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Abstract. Recently V. Krushkal and D. Renardy generalized the Tutte polynomial from
graphs to cell complexes. We show that evaluating this polynomial at the origin gives the

number of cellular spanning trees in the sense of A. Duval, C. Klivans, and J. Martin. More-
over, after a slight modification, the Tutte-Krushkal-Renardy polynomial evaluated at the origin
gives a weighted count of cellular spanning trees, and therefore its free term can be calculated

by the cellular matrix-tree theorem of Duval et al. In the case of cell decomposition of a sphere,
this modified polynomial satisfies the same duality identity as before. We find that evaluating
the Tutte-Krushkal-Renardy along a certain line is the Bott polynomial. Finally we prove skein
relations for the Tutte-Krushkal-Renardy polynomial.

Introduction

We relate three invariants of cell complexes. The earliest one is the Bott polynomial introduced
by Raoul Bott in 1952 [Bo1] and revived in [Bo2] . The second invariant we deal with is the number
of cellular spanning trees from [DKM1, DKM2]. In these papers the classical matrix-tree theorem
for graphs was generalized to higher arbitrary cell complexes. G. Kalai first noted [Ka] that in
higher dimensions it makes sense to count spanning trees with weights equal to the square of the
order of their codimension one homology groups. Exactly this weighted number of spanning trees
is calculated as the determinant of an appropriate submatrix of the Laplacian in [DKM1, DKM2].
Our third invariant is a recent generalization of the Tutte polynomial from [KR], which we call
Tutte-Krushkal-Renardy polynomial.

We introduce the Tutte-Krushkal-Renardy polynomial in Section 1 and show that its free term
is the number of cellular spanning trees in Section 2. In Section 3, we modify the Tutte-Krushkal-
Renardy polynomial so that its free term becomes the weighted number of cellular spanning trees.
We prove the same duality identity for the modified polynomial as Krushkal and Renardy did
for spheres in section 3.1. In Section 4, we show that the Bott polynomials can be obtained
from the Tutte-Krushkal-Renardy polynomial by a substitution. We conclude the paper with the
contraction-deletion relations for the Tutte-Krushkal-Renardy polynomial in Section 5.
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1. The Tutte-Krushkal-Renardy polynomial

Definition 1.1 ([KR]). Let K be a finite CW complex of dimension k. Define the jth (j 6 k)
Tutte-Krushkal-Renardy polynomial of K to be

T j
K(X,Y ) =

∑

K(j−1)⊆S⊆K(j)

Xβj−1(S)−βj−1(K)Y βj(S) ,

where K(j) denotes the j-skeleton of K. Note that the sum is over all j-dimensional subcomplexes
of K containing K(j−1). Such a complex is called a spanning subcomplex. Since every spanning

complex contains K(j−1), it is useful to identify them with sets of j-cells. Thus there are 2fj

summands, where fj will denote the number of j-cells. We denote βj(S) the jth Betti number of
S, the rank of the homology group Hj(S).

The first Tutte-Krushkal-Renardy polynomial essentially coincides with the Tutte polynomial
of 1-skeleton K(1) considered as a graph: T 1

K(X,Y ) = TK(1)
(X + 1, Y + 1).

Definition 1.2. Two cell structures K and K∗ on an k-manifold M are dual to each other if
there is a one to one correspondence between their open cells of complimentary dimensions such
that the corresponding j-cell σ of K and (k − j)-cell σ∗ of K∗ intersect transversaly at a single
point.

The cell structure K∗ dual to a triangulation K of M can be constructed by setting σ∗ to be
the union of all simplices of the barycentric subdivision of K intersecting σ only on its barycen-
ter. Another way to construct dual cell structure is to use a handle decomposition of M . This
construction is treated in detail in [RS].

Theorem 1.3 (Duality Theorem for Spheres [KR]). Let K and K∗ be dual cell structures on Sk,
then

T j
K(X,Y ) = T k−j

K∗ (Y,X) .

