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Abstract

Using a diagrammatic reformulation of Bayes’ theorem, we provide a necessary and suf-
ficient condition for the existence of Bayesian inference in the setting of finite-dimensional
C*-algebras. In other words, we prove an analogue of Bayes’ theorem in the joint classical
and quantum context. Our analogue is justified by recent advances in categorical probabil-
ity theory, which have provided an abstract formulation of the classical Bayes’ theorem. In
the process, we further develop non-commutative almost everywhere equivalence and il-
lustrate its important role in non-commutative Bayesian inversion. The construction of such
Bayesian inverses, when they exist, involves solving a positive semidefinite matrix comple-
tion problem for the Choi matrix. This gives a solution to the open problem of constructing
Bayesian inversion for completely positive unital maps acting on density matrices that do
not have full support. We illustrate how the procedure works for several examples relevant
to quantum information theory.
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1 Introduction and outline

Bayesian inference is an act of inferring likelihoods based on information that becomes avail-
able to us. It can be used to help understand how we make decisions and as a consequence
assist in constructing forms of artificial intelligence. Bayesian inference has been a key ingredi-
ent in data analysis and machine learning algorithms [5,47]. Occasionally, one needs to manage
and analyze enormous amounts of data for artificial intelligence. Since certain tasks have al-
gorithms that can be performed on quantum computers more quickly than currently known
algorithms on classical computers [45], these two aspects suggest the importance of a suitable
quantum analogue of Bayesian inference [43]. Although there have been numerous approaches
to formulating quantum Bayesian inference [1,2,10,12,23,32,33,50], each one has its pros and
cons and there does not yet seem to be a standard method. More importantly, the case of density
matrices without full support (or more generally non-faithful states) is, in our opinion, a subtle,
yet crucial, aspect to quantum Bayesian inference that has not been addressed adequately in
the literature. The present paper aims to fill that gap.

We propose an inherently process-theoretic and diagrammatic formulation of quantum
Bayesian inference [41]. The approach is based on category theory, which has been providing
an interesting perspective on the foundations of probability theory [4,7,9,11,13,16,17,19,21,22,
24,31,39], and more recently quantum probability [10, 14,23,41] and the information-theoretic
foundations of quantum mechanics [6]. The categorical perspective provides a formulation of
Bayes’ theorem regarding the existence of a certain morphism satisfying a condition equiva-
lent to Bayes’ rule in the category of stochastic maps (morphisms are interpreted as a condi-
tional probabilities in this context). This formulation can be used to define Bayesian inference
in quantum or classical Markov categories, where many of the essential features of probabilis-
tic concepts have been categorified [7,16,41]. In the present paper, we analyze the existence
and almost everywhere uniqueness properties of Bayesian inference in the category of finite-
dimensional C*-algebras and completely positive unital (CPU) maps. This category contains
both classical and quantum-mechanical systems. It includes a general class of evolutions of
open quantum systems, and it includes positive-operator valued measures and instruments
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(which can be formulated as certain CPU maps between C*-algebras that are not necessarily
matrix factors but direct sums of matrix algebras). When restricted to the commutative alge-
bras, the notion reproduces the standard Bayes’ theorem.

We state here the definition of a Bayesian inverse to highlight our main theorem afterwards.

Definition 1.1. Let B X+ A be a CPU map between finite-dimensional C*-algebras, let A ~~ C
be a state, and set & := w o F. A Bayesian inverse of (F, w) isa CPU map A £, B such that!

BBt g oB-UL 4oa
ws f— KA , (].2)
B~ € g A
ie.
£(G(A)B) = w(AF(B)) (1.3)

forall A € Aand B € B.

Key features of classical Bayesian inference are its almost everywhere (a.e.) uniqueness, its
compositionality for iterated processes, and its reversibility. Non-commutative a.e. equivalence
was recently introduced and studied in [42], while a categorical notion of a.e. equivalence was
introduced in [7]. The two were shown to coincide for all C*-algebras algebras in [41]. In the
present paper, we continue this development of non-commutative a.e. equivalence and indicate
its subtle aspects for constructing non-commutative Bayesian inference.

Our main result is Theorem 5.62, which provides a necessary and sufficient condition for
(F, w) to have a CPU Bayesian inverse when A = M,,,(C) and B = M, (C) are matrix algebras
(Theorem 6.22 generalizes this to arbitrary finite-dimensional C*-algebras). The condition is
expressed in terms of a certain Choi matrix and also provides a construction of a Bayesian in-
verse. Proposition 5.1 provides a formula for any linear map G satisfying (1.3) on the support of
the state & := w o F with no additional assumptions whatsoever. However, this formula alone
does not specify G on the full algebra and one must extend it to guarantee unitality (unitality is
analogous to probability preservation). Requiring G to be *-preserving provides several addi-
tional constraints that are strong enough to demand complete positivity on the supported cor-
ner (cf. Definition 5.11) of & and this (along with several other equivalent conditions) is proved
in Proposition 5.12. Corollary 5.32 provides a Kraus decomposition for Bayesian inverses on
the supported corner and provides a direct relationship between our Bayesian inverses and
those of Leifer [10, 32, 33]. However, this formula only specifies the Bayesian inverse on the
supported corner. It turns out to be a non-trivial requirement for a CPU extension to the full
algebra. This requirement is explained in terms of a positive semidefinite matrix completion
problem whose solution is provided in Theorem 5.62.

The result is a bit technical to state here in the introduction, but the rough idea is the fol-
lowing. The Choi matrix of the Bayesian inverse breaks up into four parts based on the support

The equals sign in this diagram indicates that the diagram commutes.

3



of £. Let 2 be the Choi matrix on the supported corner of &, 9 is its pseudoinverse, and B the
part of the Choi matrix that is on the support of & but off the supported corner. These are both
completely determined by the Bayes condition (and require no additional assumption for their
existence). Provided that 2T = 21 (2 is self-adjoint), a completion exists if and only if the par-
tial trace of BAB (which is necessarily a positive semidefinite matrix) is bounded from above
by the orthogonal complement of the support of £&. Once this completion problem condition
is satisfied, several CPU Bayesian inverses may exist, all of them being a.e. equivalent to one
another. In many cases, such as the case of disintegrations (when F is a *-homomorphism) or
wave collapse, the extension is unique. However, they do not always exist and one may find
that the partial trace of BB is too large. This provides a subtle aspect to our understanding
of Bayesian inference in the quantum setting. Further investigation and comparison to physical
phenomena is necessary.

