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Abstract

We discuss the structure of beta functions as determinedhdyecursive nature of Dyson—
Schwinger equations turned into an analysis of ordinafeihtial equations, with particular em-
phasis given to quantum electrodynamics. In particular @terthine when a separatrix for solutions
to such ODEs exists and clarify the existence of Landau paggend perturbation theory. Both are
determined in terms of explicit conditions on the asympofor the growth of skeleton graphs.
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1 Introduction

1.1 Themethod

Results on the structure of amplitudes in the theory of lodaracting quantum fields are notoriously
hard to come by beyond perturbation theory. We refrain fraseubsing the various approaches de-
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veloped in the past and shortly summarize our approach Wwhieh has been developed by one of us
(D.K.) in the last decade [8, 13, 114,/9,[7)5]) 18] [19, 16]. Itlakeady to progress at very high orders
[6l, [3,14] and all orders of perturbation theory [7] (see alB® P = z, s = 2 case in the examples
below).

It is a pleasure to emphasize that our approach connectd aiteinpts/[20] in quantum field theory to
use the soft breaking of conformal symmetry by renormaleawantum fields for non-perturbative
results. The recent developments which allow us to undmiste notion of locality mathemati-
cally combine rather nicely with such ideas. A crucial irdjemt is that the mathematical structure
of the quantum equations of motion remains form-invariarttar inclusion of more and more skeleton
graphs, and this fact allows the development of an appraigméo these equations in terms of periods
of increasing complexity, without ever changing the stuoetof these equations. This is very different
from, for example, any truncation of high frequency modetha path-integral. Whilst the approach
used here can re-derive results of such constructive mefigd, we here go beyond what is possible
by such truncations of the path-integral.

In particular, for theories which are non-asymptoticaligef, a study of low orders of perturbation
theory indicates the presence of a Landau pole (the invact@arge approaching infinity at a finite
scaleq?/u?), which is also believed to exist for such theories in thestarctive approach, if one
attempts to remove the cut-off which necessarily has to tsednced in such theories, as well as in
perturbation theory. In our approach, we only choose a bayncbndition for the equation of motion,
the Dyson—Schwinger equations. We approximate the fubrthéy the choice of a functio®(x)
which describes the growth of the skeleton expansion, arefudly make that choice to maintain the
Lie- and Hopf-algebraic structure of the forest formula #mel equations of motion at the same time.
We thus do not need to introduce a cut-off, a familiar phenmnevhen scaling dimensions of Green
functions are taken into account in those equations [2QtuRwtive approximations t&(z) lead to a
non-perturbative behavior fgt functions in such theories which reconfirms the existenaeladndau
pole. Rather mild assumptions on the non-perturbative\behaf P(x) allow for solutions though
which avoid such a pole, as discussed below, with the chasgeydo infinity only at infinite scale,
and hence realizing a possibility already discussed in$26fion 18.3. Finally, we emphasize that we
assume below tha?(z) is a nowhere vanishing function, and hence that we do not Aaan-trivial
zero for thes-function for a non-asymptotically free theory: so we aré assuming an eigenvalue
condition [2], but much to the contrary, analyze the striestof the theory under the assumption that
such an eigenvalue does not exist.

We will not attempt any serious discussion of the asympgaticP(x), though that the work of [11]
emphasizes the need of such a discussion. Here, we are twittethe classifications of the behavior
of the 5-function as a function of the possible asymptoticsd% ), emphasizing the possibility of the
absence of Landau poles in well-specified conditions. Algsre-emphasize that Dyson—-Schwinger
equations do not demand the introduction of a cut-off, btiteademand the specification of a finite
number of conditions to fix the amplitudes needing renorma#ibn as initial conditions for the renor-
malization group flow.

So our approach is based on two main ingredients: the existehquantum equations of motion —
Dyson—Schwinger equations —, and the consequences ofrtbemalization group for such local field
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theories. The latter guarantee that amplitudes develomalowus scaling exponents under the action of
the dilatation group which re-scales parameters in theryh#we former guarantees sufficient recursive
structure in the theory such that a non-perturbative agprbacomes feasible. The rich Hopf algebraic
foundations of these phenomena make our approach possible.

We consider Green functions as functions of two variabl&asiraning coupling constant: and a single
kinematical variablel, = Inq?/u? (in the deep Euclidean regime, or suitably continued to jgays
regions). This implies that vertex functions are considevaly at zero momentum transfer or for
symmetric external momenta.

We define Green functions as the scalar coefficient functidmsh provide quantum corrections to
tree-level amplitudes € R, wherer denotes the chosen amplitude. We store all the information o
parameters which determine the amplitude under consideratits lowest order contribution, the tree
level form-factor f(r). The Lagrangian is then given &= ) _. mr, for monomialsm in fields

for each amplitude which needs renormalization. Greentfons modify this amplitudef(r) in a
multiplicative mannerf(r) — ®(r)(1 + O(h)), and hence start with one.

