
ar
X

iv
:0

80
5.

08
26

v1
  [

he
p-

th
]  

7 
M

ay
 2

00
8

The QEDβ-function from global solutions to
Dyson-Schwinger equations

Guillaume van Baalen∗, Dirk Kreimer†, David Uminsky∗, and Karen Yeats∗

May 8, 2008

Abstract

We discuss the structure of beta functions as determined by the recursive nature of Dyson–
Schwinger equations turned into an analysis of ordinary differential equations, with particular em-
phasis given to quantum electrodynamics. In particular we determine when a separatrix for solutions
to such ODEs exists and clarify the existence of Landau polesbeyond perturbation theory. Both are
determined in terms of explicit conditions on the asymptotics for the growth of skeleton graphs.
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1 Introduction

1.1 The method

Results on the structure of amplitudes in the theory of localinteracting quantum fields are notoriously
hard to come by beyond perturbation theory. We refrain from discussing the various approaches de-
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veloped in the past and shortly summarize our approach here,which has been developed by one of us
(D.K.) in the last decade [8, 13, 14, 9, 7, 5, 18, 19, 16]. It lead already to progress at very high orders
[6, 3, 4] and all orders of perturbation theory [7] (see also theP = x, s = 2 case in the examples
below).

It is a pleasure to emphasize that our approach connects to old attempts [20] in quantum field theory to
use the soft breaking of conformal symmetry by renormalizable quantum fields for non-perturbative
results. The recent developments which allow us to understand the notion of locality mathemati-
cally combine rather nicely with such ideas. A crucial ingredient is that the mathematical structure
of the quantum equations of motion remains form-invariant under inclusion of more and more skeleton
graphs, and this fact allows the development of an approximation to these equations in terms of periods
of increasing complexity, without ever changing the structure of these equations. This is very different
from, for example, any truncation of high frequency modes inthe path-integral. Whilst the approach
used here can re-derive results of such constructive methods [19], we here go beyond what is possible
by such truncations of the path-integral.

In particular, for theories which are non-asymptotically free, a study of low orders of perturbation
theory indicates the presence of a Landau pole (the invariant charge approaching infinity at a finite
scaleq2/µ2), which is also believed to exist for such theories in the constructive approach, if one
attempts to remove the cut-off which necessarily has to be introduced in such theories, as well as in
perturbation theory. In our approach, we only choose a boundary condition for the equation of motion,
the Dyson–Schwinger equations. We approximate the full theory by the choice of a functionP (x)
which describes the growth of the skeleton expansion, and carefully make that choice to maintain the
Lie- and Hopf-algebraic structure of the forest formula andthe equations of motion at the same time.
We thus do not need to introduce a cut-off, a familiar phenomenon when scaling dimensions of Green
functions are taken into account in those equations [20]. Perturbative approximations toP (x) lead to a
non-perturbative behavior forβ functions in such theories which reconfirms the existence ofa Landau
pole. Rather mild assumptions on the non-perturbative behavior of P (x) allow for solutions though
which avoid such a pole, as discussed below, with the charge going to infinity only at infinite scale,
and hence realizing a possibility already discussed in [25]section 18.3. Finally, we emphasize that we
assume below thatP (x) is a nowhere vanishing function, and hence that we do not havea non-trivial
zero for theβ-function for a non-asymptotically free theory: so we are not assuming an eigenvalue
condition [2], but much to the contrary, analyze the structure of the theory under the assumption that
such an eigenvalue does not exist.

We will not attempt any serious discussion of the asymptotics of P (x), though that the work of [11]
emphasizes the need of such a discussion. Here, we are content with the classifications of the behavior
of theβ-function as a function of the possible asymptotics ofP (x), emphasizing the possibility of the
absence of Landau poles in well-specified conditions. Also,we re-emphasize that Dyson–Schwinger
equations do not demand the introduction of a cut-off, but rather demand the specification of a finite
number of conditions to fix the amplitudes needing renormalization as initial conditions for the renor-
malization group flow.

So our approach is based on two main ingredients: the existence of quantum equations of motion —
Dyson–Schwinger equations —, and the consequences of the renormalization group for such local field

2



theories. The latter guarantee that amplitudes develop anomalous scaling exponents under the action of
the dilatation group which re-scales parameters in the theory, the former guarantees sufficient recursive
structure in the theory such that a non-perturbative approach becomes feasible. The rich Hopf algebraic
foundations of these phenomena make our approach possible.

We consider Green functions as functions of two variables, a‘running coupling constant’x and a single
kinematical variableL = ln q2/µ2 (in the deep Euclidean regime, or suitably continued to physical
regions). This implies that vertex functions are considered only at zero momentum transfer or for
symmetric external momenta.

We define Green functions as the scalar coefficient functionswhich provide quantum corrections to
tree-level amplitudesr ∈ R, wherer denotes the chosen amplitude. We store all the information on
parameters which determine the amplitude under consideration in its lowest order contribution, the tree
level form-factorf(r). The Lagrangian is then given asL =

∑

r∈Rmr, for monomialsm in fields
for each amplitude which needs renormalization. Green functions modify this amplitudef(r) in a
multiplicative manner:f(r) → Φ(r)(1 + O(~)), and hence start with one.

The equivalent expansions (taking the negative sign for propagators and the positive for vertices)

Gr(x, L) = 1 ±
∞
∑

j=1

γr
j (x)L

j = 1 ±
∞
∑

j=1

crj(L)xj ,

wherecrj(L) is a polynomial inL bounded in degree byj and γr
j a series inx, are triangular and

recursive forγr
j : the renormalization group determines theγr

j , j > 1 in terms of all the seriesγr
1. We

denoteγr
1 as the anomalous dimensions of the amplituder, even ifr is a vertex function. Anyr for a

vertex amplitude corresponds to a field monomialm(r) =
∏

i ηi in the Lagrangian, and theηi are fields
which we assume to have kinetic energy. There are then corresponding monomials∼ η2

i quadratic in

those fieldsηi in the Lagrangian and the correspondingγi
1 ≡ γ

η2
i

1 combine withγr
1 to give theβ-function

in our sign conventions as

βr = x[γr
1 +

∑

i

γi
1/2] .