The outline of the paper is as follows. Section 2 reviews stochastic maps, disintegrations,
diagrammatic Bayesian inversion, and the standard Bayes’ theorem from a categorical per-
spective. Section 3 reviews non-commutative analogues of these notions for finite-dimensional
C*-algebras. Section 4 goes over several physically relevant examples. In particular, we find
a surprising connection to Kribs” interaction algebra and fixed point set theorem [30] in the
context of finding Bayesian inverses for positive operator-valued measures. Section 5 is the
main section of this paper and contains our main theorem for finding necessary and sufficient
conditions for Bayesian inversion on matrix algebras, the important results leading to it, and
many consequences. Furthermore, we illustrate in several examples how to construct Bayesian
inverses via a matrix completion problem, which we solve. We use this construction to reprove
our disintegration theorem [42], which we know must happen due to the fact that disintegra-
tions are special kinds of Bayesian inverses [41]. Section 6 generalizes our version of Bayes’
theorem to finite-dimensional C*-algebras (direct sums of matrix algebras). Appendix A con-
tains a lemma for permuting rows and columns of a partially defined matrix in a way that
allows us to apply a theorem for positive semidefinite matrix completion.

2 Classical disintegration and Bayes’ theorem

What should quantum Bayesian inference look like? We will answer this question by first
studying the classical case from the category-theoretic perspective. We recall the category
FinStoch of finite sets and stochastic maps [3, 16,42]. The objects are finite sets and the mor-
phisms are stochastic maps (also known as stochastic matrices or Markov kernels, though the
latter name is usually reserved when working on sets of infinite cardinality). In more detail, if X

and Y are finite sets, a stochastic map X Loy associating a probability measure fx on Y to each
x € X (all finite sets will be equipped with the discrete o-algebra). The value of this probability
measure on y € Y will be denoted by fyx. Stochastic maps are drawn with squiggly arrows
to distinguish them from deterministic maps, which are stochastic maps assigning Dirac delta



measures to each point in the domain.? The latter are drawn with straight arrows — and corre-
spond to functions (the relationship is described thoroughly in [40]). A single element set will

be denoted by {e}. A stochastic map {e} 25 X encodes a probability measure on X. Stochastic
maps X Loy Z canbe composed via the Chapman-Kolmogorov equation

(gof)ax =) gayfyx- (2.1)
yeY

The category FinStoch also has the following monoidal structure. Let X -+ X’ and Y ~%+ Y be

two stochastic maps. Their product is the stochastic map X x Y 2595 X" % Y' defined by

(X,Y) =) (X,y) — <(X/,Y/) = (X,,y/) — (f X g)(x’,y’)(x,y) = X'ng’y)' (22)
This product reproduces the usual product of functions as the following example shows.

Example 2.3. Let X L X" and Y & Y’ be functions viewed as stochastic maps (the measure
associated to each point is a Dirac delta measure). Their product evaluated on elements is
given by

(F X 9yiey) = FrxGyry = it Byrgy) = Sy irixov) = Oty ixginy)  (24)
where the last expression f x g is the usual Cartesian product of functions.

Remark 2.5. The cartesian product of finite sets and the product of stochastic maps turns
FinStoch into a symmetric monoidal category. The functor FinSet — FinStoch preserves this
monoidal structure. Here, FinSet is the category of finite sets and functions with the cartesian
product as the monoidal structure.

Due to this symmetric monoidal structure, a graphical calculus can be used [7,13]. We will
only use these string diagrams on occasion (mainly in remarks and proofs), and it will not be
essential that the reader is familiar with the notation. Strings parallel to each other represent
taking the product as in (2.2). We will occasionally keep the string-diagram notation next to
the usual (functional) diagrammatic notation as to keep our work more accessible. We will also
occasionally label wires if there is a potential for confusion.

There are two important stochastic maps (functions, in fact) associated to every finite set X.

These are
XxX  (xx) {o} -
Ax and Ix . (2.6)
A bl T

R—= 0

2The Dirac delta measure 8, aty € Y is given by 8 (E) = 1 if y € E and 0 otherwise for all measurable subsets
E C Y. Since Y is finite, 5 ({y'}) will be written as 8,,,,.



These maps are called copy and discard, respectively. When multiple sets are in use, these
string diagrams may be labelled. Discard can be used to define projections [7]. Namely,

X X

t= -
= X x{e} X ) (2.7)
TidXX!X TY

XxY XxY

where the isomorphism is the one given by (x, ®) — x. A similar projection X x Y =% Y can be
defined onto Y using !x x idy. Copy and discard also satisfy many important relations including
commutativity of

[} x X — = X~—Xx{o} X x X ——idx xAx— X x X x X
!xxTidX Ttx/ ijx\‘x idXTx!X and ATX AXxTidX , (2.8)
TN >|< |

X X X=<=Ax— X —Ax—=Xx X Ax X x X

which, in the string diagram notation, translate to

i):‘:\j and \Q:W (2.9)

respectively. FinStoch also satisfies

Tov =KW Ti- L ey sy =L 0=y e

where I := {o}. These diagrammatic relations have been used to define sufficient categorical
structure that enables one to make sense of disintegration and Bayesian inference in the classi-
cal (as opposed to the quantum) setting [7, 16]. Categories with such structure are called (clas-
sical) Markov categories [16]. Quantum Markov categories drop the last condition in (2.10) and
replace it with a suitable condition that reflects the relation (ab)* = b*a* in C*-algebras [41]. As
such, many (though not all) of the diagrammatic manipulations from the theory of Markov cat-
egories can also be done in this more general setting. We will not assume the reader is familiar
with these recent developments.

Furthermore, notice that every stochastic map X L5 Y satisfies

{o}
V\y , i.e.
Y

f

= x|, ie ) fix=1 VxeX (2.11)
yey

X

This condition is called causality in the literature [7,27,44]. Hence, such morphisms will be
called causal. Causality of a morphism in this case means that it is probability-preserving.

6



An important notion in probability theory is that of almost everywhere equivalence. This
has recently been defined in the non-commutative setting [42] and in the general categorical set-
ting [7]. The notion will be especially crucial in specifying the uniqueness of Bayesian inference
in the non-commutative setting.