The equivalent expansions (taking the negative sign fgpgagators and the positive for vertices)
G'(z,L) =1+ ~i(x)l) =1+ (L)',
j=1 j=1

wherec’(L) is a polynomial inL bounded in degree by and~; a series inr, are triangular and
recursive fory;: the renormalization group determines tffe j > 1 in terms of all the series;. We
denotey] as the anomalous dimensions of the amplitudeven ifr is a vertex function. Any- for a
vertex amplitude corresponds to a field monomigt) = [ [, »; in the Lagrangian, and thg are fields
which we assume to have kinetic energy. There are then gmmeing monomials- n? quadratic in

. 2 . . . .
those fields), in the Lagrangian and the correspondifig= v," combine withy} to give thes-function
in our sign conventions as

BT =zl + Z%ﬁ] -

Here, the monomial, for » a vertex amplitude, comes along with a probabilityor the tree-level
scattering process described byo happen, and this probability — necessarily smaller thaa -6-,
furnishes a natural expansion parameter for the seriés/e consider only theories which have a single
vertex amplitude in this paper, and hence have a unique sigaparameter.

Following now [18], [19], and[[26] we can reduce the DysonmBimger equations to a system of
differential equations for the anomalous dimensiohs

We outline the argument as follows. As we are interested onilge high-energy sector of the theory,
we reduce one-particle irreducible Green functions to ddpen a single scalé = logq¢*/u?. The
coupling constant will be denoted Then we expand the Green functiondims above.



From the renormalization group equation we obtain [18, 26]

Ve(x) = (i% )+ > Isil (x ) Vi-1(2) - 1)

JER

where again the sign is positive for a vertex and negativa fuopagator and where theare defined,
in accordance with the fields coupling at a vertex as above, by

r) = |s;n(e)

JER

wheref(x) is saidg-function of the theory, an® is the set of all amplitudes needing renormalization.
In the single equation cadg (1) reads

e = () (1~ 570, (@)

As in [19] the Dyson-Schwinger equations can be rewritteteims of derivatives of the Mellin trans-
forms for the primitives. By Mellin transforms we simply nrethe analytically regularized Feynman
integrals for the primitives. Again by combinatorics on thepf algebra we can reduce to Mellin trans-
forms in a single variable, that is to a single insertion place. Finally by shifting wanted powers of

p at a given loop order to lower powers pfat a higher loop order, as in [19], [26], we can relate the
coefficients ofL and L? which, in view of [1) gives us the system

71 (z) = Pr(z) F1ilz (Z |51 (« ) 20,71 (2) 2)

JER

asr runs overR, the residues of the theory. is a modified version of the values of the primitives.
The modification comes from two places. First the reductmra tsingle insertion place is purely
combinatorial and leads essentially to the need to congiddae contribution taP, primitives which
are not merely single graphs, but sums of graph. Second thaeging powers of for powers of the
coupling constant we also modifyP,. This reduction is not yet as well understood, but nonektiss-

it is simply a rearrangement of the analytic informationteamed in the original primitives [26].

1.2 QED asa special case

Most of our analysis will be confined to the case with only ogeation ands > 0.

n(x) = P(z) = n(@)’ + s71(2)20:m(2) 3)
This case is general enough to cover gauge theories for tlosviing reasons. First of all, we note
that in QED thanks to the Ward identity, tiiefunctions is computable from the anomalous dimension

of the photonyliF2 alone, and similarly for non-abelian gauge theories in &dpamind field gauge
[1]. Furthermore, using a Baker—Johnson—Willey gauge, [@HD is a finite theory were it not for the
(gauge-invariant) photon propagator. So it is indeed alsiaguation case.
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In particular, it is the case = 1, reflecting the fact that the lowest order term in th&nction comes
from a graph which itself has no internal photon propagatibhe variables measures the power of
the Green function appearing in the invariant charge, optiveer of the nonlinear part of the recursive
appearance of the Green function in the Dyson-Schwingeateaqu More specifically the power of the
recursive appearance of the Green function at loop drded — sk. So withs = 1 andk = 1 we the
power isO representing the fact that in QED the one loop photon gragisbhave an internal photon
edge and the correct counting continues to hold at highgr ¢oders. For the Yukawa theory example
of [7] the Green function appears recursively with powarat £ = 1 leading tos = 2.

In the general non-abelian case the co-ideal and Hochsafitldmology structure of the Hopf algebra
underlying the expansion of a non-abelian gauge theoryearcttupling [15] 23, 24] allow for similar
simplifications in particular in the background field methdadh analysis of this method will be given
in future work.

Notice that the3-function is showing up as the coefficient(@f)’'(x) in (2) above, namely

Bla) =2 |silri(z)

JER
in the system case and

px) = wsm(x)

in the single equation case with> 0. Consequently this differential equation is well suitedrno
proving our understanding of thefunction. Furthermore, solving for the derivativé'(x) shows
the appearance of thefunction in the denominator. A zero of thiefunction is hence a degenerate
singular case, even if it corresponds to a simple scalingieh of quantum fields reflected by an
abelian renormalization group flow (or, equivalently, acomnmutative expansion in the Hopf algebra
of perturbation theory) [17].