Here, the monomialr, for r a vertex amplitude, comes along with a probabilityx for the tree-level
scattering process described byr to happen, and this probability — necessarily smaller than one —,
furnishes a natural expansion parameter for the seriesγ1. We consider only theories which have a single
vertex amplitude in this paper, and hence have a unique expansion parameter.

Following now [18], [19], and [26] we can reduce the Dyson–Schwinger equations to a system of
differential equations for the anomalous dimensionsγr

1.

We outline the argument as follows. As we are interested onlyin the high-energy sector of the theory,
we reduce one-particle irreducible Green functions to depend on a single scaleL = log q2/µ2. The
coupling constant will be denotedx. Then we expand the Green functions inL as above.
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From the renormalization group equation we obtain [18, 26]

γr
k(x) = −1

k

(

±γr
1(x) +

∑

j∈R

|sj|γj
1(x)x∂x

)

γr
k−1(x) . (1)

where again the sign is positive for a vertex and negative fora propagator and where thesj are defined,
in accordance with the fields coupling at a vertex as above, by

β(x) = x
∑

j∈R

|sj|γj
1(x)

whereβ(x) is saidβ-function of the theory, andR is the set of all amplitudes needing renormalization.
In the single equation case (1) reads

γk = ±1

k
γ1(x)(1 − sx∂x)γk−1(x) .

As in [19] the Dyson-Schwinger equations can be rewritten interms of derivatives of the Mellin trans-
forms for the primitives. By Mellin transforms we simply mean the analytically regularized Feynman
integrals for the primitives. Again by combinatorics on theHopf algebra we can reduce to Mellin trans-
forms in a single variableρ, that is to a single insertion place. Finally by shifting unwanted powers of
ρ at a given loop order to lower powers ofρ at a higher loop order, as in [19], [26], we can relate the
coefficients ofL andL2 which, in view of (1) gives us the system

γr
1(x) = Pr(x) ∓ γr

1(x)
2 +

(

∑

j∈R

|sj|γj
1(x)

)

x∂xγ
r
1(x) (2)

asr runs overR, the residues of the theory.Pr is a modified version of the values of the primitives.
The modification comes from two places. First the reduction to a single insertion place is purely
combinatorial and leads essentially to the need to considerin the contribution toPr primitives which
are not merely single graphs, but sums of graph. Second by exchanging powers ofρ for powers of the
coupling constantx we also modifyPr. This reduction is not yet as well understood, but none-the-less
it is simply a rearrangement of the analytic information contained in the original primitives [26].

1.2 QED as a special case

Most of our analysis will be confined to the case with only one equation ands > 0.

γ1(x) = P (x) − γ1(x)
2 + sγ1(x)x∂xγ1(x) (3)

This case is general enough to cover gauge theories for the following reasons. First of all, we note
that in QED thanks to the Ward identity, theβ-functions is computable from the anomalous dimension

of the photonγ
1

4
F 2

1 alone, and similarly for non-abelian gauge theories in a background field gauge
[1]. Furthermore, using a Baker–Johnson–Willey gauge [12], QED is a finite theory were it not for the
(gauge-invariant) photon propagator. So it is indeed a single equation case.
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In particular, it is the cases = 1, reflecting the fact that the lowest order term in theβ-function comes
from a graph which itself has no internal photon propagation. The variables measures the power of
the Green function appearing in the invariant charge, or thepower of the nonlinear part of the recursive
appearance of the Green function in the Dyson-Schwinger equation. More specifically the power of the
recursive appearance of the Green function at loop orderk is 1 − sk. So withs = 1 andk = 1 we the
power is0 representing the fact that in QED the one loop photon graph doesn’t have an internal photon
edge and the correct counting continues to hold at higher loop orders. For the Yukawa theory example
of [7] the Green function appears recursively with power−1 atk = 1 leading tos = 2.

In the general non-abelian case the co-ideal and Hochschildcohomology structure of the Hopf algebra
underlying the expansion of a non-abelian gauge theory in the coupling [15, 23, 24] allow for similar
simplifications in particular in the background field method. An analysis of this method will be given
in future work.

Notice that theβ-function is showing up as the coefficient of(γr
1)

′(x) in (2) above, namely

β(x) = x
∑

j∈R

|sj|γj
1(x)

in the system case and

β(x) = xsγ1(x)

in the single equation case withs > 0. Consequently this differential equation is well suited toim-
proving our understanding of theβ-function. Furthermore, solving for the derivativeγr

1
′(x) shows

the appearance of theβ-function in the denominator. A zero of theβ-function is hence a degenerate
singular case, even if it corresponds to a simple scaling behavior of quantum fields reflected by an
abelian renormalization group flow (or, equivalently, a co-commutative expansion in the Hopf algebra
of perturbation theory) [17].

In particular in the single equation case, we see immediately from (3) that any zeroes ofβ(x) must
occur either whereP (x) = 0 — so we have no quantum corrections driving the equations of motion at
some particular value of the coupling — or whereγ′1(x) is infinite. The second of these possibilities is
not physically reasonable for a finite value ofx and is indeed only realized by solutions forγr

1 which
are multi-valued.

For QED taken out to four loops and correcting the primitivesfor our setup and using values from [10]
we have

P (x) =
x

3
+
x2

4
+ (−0.0312 + 0.06037)x3 + (−0.6755 + 0.05074)x4 .