When K is a (planar) graph embedded in a sphere S2, the theorem becomes the celebrated
duality theorem for the Tutte polynomial of a planar graph and its planar dual.

Remark 1.4. If K is a compact orientable connected manifold without boundary, then the top
Tutte-Krushkal-Renardy polynomial is not interesting. It can be computed explicitly

(1) T k
K(X,Y ) = Y +

(1 +X)fk − 1

X
,

where Ck is the number of k-cells of K. Here Y appears as the term with S = K, while the
subcomplexes S 6= K can be collapsed to (k − 1)-dimensional complexes and therefore Y does
not occur for them. Their contribution in X can be calculated by induction of the the number
of k-cells. If K is a cycle graph, then K is a cell decomposition of S1. Thus the above gives the
Tutte polynomial for cycle graphs.

2. Cellular Spanning Trees

Definition 2.1. [DKM1, DKM2] A j-dimensional Cellular Spanning Tree (hence j-CST) S of
a k-dimensional CW complex K is any j-dimensional subcomplex with S(j−1) = K(j−1) that
satisfies the following conditions:

(1) H̃j(S) = 0, (2) β̃j−1(S) = 0, (3) fj(S) = fj(K)− β̃j(K(j)) + β̃j−1(K(j))
1 ,

where β̃j and β̃j−1 are reduced Betti numbers.

The condition (2) implies that the homology group H̃j−1(S) is finite; we will use the notation

|H̃j−1(S)| for its order.

1There is a typo in [DKM1, DKM2] where in the condition (3) the whole complex K is used instead of K(j).
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For j = 0, these conditions mean that S consists of a single point, a vertex (0-cell) of K. For
graphs, j = 1, there is a classic graph theoretical theorem stating that any two of these conditions
imply the third one.

Theorem 2.2 (The Two Out of Three Theorem [DKM1]). Let S be a j-dimensional subcomplex
with S(j−1) = K(j−1), then any two of the conditions (1), (2), and (3) together imply the third
one.

For graphs, a spanning tree exists if and only if the graph is connected. We likewise need a
condition to consider the existence of an CST.

Definition 2.3 ([DKM1]). A CW complex K of dimension k is called acyclic in a positive

codimension (APC) if β̃j = 0 for all j < k.

For example a complex homotopy equivalent to a wedge of several homological spheres of the
same dimension is APC. In particular, a connected graph is homotopy equivalent to a wedge of
several circles and so is APC.

Theorem 2.4 ([DKM1]). K is APC if and only if K has a j-CST for all j 6 k.

Henceforth let τj(K) denote the set of j-CST’s of K. For K being APC we are guaranteed
that |τj(K)| 6= 0, and we can introduce an invariant inspired by G. Kalai [Ka]: the number of

j-CST’s, S, counted with the weights |H̃j−1(S)|
2.

Definition 2.5 ([DKM2]).

τ̃j(K) :=
∑

S∈τj(K)

|H̃j−1(S)|
2.

For a connected graph K (k = 1), the invariant τ̃1(K) is equal to the number of its spanning

trees because the group H̃0(S) is always trivial for connected complexes. The classical matrix
tree theorem states that for a graph the number of its spanning trees is equal to a cofactor of
the Laplacian associated with a graph. This theorem was generalized to higher dimension in
[DKM1, DKM2]. Thus τ̃j(K) can be calculated as a determinant of an appropriate matrix.

There is a different generalization of a notion of spanning tree to higher dimension suitable for
so called “Pfaffian Matrix Tree Theorem” [MV1, MV2]. Their spanning trees are CST’s in our
sense, but the opposite, in general, is not true.

2.1. Free term of the Tutte-Krushkal-Renardy polynomial. For a graph G, a classical
evaluation of the Tutte polynomial TG(1, 1) gives the number of spanning trees in the graph.
Krushkal and Renardy define their polynomial as a generalization of the Tutte polynomial. Anal-
ogously for a higher dimensional cell complexes we have

Theorem 2.6. For APC CW complex K and j > 1, T j
K(0, 0) = |τj(K)|.