Definition 2.12. Let X and Y be finite sets, let {o} Ly Xbea probability measure on X, and let
f, g : X ~>Y be stochastic maps. Then f is said to be p-a.e. equivalent to g iff

Ax
X———=Xx X idy xf X Y

{o} | XxY, e

= . (213)
X o X g

Ax

In this case, the notation f =9 will be used. As an equation, f = g says fyxPx = gyxPx for all
x€Xandy €Y.

Remark 2.14. Although condition (2.13) looks asymmetric, one can show (2.13) commutes if
and only if

A
b X=X XX _fridy Y X
(o} || - YxX, ie = . (2.15)
p gxid
X X x X8 N

Remark 2.16. That the notion of a.e. equivalence agrees with the usual definition from proba-
bility theory will be described in Section 5. In fact, Definition 2.12 agrees with both the classical
(commutative) and quantum (non-commutative) notions of a.e. equivalence, the latter of which
was introduced recently and independently in [42]. The equivalence between these two defini-
tions in the quantum context is actually quite subtle. If one restricts to positive (or more gener-
ally *-preserving) unital maps, then the notions of a.e. equivalence are all equivalent. However,
if one uses linear maps (that are not necessarily *-preserving), then the conditions (2.13) and
(2.15) are not equivalent in general [41, Remark 5.10]. We will see later that Bayesian inverses
always exist as linear unital maps, but not necessarily as *-preserving linear maps, so choosing
an appropriate definition of a.e. equivalence will be important.

Definition 2.17. Let (X,p) and (Y, q) be probability spaces and let f : X — Y be a function
such that g = f o p. Such an f is said to be measure/probability-preserving. A disintegration of
(f,p, q) is a stochastic map Y -~ X such that

{o} X
:f\\l and /\V\ , (2.18)
XY Y ijy Y

the latter diagram signifying commutativity g-a.e. A disintegration is also called a regular
conditional probability and an optimal hypothesis.
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The conditions of a disintegration from (2.18) can be drawn using string diagrams as

Remark 2.20. Our definition of a disintegration is not exactly the same as the one of Cho and
Jacobs [7]. Our definition is based on Appendix A in our work on non-commutative disintegra-
tions [42], which was meant to be an exact diagrammatic formulation of the standard notion of
disintegration from measure theory [15, Section 452].

- , (2.19)

respectively.

Theorem 2.21. Let (X, p) and (Y, q) be finite sets equipped with probability measures p and q. Let f :
X — Y be a measure-preserving function. Then there exists a (q-a.e.) unique disintegration v : Y ~>X

of (f,p, q).

A formula for the disintegration is

d if q, >0

1/IX| if gy =0

In fact, one can use any probability measure for ry when qy = 0 (the uniform probability
measure is not required).

Proof of Theorem 2.21. This is a standard result. The present formulation is proved in [42, Sec-
tion 2.2]. ]

Disintegrations are special kinds of Bayesian inverses, which will be explained later (see
also [41], which goes into detail regarding their relationship to each other). The following
theorem is a categorical reformulation of Bayes’ theorem.

Theorem 2.23 (Bayes’ theorem). Let X and Y be finite sets. Given a probability measure {e} B x

and a stochastic map X 55 Y, there exists a stochastic map Y ~> X such that

Ay —_— Ax , (224)

YXYmXXYWXXX

where q := f o p is the pushforward of the probability measure p along f. Furthermore, for any other g’
satisfying this condition, g = g’



Before we provide the short proof of Bayes’ theorem, we first justify why we call this Bayes’
theorem in Remark 2.29 after establishing some terminology in Definition 2.25. Furthermore,
our formulation of Bayes’ theorem slightly differs from other theorems with a similar name in
the literature on categorical probability theory, which focus on the relationship between joint
probability distributions and conditionals. We will explain more about this distinction in Re-
mark 2.46. However, the true justification for why we use this version of Bayes’ theorem will
only become more apparent when we study the quantum analogue, where our formulation
seems to become more suitable for reasons that will be explained in Remark 5.96.

Definition 2.25. Let f and p be as in Theorem 2.23, a stochastic map g satisfying commutativity
of (2.24) is called a Bayesian inverse of (f,p) or a Bayesian inference for (f,p). The diagram
in (2.24) is referred to as Bayes’ diagram or the Bayes condition. In the language of Bayesian
statistics, the measure p is sometimes called the prior probability, the stochastic map f is called
the likelihood, the measure q is called the marginal likelihood, and the stochastic map g is
called the weighted likelihood/posterior probability. It is helpful to summarize this diagram-
matically as

{o}

prior=p gq=marginal likelihood . (2.26)

likelihood
f

W

posterior

X Y

If one obtains new evidence in the form of a probability measure {e} ~A5 Y, then the Bayesian
update® is the probability measure on X obtained from the composite {e} Aoy x

Remark 2.27. In string diagram notation, the Bayes condition is expressed as

X Y

(2.28)

Y

Remark 2.29. Before we prove Bayes’ theorem, we should at least explain how this diagram-
matic formulation is equivalent to the usual formulation of Bayes’ theorem, which is commonly
written as

P(A|B)P(B) = P(BJA)P(A) (2.30)
with A C Xand B C Y [28, Chapter 1 Section 4]. First, we will show how (2.24) reproduces
P(xly)P(y) = P(ylx)P(x), (2.31)

where P(x) is the probability of x € X (and similarly for P(y)) and P(x|y) is the conditional
probability, namely the probability of x occurring given that y has occurred (and similarly

3Technically, this is called Jeffrey conditioning in this context since the marginal likelihood is a probability
measure in general and not a Dirac measure [24].



for P(ylx)). For us, the latter is precisely a stochastic map. To reconstruct this equation, let
{o} 9T, ¥ be the pushforward probability measure on Y. This means
dy = Z fyxPx Vyey. (2.32)
xeX

Working out the right-hand-side of the diagram in (2.24) gives a probability measure on X x Y.
Evaluating this measure on a ‘rectangular” subset of the form A x B gives (we are using the
associativity of the composition here freely)