P (x) is decreasing forx > 0.653 . . ., which will not be permissible below, and it has a zero atx =
0.992 . . .. We expect the zero to be spurious as it would immediately lead to a zero of theβ-function,
and believe both problems are due only to taking the 4 loop approximation beyond where it is valid.
On the other hand the estimate

ck ∼k >1 (−1)kk!k3 ,
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whereP (x) =
∑

k ckx
k, of [11] suggests via resummation thatP (x) is bounded for largex, which

tantalizingly leads to the possibility of the absence of a Landau pole in an analysis of theβ-function
beyond perturbation theory. The behaviorP (x) in the QED case, clearly deserves more attention from
this viewpoint.

The system case is not quite so simple. Assumeβ(x) = 0. If we rule out infinite(γr
1)

′(x), then we can
only conclude that for eachr ∈ R

γr
1(x) + γr

1(x)
2 − Pr(x) = 0 .

1.3 Exposition of the main results

In the remainder of this article, we will restrict ourselvesto the single equation case (3) withs > 0,
which we can rewrite as

dγ1

dx
= f(γ1(x), x) , where f(γ1, x) =

γ1 + γ2
1 − P (x)

sxγ1
. (4)

The main assumptions we make on the primitive skeleton function are:

H1: P is a twice differentiable function onR+, with P (0) = 0 andP (x) > 0 if x > 0.

H2: P is everywhere increasing.

To motivate the detailed study of (4) we will conduct in the remainder of this paper, we consider briefly
the simple examplesP (x) = x ands = 1 or s = 2. For a qualitative overview, see Figure 1.

If s = 1, we can solve (4) by specifyingγ1(x) atx = 1, finding

γ1(x) = x+ x W
(

(γ1(1) − 1) exp
(

γ1(1) − 1
x

)

)

, (5)

whereW is the LambertW function. A few of such solutions, along with the direction field associated
with (4) are displayed in figure 2. Note first thatγ1(x)

x
→ 1 asx → 0, irrespective ofγ1(1). On the

other hand, A careful study of (5) shows that there is a preferred valueγ⋆
1(1) = 1 + W (−e−2) =

0.8414 . . . that separates initial conditions atx = 1 in two disjoint intervals,I(1) = (0, γ⋆
1(1)) and

G(1) = [γ⋆
1(1),∞). All solutions withγ1(1) ∈ G(1) are global, i.e. they exist for allx ≥ 0, while

all solutions withγ1(1) ∈ I(1) satisfyγ1(x
⋆) = 0 for somex⋆ > 1 depending onγ1(1) and cannot

be continued beyondx = x⋆. The solutionγ⋆
1(x) of (4) with γ1(1) = γ⋆

1 is thus the smallest global
solution and is called the separatrix for that reason. Furthermore,γ⋆

1(x) ∼
√

2x − 2
3

+ O(x−1/2) as
x→ ∞. See also figure 2.

If s = 2, on the other hand, one can only obtain an implicit formula for the solutions, as was originally
done in [7]:

√
x =

√
x0 eΓ1(x0)2−Γ1(x)2 −

√
2e−Γ1(x)2

∫ Γ1(x0)

Γ1(x)

ez2

dz where Γ1(x) =
1 + γ1(x)√

2x
. (6)
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x x

γ1 γ1

Figure 1: Direction fields forP (x) = x, s = 1 on left panel,s = 2 on right panel. Note how the two
pictures look similar; yet, as will be shown, thes = 1 case admits global positive solutions, ands = 2
does not.

Note thatΓ1(x) ≤ Γ1(x0) for all x ≥ x0 (as long asγ1(x) ≥ 0, or as long asγ1(x) exists), since

dΓ1(x)

dx
= − 1

23/2
√
xγ1(x)

≤ 0 .

In particular, (6) gives an upper bound on the maximal interval of existence of solutions:

x ≤ x0 e2Γ1(x0)2 <∞ .

We thus see that ifP (x) = x ands = 2, there arenoglobal solutions of (4).

Going beyondP (x) = x, we first define the following (possibly infinite) quantities

Ds(P ) =

∫

∞

x0

P (z)

z1+2/s
dz and L(P ) =

∫

∞

x0

2dz

z(
√

1 + 4P (z) − 1)
. (7)

We can now state our rigorous results, which will be proven later by a strategy largely inspired by [22]:

• Under the hypothesis H1 alone, there are no global solutionsif Ds(P ) = ∞, while there exist
some global solutions ifDs(P ) < ∞. Note that in theP (x) = x case, we recover the previous
analysis, sinceDs(P (x) = x) <∞ if and only if s < 2.
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x⋆

xx

1

γ1

γ⋆
1(1)

γ1(1)

γ1(1)

γ1

Figure 2:P (x) = x, s = 1 illustrating that all solutions of (4) tend to0 asx→ 0, but that some choices
of γ1(1) lead to solutions that extend asx → ∞, while others lead toγ1(x

⋆) = 0 at some finitex⋆ and
cease to exist beyond that point.

• Under the additional hypothesis H2, there is a (non-trivial) minimal solutionγ⋆
1(x) which exists

for all x > 0 and separates global solutions (aboveγ⋆
1(x)) from solutions that exist only for finite

x (belowγ⋆
1(x)).

The separatrixγ⋆
1(x), in the case when it exists, is thus the minimal physical solution, and it matches

perturbation theory near the origin. Further, with appropriate conditions onP (x), its behavior in terms
of the running coupling is extremely special as we will discuss below.

Consequently we conjecture that it is the solution chosen bynature. Note that this solution does not
give us a preferred value forx: if we varyx in accordance with the renormalization group equation for
the running coupling,

dx(x0, L)

dL
= β(x(x0, L)) ,

we just move along our distinguished curve, but there is no preferred value ofx from the existence of a
distinguished solution.

Following the proof of these results we interpret them in terms of the running coupling, by using the
renormalization group equation, which in this case reducesto

dx

dL
= β(x) = sxγ1(x) .

8



If Ds(P ) < ∞, then we will show that if alsoL(P ) < ∞ then all global solutions give Landau poles,
whereas the separatrix is the only global solution that doesnot lead to a Landau pole ifL(P ) = ∞, or,
in particular, iflimx→∞ P (x) <∞.

