but with less data; the results are in line with what we will discuss momentarily but we will not
include them here.

7.8  Topological analysis

We collect and discuss here our results. Out of our physical settings we construct a number of
point clouds X which have the form x = (d,n,log DT, 4|) for x € X. Again we are taking the
logarithm of the degeneracies. As we have already stressed this should be handled with care, since
the logarithm is likely to wash out more subtle topological features in the BPS spectra. However
as already explained this is not a problem in our case, since we are not using persistent homology
to determine the properties of a BPS spectrum on its own, but to compare various spectra. From a
purely computational perspective, taking the logarithm is almost a necessity. The BPS degeneracies
that we are discussing correspond to black hole microstates and on general grounds in quantum
gravity these numbers grow exponentially.

Let us apply our formalism. We construct the point cloud X with BPS spectra consisting of 108-135
states, depending on the geometry. These are all the non-vanishing Donaldson-Thomas invariants
DT, q of the compact threefold up to degree d = 9, and n = 9 (chosen in order to have point
clouds of roughly the same order). Out of X we construct the family of topological spaces X, and
the Vietoris-Rips complex VR¢(X). Then we pass to the homology H;(VR¢(X);Z2) and look at the
topological features of the N-persistence modules.

One immediate feature of Figures [B{I0]is that they all look rather similar. The differences between
the distributions of barcodes are minimal. For certain geometries the Hy barcodes are slightly
more long-lived and for others the H; distribution is a bit more regular. However these differences,
despite the damping due to the logarithmic scale, are still very small and it is natural to think that
there is a physical mechanism behind this.

Of course there is a natural candidate for the problem at hand: the universality expected for black
hole physics. The degeneracies of black hole microstates must be such as to recover the macroscopic
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Figure 8: Barcodes for the distribution of Donaldson-Thomas invariants on compact Calabi-Yaus.

computation uses the Vietoris-Rips complex VR.(X) build on a point cloud X whose generic element is
x = (d,n,log [DT,, 4|). We give explicitly the number of simplices used in the computation. Left. The quintic

X5(1), with 135 BPS invariants, from 2662 simplices. Right. The variety X3 3(1°), with 121 BPS invariants,

from 3472 simplices.

entropy, given by the area law: for the large charges the entropy scales with the area of the black
hole horizon. Furthermore the area law receives an infinite series of higher derivative corrections

[43] which are expected to be determined by the topological string [44) [33], 45}, [46].
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Figure 9: Barcode computation, same as in Figure 8| Left. The variety X4 2(1°), with 126 BPS invariants,
from 3200 simplices. Right. The variety X322(17), with 115 BPS invariants, from 3795 simplices.

What we are seeing here is that also the topological features of the BPS spectra (but not the
actual values of the BPS invariants, which fluctuate wildly between different geometries) appear
to be universal. Note that the usual ideas about black hole universality refers to the emergence
of universal features in the large charges expansion. Here we are dealing with the BPS spectrum
without any limit (although it should be noted that from a similar partial knowledge, the authors

of [42] could extrapolate a large order result which agrees with the macroscopic predictions).
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Figure 10: Barcode computation, same as in Figure Left. The variety X2,2,272(18), with 108 BPS invariants,
from 4163 simplices. Right. The variety X4 3(1°,2), with 133 BPS invariants, from 2988 simplices.

It is natural to believe that what we are seeing is how universal aspects of black hole physics
impact the topological features of the distribution of BPS states. In particular it is not just the
shape of the barcode distribution, but the actual lengths and positions of the barcodes which are
comparable, both in degree zero and one. We stress again that the values of the BPS invariants and
the corresponding point clouds are very different from case to case. It is natural to conjecture that
this phenomenon would become more pronounced were we to increase the number of BPS invariants
in the point clouds. To be more precise we put forward the following conjecture, which we expect
to be valid at least for one-parameter Calabi-Yaus: as the number of BPS invariants increases,
approaching the large charge limit, the N-persistence modules associated with Hy and H; tend to
universal N-persistence modules. Note that if we interpret the point clouds as a discretization of an
underlying surface, we can rephrase the above statement in terms of a single universal homotopy

class of surfaces, governing the distribution of BPS states.