In particular in the single equation case, we see immegidtem (3) that any zeroes of(x) must
occur either wheré(z) = 0 — so we have no quantum corrections driving the equationsodiom at
some particular value of the coupling — or whetgx) is infinite. The second of these possibilities is
not physically reasonable for a finite valuesofind is indeed only realized by solutions fgrwhich
are multi-valued.

For QED taken out to four loops and correcting the primitifigesour setup and using values from [10]
we have

T .132

P(x) = 3+ 7 + (~0.0312 + 0.06037)a + (~0.6755 + 0.05074)a"

P(x) is decreasing for > 0.653. .., which will not be permissible below, and it has a zeraat
0.992.... We expect the zero to be spurious as it would immediately fea zero of thej-function,
and believe both problems are due only to taking the 4 loopcqpation beyond where it is valid.
On the other hand the estimate

Ck ~E>1 (—1)kk‘!k‘3 s
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where P(z) = Y, cra®, of [11] suggests via resummation thafz) is bounded for large:, which
tantalizingly leads to the possibility of the absence of adau pole in an analysis of thigfunction
beyond perturbation theory. The behavi®fr) in the QED case, clearly deserves more attention from
this viewpoint.

The system case is not quite so simple. Assuifag = 0. If we rule out infinite(~])'(x), then we can
only conclude that for eache R

(@) +75(2)* = Pr() = 0.

1.3 Exposition of the main results

In the remainder of this article, we will restrict ourseltesthe single equation cadée (3) with> 0,
which we can rewrite as

d 2 p
T (o)) where J(y,,) = L= @

The main assumptions we make on the primitive skeleton fométre:

H1: Pis atwice differentiable function oR.*, with P(0) = 0 andP(z) > 0 if = > 0.

H2: P is everywhere increasing.

To motivate the detailed study ¢fi (4) we will conduct in themegnder of this paper, we consider briefly
the simple exampleB(z) = x ands = 1 or s = 2. For a qualitative overview, see Figlre 1.

If s =1, we can solvel(4) by specifying (x) atz = 1, finding

n(@) =2+ (@) - Dexp(n(1) - 1)), (5)

wherelV is the Lambert¥ function. A few of such solutions, along with the directiogldi associated
with (4) are displayed in figurlel 2. Note first th%ifaf—) — 1 asx — 0, irrespective ofy;(1). On the
other hand, A careful study of](5) shows that there is a prefevaluey;(1) = 1 + W(—e™?) =
0.8414 ... that separates initial conditions at= 1 in two disjoint intervals,I(1) = (0,~;(1)) and
G(1) = [7f(1),00). All solutions with~,(1) € G(1) are global, i.e. they exist for all > 0, while
all solutions with~; (1) € I(1) satisfy~;(z*) = 0 for somez* > 1 depending ony,(1) and cannot
be continued beyond = z*. The solutiomy;(z) of () with ~,(1) = 77 is thus the smallest global
solution and is called the separatrix for that reason. Rumtiore,v;(z) ~ v2z — 2 + O(2~'/?) as
x — oo. See also figurg 2.

If s =2, onthe other hand, one can only obtain an implicit formulalie solutions, as was originally
done in[7]:

_ F1($0)2—F1(I)2 . —I' (m)2 F1(o) 22 . 1 + 71(..'1:')
VI = /70 € V2e e*’dz where I'y(z) = ——"2 . (6)
Ti(z) V2
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Figure 1: Direction fields fo’(z) = x, s = 1 on left panel,s = 2 on right panel. Note how the two
pictures look similar; yet, as will be shown, tke= 1 case admits global positive solutions, ang 2
does not.

Note thatl’; (x) < I'y () for all x > x, (as long asy; () > 0, or as long as; (z) exists), since

dfﬁ(x)____ 1 <0
de  B2ayp(x) T

In particular, [6) gives an upper bound on the maximal irdkof existence of solutions:

2T (9)2

r<xpe < 00 .

We thus see that iP(z) = = ands = 2, there areno global solutions of.(4).

Going beyondP(z) = x, we first define the following (possibly infinite) quantities

> P(z > 2dz
DS(P):/:E0 Zliz/)sdz and E(P):/mO RNV ot (7)

We can now state our rigorous results, which will be provéerlay a strategy largely inspired by [22]:

e Under the hypothesis H1 alone, there are no global solutfoRs(P) = oo, while there exist
some global solutions iD,(P) < oo. Note that in theP(z) = = case, we recover the previous
analysis, sinc®,(P(z) = z) < oo ifand only if s < 2.
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Figure 2: P(z) = z, s = 1 illustrating that all solutions of (4) tend tbasz — 0, but that some choices
of v1(1) lead to solutions that extend as— oo, while others lead ta;(z*) = 0 at some finitec* and

cease to exist beyond that point.

e Under the additional hypothesis H2, there is a (non-trjvighimal solutiony; (x) which exists
for all > 0 and separates global solutions (abgyér)) from solutions that exist only for finite
x (below~j(x)).