The remainder of this paper is organized as follows: in Section 2, we will consider the existence/absence
of global solutions of (4), prove the existence of the separatrix in the appropriate case, and state the
asymptotic properties of the global solutions. Then, in Section 3, we will interpret the results of Section
2 in terms of the running coupling. The paper concludes with Section 4, in which we give the details
left over in the proofs of Section 2 and 3.

2 Main results

Building on our analysis of theP (x) = x, s = 1 case, and since,f(γ1, x) is singular at bothx = 0 and
γ1 = 0, we first avoid those singularities by considering instead of (4) the initial value problem

dγ1(x)

dx
=
γ1(x) + γ1(x)

2 − P (x)

sxγ1(x)
, γ1(x0) = γ0 > 0 , (8)

for somex0 > 0. Sincef(γ1, x) is regular away fromx = 0 andγ1 = 0, solutions of (8) existlocally
aroundx = x0. Furthermore these solutions are unique and are continuousw.r.t. the initial condition
γ0. These three statements (local existence, uniqueness and continuity) can be rigorously proved with
standard techniques, using that ifγ1 andγ2 are solutions of (8), they satisfy the integral equations

γi(x) =

(

x

x0

)1/s

(1 + γi(x0)) − 1 − x1/s

∫ x

x0

P (z)

sz1+1/sγi(z)
dz , (9)

γ1(x) − γ2(x) =
(

γ1(x0) − γ2(x0)
)

exp

(
∫ x

x0

1

sz
+

P (z)

szγ1(z)γ2(z)
dz

)

, (10)

as long as they exist (and are strictly positive).

We now prove that global solutions of (8) exist if and only if
∫

∞

x0

P (z)

z1+2/s
dz <∞ , (11)

for some finitex0 > 0. Note that in the particular caseP (x) = x, (11) reduces tos < 2, which agrees
with our previous analysis. This is the content of the following theorem:

Theorem 2.1 Let s > 0 and P be a C2 everywhere positive function. There exist positive global
solutions of (8) if and only ifP satisfies the integrability condition (11) for somex0 > 0.

Before proving Theorem 2.1, we note that condition (11) places a strong restriction on the asymptotic
behavior ofP (x) asx→ ∞. For example in the case of QED,s = 1, P (x) can grow at most likeo(x2)

9



asx → ∞ for global positive solution of (8) to exist. On the other hand, if limx→∞ P (x) <∞, (11) is
satisfiedfor all s > 0.

Proof. Consider first that (11) holds and letx0 > 0. Choose then

γ1(x0) = x
1/s
0

(

2

s

∫

∞

x0

P (z)

z1+2/s
dz + ǫ2

)1/2

(12)

for someǫ > 0. Assumeab absurdumthat the corresponding solutionγ1(x) has a maximal finite
interval of existence[x0, x1] for somex1 > x0. It follows that eitherγ1(x1) = ∞ or γ1(x1) = 0. The
first case cannot happen since from (9), we find

γ1(x) ≤
(

x

x0

)1/s

(1 + γ1(x0)) (13)

for all x ∈ [x0, x1], henceγ1(x1) = 0. This also leads to a contradiction, since rewriting (8) as

1

2

d

dx
(γ1(x)

2) =
γ1(x)

2

sx
+
γ1(x)

sx
− P (x)

sx
≥ γ1(x)

2

sx
− P (x)

sx
(14)

(usingγ1(x) ≥ 0 for x ∈ [x0, x1]), integrating that inequality on[x0, x1] and using (12) gives

γ1(x1)
2 ≥ x

2/s
1

(

γ1(x0)
2

x
2/s
0

− 2

s

∫ x1

x0

P (z)

z1+2/s
dz

)

=
(

ǫ x
1/s
1

)

2 > 0 . (15)

This contradicts ourab absurdumassumption thatγ1(x1) = 0, and sox1 = ∞.

To prove the converse, assumeab absurdumthat there exist a global positive solution of (8) for any
γ1(x0) > 0 if

lim
x→∞

∫ x

x0

P (z)

z1+2/s
dz = ∞ .

Since the solution is global, (13) holds for allx ≥ x0, and inserting (13) into (9) gives

γ1(x) ≤ x1/s

(

1 + γ1(x0)

x
1/s
0

− x
1/s
0

s(1 + γ1(x0))

∫ x

x0

P (z)

z1+2/s
dz

)

− 1 , (16)

a contradiction, since (16) becomes negative asx→ ∞.

In the case where global positive solutions do exist, we now prove that the notion ofsmallestglobal
positive solution (the separatrix) is well defined, at leastif P is strictly increasing:

Theorem 2.2 Let x0 > 0, s > 0 and assume thatP is a C2 everywhere positive increasing function
that satisfies (11). Then there exist a unique valueγ⋆

1(x0) such that the solution of (8) exists globally

10



if and only ifγ1(x0) ≥ γ⋆
1(x0). Furthermore, for every global solutionγ1(x), there exists a constant

C > 0 such that for allx ≥ 0,

γc(x) < γ⋆
1(x) ≤ γ1(x) ≤ γc(x) + Cx

1

s +

{

0 if x ≥ x0

Bs(x, x0) if x ≤ x0

(17)

whereγ⋆
1(x) is the solution of (8) that corresponds to the initial condition γ⋆

1(x0) and

γc(x) =

√

1 + 4P (x) − 1

2
, (18)

Bs(x, x0) = x1/s

∫ x0

x

dz

z1/s
=







O(x) asx→ 0 if s < 1

O(x | ln(x)|) asx→ 0 if s = 1

O(x1/s) asx→ 0 if s > 1

. (19)

In particular, limx→0 γ1(x) = 0 for every positive global solution.