Proof. Note that the exponent of X in the Tutte-Krushkal-Renardy polynomial is equal to

βj−1(S)− βj−1(K) = β̃j−1(S)− β̃j−1(K). Since K is APC, β̃j−1(K) = 0. Then

T j
K(X,Y ) =

∑

K(j−1)⊆S⊆K(j)

X β̃j−1(S)Y βj(S).

Now the evaluation T j
K(0, 0) is equal to the number of subcomplexes K(j−1) ⊆ S ⊆ K(j) such

that β̃j−1(S) = 0 and βj(S) = 0. Note the S has dimension less than or equal to j, therefore
its highest homology group Hj(S) is a free abelian group of rank βj(S) = 0. Thus it is trivial,

and H̃j(S) = 0. Thus conditions (1) and (2) of Definition 2.1 are satisfied. By the Two Out of
Three Theorem 2.2, S must be a cellular spanning tree. In the other direction, any j-CST S has

β̃j−1(S) = 0 and H̃j(S) = 0. Since j > 1, the reduced homology group H̃j(S) is isomorphic to
the unreduced group Hj(S), and therefore βj(S) = 0. Thus S contributes 1 to the evaluation

T j
K(0, 0). �
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3. The Modified Tutte-Krushkal-Rendardy Polynomial

For an abelean group G, let tor(G) denote the torsion subgroup of G.

Definition 3.1. Let K be a CW complex of dimension k > j. Define the jth modified Tutte-
Krushkal-Renardy polynomial of K to be

T̃ j
K(X,Y ) =

∑

K(j−1)⊆S⊆K(j)

|tor(Hj−1(S))|
2Xβj−1(S)−βj−1(K)Y βj(S) .

Theorem 3.2. If K is APC and j > 1, then

T̃ j
K(0, 0) = τ̃j(K)

Proof. As in the proof of Theorem 2.6 only cellular spanning trees contribute to T̃ j
K(0, 0). Only

now the contribution of a CST S is equal to |tor(Hj−1(S))|
2 = |Hj−1(S)|

2 since this group is
finite. �

3.1. Duality Theorem for the modified Tutte-Krushkal-Renardy polynomial.

Theorem 3.3 (The Duality Theorem for T̃ j
K(X,Y )). If K and K∗ are dual cell decompositions

of Sk and if 1 6 j 6 k − 1, then

T̃ j
K(X,Y ) = T̃ k−j

K∗ (Y,X).

In the proof of this theorem we use a technical lemma from Krushkal and Renardy.
Lemma ([KR]). If K is a cell decomposition of Sk and S ⊆ K is a subcomplex of K, then S

is homotopy equivalent to Sk \ S∗, where S∗ is a subcomplex of the dual cell decomposition K∗

forming by cells which do not intersect S.

Proof. We invoke the universal coefficient theorem, the Alexander duality, and the above Lemma
to get the following isomorphisms.

H̃j(S)/tor(H̃j(S))⊕ tor(H̃j−1(S)) ∼= H̃j(S) ∼= H̃k−j−1(S
k \ S) ∼= H̃k−j−1(S

∗).

Which gives us the following equalities

βj(S)= β̃j(S)= β̃k−j−1(S
∗), β̃j−1(S)= β̃k−j(S

∗)=βk−j(S
∗), tor(H̃j−1(S))∼=tor(H̃k−j−1(S

∗)).

Then

T̃ j
K(X,Y ) =

∑

K(j−1)⊆S⊆K(j)

|tor(Hj−1(S))|
2X β̃j−1(S)−β̃j−1(K)Y βj(S)

=
∑

K∗

(k−j−1)
⊆S∗⊆K∗

(k−j)

|tor(Hk−j−1(S
∗))|2Xβk−j(S

∗)Y β̃k−j−1(S
∗)−β̃k−j−1(K)

= T̃ k−j
K∗ (Y,X)

We used the equations β̃j−1(K) = 0 and β̃k−j−1(K) = 0 for K = Sk and 1 6 j 6 k − 1. �

4. The Bott polynomial

In 1952 Raoul Bott introduced two combinatorially invariant polynomials for CW complexes
[Bo1, Bo2]. This means that they are invariant under subdivisions. He thought that they are
independent. But he made a mistake in computing the second polynomial for a sphere. In fact, it
was shown by Z. Wang [Wa, Proof of Theorem 4.2] that they are proportional to each other after
a suitable change of variables as well as an entire class of invariant polynomials in [Wa]. Thus we
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essentially have only one Bott polynomial which for a finite k dimensional cell complex K can be
defined as

RK(λ) :=
∑

K(j−1)⊆S⊆K(j)

(−1)fk(K)−fk(S)λβk(S) ,

If K is an orientable manifold without boundary, then RK(λ) = λ − 1, see [Bo1]. Z. Wang
[Wa] observed that for graphs, k = 1, the coefficients of the Bott polynomial essentially coincide
with the Whitney numbers [Wh1] and, in the case of planar graphs, the Bott polynomial is equal
to the chromatic polynomial of the dual graph. Thus the Bott polynomial of a graph is equal
to its flow polynomial (see its definition in [Bo]). Therefore one may regard the Bott polynomial
as a higher dimensional generalization of the flow polynomial of graphs. A different approach to
a higher dimensional flow polynomial was suggested in [BK]. It would be interesting to find a
relation of this approach to the Bott polynomial.

Theorem 4.1. Let K be a k-dimensional CW complex. Then

RK(λ) = (−1)βk(K)T k
K(−1,−λ) .

Proof. The Euler characteristics of the (k−1)-skeleton K(k−1) (which is contained in both K and
S) in terms of the numbers of cells gives the equation.

χ(K(k−1)) = χ(K)− (−1)kfk(K) = χ(S)− (−1)kfk(S) .

The same computation in terms of the Betti numbers gives the following.

χ(K(k−1)) = χ(K)− (−1)k−1βk−1(K)− (−1)kβk(K) = χ(S)− (−1)k−1βk−1(S)− (−1)kβk(S) .

Subtracting these two equations we get

(−1)k−1βk−1(K) + (−1)kβk(K)− (−1)kfk(K) = (−1)k−1βk−1(S) + (−1)kβk(S)− (−1)kfk(S) .

Therefore

(2) βk−1(S)− βk−1(K) = fk(K)− fk(S)− βk(K) + βk(S) .

Now the monomial of the right hand side corresponding to a subcomplex S is

(−1)βk(K)(−1)βk−1(S)−βk−1(K)(−λ)βk(S) = (−1)fk(K)−fk(S)λβk(S) ,

which coincides with the corresponding monomial of the left hand side. �

5. Skein relations for the Tutte-Krushkal-Renardy polynomial

For graphs, the Tutte polynomial can be define via contraction-deletion relations, which we
call here skein relations following the knot theoretic terminology. Z. Wang [Wa] found skein
(contraction/deletion) relations for the Bott polynomial. Here we generalize them to the Tutte-
Krushkal-Renardy polynomial.

Let K be a finite CW complex of dimension k and σ be an open k-cell of K. We will denote σ’s
closure in K and its boundary in K by σ and ∂σ respectively. The following definitions generalize
the standard definitions for graphs.

Definition 5.1. • σ is a loop in K if Hk(σ) ∼= Z ;
• σ is a bridge in K if βk−1(K \ σ) = βk−1(K) + 1 ;
• σ is contractible if Hk−1(∂σ) ∼= Z .

Lemma 5.2. For a top dimensional k-cell σ ⊂ K we have

Hk(σ) =

{
Z if σ is a loop,
0 otherwise .

βk−1(K \ σ) =

{
βk−1(K) + 1 if σ is a bridge,
βk−1(K) otherwise .
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Proof. The k-th cellular chain group for σ is isomorphic to Z and generated by σ. If ∂k(σ) = 0,
then Hk(σ) = Z. If ∂k(σ) 6= 0, then Hk(σ) = 0.