The separatrix/;(z), in the case when it exists, is thus the minimal physicaltgmy and it matches
perturbation theory near the origin. Further, with appiaterconditions orP(z), its behavior in terms
of the running coupling is extremely special as we will dssbelow.

Consequently we conjecture that it is the solution chosendtyire. Note that this solution does not
give us a preferred value far. if we vary z in accordance with the renormalization group equation for
the running coupling,

dz(zg, L)
—dL B(z(wo, L)) ,

we just move along our distinguished curve, but there is Bfepred value of from the existence of a
distinguished solution.

Following the proof of these results we interpret them im®iof the running coupling, by using the
renormalization group equation, which in this case redtwes
dx
-7 = Bla) = sen(a).
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If Ds(P) < oo, then we will show that if als&(P) < oo then all global solutions give Landau poles,
whereas the separatrix is the only global solution that do¢kead to a Landau pole £(P) = oo, or,
in particular, iflim, ., P(x) < co.

The remainder of this paper is organized as follows: in $adi we will consider the existence/absence
of global solutions of[(4), prove the existence of the sejparan the appropriate case, and state the
asymptotic properties of the global solutions. Then, inti®ad, we will interpret the results of Section
in terms of the running coupling. The paper concludes witti®n[4, in which we give the details
left over in the proofs of Sectidd 2 ahdl 3.

2 Mainresults

Building on our analysis of th&(z) = x, s = 1 case, and sincg,(v1, =) is singular at both: = 0 and
v = 0, we first avoid those singularities by considering instelg@pthe initial value problem

dn(z) )+ n(z)* — P(x)
dz sz ()

) 71(370) =% > 0 ) (8)

for somez, > 0. Sincef (v, z) is regular away fromx = 0 and~; = 0, solutions of[(8) existocally
aroundr = x,. Furthermore these solutions are unique and are continuodisthe initial condition
. These three statements (local existence, uniquenesatiduity) can be rigorously proved with
standard techniques, using thatifand~, are solutions of (8), they satisfy the integral equations

) = (f)/ (e 1= [T —az, ©)

o S24Y57i(2)
Y1(x) — 72(z) :<71($0) - 72(%)) eXp( : é + %dz) ; (10)

as long as they exist (and are strictly positive).

We now prove that global solutions o¢f (8) exist if and only if

/wp(z)dz<oo, (11)

21+2/s

for some finiter, > 0. Note that in the particular cag®(x) = =, (11) reduces te < 2, which agrees
with our previous analysis. This is the content of the foilogwtheorem:

Theorem 2.1 Let s > 0 and P be aC? everywhere positive function. There exist positive global
solutions of[(8) if and only i satisfies the integrability conditioh (IL1) for some> 0.

Before proving Theorem 2.1, we note that condition (11) @a& strong restriction on the asymptotic
behavior ofP(z) asz — oo. For example in the case of QEP+= 1, P(z) can grow at most like(z?)
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asx — oo for global positive solution of(8) to exist. On the other Haif lim, .., P(z) < oo, (I1) is
satisfiedfor all s > 0.

Proof. Consider first thal (11) holds and leg > 0. Choose then

(2 [ Pz 1/2
n(zo) = 2/ (‘/ zufz/)s dz + 62) (12)
o

S

for somee > 0. Assumeab absurdunthat the corresponding solution(z) has a maximal finite
interval of existencér, x| for somex; > z,. It follows that eithery; (z1) = oo or v1(z;) = 0. The
first case cannot happen since frah (9), we find

1/s
xr
1(r) < (x—o) (14 71(0)) (13)
for all = € [z, 21], hencey, (1) = 0. This also leads to a contradiction, since rewritidg (8) as
1d 2 P 2 P
L ey - WL, ) P, me) Pl (14)
2dz sx sx sx ST ST

(usingy;(z) > 0 for z € [xg, x1]), integrating that inequality ofx,, ;] and using[(1R) gives

s 20)2 2 [™ P(z s
Y1(w1)? zx?/ (71( 0) ——/ ﬁdz) :(exi/ ) >0. (15)

2/s
S
Lo

This contradicts ouab absurdunassumption that; (x;) = 0, and sar; = .

To prove the converse, assumle absurdunthat there exist a global positive solution bf (8) for any
Y1 (l’o) > 0 if

, “ P(z2)
A [ omade= oo

Since the solution is global, (IL3) holds for al>> x(, and insertingl(113) intd (9) gives

1+ 71 (o) zy® /x P(z)
< gl/s - 0 dz | —1 16
() <z ( .13(1]/8 s(1+m(x0)) Sy 21725 o ) (16)

a contradiction, sincé (16) becomes negative as co. m

In the case where global positive solutions do exist, we nmwvethat the notion o§mallestglobal
positive solution (the separatrix) is well defined, at lebgt is strictly increasing:

Theorem 2.2 Letz, > 0, s > 0 and assume thaP is aC? everywhere positive increasing function
that satisfies[(I1). Then there exist a unique valfie;y) such that the solution of(8) exists globally
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if and only ifv;(zg) > ~f (o). Furthermore, for every global solution (z), there exists a constant
C > 0 such that for allz > 0,

(@) < 71(@) € nla) < 2ule) + O+ {0 Pz 17)
TT) S A= T = el ’ Bg(x, o) if x <z
where~j(x) is the solution of[(8) that corresponds to the initial comatity; (z,) and
1+4P(x) —1
ey = EAD 22 (18)
w0 g O(x) asr — 0 if s<1
Bs(x,x0) = xl/s/ 1—'/2 =< Oz |ln(x)]) asz—0if s=1 . (19)
z S
; O(x'/#) asr — 0 if s>1

In particular, lim,_.o v1(z) = 0 for every positive global solution.