Proof. The technical details of the proof will be given in Section 4 below. We first note that solutions
can have at most one global maximum, and no local minima, and that the global maximum can only
occur on the nullclineγc(x) as defined in (18). Namely, ifx⋆ is an extremum, then

γ1(x
⋆) = γc(x

⋆) , γ′1(x
⋆) = 0 and γ′′1 (x⋆) = − P ′(x⋆)

sx⋆γc(x⋆)
< 0 . (20)

These relations have the following consequences. First, solutions of (8) withγ1(x0) ≥ γc(x0) cannot
have a global maximum at somex1 < x0, nor a local minimum at such a point, and hence must decay
monotonically to0 asx→ 0, while satisfyingγ1(x) > γc(x) for all x ∈ [0, x0]. Second, solutions of (8)
with γ1(x0) < γc(x0) will have a global maximum at somex1 < x0, and will then decay monotonically
to 0 asx → 0, while satisfyingγ1(x) > γc(x) for all x ∈ [0, x1] by the above argument. In particular,
all solutions of (8) can be continued asx → 0 and more refined arguments (see Lemma 4.3) show that
they satisfy (17) for allx ∈ [0, x0].

The relations (20) also show that a solution that satisfiesγ1(x0) < γc(x0) must decrease monotonically
for all x ≥ x0, and more refined arguments (see Lemma 4.1) will show that those solutions indeed
satisfyγ1(x1) = 0 for some finitex1 > x0 and thus cannot be continued asx→ ∞.

Furthermore, sinceγc is itself monotonically increasing, solutions that start with γ1(x0) = γc(x0) +
ǫ with ǫ ≪ 1 necessarily cross the nullcline at somex > x0, and thus also cannot be continued
indefinitely asx → ∞, see Lemma 4.2 below. On the other hand, when (11) holds, Theorem 2.1
shows that there are large enough initial conditions whose corresponding solutions can be continued as
x→ ∞, and thus never cross the nullcline.

By the above arguments, continuity of solutions with respect to initial conditions and equation (10),

I(x0) = {γ1(x0) > γc(x0) | ∃x > x0 with γ1(x) < γc(x)}
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is a single open, bounded, non-empty interval. Define nowγ⋆
1(x0) as the supremum ofI(x0). From

(10), no solution starting belowγ⋆
1(x0) can exist globally, and all solutions starting above must stay

above the solution corresponding toγ⋆
1(x0), and (13) then implies (17) asx ≥ x0.

We conclude this section with the following corollary aboutthe growth of global solutions asx→ ∞.

Corollary 2.3 Let s > 0 and assume thatP satisfies (11). Then every global solution of (8) with
γ1(x0) > γ⋆

1(x0) satisfiesC1 x
1

s ≤ γ1(x) ≤ C2 x
1

s asx → ∞ for some0 < C1 < C2, while the
separatrix itself satisfies

γc(x) < γ⋆
1(x) ≤ min

(

lim
x→∞

γc(x) , C x
1

s

)

for someC > 0. In particular, if lim
x→∞

P (x) <∞, the separatrix is the only global bounded solution of

(8).

Proof. Let γ1(x0) > γ⋆
1(x0), and consider the corresponding solution of (8). The upper boundγ1(x) ≤

C2 x
1

s follows immediately from (9). For the lower bound, we note that from (10), we have

γ1(x) ≥ γ⋆
1(x) +

(

γ1(x0) − γ⋆
1(x0)

)

exp
(

∫ x

x0

dz

sz

)

≥ C1 x
1

s ,

for someC1 > 0 sinceγ1(x0) > γ⋆
1(x0).

As for the separatrix itself, first note that the lower bound is already contained in Theorem 2.2. If
limx→∞ P (x) = ∞, the upper boundγ⋆

1(x) ≤ C x
1

s follows again from (9). Iflimx→∞ P (x) <∞, we
first setγ∞ = limx→∞ γc(x) < ∞. Consider thenγ1(x0) = γ∞. The corresponding solutionγ1(x) of
(8) must initially increase aboveγ∞ for x sufficiently close tox0 since

dγ1

dx

∣

∣

∣

x=x0

=
γ∞ + γ2

∞
− P (x0)

sx0γ∞
=

limx→∞ P (x) − P (x0)

sx0γ∞
> 0 .

Once the solution is aboveγ∞, it cannot have a local maximum at anx > x0 and hence can be continued
asx → ∞. If limx→∞ P (x) < ∞, we thus have a one parameter family of global solutions, indexed
by x0, the point at whichγ1(x0) = γ∞. Since the separatrixγ⋆

1 is the smallest global solution, we get
γ⋆

1(x) ≤ γ∞ for all x > 0, which concludes the proof.

3 The running coupling

We now interpret the above analysis in view of the running of the coupling constant. With appropriate
conventions this introduces the second differential equation

dx

dL
= β(x(L)) . (21)
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In the single equation case, combining (21) with (8), we obtain the following system

dγ1

dL
= γ1 + γ2

1 − P ,
dx

dL
= s x γ1 , (22)

which we supplement with initial conditions atL = 0:

x(L = 0) = x0 and γ1(L = 0) = γ1(x0) .

Before considering the fate of non-global solutions of (8),we first explain how (almost all) global
solutions of (8) are Landau poles.

Theorem 3.1 Assume thatP is a C2, positive, everywhere increasing function that satisfies (11). The
separatrixγ⋆

1 is a Landau pole if and only if

L(P ) =

∫

∞

x0

dz

z γc(z)
=

∫

∞

x0

2dz

z(
√

1 + 4P (z) − 1)
<∞ .

All other global solutions of (8) are Landau poles, irrespective of the value ofL(P ).

Proof. We first note that global solutions of (8) give solutions of (22) via the reparametrization

L =

∫ x(L)

x0

dz

s z γ1(z)
.