((ldx X f) o (AX Op)) (A X B) = Z ((ldx X f)(X/,X”)(A X B))(AX OP)(X/,X”)

x/ x"eX
= Z XA Z o (x! x")Ax (x

x/ x"eX xeX (2 33)
= Z XA )5x xOx "xPx

x,x/ x"eX
= Z fx(B)px

XEA

Thus, commutativity of (2.24) says

> gy(A)gy =) (B (2.34)

yeB XEA

In the case that A := {x} and B := {y} are singletons, this becomes

Ixy Gy = fyxPx V(x,y) € XxY. (2.35)

If we make the definitions

P(xly) := gxy, P(y) :== qy, P(ylx) :=fyx, and P(x):=py, (2.36)

this indeed reproduces (2.31). To reproduce (2.30), we need to define all the expressions. Nor-
mally, P(B|A), conditioning on an event, is defined as [28, Chapter 1 Section 4]

P(ANB)

P(BIA) =~

(2.37)

assuming P(A) # 0, and similarly for P(A|B). However, this does not make sense for our more
general setup where A and B are subsets of difference spaces. We therefore define the symbol

P(AMB) Z fx(B)px = Z fyxPx- (2.38)
XEA yeB

The meaning of P(A 1 B) is almost the same as P(A N B). The only difference is that now the
sets A and B are subsets of different sets, where the conditional probability f has a codomain
different from its domain. First, one uses p to describe the probability of A occurring and uses
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it to weight the probability that B occurs as made possible by f, which is motivated by the

following sketch
Y X
. f . P
LN SN [

We therefore define P(AMB)
— — Px

PBIA) = —5ay = ; S () (2.39)
provided P(A) # 0, which shows how the conditional probability P(B|A) is a convex combi-
nation of the fx(B) weighted by the normalized probability distribution 5% on A. A similar
situation holds for q, g, and B. By these definitions and (2.33), we obtain the standard Bayes’
theorem (2.30) provided p(A) and q(B) are non-zero. One upshot of our diagrammatic perspec-
tive is that it avoids the issue of measure zero in the statement of the theorem and relegates it
to the uniqueness of the associated Bayesian inverse. A much simpler derivation of (2.30) will

be given from the C*-algebraic perspective later in Example 3.32.

Proof of Bayes’ theorem. The existence of a Bayesian inverse is guaranteed by the formula

_ {fyxpx/qy if qy > 0
yx -

. (2.40)
1/1X| if g, =0

Almost everywhere uniqueness of a Bayesian inverse is immediate from this formula, but it
can also be seen from the string diagram perspective.* To see this, let g’ : Y ~~X be another
Bayesian inverse of f. Then

= . (2.41)

The first equality holds because g’ is a Bayesian inverse of f and the second holds because g is
a Bayesian inverse of f. n

“The reader should appreciate how simple this proof is with Cho-Jacobs’ carefully chosen definition of a.e.
equivalence. It is as if the notion of a.e. equivalence was built for Bayesian inference! The same proof will work
in the infinite-dimensional setting as well as the quantum setting. Compare, for instance, a typically standard
proof from measure theory as in [49, Proposition 3.2]. Also compare the proof of uniqueness here with the proof
of uniqueness for non-commutative disintegrations [42, Theorem 5.1], which is closely related to the notion of
Bayesian inverses [41].
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Example 2.42. A simple example will illustrate why in practice one distinguishes between the
sets X and Y. Suppose I go to the grocery store and that my probability of going in a given week
depends on whether or not there is a good sale. In this case, we can let X := {sale, no sale} and
Y := {Igo,I don’t go}. Suppose, further, that the statistics for whether there is a good sale in
a given week is known (perhaps based on data and averaged out). This is the prior. Suppose
Psale = 0.3 (and hence py, sa1e = 0.7) and also suppose if there is a sale, I am 90% likely to go,
whereas, if there is no sale, I am 60% likely go to. These statistics are represented by a stochastic
map f : X ~>Y and define the likelihood. They can be used to deduce the probability of me
going to the store this week

ngo - 1:I go,salepsale + fI g0,Nn0 salePno sale = (0-9)(0-3) + (0-6)(0-7) = 0.69, (2-43)

which defines the marginal likelihood {e} %5 Y. Now, if you see me at the grocery store in
a given week (the evidence), is it more likely that there is a sale this week? Based on this
observation, you can infer that the probability of there being a sale has increased. Your Bayesian
updated hypothesis based on seeing me there is now

fy gosalePsale (0.9)(0.3)
q1go 0.69

Jsale I go — ~ 0.391. (2.44)

Similarly, if you know that I did not go to the store this week, it is less likely that there is a sale,
and your updated hypothesis is

fI don’t go,salepsale . (0.1) (0.3)

- ~ 0.097. (2.45)
q1don’t go 0.31

JsaleIdont go —

Remark 2.46. Bayes’ theorem has many categorical formulations. We will comment on sev-
eral such formulations, ones that we are aware of that seem closely related to ours. Cul-
bertson and Sturtz were the first to use category theory to model Bayesian statistical infer-
ence. They proved a version of Bayes’ theorem that constructs conditionals from joint prob-
ability measures [11, Theorem 3.2]. Note that their equation (19) is precisely what we call

the Bayes condition. Indeed, given the pair ({e} Lexox L Y), one can define the joint

idxxf

. . A . .
measure via the composite {e} Lo X 2 X x X X x Y. To go from a joint measure

(o} -5 X x Y to a conditional Y ~%+ X, one first obtains a disintegration Y o X x Y of the

pair (X x Y o, Y,{e} ->> X x Y) and takes the composite Y e X x Y 25 X, which is the
Bayesian inverse of (f,p). A.e. uniqueness of Bayesian inverses was also addressed [11, Theo-
rem 4.1], though this part was formulated in a more standard measure-theoretic manner. An
elegant string-diagrammatic interpretation of Bayesian inverses (the first we are aware of) was
proposed by Fong at the end of his masters thesis [13]. However, Fong did not provide a full
statement of Bayes’ theorem, which required a fully string-diagrammatic formulation of a.e.
uniqueness that was not available at the time. Clerc, Danos, Dahlqvist, and Ilias recast Bayes’
theorem in a category of a.e. equivalence classes of measure-preserving Markov kernels [9, The-
orem 2]. Furthermore, by working with Banach cones and Markov operators, they were able to
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avoid the assumption that their measure spaces were standard Borel in the infinite-dimensional
setting [9, Theorem 7].