Assuming that such a conjecture is true, it would seem natural to imagine that such a homotopy
class of surfaces is determined by the attractor mechanism. Unfortunately we do not now how such

an explicit link could be realized.
It is clear that we cannot draw any conclusive statement from the limited spectra we have analyzed

here. To check our conjecture directly would require a better knowledge of the BPS spectra to

higher values of the curves’ degree, and possibly for a larger sample of Calabi-Yaus.

8 N =4 dyons and quantum black holes

As next example we now consider dyons in an N = 4 compactification on K3 x T?. The reason
to consider this example is that contrary to the cases discussed in the previous section, the BPS
invariants are directly constrained by modularity and appear as coefficients of certain number
theoretical functions. Indeed in this case the high degree of supersymmetry and the action of the
modular group SL(2;Z) x SO(22,6;Z) of S- and T-dualities allows for explicit counting functions
for BPS states [47]. The number of 1/4 BPS states can be written as coefficients of the Fourier
expansion of 1/®;y, where ®1¢ is the Igusa cusp form of weight 10. These coefficients represent
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indices of BPS bound states computed at weak string coupling; as the string coupling grows the
geometry backreacts and a black hole can form. Certain Fourier coefficients of this expansion then
represent degeneracies of black holes microstates which can then be compared with the macroscopic
thermodynamical quantities [48], [45] [49] [50]. We will be interested in the interplay between such
counting functions and modularity; the relevant counting functions are meromorphic Jacobi forms
and the associated mock Jacobi forms are interpreted as partition functions of single-centered black
holes [51]. We want to discuss how (mock) modularity of the microscopic degeneracies impacts the
topological features of the distribution of BPS states. For a macroscopic supergravity perspective
on how modularity affects the counting functions, see [52] [53].

The charges of the BPS states take values in the lattice of electric-magnetic charges ré* g F?ﬁm,

where each factor is isomorphic to the lattice Ho(K3;7Z) @ 3T1!, and I'™! is an hyperbolic lattice.
The microscopic degeneracies can be labelled by three T-duality invariants (n,l,m). They can be
extracted from the expansion of the Siegel modular form of weight 10, ®1¢(7, z,v), which is itself
2miv

a function of the chemical potentials for the T-duality invariants [47]. By writing w = e we

can expand
1

o = Z U (T, 2) W™, (8.1)

m>1
where the functions ¢, (7, z) are meromorphic Jacobi forms of index m [51]. Similarly we will also
introduce the notation ¢ = e?™7 and ¢ = e2"!?, A meromorphic Jacobi form (7, z) of weight k
and index m is holomorphic in 7 and meromorphic in z and transforms as

aT+b z k 271 imez2 . a b
— | = d cT+d th L(2,Z 2
TZ}<CT+al707'—|—al> et d)” e ervdylr,2), A (c d> €SL2,2), (8.2)

under the modular group, and enjoys the elliptic transformation
V(T z+ AT+ p) = e ~2mim(X? 42X z) (1, 2), (8.3)

under translations of z by Z 7 4+ Z, where A, y € Z.

All the expansions we shall consider in this Section are meaningful for a particular choice of the
compactification moduli which correspond to the attractor region. Explicitly we can write the
meromorphic Jacobi forms ¢, (7, z) in terms of the elliptic genus of a symmetric product of K3

surfaces [51]
1 1

— . m+1
wm(T’z)_A(r,z) n(T)Mcf(T,z,Sym (K3)). (8.4)
We have introduced the standard notation
B 03(7, 2)
A(r, z) o) (8.5)
n(r)=q2 [[(1-q") (8.6)
n>1
_ L (0(r2) | O5(1,2) | 63(7,2)
B =4 (G + G5+ ) 57
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and the last function will be used momentarily. The first few v, functions can be written down
explicitly [51]

1

U1 = g (9471 B 4 3B 4)
1 3 2
Yo = STeel (50A™' B* + 48E, AB + 10 Eg A?) |
1
Vs = g5p (475 A~' B* 4 886 E4 A B? + 360 Eg A> B 4 199 E2A%) |
1
Ui = sy (LA B S 155 B A B + 93 B 4P B2 + 102 B} AP B 4+ 31 By B AT) - (89)

We have introduced the Eisenstein series Ej, of weight k, with k > 2,
2k
Be(r)=1— 25> ora(n)q" (8.9)

with of—1(n) = de d*~' and By the k-th Bernoulli number. We will use the explicit form of
these functions to compute the degeneracies of single centered black holes and study their distri-
butions.