Proof. The technical details of the proof will be given in Sectioneldw. We first note that solutions
can have at most one global maximum, and no local minima, laacthe global maximum can only
occur on the nullcline,.(z) as defined in[(18). Namely, if is an extremum, then

P'(ar)

B STy (%)

"

n@") =7(z"), n@@)=0 and ~+(z") = <0. (20)
These relations have the following consequences. Firkttisos of (8) with~(x¢) > 7.(z¢) cannot
have a global maximum at some < z,, nor a local minimum at such a point, and hence must decay
monotonically td) asz — 0, while satisfyingy; (x) > ~.(x) forall z € [0, zo]. Second, solutions dfi8)
with v, (x¢) < v.(xo) will have a global maximum at somg < x,, and will then decay monotonically

to 0 asx — 0, while satisfyingy; (z) > v.(z) for all z € [0, z;] by the above argument. In particular,
all solutions of [(8) can be continued as— 0 and more refined arguments (see Lemima 4.3) show that
they satisfy[(1l7) for alk: € [0, x).

The relations[(20) also show that a solution that satisfiés)) < ~.(x¢) must decrease monotonically
for all x > x4, and more refined arguments (see Lemima 4.1) will show thaetkolutions indeed
satisfy~, (z1) = 0 for some finiter; > z, and thus cannot be continuedas- oc.

Furthermore, since. is itself monotonically increasing, solutions that staithwy, (zo) = ~.(xo) +
€ with ¢ < 1 necessarily cross the nulicline at some> z,, and thus also cannot be continued
indefinitely asz — oo, see Lemma 412 below. On the other hand, when (11) holds, réhdd.1

shows that there are large enough initial conditions whosesponding solutions can be continued as
x — oo, and thus never cross the nulicline.

By the above arguments, continuity of solutions with resp@itial conditions and equatioh (110),

[(z0) = {71(z0) > 7e(wo) | Tz > o With  yi(2) < 7e(z)}
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is a single open, bounded, non-empty interval. Define np,) as the supremum dfz,). From
(10), no solution starting below? (z,) can exist globally, and all solutions starting above musy st
above the solution correspondingf(x,), and [IB) then implie$(17) as> z,. m

We conclude this section with the following corollary abthe growth of global solutions as— oc.

Corollary 2.3 Let s > 0 and assume thaP satisfies[(Ill). Then every global solution [af (8) with
vi(mo) > (o) satisfiesC; z: < v (z) < Cy z+ asz — oo for some0 < C; < Cs, while the
separatrix itself satisfies

Yelw) <71 (w) < min( lim q.(z), C )

T—00

for someC' > 0. In particular, if lim P(x) < oo, the separatrix is the only global bounded solution of

Tr—00

Proof. Let v1 (o) > (o), and consider the corresponding solutionof (8). The uppanty;(z) <
C, z follows immediately from[(B). For the lower bound, we notattfrom (10), we have

() 2 97() + (o) = i) exo( [ )z Crat

o

for someC; > 0 sincey; (zo) > (o).

As for the separatrix itself, first note that the lower bouadiiready contained in Theorém 2.2. If
lim, o P(z) = 0o, the upper bound;(z) < C = follows again from[(D). Ifim, .., P(z) < oo, we
first sety,, = lim, ., 7.(x) < co. Consider then(xy) = 7. The corresponding solution (x) of
(@) must initially increase above,, for = sufficiently close tac, since

% T +7§o _ P(x0> - hmm—»oo P(l’) _ P('TO)

= >0.
dx =10 ST0Yoo STV oo

Once the solution is abowve,, it cannot have a local maximum at an> x, and hence can be continued
asr — oo. If lim, ., P(z) < oo, we thus have a one parameter family of global solutiongxed
by x¢, the point at whichy, (zy) = 7. Since the separatrix is the smallest global solution, we get
Y (z) < v for all z > 0, which concludes the proom

3 Therunning coupling

We now interpret the above analysis in view of the runninghef¢oupling constant. With appropriate
conventions this introduces the second differential eqoat

dx

= B(L)). 1)
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In the single equation case, combinihgl(21) with (8), we ihttae following system

dz

dL

d% )
- _p
11 71 71 5

which we supplement with initial conditions at= 0:

=S5TM, (22)

z(L=0)=xo and v (L =0) = yi(zo) -

Before considering the fate of non-global solutions[df (8% first explain how (almost all) global
solutions of [(B) are Landau poles.