In particular, a global solution of (22) withx(L = 0) = x0 andγ1(L = 0) = γ1(x0) reachesx = ∞ at

L⋆ =

∫

∞

x0

dz

s z γ1(z)
. (23)

From Corollary (2.3), we know that any global solution of (8)that is not the separatrix grows at least
like x

1

s asx→ ∞. In particular, the integral in the r.h.s. of (23) convergesto some finiteL⋆, andγ1(L)
diverges asL → L⋆, signaling that this solution is a Landau pole. By Corollary2.3, the separatrix is
also a Landau pole ifP (x) grows fast enough asx→ ∞ so thatL(P ) <∞.

If limx→∞ P (x) < ∞, then Corollary (2.3) shows thatγ⋆
1 ≤ limx→∞ γc(x) < ∞, which makes the

integral in the r.h.s. of (23) divergent. In particular, theseparatrix is the only global solution of (8) that
is nota Landau pole when written in terms of the running couplingL. In section 4 below, we will show
that this actually holds not only iflimx→∞ P (x) < ∞ but also for allP that grow sufficiently slowly
asx→ ∞ so thatL(P ) = ∞.

Consider nowγ1(x) a solution of (8) that only exist on maximal finite intervalx ∈ [0, x⋆]. By the results
of section 2, we necessarily haveγ1(x

⋆) = 0. As is apparent from (22), the introduction of the running
coupling removes the singularity of (8) atγ1 = 0. There is thus a 1-1 correspondence between solutions
of (8) that exist only on finite intervals with the family of solutions of (22) withx(L = 0) = x⋆ and
γ1(L = 0) = 0. More precisely, we have the

13



Theorem 3.2 For eachx⋆ > 0, there is a unique solution of (22) that satisfiesx(L = 0) = x⋆ and
γ1(L = 0) = 0. This solution is an heteroclinic orbit of the system (22) connecting the two equilibrium
points(x, γ1) = (0, 0) atL = −∞ to (x, γ1) = (0,−1) atL = ∞.

Note that this theorem implies that solutions of (8) that exist only on finite intervals are actually double-
valued as functions ofx, but exists for allL ∈ R. Note that in particular, such solutions come back to
x = 0 as a dipole-ghost [21]: we gained a full integer in scaling weight for the photon, see left panel of
figure 3.

Proof. Fix x⋆ > 0, and consider the solution of (22) that satisfiesx(L = 0) = x⋆ andγ1(L = 0) = 0.
Note first that the vector field associated with (22) is perpendicular to thex-axis, and crosses thex = x⋆

vertical line from left to right above thex-axis, see also the right panel of figure 3. As a consequence,
and by local existence of solutions of (22), there exists afinite L− < 0 such thatγ1(L

−) > 0 and
0 < x(L−) < x⋆. By the results of section (2), the solution of (8) withx0 = x(L−) > 0 and
γ1(x0) = γ1(x(L

−)) > 0 can be extended up tox = 0 and satisfiesγ1(x) ∼ γc(x) asx → 0. In
particular, the solution of (22) satisfyingx(L = 0) = x⋆ andγ1(L = 0) = 0 tends to(x, γ1) = (0, 0)
asL→ −∞ since

L = L− −
∫ x(L−)

x(L)

dz

s z γ1(z)
→ −∞ as x(L) → 0 .

We now prove that(x, γ1) → (0,−1) asL → ∞. Again, since the vector field associated with (22)
is perpendicular to thex-axis, and crosses thex = x⋆ vertical line from right to left below thex-axis,
there exists a finiteL+ > 0 such that−1 < γ1(L

+) < 0 and0 < x(L+) < x⋆ (the valueγ1(L
+) is

the dashed line on the right panel of figure 3). Note then that the vector field points inside the rectangle
R = [0, x⋆] × [γ1(L

+),−1 − γc(x
⋆)], except on theγ1 axis where it is tangent and points towards

(x, γ1) = (0,−1), see also the right panel of figure 3. It thus follows that

0 ≤ x(L) ≤ x⋆ and − 1 − γc(x
⋆) ≤ γ1(L) ≤ γ1(L

+) ∀L ≥ L+ .

In particular,

−c1 x ≡ −sx(1 + γc(x
⋆)) ≤ dx

dL
≤ sxγ1(x(L

+)) ≡ −c2 x ,

for somec1, c2 > 0, and thus

x(L+)e−c1(L−L+) ≤ x(L) ≤ x(L+)e−c2(L−L+) ,

which shows thatx(L) → 0 asL → ∞. Since the vector field points towards(x, γ1) = (0,−1) on the
γ1 axis, it also follows thatγ1(L) → −1 asL→ ∞, and concludes the proof.

4 Technical proofs

This section contains the technical details needed for a complete proof of Theorem 2.2 above. Through-
out this section, we assumeP is aC2, positive, strictly increasing function ofx, which satisfies (11).
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x⋆x⋆

xx

γ1γ1
γ⋆

1
(x)

γc(x)

−1−γc(x)
−1−γc(x⋆)

γ⋆

1
(x)

−1

γ1(L+)

−1

Figure 3:P (x) = x, s = 1 illustrating that, as a function ofL, non-global solutions of (8) turn around
and head to−1 asL→ ∞.

Our first step is to show that solutions that start below the nullcline γc(x0) cannot be continued asx→
∞. Note that this does not follow directly from (20), sinceγ1(x) could a priori decrease indefinitely as
x→ ∞ without ever reachingγ1 = 0.

Lemma 4.1 Letγ1(x0) < γc(x0) then the solution of (8) satisfiesγ1(x1) = 0 for some finitex1 > x0.