The cellular chain complexes for K and for K \ σ differ by the k-th chain groups Ck(K) and
Ck(K \ σ) which has rank one less. Thus (k − 1)-st boundary maps ∂k−1 are the same in both
complexes. Then βk−1(K \ σ) = rank(Ker(∂k−1))− rank(∂k(Ck(K \ σ))). The rank of the image
∂k(Ck(K \ σ)) differs from the rank of ∂k(Ck(K)) at most by 1. �

Corollary 5.3. (a) A loop is not a bridge.
(b) If σ is a bridge for K, then it is a bridge for any spanning (S ⊇ K(k−1)) subcomplex S ∋ σ.

Proof. Let σ be a loop. Then by the proof of the previous lemma ∂k(σ) = 0. So ∂k(Ck(K \σ)) =
∂k(Ck(K)). Thus, from the same proof, βk−1(K \ σ) = βk−1(K) and σ is not a bridge.

If σ is a bridge for K, then rank(∂k(Ck(K \σ))) = rank(∂k(Ck(K)))−1. This means that ∂k(σ)
is independent from the images of all other k-cells of K. In particular, it is independent from the
images of the k-cells of S different from σ. Consequently, rank(∂k(Ck(S\σ))) = rank(∂k(Ck(S)))−
1, which means that σ is a bridge for S. �

Example 5.4. To the contrary of the graph situation, a loop in cell complexes could be con-
tractible.
Let K be a 2-sphere with two points identified to a single point
p. It has a CW structure consisting of one 2-cell σ, one 1-
cell (edge) e, and one 0-cell p. The closure σ coincides with
the whole complex K which has a homotopy type of the wedge
S2 ∨ S1. All its homology groups are isomorphic, H2(K) =
H1(K) = H0(K) = Z. Thus σ is a loop.

σ

e
p

From the other hand, ∂σ = e ∪ p = S1. So H1(∂σ) = Z, and σ is contractible.

Theorem 5.5. The Tutte-Krushkal-Renardy polynomial satisfies the following relations:
(i) If σ is neither a bridge nor a loop and is contractible, then

T k
K(X,Y ) = T k

K/σ(X,Y ) + T k
K\σ(X,Y ) .

(ii) If σ is a loop, then

T k
K(X,Y ) = (Y + 1)T k

K\σ(X,Y ) .

(iii) If σ is a bridge and contractible, then we can specialize the case (i) to

T k
K(X,Y ) = (X + 1)T k

K/σ(X,Y ) .

We use standard basic tools from algebraic topology such as the long exact sequence of a pair
and the fact that a CW complex X and its subcomplex A form a “good pair”, so Hi(X,A) ∼=

H̃i(X/A). We refer to [Ha] for all of these facts. We additionally will use the following lemma
about contraction.

Lemma 5.6. For S ∋ σ, if σ is not a loop and contractible, then βk(S) = βk(S/σ) and βk−1(S)−
βk−1(K) = βk−1(S/σ)− βk−1(K/σ).

Proof. Since σ is not a loop, Hk(σ) = 0. Since σ is contractable, Hk−1(∂σ) ∼= Z. These two
conditions are equivalent to the condition (C) of [Wa, Theorem 4.1].

Consider the long exact sequence of a pair (σ, ∂σ)

Hk(∂σ) −→ Hk(σ) −→ H̃k(σ/∂σ) −→ Hk−1(∂σ) −→ Hk−1(σ) −→ H̃k−1(σ/∂σ) .

We have Hk(∂σ) = 0, Hk(σ) = 0, Hk−1(∂σ) ∼= Z, H̃k(σ/∂σ) ∼= Z, and H̃k−1(σ/∂σ) = 0 because
σ/∂σ is a k-sphere. So the sequence becomes

0 −→ 0 −→ Z −→ Z −→ Hk−1(σ) −→ 0 .