Theorem 3.1 Assume thaP is aC?, positive, everywhere increasing function that satisfldd.( The
separatrixy; is a Landau pole if and only if

< dz o 2dz
Lp) = / 27e(z) / I riPe) 1) -

All other global solutions of(8) are Landau poles, irrespree of the value of:(P).

Proof. We first note that global solutions ¢f| (8) give solutions[df{2ia the reparametrization

I /“L’ A
0 5271(2)

In particular, a global solution of (22) with(L = 0) = =, andvy,(L = 0) = () reaches = oo at

. & dz
L ‘/mo i) @3)

From Corollary[[2.B), we know that any global solution [df {Bat is not the separatrix grows at least
like 2+ asz — oo. In particular, the integral in the r.h.s. 6T {23) convergesome finiteL*, and~; (L)
diverges ad, — L*, signaling that this solution is a Landau pole. By Corolldr§, the separatrix is
also a Landau pole iP(z) grows fast enough as— oo so thatL(P) < co.

If lim, .., P(x) < oo, then Corollary[(213) shows that < lim, .., v.(x) < oo, which makes the
integral in the r.h.s. of (23) divergent. In particular, geparatrix is the only global solution ¢f (8) that
is nota Landau pole when written in terms of the running couplindgn sectior # below, we will show
that this actually holds not only ifm, .., P(x) < oo but also for allP that grow sufficiently slowly
asxr — oo so thatl(P) = oco. m

Consider nowy, (x) a solution of[(8) that only exist on maximal finite interva& [0, 2*]. By the results

of sectiori 2, we necessarily haygz*) = 0. As is apparent fromi_(22), the introduction of the running
coupling removes the singularity ¢fl(8)at= 0. There is thus a 1-1 correspondence between solutions
of (8) that exist only on finite intervals with the family oflstions of (22) withz(L = 0) = 2* and

7 (L = 0) = 0. More precisely, we have the

13



Theorem 3.2 For eachz* > 0, there is a unique solution df (P2) that satisfigd. = 0) = 2* and
v (L = 0) = 0. This solution is an heteroclinic orbit of the systeml (2X)mecting the two equilibrium
points(z,v;) = (0,0) at L = —oo to (z,7;) = (0,—1) at L = oc.

Note that this theorem implies that solutions[df (8) thaseanly on finite intervals are actually double-
valued as functions of, but exists for allL € R. Note that in particular, such solutions come back to
x = 0 as adipole-ghost [21]: we gained a full integer in scalinggivefor the photon, see left panel of
figure[3.

Proof. Fix z* > 0, and consider the solution ¢f (22) that satisfi¢s = 0) = 2* andv,(L = 0) = 0.

Note first that the vector field associated with|(22) is pediariar to ther-axis, and crosses the= z*
vertical line from left to right above the-axis, see also the right panel of figlile 3. As a consequence,
and by local existence of solutions &f (22), there exisfmige L~ < 0 such thaty;(L~) > 0 and

0 < z(L7) < z*. By the results of sectiori](2), the solution 6f (8) with = z(L~) > 0 and

7 (xo) = m(x(L7)) > 0 can be extended up to = 0 and satisfiesy; () ~ 7.(z) asz — 0. In
particular, the solution of (22) satisfying L = 0) = 2* and~;(L = 0) = 0 tends to(x,~;) = (0,0)

asL — —oo since

x(L™) dz
L:L‘—/ ———— — —o00 as z(L)—0.
o(L) S7 7(2)

We now prove thatz,v,) — (0,—1) asL — oo. Again, since the vector field associated with| (22)
is perpendicular to the-axis, and crosses the= z* vertical line from right to left below the-axis,
there exists a finitd.* > 0 such that-1 < (L") < 0 and0 < z(L*) < a* (the valuey, (L") is
the dashed line on the right panel of figlte 3). Note then ti@véctor field points inside the rectangle
R = [0,2*] x [m(LT),—1 — ~.(z*)], except on they; axis where it is tangent and points towards
(x,m) = (0,—1), see also the right panel of figtire 3. It thus follows that

0<z(L)<z* and —1—.(z") <y(L)<n(LT) VL> L.
In particular,
—c = —sa(1+7e(a%)) <
for somec,, ¢, > 0, and thus
o(L)e ) < (L) < a(LH)em o)

which shows that:(L) — 0 asL — oco. Since the vector field points towar¢s, v;) = (0, —1) on the
~ axis, it also follows that; (L) — —1 asL — oo, and concludes the prool

4 Technical proofs

This section contains the technical details needed for ptetmproof of Theorem 2.2 above. Through-
out this section, we assunfeis aC?, positive, strictly increasing function af, which satisfied(11).

14
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71 ()

—1—ye(z*) N

—1—c(x)

Figure 3: P(x) = x, s = 1 illustrating that, as a function df, non-global solutions of {8) turn around
and head te-1 asL — .

Our first step is to show that solutions that start below tHiekne ~.(xy) cannot be continued as—
oo. Note that this does not follow directly from (20), singg ) could a priori decrease indefinitely as
x — oo without ever reaching; = 0.

Lemmad4.l Let(xy) < 7.(zo) then the solution of (8) satisfies(x;) = 0 for some finiter; > .