Proof. Let γ1(x0) ≡ γc(x0) − ǫ for some0 < ǫ < γc(x0). We first note thatγ1(x) ≤ γ1(x0) for all
x ≥ x0 such that the solution exists, otherwise there would be a local minimum at somex⋆ ∈ [x0, x],
which is precluded by (20). SinceP (x) is increasing, we find

dγ1(x)

dx
≤ γc(x0) − ǫ+ (γc(x0) − ǫ)2 − P (x0)

sx(γc(x0) − ǫ)

≤ −ǫ(1 + 2γc(x0) − ǫ)

sx(γc(x0) − ǫ)
≡ −R(x0, ǫ)

x
, (24)

for someR(x0, ǫ) > 0. Integrating (24) on[x0, x] gives

γ1(x) ≤ γ1(x0) −R(x0, ǫ)

∫ x

x0

dz

z
= γc(x0) − ǫ−R(x0, ǫ) ln

(

x

x0

)

,

which shows thatγ1(x1) = 0 for somex1 ≤ x0 exp
(

γc(x0)−ǫ
R(x0,ǫ)

)

<∞ as claimed.

15



Our next step is to show that solutions that start close enough, but above the nullcline atx0 cross the
nullcline at somex > x0, and thus cannot be continued asx→ ∞ by Lemma 4.1.

Lemma 4.2 Assumeγ1(x0) = γc(x0)+ δ2. There existδ > 0 sufficiently small such that ifγ1(x) solves
(8), thenγ1(x0 + δ) < γc(x0 + δ).

Proof. First note that by (9),γ1(x) ≤ ( x
x0

)1/s(1 + γ1(x0)) − 1. Under the assumption thatγ1(x0) =

γc(x0) + δ2, we thus find

sup
x∈[x0,x0+δ]

γ1(x) ≤ γc(x0) + Cδ

for some constantC = C(x0, s) > 0. We now use the following estimate onf(γ1(x), x)

sup
x∈[x0,x0+δ]

f(γ1(x), x) ≤
γc(x0) + Cδ + (γc(x0) + Cδ)2 − P (x0)

sx0(γc(x0) + Cδ)

≤ Cδ

sx0

(

2 +
1

γc(x0) + Cδ

)

≤Mδ

for some constantM = M(x0, s) > 0. We thus find, upon integration of (8) that

γ1(x0 + δ) ≤ γc(x0) + (1 +M)δ2. (25)

Now by Taylor’s theorem, there exists a constantN(x0) such that

γc(x0 + δ) ≥ γc(x0) + γ′c(x0)δ +N(x0)δ
2 . (26)

Sinceγ′c(x0) > 0, we can chooseδ sufficiently small so that

(1 +M −N(x0))δ
2 < γ′c(x0)δ ,

which implies thatγ1(x0 + δ) < γc(x0 + δ) and completes the proof.

Our next step is to show that every local solution of (8) can becontinued asx → 0. We will also show
that all solutions behave asymptotically likeγc(x) asx→ 0.

Lemma 4.3 Letγ1(x) be a (local) solution of (8) withγ1(x0) > 0. Then that solution can be continued
for all x ∈ [0, x0]. Furthermore, there exist0 < x1 ≤ x0 (with x1 = x0 ⇔ γ1(x0) ≥ γc(x0)) and
a constantC > 0 such thatγc(x) < γ1(x) ≤ γc(x) + Cx

1

s + CBs(x, x1) for all x ∈ [0, x1], where
Bs(x, x1) is defined in (19).

Proof. We first note thatγ1(x0) > 0 guarantees that the solution exists locally aroundx0. We now
prove that it satisfies

min(γc(x), γ1(x0)) ≤ γ1(x) ≤ max(γc(x0), γ1(x0)) ∀x ∈ [0, x0] , (27)
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and hence can be continued up tox = 0. Recall from (20) that a solution can have at most one global
maximum, and no local minimum. We now consider two cases,γ1(x0) ≥ γc(x0) andγ1(x0) < γc(x0).

In the first case, we claim that

γ1(x0) ≥ γc(x0) ⇒ γc(x) ≤ γ1(x) ≤ γ1(x0) ∀x ∈ [0, x0] . (28)

Namely, ifγ1(x0) ≥ γc(x0), thenγ1(x) must decrease asx decreases, at least for allx sufficiently close
to x0 with x < x0. This follows because eitherγ′1(x0) > 0 if γ1(x0) > γc(x0) or γ′1(x0) = 0 and
γ′′1 (x0) < 0 if γ1(x0) = γc(x0)). We thus get thatγ1(x) < γ1(x0) holds for all0 ≤ x < x0 since the
solution cannot have a local minimum. Also, the solution cannot have a maximum atx1 < x0 either,
since at that maximum,γ1(x1) < γ1(x0), which would require a local minimum at some intermediate
valuex⋆ ∈ (x1, x0), and henceγ1(x) > γc(x) for all x < x0.

In the caseγ1(x0) < γc(x0), we claim that there exist0 < x1 < x0 such thatγ1(x1) = γc(x1),
or, in other words, the solution crosses the nullcline at some x1 < x0. Namely, the solution must
increase initially asx decreases (sinceγ′1(x0) < 0). Since the solution cannot have a local minimum,
γ1(x) ≥ γ1(x0) as long as it is below the nullcline, and hence it must cross the nullcline (and have a
global maximum) at somex1 ∈ (γ−1

c (γ1(x0)), x0). In particular, the global maximumγ1(x1) satisfies
γ1(x1) ≤ γc(x0) sinceγc is strictly increasing. We thus find

γ1(x0) ≤ γ1(x) ≤ γc(x0) ∀x ∈ [x1, x0] .

Sinceγ1(x1) = γc(x1), we apply (28) withx ∈ [0, x1] and get (using alsoγc(x1) ≤ γc(x0)) that

γc(x) ≤ γ1(x) ≤ γ1(x1) ≤ γc(x0) ∀x ∈ [0, x1] .

This completes the proof of (27).