A completely string diagrammatic formulation of a type of Bayes’ theorem (one relating
joint distributions to conditionals), including its uniqueness properties, was proposed recently
by Cho and Jacobs [7]. They are the first to have provided a completely diagrammatic for-
mulations of a.e. equivalence (cf. [7, Section 3]). Independently, we developed an algebraic
definition of a.e. equivalence motivated by the GNS construction, which was suitable for our
purposes of a non-commutative disintegration theory [42], a precursor to Bayesian inversion.
The first author was able to show the equivalence of Cho-Jacobs’ definition to the operator
algebraic one, substantiating both definitions for a strong candidate of a.e. equivalence in the
non-commutative setting [41].

The diagrammatic formulation of Cho and Jacobs’ perspective on Bayes’ theorem was on
the relationship between joint marginals and conditionals (though the relationship between
conditionals already appeared in Jacobs’ earlier work on conjugate priors and Bayesian updat-
ing [25]). This is indeed important in practice, particularly when one wants to analyze causal
inference based on statistical correlation, as was done in more recent work of Jacobs, Kissinger,
and Zanasi [26]. Our perspective is to avoid describing Bayesian inversion as a way of going
between joint distributions and conditionals and completely bypass the joint distributions, but
merely work with the Bayes diagram as a condition that must be satisfied for a morphism to be
called a Bayesian inference. Classically, the two approaches are equivalent: given a conditional,
one can immediately construct the joint distribution and then construct the other conditional.
Quantum mechanically, however, the distinction is pivotal. This will be discussed more in Re-
mark 5.96. Briefly, one will be able to construct Bayesian inference much more easily than con-
structing the joint distribution, which is very likely to have negative probabilities. The reason
for this is due to the copy map, which is not a positive map in the non-commutative setting.
Nevertheless, the key idea in formulating the Bayes’ condition is the copy map. We took this
copy map seriously and learned that this lead to some surprising results in the theory of posi-
tivity, operator algebras, quantum theory, and their connection to category theory [41]. We will
also see much of this in the present work.

In the remaining part of this section, we review some properties of Bayesian inverses and
disintegrations. First, if a Bayesian inverse exists, it is necessarily probability-preserving. This
means that if one observes new evidence that agrees with the evidence obtained as the marginal
likelihood from the prior and likelihood, then the Bayesian update agrees with the prior.

Proposition 2.47. Given finite sets X and Y, a probability measure {e} L5 X, and a stochastic map

X -5 Y with Bayesian inverse Y ~> X, then

(®) 9]
f\\tp . e %7 = . (2.48)
Xy %

9
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Proof of Proposition 2.47. By using Bayes’ diagram together with the properties of the copy and
discard maps, we obtain commutativity of the diagram

, (2.49)

which proves the proposition. It may be helpful to compare this with a string diagrammatic
proof

by

where q := fop. [ |

- 9] (2.50)

7

Theorem 2.51. Let p, f, and q be as in Theorem 2.23.

i. If f is an isomorphism, then g := f~! is a Bayesian inverse of (f,p).
ii. If f is deterministic, then g is a Bayesian inverse of (f,p) if and only if g is a disintegration of (f, p).
iii. A Bayesian inverse of a composite is the composite of Bayesian inverses.

iv. A Bayesian inverse of a Bayesian inverse is a.e. equivalent to the original map.

Proof. All of these claims are proved in [41]. [ |

3 Quantum a.e. equivalence, measure zero, and Bayesian in-
ference

Before we state our quantum version of Bayes’ theorem, we describe how our operator-algebraic
notion of a.e. equivalence for finite-dimensional C*-algebras introduced in [42] agrees with
the diagrammatic definition of a.e. equivalence introduced by Cho and Jacobs [7] in Proposi-
tion 3.15. The work of Cho and Jacobs focused exclusively on commutative probability, so it
is quite surprising that their notion of a.e. equivalence agrees with ours, which was motivated
by the theory of operator algebras and the Gelfand—Naimark-Segal construction. This notion
is crucial for formulating Bayesian statistics and quantum probability in general.

Definition 3.1. Given a C*-algebra A, a positive element of A is an element a € A for which
there exists an x € A such that a = x*x. The set of positive elements in A is denoted by A™.
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An element a € A is self-adjoint iff a* = a. Positivity defines a partial order on self-adjoint
elements and one writes a > a’iff a—a’ € A". Given another C*-algebra B, a positive map
@ : B ~~>A is a linear map such that ¢(B*) C A". A positive unital map w : A ~~>C is
called a state (on A). A state w is faithful iff w(a*a) = 0, with a € A, impliesa = 0. A
linear map ¢ : B ~~>A is x-preserving iff ¢(b*) = @(b)* for all b € B. For the C*-algebra of
m x m matrices M, (C), which will be referred to as a matrix algebra, the involution is complex
conjugation and will be denoted by t instead of *. Given n € IN, a linear map ¢ : B ~>A is
n-positive iff idy; () ® @ : My (C) ® B ~~M;,(C) ® A is positive. The map ¢ is completely
positive iff ¢ is n-positive for alln € IN. A completely positive (unital) map will be abbreviated
as a CP (CPU) map. Let Egn) € M (C) be the standard ij-th matrix unit (with 1 in the ij-th entry
and 0 otherwise). If it is clear from context, the shorthand E;; may be used instead of Egn). If
P : My (C) ~>Mp (C) is a linear map, then the matrix

Choi(p) = Y EMM @1 (ES”) € Mn(C) @ Mum(C) (3.2)
i

is called the Choi matrix of \p. The Hilbert—Schmidt inner product on M, (C) is given by
Mn(C) 3 A,B— (A,B) :=tr(ATB). (3.3)

If M, (C) S M (C) is a linear map, its Hilbert—Schmidt dual will be denoted by F* and is
uniquely characterized by the condition

tr(F*(A)B) = tr(AF(B)) VA€eMn(C), BeM,(C). (3.4)
If S C Aisasubset of a C*-algebra A, the commutant of S inside A is the unital algebra
S':={acA :as=saVscS} (3.5)
Since the commutant depends on the embedding algebra, S’ will often be written as S’ C A.