Proof. Let v, (zg) = 7.(zo) — € for somel < e < 7.(xy). We first note thaty,(z) < ~;(zo) for all
x > xp such that the solution exists, otherwise there would be @ lminimum at some* € [z, z],
which is precluded by (20). Sind@(x) is increasing, we find

dy(z)  _ elwo) = €+ (e(wo) = €)* = Play)

de — s2(7Ve(20) — €)
_6(1 + 27.(xg) —€) _ _R(xo, €)
o) -9 @ &9

for someR(zy, €) > 0. Integrating [(24) oriz,, x] gives

() < mlao) - Rleose) [ 2 = 5u(wo) — ¢ - Riag, ) In (3) ,

e z Zo

which shows thaty; (x;) = 0 for somez; < zqexp (7;%((2%)6‘;) < oo as claimed.m
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Our next step is to show that solutions that start close emdougt above the nulicline at, cross the
nullcline at somer > z,, and thus cannot be continuedzas- oo by Lemmd4.11.

Lemma 4.2 Assumey;(zy) = 7.(xo) + 2. There exist > 0 sufficiently small such thatif, (z) solves
@), thenmy, (zo + 0) < ve(zo + 9).

Proof. First note that by[(9)y:(z) < (xio)l/s(l + 71 (x)) — 1. Under the assumption that(z,) =
Ye(o) + 6%, we thus find
sup  yi(x) < ve(xo) + C0

z€|xo,20+9]
for some constant’ = C'(xzo, s) > 0. We now use the following estimate gity,(z), z)

Yelzo) + C6 + (Ye(wg) + C6)? — P(x0)
® ool < s70(7e(m0) 1 C0)

o) 1
< — 24— ) < M)
~ sx0 ( + %(xo)vLCé) -

for some constamt/ = M(xq, s) > 0. We thus find, upon integration df|(8) that

Y1(z0 + 8) < Yelwo) + (1 + M)S>. (25)
Now by Taylor’s theorem, there exists a constaitt:,) such that
e(wo 4 8) > Ye(0) + 7i(0)d + N(0)8” . (26)
Sincev.(xy) > 0, we can chooseé sufficiently small so that
(14 M — N(20))8 < +.(x0)3 .

which implies thaty; (z¢ + ) < v.(xo + §) and completes the prooh

Our next step is to show that every local solution[df (8) casdrinued ag: — 0. We will also show
that all solutions behave asymptotically likgx) asz — 0.

Lemma4.3 Let~,(z) be a (local) solution of(8) with, (x¢) > 0. Then that solution can be continued
for all z € [0,z0]. Furthermore, there exist < z; < zy (With z; = xy < 71(29) > 7.(x)) and

a constant” > 0 such thaty,(z) < vi(z) < e(x) + Cz+ + CB,(z, z,) for all z € [0, ], where
Bg(x,x1) is defined in[(19).

Proof. We first note thaty; (z,) > 0 guarantees that the solution exists locally around We now
prove that it satisfies
min(7e(z),71(20)) < 71 (z) < max(ve(o), 71(20)) Va € [0, 2], (27)
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and hence can be continued upite= 0. Recall from [[20) that a solution can have at most one global
maximum, and no local minimum. We now consider two casg%;0) > 7.(xo) andvy;(zg) < ve(o)-

In the first case, we claim that

Y1(z0) > ve(z0) = 7e(x) < Milx) <Ml0) Var € [0,20] - (28)

Namely, ify;(xq) > 7.(z0), theny, (x) must decrease asdecreases, at least for alsufficiently close

to xo with = < xy. This follows because either (x¢) > 0 if ~1(xg) > v.(xo) OF 71 (z9) = 0 and

Y (xg) < 01f v1(z0) = ve(xp)). We thus get that, (x) < 71(x) holds for all0 < = < z, since the
solution cannot have a local minimum. Also, the solutionmmdrhave a maximum at; < x, either,
since at that maximumy, (1) < ~1(zo), which would require a local minimum at some intermediate
valuez* € (zy,z0), and hencey, (z) > ~.(z) for all z < .

In the casey,(xy) < 7.(zo), we claim that there exigt < z; < z, such thaty,(z1) = v.(x1),

or, in other words, the solution crosses the nullcline atesam < z,. Namely, the solution must
increase initially ag: decreases (sincg (z,) < 0). Since the solution cannot have a local minimum,
m(x) > v1(xo) as long as it is below the nulicline, and hence it must croeqthiicline (and have a
global maximum) at some; € (7. '(v1(z0)), zo). In particular, the global maximum (z;) satisfies

7 (x1) < 7.(z0) Sincer, is strictly increasing. We thus find

Y1(zo) < 71(z) < ve(w0) Vi € 211, 70] -
Sincey (z1) = v.(x1), we apply [(28) withe € [0, z1] and get (using alsg.(z1) < 7.(xo)) that
Ye(@) < (7)) < 1(71) < 7e(w0) Vo € [0,24] .

This completes the proof df (27).