Note now that in all cases, there existsx1 ≤ x0 such thatγ1(x) ≥ γc(x) for all x ∈ [0, x1]. In particular,
P (z)
γ1(z)

≤ P (z)
γc(z)

= 1 + γc(z) for all z ∈ [0, x1]. Let nowx ∈ [0, x1]. From (9), we find

γ1(x) ≤
(

x

x1

)1/s

(1 + γ1(x1)) − 1 + x
1/s
1

∫ x1

x

1 + γc(z)

sz1+1/s
dz , (29)

which, after integrating by parts, gives

γ1(x) ≤
(

x

x1

)1/s

(γ1(x1) − γc(x1)) + γc(x) + x1/s

∫ x1

x

γ′c(z)

z1/s
dz . (30)

Sinceγ′c(z) ≤ C for all z ∈ [0, x1], we getγ1(x) ≤ γc(x) + Cx
1

s + CBs(x, x1) for all x ∈ [0, x1],
which completes the proof.

We now have all the tools to prove Theorem 2.2, which we restate now in the form

Theorem 4.4 Assume that (11) holds. The set

I(x0) = {γ1(x0) > γc(x0) | ∃x > x0 with γ1(x) < γc(x)} ,

17



is a single, open, non-empty and bounded interval. Moreoverthe solutionγ⋆
1(x) of (8) with

γ⋆
1(x0) = sup(I(x0))

is the smallest solution that exists for allx ∈ [0,∞), and its graph defines the separatrix, in the sense
that any global solutionγ1(x) of (8) satisfies

γc(x) < γ⋆
1(x) ≤ γ1(x) ≤ γc(x) + Cx1/s + C

{ Bs(x) if x ≤ x0

0 if x > x0

(31)

for all x ∈ [0,∞).

Proof.We first note that by Lemma 4.2,I(x0) 6= ∅, and by Lemma 4.1 solutions that start inI(x0) cannot
be continued asx→ ∞. Since global solutions exist by Theorem 2.1 for allγ1(x0) large enough,I(x0)
is bounded above. Also,I(x0) is open by continuity of solutions with respect to initial conditions.
Consider nowγ1(x) andγ2(x), to be two solutions of (8), for whichγc(x0) < γ2(x0) < γ1(x0) and
γ1(x0) ∈ I(x0). We now claim thatγ2(x0) must also be inI(x0). Namely, sinceγ1(x0) ∈ I(x0), there
must be anx1 > x0 such thatγ1(x1) < γc(x1). By (10), we haveγ2(x) < γ1(x) as long as both
solutions exist. In particular, eitherγ2(x) exists on[x0, x1], and (10) shows thatγ2(x1) < γ1(x1) <
γc(x1) and thusγ2(x0) ∈ I(x0), or γ2(x) cannot be continued up tox = x1 and since it cannot diverge
to infinity by (13), we must haveγ2(x2) = 0 for somex2 < x1, which also implies thatγ2(x0) ∈ I(x0).
This shows thatI(x0) is a single open interval. We thus define

γ⋆
1(x0) = sup(I(x0)) .

Evidently,γ⋆
1(x0) /∈ I(x0), and so the corresponding solutionγ⋆

1(x) of (8) satisfiesγc(x) < γ⋆
1(x) ≤

Cx1/s for all x ≥ x0 (the lower bound follows by definition ofI(x0), the upper bound by (13)), while
Lemma 4.3 shows thatγ⋆

1(x) exists for allx ∈ [0, x0] and satisfiesγc(x) < γ⋆
1(x) ≤ γc(x) + Cx1/s +

CBs(x, x0) for all x ∈ [0, x0]. Using (10) and (13) again shows that the solution corresponding to any
γ1(x0) ≥ γ⋆

1(x0) can also be continued asx→ ∞ and satisfies (31).

We conclude this section with a last result concerning the growth of the separatrix in the case whereP
is a slowly increasing function.

Lemma 4.5 Assume thatP satisfies
∫

∞

x0

dz

z γc(z)
=

∫

∞

x0

2dz

z
√

1 + 4P (z) − 1
= ∞ , (32)

for somex0 > 0. Then there exists a constantC > 0 such that the separatrixγ⋆
1 satisfiesγc(x) <

γ⋆
1(x) ≤ γc(x) + C ln(x) asx→ ∞. In particular,

∫

∞

x0

dz

z γ⋆
1(z)

= ∞ .
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Proof.We first derive from (32) the following bounds on the asymptotics ofP (x) andP ′(x) asx→ ∞:

P (x) < C1 ln(x)4 and
P ′(x)x

√

1 + 4P (x)
≤ C2 ln(x) .

The first one is obvious, and assumingP
′(x)x√

1+4P (x)
> C2 ln(x) givesP (x) ≥ C1(1 + ln(x))4 which

contradicts (32). In particular, (11) is satisfied for alls > 0, and we are guaranteed by Theorem 4.4
that the separatrixγ⋆

1 exists and satisfiesγ⋆
1(x) > γc(x) for all x > 0.

Let nowγ1(x) = γc(x) + C ln(x) for someC > 0, and consider the one parameter family of solutions
of (8) obtained by fixingγ1(x0) = γ1(x0) for differentx0 > 1. At least, those solutions that start with
x0 sufficiently large can be extended asx→ ∞, since

d

dx
γ1(x0) <

d

dx
γ1(x0) =

γ1(x0) + γ1(x0)
2 − P (x0)

sx0γ1(x0)
,

because

d

dx
γ1(x0) =

C + C2 ln(x0)

x0
as x0 → ∞

γ1(x0) + γ1(x0)
2 − P (x0)

sx0γ1(x0)
=

2C ln(x0)

s x0
+ O(x−1

0 ) .

This shows that a solution that starts on the curveγ1(x) = γc(x) + C ln(x) atx = x0 cannot cross it at
anyx with x > x0, and thus is a global solution. In particular, the separatrix must be smaller than any
of these solutions, and we getγ⋆

1(x) ≤ γc(x) + C ln(x). From this last estimate, we get immediately
that

∫

∞

x0

dz

zγ⋆
1(z)

≥ 1

2
min
(

∫

∞

x0

dz

zγc(z)
,

∫

∞

x0

dz

zC ln(z)

)

= ∞ ,

which completes the proof.
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