We will expect the reader is vaguely familiar with some facts about CP maps such as “a
map is CP if and only if its Choi matrix is positive (semidefinite)” and “all positive maps are *-
preserving” [46, Section 1.1]. The seminal paper of Choi is an excellent and concise reference [8].
Also note that we use the term positive for what some may call positive semidefinite.

Remark 3.6. The definition of complete positivity is well-motivated in the physics literature
(tensoring with a trivial system should not change the positivity of a map) [29]. Mathemati-
cally, there are good categorical reasons to use completely positive maps as well. In the cat-
egory of finite-dimensional C*-algebras, the tensor product of positive maps is not necessar-
ily a positive map. In fact, the largest subcategory of the category of positive maps between
finite-dimensional C*-algebras that is closed under the tensor product is the category of finite-
dimensional C*-algebras and completely positive maps. This follows from Proposition 3.7 be-
low.

5We learned Proposition 3.7 in Lecture 3 of Reinhard Werner’s course on quantum information theory [51].

15



Proposition 3.7. Fix finite-dimensional C*-algebras A and B and let ¢ : B ~~ A be a positive map.
Then the following conditions are equivalent.

i. @ is completely positive.
ii. @ ®idy, (c) is positive for all n € IN.
iii. @ @1 is positive for all positivep : D ~~ C with C and D arbitrary finite-dimensional C*-algebras.

The proof is short enough that we include it.

Proof.

(i<ii) The swap map® is positive because it is a *-isomorphism. The composite of positive maps
is positive.

(iii=-i) Set p = idyy, (¢)- Use the equivalence between i. and ii.

(i=iii) Since @ ® P = (@ ®ide) o (idg ®P) by the interchange law, it suffices to show that each
factor is positive. Since every finite-dimensional C*-algebra is (*-isomorphic to) a direct sum
of matrix algebras, it suffices to assume € = @, .x M, (C) for some finite set X and positive
integers {m,}. By the distributivity between direct sum and the tensor product, ¢ ® ide =
® @ Dyexida,, (©) = Dyex @ ®idyy,, (c)- This is positive if and only if each @ ®idy,, (c) is,
which is true by assumption ii. A similar argument holds for the second factor idg ® 1. [ |

Corollary 3.8. Let M be the monoidal category of finite-dimensional C*-algebras and linear maps (with
the standard tensor product) and let P be the subcategory of finite-dimensional C*-algebras and positive
maps. The largest subcategory of P that is closed under the tensor product is the category of finite-
dimensional C*-algebras and completely positive maps.

Now that we spent enough time discussing positivity, let us consider some useful examples
of maps that are not positive.

Notation 3.9. Given any finite-dimensional C*-algebra A, let 4 : A ® A ~> A be the multipli-
cation map uniquely determined by

ARA a®ad
ha I \T/ (3.10)
A aa’
This map is linear and unital, but it is not a *-homomorphism unless A is commutative. In fact,

HA is not even positive in general. This is because the product of two positive matrices need
not be positive.

®Recall, the swap map is the unique linear map A ® B ~~> B ® A uniquely determined by the assignment
A®B—B®A.
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Definition 3.11. Let A and B be finite-dimensional C*-algebras (or more generally, von Neu-
mann algebras), let A ~2s Cbeastateon A, and let F,G : B ~~A be linear maps. Then Fis
said to be w-a.e. equivalent to G iff

KA
A ARA _jd,oF
w 4
C< || __AweB, e (312)
w id 4 ®G
A=~ ARA A

In this case, the notation F = G will be used. As an equation, F = G is equivalent to w(AF(B)) =
w(AG(B)) forall A € Aand B € B.

Notation 3.13. In what follows, let P, denote the support of a state w : A ~~C with A a finite-
dimensional C*-algebra (or von Neumann algebra). The support is the smallest projection in A
such that

w(A) = w(PyA) = w(APy) = w(PL,APy) VAeA (3.14)

In particular, if we write PJ, := 14 — Py, for the orthogonal complement, then w(P5A) = 0 and
w(APS) =0forall A € A.

Proposition 3.15. Let A and B be finite-dimensional C*-algebras (or von Neumann algebras), let
A -5 C be a state on A, and let F,G : B ~=A be linear maps. Then the following conditions are
equivalent.

i. F =G.
ii. F(B)Pw = G(B)Py forall B € B.

iii. w((F(B) —G(B))"(F(B) — G(B))) = 0 forall B € B, i.e. F(B) — G(B) is in the null space of w
forall B € B.

Proof. See [41, Proposition 5.15] for a proof. n

Remark 3.16. The equivalence between i. and iii. in Proposition 3.15 holds more generally for
all C*-algebras [41]. However, ii. is no longer equivalent to i. nor iii. because general C*-algebras
do not have enough projections.

Remark 3.17. We had two reasons for avoiding the diagrammatic definition (3.12) in [42]. The
first is that the multiplication map py : A ® A ~>A is not a positive map and therefore not
a quantum channel. In fact, the no-broadcasting theorem states that a CPU map Ay : A®
A ~~>A satisfying Ay(lg ® A) = A = Ay(A®1,) for all A € A exists if and only if A is
commutative (cf. [35, Theorem 6] and [41, Theorem 4.20]). The second reason we avoided the
Cho-Jacobs definition of a.e. equivalence is that it was not clear to us at the time whether the
notion was equivalent to our definition in terms of null spaces. In the present work, we find
that working with p4 is much more crucial due to its explicit appearance in our statement of
Bayes’ theorem. Using 14 means we must leave the Kleisli category consisting of CPU maps in
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the non-commutative setting [52]. However, our morphisms of interest will generally remain
in the subcategory of CPU maps and we will use the structure of the larger quantum Markov
categories in which they live [41].

Remark 3.18. As discussed in Remark 2.16, Cho and Jacobs prove that

X Y Y X

= (3.19)

in any classical Markov category. However, their proof involves an identity that does not hold
in the quantum setting of arbitrary linear maps f, g, and p. Nevertheless, the analogous ‘if and
only if” statement holds in the quantum setting assuming f, g, and p are x-preserving due to
the interplay between the multiplication map py : A ® A ~>A, the involution * on A, and
the swap map from the symmetric monoidal structure on finite-dimensional C*-algebras. This
is proved in [41]. In fact, there is another condition when these are equivalent, which will be
useful for us later.