The exactness of this sequence implies that Hk−1(σ) is a finite group. Thus βk−1(σ) = 0.
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Now for a subcomplex S, consider the long exact sequence of a pair (S, σ)

Hk(σ) −→ Hk(S) −→ Hk(S/σ) −→ Hk−1(σ)

Tensoring it by a field of real number R we get

0 −→ Hk(S;R) −→ Hk(S/σ;R) −→ 0 .

Which means that βk(S) = βk(S/σ) for all S ∋ σ, and in particular for S = K. Then, using the
equation (2), we have

βk−1(S)− βk−1(K) = fk(K)− fk(S)− βk(K) + βk(S)

= fk(K/σ)− fk(S/σ)− βk(K/σ) + βk(S/σ) = βk−1(S/σ)− βk−1(K/σ) .

�

Proof of Theorem 5.5. To prove the theorem we split the set of all top dimensional subcomplexes
S according to the property S ∋ σ or S 6∋ σ.

In case (i), the sum over all S 6∋ σ gives T k
K\σ(X,Y ) because βk−1(K \ σ) = βk−1(K) since σ

is not a bridge. It remain to prove that the sum over all S ∋ σ is equal to T k
K/σ(X,Y ). By the

above lemma, it is true. This proves part (i) of the theorem.

In case (ii), the sum over all S 6∋ σ again gives T k
K\σ(X,Y ) because of the same reason,

βk−1(K \σ) = βn−1(K) since a loop σ is not a bridge according to Corollary 5.3 and Lemma 5.2.
For S ∋ σ we have ∂k(σ) = 0 by the proof of Lemma 5.2. So ∂k(Ck(S \ σ)) = ∂k(Ck(S)).

Therefore the chain complex for S is isomorphic to the direct sum of the chain complex for S \ σ
and the chain complex 0 −→ Z −→ 0 with Z at the grading k. Thus we get βk−1(S) = βk−1(S \σ)
and βk(S) = βk(S \ σ) + 1. Consequently the sum over S ∋ σ is equal to Y T k

K\σ(X,Y ) which

proves part (ii).

For case (iii), the lemma gives us that the sum over all S ∋ σ is equal to T k
K/σ(X,Y ). The

subcomplexes S 6∋ σ are in 1-to-1 correspondence with the subcomplexes (S ∪ σ) ∋ σ. We prove
that under this correspondence the sum over all S 6∋ σ is equal to X times the sum all (S∪σ) ∋ σ
which is T k

K/σ(X,Y ).

According to Corollary 5.3, if σ is a bridge for K it is a bridge for any subcomplex containing
σ, in particular for S ∪ σ. Then Lemma 5.2 gives βk−1(S) = βk−1(S ∪ σ) + 1 for any subcomplex
S 6∋ σ. This gives extra X in the sum over all such S comparably to the sum over S ∪ σ. To
compare the exponents of Y consider the cell chain complexes of S and S ∪ σ:

0 −→ Ck(S) ∂k
,,YYYY

Y� _

�� Ck−1(K) −→ . . .

0 −→ Ck(S ∪ σ)

∂k 22eeeee

Since σ is a bridge of S, its image ∂k(σ) is independent from the images of all other k-cells of S∪σ.
Therefore any element of the kernel Ker(∂k|Ck(S∪σ)) actually belongs to Ck(S). This means that
Hk(S ∪ σ) = Ker(∂k|Ck(S∪σ)) = Ker(∂k|Ck(S)) = Hk(S). Consequently, βk(S ∪ σ) = βk(S) which
proves case (iii) of the Theorem. �

Example 5.7. Consider the following cell structure K on a 2-sphere which we will be represented
as a plane together with a point at infinity. It has three 2-cells
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σ1, σ2, σ∞, three 1-cells a, b, c, and two vertices (0-cells) p, q.
Note that σ∞ is not contractible since its boundary ∂σ coincides
with 1-skeleton of K and has a homotopy type of a wedge of
two circles. Thus H1(∂σ) = Z

2. It is also neither a bridge nor
a loop. The next table shows the contribution of the various
subcomplexes S into the Tutte-Krushkal-Renardy polynomial
T 2
K(X,Y ).