Meromorphic Jacobi forms are associated to mock Jacobi forms. This in practice means that the
functions 1, can be written as a sum of a finite part and a polar part

wm - 1/}51 + wVIrDL . (810)

Both are holomorphic in 7, but while the finite part is holomorphic also in z the polar part is not
and is indeed completely determined by the poles of v,,. The finite part 1! does not transform as
a Jacobi form, but is recovered upon adding the polar part wi. Both w};; and w,}; still enjoy
the elliptic transformation .

Physically this decomposition corresponds to the fact that the Fourier coefficients of Qﬁfz capture
the degeneracies of single centered black holes, while the polar part 1! determines the jump in
the degeneracies due to decay into two centered black holes at walls of marginal stability [51].
More complicated decays are forbidden by N/ = 4 supersymmetry (in the sense that too many
supercharges realized non-linearly produce too many fermionic zero modes to contribute to the
relevant indices). The presence of the polar part is necessary by consistency with wall-crossing, but
its contribution has to be subtracted to determine the degeneracies of single centered black holes
[51]. In particular the polar part of 1y, is known for all m

D

SEZL

ms +s<2ms+1

8.11
TTOE (8.11)

The function p,(m) counts integer partitions of m with n available slots. The finite part ¥ is a
mock Jacobi form of index m, which means that it can be completed by 42 to give the Jacobi form
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Y. If we expand

oF = Z c(n,r)g" ¢, (8.12)
n,l

then the precise physical statement is that the microscopic degeneracies d(n,l,m) corresponding

to single centered black holes are related to the coefficients of 1, as d(n,l,m) = (—1)*¢(n,1) for

n > m. Furthermore on can restrict to the range 0 <[ < m due to elliptic invariance of ).

We have computed the barcodes for the coefficients of ¥ and 1w, for m = 1,2,3,4, up to a
certain value of n. We want to understand the impact on the degeneracies of subtracting the
two centered contribution. We have also computed the persistent homology for 1/ relaxing the
condition 0 < I < m to see explicitly the constraint imposed by elliptic invariance on the data set.

The results are presented in Figures [I1] and Let us now discuss them.

Single center (Betti 0) Single center (Betti 1) Single center (Betti 2)
& =

LTI

iy,

[N}

NS
o
[N}

Figure 11: Barcodes for the spectrum of single-centered BPS N = 4 dyons. The point cloud is constructed
out of vectors of the form x = (log |d(n,l, m)|,m,l,n). The degeneracies are obtained from the coefficients of
P having subtracted the polar part from ,,. To compute the persistent homology we use the Vietoris-Rips

complex VR (X) with 254 BPS states, running over 254073 simplices.

Consider Figure The point cloud is constructed out of degeneracies d(n, [, m) of microstates of
single centered black holes, obtained from subtracting the polar part from ,,. Differently from all
the cases we have seen in the previous Sections, the persistent homology of N' = 4 single centered
black hole degeneracies has non-trivial classes in degree 2. These are not much long-lived, albeit
their lifespan is comparable with those we see in the classes for the first Betti number. These
classes represent 2-cycles regularly distributed within the point cloud. One interesting feature is
that their lifespans are mostly distributed around the same scale € ~ 3. Around this scale a number

of 2-cycles appear simultaneously an with the same size, since all the lifespans have comparable

lengths. This pattern is somewhat reminiscent of the “voids” found in the distribution of flux

vacua in rigid Calabi-Yaus in [54]. In those class of type IIB string flux compactification the only
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complex structure parameter in the flux superpotential is the axion-dilaton 7,4. When one studies
the distribution of minima of the flux superpotential in a fundamental domain of SL(2;Z) in the
Tad-plane, one discovers empty regions of the form of circles of various sizes, with a big degeneracy
of vacua at the center. This pattern is due to the SL(2;Z) symmetry. It is natural to suspect
that the similar structure we see in Figure |11]is due to the (mock) modularity of the degeneracy
partition function. Partial evidence comes from a persistent homology study of the flux vacua of
[54], discussed in [20], where a similar pattern in the persistent homology is reproduced.