Note now that in all cases, there exisis< xz, such thaty, (x) > ~.(x) forall x € [0, z41]. In particular,

51((22)) < 5((‘?) =1+ .(2) forall z € [0, z,]. Let nowz € [0, z;]. From [9), we find
1/s 1
x 1/s 1 +9.(2)
Ti(z) < <x—1> (T+m(z1)) -1+ /x s 9% (29)
which, after integrating by parts, gives
1/s 1 A
i z
7(e) < (;) (nar) = o)) + )+ [ 2 (30)

Since/(z) < C forall z € [0, 2], we gety, () < v.(x) + Cxs + CBy(z,x,) forall z € [0, 4],
which completes the proom

We now have all the tools to prove Theorem| 2.2, which we restat in the form

Theorem 4.4 Assume thaf(11) holds. The set
I(zo) = {n(x0) > ve(2o) | Iz > xo With 71 (z) <7e(2)}
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is a single, open, non-empty and bounded interval. Morethessolutiom; (x) of (8) with

71 (o) = sup(I(2o))

is the smallest solution that exists for alle [0, c0), and its graph defines the separatrix, in the sense
that any global solution (x) of (8) satisfies

B(x) if z < xg

1
0 if x> ux (31)

1(2) < (@) < lw) < (@) + Ot +

forall x € [0, c0).

Proof. We first note that by Lemnmia4.Bx,) # (), and by Lemm&a4]1 solutions that stariim,) cannot
be continued as — oo. Since global solutions exist by Theorém|2.1 forallx,) large enoughi(z)

is bounded above. Alsd{z,) is open by continuity of solutions with respect to initialnclitions.
Consider nowy, (z) and~,(z), to be two solutions of (8), for which,.(z¢) < 72(x¢) < 71(x0) and
71 (o) € I(xo). We now claim thaty,(z) must also be ifi(xy). Namely, sincey; (zo) € 1(xo), there
must be anr; > x, such thaty,(z;) < 7.(z1). By (@Q), we havey,(x) < 7 (z) as long as both
solutions exist. In particular, eithes(z) exists on[zy, z1], and [10) shows that,(z1) < 71 (z1) <
Ye(x1) and thusy,(zg) € I(xg), or 7o (z) cannot be continued up to= z; and since it cannot diverge
to infinity by (13), we must have,(z,) = 0 for somer, < x1, which also implies thafs () € 1(xg).
This shows thal(z,) is a single open interval. We thus define

71 (o) = sup(I(zo)) -

Evidently,v7(zo) ¢ I(x0), and so the corresponding solutign(z) of (@) satisfiesy.(z) < 7f(x) <
Cx'/s for all x > x, (the lower bound follows by definition dfz,), the upper bound by (13)), while
Lemma4.3 shows that (z) exists for allz € [0, 2] and satisfies.(z) < vi(z) < y.(z) + Cxl/* +
CBg(z, xo) for all x € [0, x0]. Using [10) and(13) again shows that the solution corredipgrto any
71 (x0) > 5 (o) can also be continued as— oo and satisfied (31)m

We conclude this section with a last result concerning tloavtr of the separatrix in the case whéere
is a slowly increasing function.

Lemma4.5 Assume thaP satisfies

(32)

/°° dz _/°° 2dz o
o ZVC(Z) x0 Z\/1+4P(Z)—]_ ’

for somez, > 0. Then there exists a constafit > 0 such that the separatrix; satisfiesy.(z) <
7 () < 7e(x) + Cln(z) asz — oo. In particular,

/°° dz Cw
w 271(2) '
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Proof. We first derive from[(32) the following bounds on the asymig®tf P(z) andP’'(z) asx — oo:

P'(z)x

Ple) < Ciln@)" and ——=tems

< Cyln(z) .

The first one is obvious, and assumirﬁ%f() > C,In(z) gives P(z) > Cy(1 + In(z))* which
contradicts[(32). In particulan_(IL1) is satisfied for ali> 0, and we are guaranteed by Theoleni 4.4

that the separatrix; exists and satisfieg (x) > ~.(z) for all z > 0.

Let now7;(x) = v.(x) + C In(z) for someC > 0, and consider the one parameter family of solutions
of (8) obtained by fixingy; (x¢) = 71 (z) for differentz, > 1. At least, those solutions that start with
xo Sufficiently large can be extendedas- oo, since

i%(xo) < %71(%) = Ti(wo) +71(w0)* — Plwo) ’

dx 5271 (o)
because
i%(ﬂfo) = —C + CZ ln(xO) as rop — o0
dz T
(o) +W(_$0)2 — P(x9) _ 2C In(x) O |
s071(Z0) S Zo

This shows that a solution that starts on the cufie) = v.(z) + C In(z) atx = x, cannot cross it at
anyx with z > xo, and thus is a global solution. In particular, the sepacatriist be smaller than any
of these solutions, and we get(z) < v.(x) + C'In(z). From this last estimate, we get immediately

that
/OO dz >1min</oo dz /OO dz )—oo
x 2N(2) T 2 e 27e(2) " Juy 2CIn(z) ’

which completes the proo
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