σ∞

σ1 σ2p q

a

b

c

S ∅ {σ1} {σ2} {σ1, σ2} {σ∞} {σ1, σ∞} {σ2, σ∞} {σ1, σ2, σ∞}

X2 X X 1 X 1 1 Y

Therefore, T 2
K(X,Y ) = X2 + 3X + 3 + Y which agrees with the equation (1) since K = S2 is a

manifold. The deletion K\σ∞ consists of two discs connected by a segment b. Its Tutte-Krushkal-
Renardy polynomial is equal to T 2

K\σ∞

(X,Y ) = X2 +2X +1. The contraction K/σ∞ is a wedge

of two spheres, so T 2
K/σ∞

(X,Y ) = 1 + 2Y + Y 2. So the contractability condition is essential for

the skein relation. From the other hand, σ1 and σ2 satisfy the contritions (i) of Theorem, and
one may check that T 2

K(X,Y ) = T 2
K/σ1

(X,Y ) + T 2
K\σ1

(X,Y ).

Example 5.8. Let K = RP 2 with the standard CW structure: one 2-cell σ, one 1-cell e, and one
0-cell p. In this case σ is a bridge since its deletion gives the circle RP 1. It is also contractible
because ∂σ is the same circle. We have T 2

K(X,Y ) = X + 1, while T 2
K/σ(X,Y ) = 1 since K/σ is a

point. And so T 2
K(X,Y ) = (X + 1)T 2

K/σ(X,Y ).

Remark 5.9. Theorem 5.5 gives the skein relation for the top dimensional, k-th, Tutte-Krushkal-
Renardy polynomial. However, a lower dimensional polynomial T j

K(X,Y ) is proportional to

T j
K(j)

(X,Y ), so essentially it depends only on the j-th skeleton of K. Thus we have a skein

relation for them as well. The only thing is that one has to be careful with the deletion of a j-cell
σ for j < k: the resulting topological space K \ σ might not be a cell complex anymore.

Remark 5.10. As it was indicated in [KR], the Tutte-Krushkal-Renardy polynomial is the Tutte
polynomial of a matroid M obtained in the following way. Consider the j-th chain group of K
with real coefficients, Cj(K;R). As a vector space over R it has a distinguished basis formed
by the j-cells σi. Let us consider the (j − 1)-st chain group Cj−1(K;R) and the images of σi’s
under the boundary map ∂j(σi). The matroid M is a vectorial matroid of linear dependences of
vectors ∂j(σi) ∈ Cj−1(K;R). On matroid theory we refer to two excellent books [Ox, Wel] and a

pioneering paper [Wh2]. Krushkal and Renardy [KR] showed that T j
K(X,Y ) = TM(X,Y ).

Our definitions 5.1 of a loop and of a bridge are designed in such a way that the corresponding
element of the matroid M will be a loop or a bridge respectively. Moreover, if a cell σ is
contractible, then the matroid of the chain complex of K/σ is the matroid obtained from M by
the matroid theoretic contraction of the corresponding element. The contractability condition in
Definition 5.1 guarantees that the topological contraction of a cell would agree with the matroid
theoretical contraction.

In Example 5.7 the ground set of the matroidM consist of three vectors ∂2(σ1) = a, ∂2(σ2) = c,
and ∂2(σ∞) = −a− c in 3-space R3 = 〈a, b, c〉, and one relations between them: ∂2(σ1)+∂2(σ2)+
∂2(σ∞) = 0. The matroid theoretical contraction of an element ∂2(σ∞) ∈ M would give a
matroid on two elements which are dependent. So the rank M/∂2(σ∞) is equal to 1. Meanwhile,
the topological contraction of the cell σ∞ would give a wedge of two spheres. The corresponding
matroid would consist of two zero vectors, since the boundary of each of the two cells consist of
the single point. Its rank would be 0.

This correspondence between cell complexes and matroids provides a different way to prove
Theorem 5.5.
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