Full degeneracies (Betti 0)  Full degeneracies (Betti 1)  Full degeneracies (Betti 2) Single center (ell) (Betti0)  Single center (ell) (Betti1)  Single center (ell) (Betti 2)
> P " e

Figure 12: Barcodes for the spectrum of N' = 4 dyons, the point cloud has the same form as in Figure
Left. The degeneracies include the contribution of two-centered states, and are obtained from the expansion
of 1,,,. The point cloud contains 254 BPS states and the persistent homology computation runs over a total
of 255260 simplices. Right. Single centered degeneracies, but now relaxing the condition 0 < [ < m, that
is including modular ellitpic images. The point cloud contains 707 states and the homological computation
runs over 1318999 simplices.

In Figure on the left, we show the results of the same computation, now done including also
two-centered black holes. The generating function is now the full 1, and not £ . The barcode
distributions are essentially identical to those in Figure 11| (again we stress that the actual numbers
in the point cloud are in general different). In other words the presence of two-centered solutions
has no effect whatsoever at the level of persistent homology. One should note however that the
expansions we are using are valid in a region of the moduli space corresponding to the attractor
region. It is therefore natural that the contribution of single centered black holes is dominating.
The situation in other regions of the moduli space might be rather different.

Finally Figure [12] on the right, shows again the persistent homology of single centered black holes,
but relaxing the condition 0 < I < m. We are therefore computing the coefficients of 1% this time
including the images under elliptic transformations. Perhaps unsurprisingly the barcode distribu-
tion is again basically the same, where however every feature is more pronouncedlﬂ Here we see at

4In the comparison one should take into account that this point cloud contains many more BPS invariants that in
the previous cases, which alters the precise position at which features appear and disappear. Also since the Figure
has to accommodate all the degree zero homology classes provided by the initial points, many features are pushed
up. For example the bump at around € ~ 2 of Figure [11]in degree zero, is now visible in Figure [12]in the first upper
third of the frame.
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the level of topology the structure of a (mock) modular form: the barcodes give a visual represen-
tation of the mechanism which connects various coefficients via elliptic transformations.

9 Mathieu moonshine

As a final example we will apply our techniques to study the coefficients of certain number theo-
retical functions which play an important role in string theory compactifications on K3 geometries.
Mathieu moonshine is based on the observation of Eguchi, Ooguri and Tachikawa [55] that the
coefficients of the Fourier expansion of the elliptic genus of K3 can be written as sum of dimensions
of the irreducible representation of the Mathieu group Ms,. This observation is a generalization of
the monstrous moonshine, where the fact that sums of the dimensions of the irreducible represen-
tations of the monster group appear as coefficients in the J-function, has an explicit realization via
certain modules in bosonic conformal field theory. These facts have been reviewed in [56] 57, 58],
to which we refer the reader for further references, and whose presentation we will follow. We shall
also assume that the relevant conjecture formulated in the moonshine literature are true.

In the case at hand the monster group, the largest sporadic group, is replaced by the Mathieu
group My, which is a subgroup of the group of permutations with 24 elements which preserves a
certain fixed set, known as the extended binary Golay code. The conformal field theory is a N' = 4
superconformal sigma model with target space K3. The spectrum of supersymmetric string states
is encoded in the elliptic genus

E(7,2) = trpg ((—1)70H 70 y o gPo~ i gho=7) (9.1)

2wiT 2miz

where ¢ = e and y = e , and Lo, Lo, Jo and Jg are the zero modes of the corresponding
operators in the superconformal algebra. The trace is taken over the Ramond-Ramond sector and
only the right moving ground states contribute. As a result the elliptic genus is independent of
7. Such states form a subspace of Hrr which decomposes according to the representations of the

N = 4 supersymmetry algebra. As a consequence the elliptic genus can be decomposed as

o
E(1,2) = 2Och%70(7', z) — 2Chi7% + Zl Anch%+n7%(7, z), (9.2)
n=
where
Cth(T’ Z) = tr?—lh,j <(_1)JO yJO qLO_i) (9.3)

are the characters over the irreducible representation spaces Hj, ; labeled by the conformal dimen-
sion h and the su(2) spin j. In particular the A,, are dimension of representations R,, of My, (the
same is also true for the first two coefficients interpreted as virtual representations).

Of course this construction is closely related to the situation of Section |8l In that case the partition
function of ' = 4 dyons in a string compactification on K3 x T? is proportional to the generating
function of the elliptic genera of the symmetric products of K3s, via . In this Section we will
focus on elliptic genera from a different perspective.