Lemma 3.20. Let F, G : A ~>B be two linear maps of C*-algebras and let & : B ~~>C be a faithful
state. Then

— F=G. (3.21)

Proof. It is clear that the condition F = G implies both diagrammatic conditions. The first
condition implies the last by Proposition 3.15, Remark 3.16, and the definition of a faithful
state. The second condition, which reads

&(F(A)B) =&(G(A)B) VAEA BeB, (3.22)
implies the last for the following reason. Fixing A and setting B := F(A)* — G(A)* and using
this equality gives’

0= E((F(A) — G(A)) (F(A)* — G(A)*)) - a((F(A)* — G(A)")"(F(A)" — G(A)*)). (3.23)

By faithfulness of &, F(A)* — G(A)* = 0,i.e. F(A) = G(A). Since A was arbitrary, F = G. This
proves all conditions are equivalent. [

Definition 3.24. Let (A, w) and (B, &) be finite-dimensional C*-algebras equipped with states.
Let F: B ~~> A be a CPU state-preserving map, i.e. w o F = &. A disintegration of (F, w, &) is a
CPU map G : A ~~>B such that

R@//f \// .

"Note that we did not assume F or G are #-preserving in this calculation.

A
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Definition 3.26. Let B ~{+ A be a CPU map between finite-dimensional C*-algebras, let A ~2+
C be a state, and set & := w o F. A Bayesian inverse of (F, w) isa CPU map A £, B such that

BB g UL 4 pa
U e KA , (3.27)
B : C 5 A
i.e.
£(G(A)B) = w(AF(B)) (3.28)

forall A € Aand B € B. The diagram in (3.27) is referred to as Bayes’ diagram or the (quantum)
Bayes condition. More generally, a linear map G satisfying the Bayes condition will be called
a Bayes map. In the language of (quantum) Bayesian statistics, the state w is called the prior
state, the CPU map F is called the likelihood, the state & is called the marginal likelihood, and
the CPU map G is called the weighted likelihood/posterior. 1t is helpful to summarize this

diagrammatically as

likelihood

~~TTF T
3W.A

posterior

(3.29)

marginal likelihood=¢ w=prior

C

If one obtains new evidence in the form of a state B 2 C, then the (quantum) Bayesian
updatelJeffrey conditioning is the state on A obtained from the composite A S.p &

Remark 3.30. We do not claim that our definition of a quantum Bayesian inverse is the quantum
analogue of a classical Bayesian inverse, which implicitly implies there is no other possibility.
We stress that it is @ quantum generalization. More generally, one should be cautious in making
statements of the form “X is the quantum generalization of Y.” Nevertheless, we will occasion-

ally say a linear map G satisfies the quantum Bayes condition, which will specifically mean
that (3.28) is satisfied.

Proposition 3.31. Let F, w, and & be as in Definition 3.26.

i. If G is a Bayes map for (F, w), then w = &0 G.
ii. If G is a -preserving unital Bayes map for (F, w), then it is necessarily &-a.e. unique.
iii. If Fis a *~isomorphism, then G = F~! is a Bayesian inverse of (F, w).
iv. If Fis a *-homomorphism and has a disintegration G, then G is a Bayesian inverse of (F, w).

v. If F is a *-homomorphism and has a Bayesian inverse G of (F, w), then G is a disintegration of
(F, w).

19



vi. The composite of x-preserving Bayes maps is a x-preserving Bayes maps of the composite.

vii. A x-preserving Bayes maps of a x-preserving Bayes maps is a.e. equivalent to the original map.

Proof. The first item can be proven immediately using unitality of F from (3.28) or string di-
agrammatically from causality as in Proposition 2.47. The second item follows immediately
from the diagrammatic definition of a.e. equivalence. The rest of the claims (along with others
not listed here) are proved in [41]. [ |

The uniqueness property will be important when we try to find Bayes maps that are posi-
tive, and not just linear.

Example 3.32. Consider the case where A = CX and B = C" with X and Y finite sets. Then
CPU maps B Ly Aand A -5 B correspond to stochastic maps X L Yand Y -4 X, respec-

tively [40]. Furthermore, states A ~“~ C and B tc correspond to probability measures p on
Xand q on Y, respectively. For each x € X, let ex € CX denote the function

X2 x = ex(x) = 8y (3.33)

and similarly for ey € CY. If we now represent subsets (events) A C X and B C Y by their
corresponding indicator functions xa € CX and xg € CY, respectively, we see that the Bayes
condition gives

&£(G(xa)xs) = w(xaF(xs))- (3.34)

It is helpful to evaluate these expressions more explicitly. We obtain

Z Glex) = Z ngyeyz (3.35)

XxeEACX xeACXyeY
while
= > Fley)= > > fyen (3.36)
yeBCY yeBCY xeX
Hence,
(i( (xa) XB Z Z Z gxya eyey Z Z gxyri ey Z gg (3.37)
Xx€EACXYeY y’eBlY x€ACXyeBCY yeBCy
while
wxaFlxs) = > D D fpwlepe)= Y > fpwled= ) f(Bpx (3398
x'eACXyYeBCY xeX x€eACXyeBCY xeACX

The equality of these two expressions is precisely Bayes” Theorem mentioned earlier in Re-
mark 2.29.

We will provide more examples of when Bayesian inverses exist, but first we provide some
lemmas that will be useful later.
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Lemma 3.39. If F : B ~~ A isa CPU map between C*-algebras, and if (F, w) admits a Bayesian inverse
G, then given any unitaries U € A and V € B, the CPU map Ady;; o G o Ady;+ is a Bayesian inverse
of (Ady o Fo Ady, w o Ady+). Conversely, if Ady;+ o G o Ady+ is a Bayesian inverse of (Ady o Fo
Ady, w o Adyt), then G is a Bayesian inverse of (F, w).

Remark 3.40. In the notation of Lemma 3.39, if we set & := w o F, we can depict these data

diagrammatically as
Ad Ad

\b; :Lf/ o
foAdy GoAd

to help the reader visualize all the maps involved. In particular, when B = M,(C) and A =
M (C), since the states w =: tr(p - ) and & =: tr(o - ) can be described by density matrices,
this means that we can find unitary matrices U and V that diagonalize these density matrices
and find the Bayesian inverse of the associated maps after diagonalization. When A and B are
direct sums of matrix algebras, the unitaries act componentwise on the factors.