The elliptic genus (9.1)) has an interesting equivariant (or twisted) generalization. Given an element
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g € My, we have B o
Ey(T,2) = try g (g (—1)‘]0""]0 yJO qLO_i qLO_i) . (9.4)

In this case a version of (9.2]) holds, where the dimension of the representations are replaced by
trg, g (e similarly for the virtual representations)lﬂ In particular we can rewrite (9.4)) as

2 T, 2
Ey(T,2) = 0717;(3(;))

where x4 = trg g is the character of the defining representation R,, of My and

(Xg 14(7: 2) + Hy (7)) (9-5)

iy1/2 n(n+1)/2

n n(
plrz) = g 2 () (9.6)
’ neL

is an Appell-Lerch sum. The Mathieu McKay-Thompson series Hy(7) are weight % mock modular
forms, with shadow y,7(7)3, and can be expanded as

Hy(r) = q—% <—2 + Z q”trKng> , (9.7)
n=1

where K = @,”; K, is an infinite dimensional My4 module [59, 60, 61}, [62]. When ¢g = 1, (9.7) is
the generating function of the degeneracies of massive irreducible representations of the worldsheet
N = 4 conformal algebra, as they appear in (9.1)) and (9.2)).

One can see that &,(7, z) only depends on the conjugacy class [g] of g € Ma4. The conjugacy classes
lead to 21 distinct elliptic genera; they are labelled by ¢ = 1A, 2A, 2B, 3A, 3B, 4A, 4B, 4C, 5A,
6A, 6B, TAB, 8A, 10A, 11A, 12A, 12B, 14AB, 15AB, 21AB, 23AB. The notation is standard and
used in [57]. For each conjugacy class [g], Table 2 of [57] gives x4 and the non universal ingredients
needed to construct the function Hy(7).

The equivariant elliptic genus has the Fourier expansion

E(mz)= Y. conl) "y . (9.8)

n>0,l€Z

Due to modularity one has cg(n,[) = ¢q(4n—1). These coefficients satisfy c¢y(k) = strg, g, where Ky
is the degree k component of a certain infinite dimensional Z-graded Moy module, obtained from K,
and whose precise form is known but not relevant for the present discussion. The coefficients c4(n)
thus have a precise relation to the irreducible representations of Moy. From the determination of the
exact coefficients, their distribution and asymptotic formulae, one gathers essential informations
about the representation theory of Moy and its realization as a vertex operator algebra.

Now we want to address the problem from a different angle and use our formalism to under-
stand topological features of the distributions of the coefficients of the equivariant elliptic genera
Ey(T, 2).

SWe have been a bit imprecise with the definitions since K3 sigma models have a moduli space. Implicitly we are
always choosing a point in the CFT moduli space where the subgroup of Ma4 generated by g is a symmetry of the
Hilbert space.
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We construct a point cloud X9 whose elements have the form x = (log|cy(n,l)|,n,l) for each
conjugacy class associated to an element g € Myy. Using the results of [57] we construct explicitly
&y(T, z) and compute the first non-vanishing coefficients up to ¢?°. Again the coefficients are growing
very fast, and the logarithm of the degeneracies makes it easier to capture the essential features
using persistent topology. In all cases the point cloud consists of 259 points. For each [g] listed as
above, we construct the N-persistence modules H; (VR.(X9); Zs) and compute their barcodes.

We collect all the results in Appendix [A] All the conjugacy classes present similar topological
features. It is quite likely that the explanation for this fact is modularity, which as we have seen in
the previous Section produces strong constraints on the allowed persistent homology classes. We
stress that we are not suggesting any relation whatsoever between the coefficients of different elliptic
genera; apparently modularity has a subtle way of showing up in the topological characterization of
point clouds. It would be very interesting to pursue this issue further, if one general grounds given
the information of modularity one can predict persistent features in the distribution of barcodes.
In this paper we will have nothing more to say on the issue.

Taking at face value that modularity constrains the persistent homology groups, there are still
interesting more subtle feature in the barcode spectra. Indeed, even at the qualitative level, the
barcode distributions associated with the elliptic genera & (7, z), fall into two families.

The first family contains the conjugacy classes: 2B, 3B, 4A, 4C, 6B, 10A, 12A, 12B, 21AB; the
second family the remaining classes. What singles out the first class is that, despite having a
similar form, the barcodes for the zeroth and first homology are consistently more short-lived than
those in the second family. In the Betti number zero distribution, the persistent classes all die for
values of the proximity parameter ¢ ~ 2. In degree one the features are less clear-cut, the barcode
distribution tends to be centered around smaller values of €, and most persistent classes disappear
before € ~ 3. Another striking feature is the number of simplices involved in the computation of
persistent homology, which is not apparent just by looking at the Figures in Appendix [A] All the
classes in the second family, namely 1A, 2A, 3A, 4B, 5A, 6A, 7TAB, 8A, 11A, 14AB, 15AB and 23AB
generate a number of simplices roughly comparable, around 65000-68000. On the other hand the
number of simplices generated in the Vietoris-Rips complex for the first family fluctuates wildly,
roughly in the range 38000-135000. This indications are very qualitative, but from the behavior of
the persistent homology it is natural to wonder if there is any particular property that distinguish
these families.

Indeed there is. The above classes in the first family are precisely the only conjugacy classes in My
which do not have a representative in the subgroup Mbss of Msy. Some classes of My are singled
out by Mukai’s theorem, which states that given a finite subgroup of the group of symplectic
automorphisms of a K3 surface, it can be embedded into Ms3. The other classes in Ms3 do not
have a geometrical interpretation.

At the technical level there is a simple explanation of the appearance of these two families. The
above classes in the first family all appear to have x, = 0, which therefore acts as a relative
shift of the coefficients with respect to the elliptic genera of the second family. What is however
interesting here is that, with a bit of hindsight, such behavior could have been predicted just by
looking at the equivariant elliptic genera, for example computed via conformal field theory, without
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any knowledge of the representation theory of Mathieu’s groups. At a very qualitative level such
features are captured by persistent homology.

10 Discussion

In this paper we have taken the perspective of persistent homology to analyze certain enumerative
BPS invariants which arise in some physical and number theoretical problems. The focus of this
paper has been the comparison between the topological features which characterize different dis-
tributions. We have done so in different ways, by studying the same theory in different limits or
chambers, or by studying different theories in a similar situation. The underlying theme has been
that the distributions of supersymmetric states are rich in topological information, which often can
be clearly traced back to physical properties of the system under consideration. This information
is qualitative, and concerns the overall structure of the space of supersymmetric states. In a sense
it is a measure of its topological complexity.

On a more practical level, this note has taken to the task of exemplifying the uses of new methods
based on persistent homology to study physical problems in string and field theory; as well as
calling the attention of the computational topology community on the wealth of enumerative and
number theoretical datasets which arise in string/field theories. From a physical perspective, to
have a meaningful enumerative problem it is necessary to resort to protected quantities, in this
case supersymmetric states.

In the first part of the paper we have applied the tools of topological data analysis to the wall-
crossing phenomenon in N’ = 2 theories. The indices of BPS protected quantities jump at walls
of marginal stability and the effect of the jump can be in principle computed using a wall-crossing
formula. In Sections [4] and [6] we have studied how the topological properties of the BPS spectra
change upon crossing certain walls. We have done so for a quantum field theory, namely SU(3)
N = 2 pure Yang-Mills, which is the simple example of a theory containing wild chambers, and for
string theory on the conifold. Both theories exhibit physically interesting phenomena and we have
shown their impact on the persistent homology of the BPS spectra. In SU(3) Yang-Mills we have
analyzed the difference at the topological level between the spectra in the weak coupling and wild
chamber, where there is an exponential growth of states and higher spin particles appear. At the
level of the barcodes the transition is striking, going from an ordered simple pattern to an irregular
(“wild”) distribution. This provides a qualitative measure of the complexity of the spectrum in
wild chambers. In the case of the conifold the transitions are less apparent. In this case the physical
features, for example the fact that physical states are realized as very different objects in the large
radius geometrical chamber or in the noncommutative crepant resolution chamber, or the presence
of conjugation walls where the core of the bound states changes, appear as rather small fluctuations
in the BPS barcodes. On the other hand the conifold is known to be a very simple geometry, where
all the BPS generating functions are known in closed form. It would be interesting to carry on this
analysis for more complicated non-compact threefolds.

In Sections [7] [§] and [9] we have considered BPS spectra in compact Calabi-Yaus. Interestingly the
series of Donaldson-Thomas invariants corresponding to black hole microstates in the large radius
limit of one parameter compact threefolds, all exhibit very similar persistent features. We interpret
this fact as another sense in which the microstate counting of black holes is universal. Note that
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in general when talking about black hole universality, one refers to the large charge limit, where
the supergravity approximation is reliable. In this limit the entropy obeys the area law and the
subleading corrections are expressed in terms of certain higher derivative terms [43]. Here we are
looking at the first few hundreds of microstates; these data are enough to extrapolate the large
order behavior, which agrees with the supergravity expectations [42]. Therefore some universal
behavior is somewhat expected; it is interesting to see it arise at the level of the barcodes.

Sections[8land [9lare concerned with another aspect of the enumerative BPS problems, more precisely
in a few cases where the degeneracies of microstates arise as coefficients of known functions. In
this cases the relevant functions have modular properties, and we have focused on the interplay
between modularity and topology. Indeed we have seen experimentally in a series of examples that
modularity strongly constrains the shape of the barcode distributions. For example we have seen in
Section 9] that the barcodes associated with different elliptic genera present clear similarities. Note
that these functions are very different, in the sense that there is no relation between the coefficients
of the Fourier expansions of different elliptic genera. On the other hand their topological features
are quite similar and we interpret this fact as a consequence of modularity, although we don’t have
any a priori argument based on topology. Quite remarkably, the subtle differences in the barcode
distributions can be explained in term of the different families of conjugacy classes of the Mathieu

group M24 .

We consider this note as a first step to understand the role that topological data analysis can
play in string/field theory problems. Clearly much is left to be understood and more extensive
computations of enumerative invariants are needed to put the results of this paper on firmer grounds.
Also there are several other problems which seem to be amenable to a topological analysis as we
have done in this paper. We list here a few which we are currently investigating:

e It would be interesting to generalize this formalism to the study of string vacua. In particular
a lot of compactifications of string theory are known, with N' =2 or N’ = 1 supersymmetry.
The vacuum selection problem consists in the choice of one compactification, or a class thereof,
over the others due to some particular features. It is natural to wonder if persistent homology
has anything to say about this, if for examples the distributions of vacua with certain features
have distinctive topological properties with respect to others. A first step in this direction
appears in [20].

e A similar problem concerns the distribution of attractor points in the Calabi-Yau moduli
space. These points corresponds to black holes via the attractor mechanism, and as argued
in [63] they are deeply related to certain arithmetic aspects of string compactifications.

e One of the original motivations of this paper was if there is any particular distinctive feature
of BPS states in quantum field theory in the presence of defects. When a theory is modified
by the presence of a defect, new BPS states appear, those which can bound to the defect. For
example in six dimensional topological quantum field theories such a modification is related
to the conjectural enumerative problem of Donaldson-Thomas invariants for moduli spaces
of parabolic sheaves [64]. In four dimensions, it was shown in [65] that for theories in which
a line defect can be engineered via laminations on a curve [66], line defects come in distinct
families, which are generated by the action of a cluster algebra. Each family is generated
by the repeated action of a certain sequence of cluster transformations and can contain an
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infinite number or a finite number of elements (including just one element). It is natural to
wonder if the analysis we have performed in Section [4] can be of any use in the classification
problem for defects.

e Persistent homology is very closed in spirit to Morse theory. It would be interesting to give
a more physical description of persistent homology classes via the correspondence between
Morse theory and supersymmetric quantum mechanics [67]. Viceversa, generalization of this
correspondence, for example along the lines of Floer theory, are likely to provide interesting
variants of persistent homology.

e The equivariant elliptic genera that we have discussed in Section [J] are just a small set of
functions which arise in the field of moonshine. It would be very interesting to generalize
our formalism to other similar problems. For example, it is an open problem to understand
the distribution of coefficients of the McKay-Thompson series for the monster moonshine
modules. Partial results on the asymptotics are in [56] and it would be interesting to see
what are the persistent features of these distributions.

We hope to report on these matters in the near future.
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A Moonshine barcodes

In this appendix we collect all of the barcodes computed in Section [0} Every point cloud X9 is
constructed out of vectors of the form x = (log |c4(n,)|,n,1) computed via the equivariant elliptic
genus &(7,2). The labels of the conjugacy classes [g] are indicated on top of each Figure. Each
point cloud consists of 259 states. For each conjugacy class [g] we use the Vietoris-Rips complex
to compute the persistence modules H; (VR.(X9);Z2). This Appendix contains all the associated

barcodes distributions, each Figure labelled by the conjugacy class.
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