Lemma 3.42. Set A := M;,(C). Then
m
k) = Z Eij @ Ejy, (3.43)

where the By are the matrix units and W denotes the dual of the multiplication map pa : A @ A ~>A
with respect to the Hilbert—Schmidt inner product.

Proof. We set &ghnopq to be the coefficients appearing in
HZ(Egh) = Z OCghnopqEno ® Epq- (3.44)
n,0,p,q

We also let ( -, - ) denote the Hilbert-Schmidt inner product (both on the tensor product and
on the original algebra). Then we have

(1A (Ey ® Ea), Egn) (Eyj ® By, iy (Egn))

/7 N\

S5k (B, Egn) n,%;,q“:‘ij ® Exl, XghnopgEno @ Epg)
/ \\T ; (3.45)
5jktr(ELEgh) n,%),q o‘ghnopqtr(Eij Eno)tr(Ey Epq)
6jk519 Oth o oZp q Xghnopq 5in6j06kp 6lq

Xghijkl /
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Therefore,

WalEgn) = D) atgnijaby @B = D SxbigdimEy @ Ba = ) Eg®@ Ejp (3.46)
Lkl Lkl j

as needed. ]

Remark 3.47. The map uj is the co-multiplication map of the Frobenius structure on A as
described in Section 3.5 of Coecke and Spekkens [10]. Since p4 is in general not completely
positive, neither is pj (recall, a map on finite-dimensional C*-algebras is CP if and only if its
dual with respect to the Hilbert-Schmidt inner product is CP).

Lemma 3.48. Let F : B ~~>A be a linear map, let w : A ~~C be a state, and set & := woF. IfFis
positive unital, then
F(PEBPE) C PGAPG. (3.49)

If Fis 2-positive, then
F(Ng) € No, (3.50)

Proof. Lemma 3.121 in [42] is the first statement and Proposition 3.106 from [42] is almost the
second statement. Technically, Proposition 3.106 from [42] assumed F was 2-positive unital,

but 2-positivity is enough because in this case, the Kadison-Cauchy-Schwarz inequality reads
F(B)*F(B) < ||F(13)||F(B*B) for all B € B. -

Remark 3.51. Condition (3.50) is not generally true if F is only positive unital. For example,
take F to be the transpose map on 2 x 2 matrices and p = [} J] withw =tr(p - ) =&,

4 Examples of quantum Bayesian inference

Before proving general existence and uniqueness theorems for quantum Bayesian inference,
we examine several special cases and their physical relevance. These examples will also supply
additional intuition for the more general results that will come later.

4.1 The bit flip channel

Set A := Ma(C), B = Ms(C), 0 = [} ) | ,and F:= Aidyg, () +haAdrg ), where0 < pi,p2 < 1,
10

0 < A1,A2 <1, and p; +p2 = A1 + A2 = 1 (the reason for choosing A1, A2 € (0,1) is because if
one of them is 0 then F is Ady with U unitary, which is invertible, and hence has a Bayesian
inverse, namely Ady ;). The map F here is called the bit flip channel [37, Section 8.3.3]. Then

. A1p1+A2p2 0 qp O
= F — = . 4.1
° () [ 0 A1p2 + ?\2131} { 0 q2 (1)
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Hence, F pulls back the state w := tr(p - ) to & := tr(o - ). In what follows, we will discover
when a Bayesian inverse of (F, w) exists. First note that F* = F and

}\1F—ij + }\ZEji if i # j
F(Ej) = ¢ MEjn + MEp  ifi=j=1. (4.2)
MExn +AEp ifi=j=2

The unital linear functional ¢ := w o py o (idg4 ® F), the right side of the rectangle in (3.27), is
uniquely determined by the matrix

T:= (1) = (idg ® F7) <M*A( w*(1) )> = (ida ® F*) (1} (p1E11 + p2E22))
p

Lem 342 . §
=222 (idy @ F9) (p1E1n @ E1 +p1E12 ® By +p2Ea @ Eqo +p2Ean @ Eno) (4.3)

A2 M

MO 0 0 A0
E E E
}"‘Pl 128 [7\1 O] + P2k ® [}\2 0}-’-]32 2 ® [O 7\1],

=7p1E
P1 11®{0 Ao

which simplifies to®
P1M 0 0 P12
0 pid2 piAdr O

T= . 44
0 po P O @4

p2A2 O 0 paMy

A Bayesian inverse G of F must satisfy
1= (6" ®ids) (155(0)), (4.5)

because this reproduces the left part of the rectangle in (3.27) upon taking the dual. The general
form of a CP map G is

9511 9512
G=) Adg, where G = |7 ) } . 4.6
Z € ] [9)';21 g2 (4.6)

Therefore,

(G* ®idg)(pp(0)) = (G* @ids)(q1E11 ® E11 4+ q1E12 @ Eo1 + 2B @ E1p + q2En @ Exp)

qilgi11l? 920219511 9105119512 920521912
B Z qQigi119i21  d2lgi2i?  d1G5119522 9295219522 (4.7)
T 9192911 9295229511 il 9285229512

_— — _— 2
4105129521 9295229521 q195129522 9209220 |

8Note that T is not a density matrix unless p; = py. Nevertheless, we do not in general expect T to be a density
matrix (see Remark 5.96 for further discussion). Hence, we do not impose that T need to be a density matrix in
what follows.
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Equating this with T in (4.4) gives several relations between the p’s and A’s. In particular, the
non-vanishing off-diagonal terms give

P1A2 = Q2 Z 95219512, P1M =1 Z 95,11 95;22/

j j
(4.8)
P2A1 = Q2 Z%Q)‘m, P2A2 = 1 Z 9j;129j;21-
j j
Multiplying the left equations by q; and the right equations by q; gives
P1A2d1 = 241 Z 0i2195;12 = 9241 Z 05129521 = q2P2A2. (4.9)

) )

since the equations (4.8) are invariant under complex conjugation. Since A, # 0, this implies
P1d1 = P2d2. Expanding this out using the definition of the q’s gives A;p7 + A2p1p2 = Ap3 +
A2p1p2, which entails p; = py = % Therefore, a necessary condition for a Bayesian inverse to
exist is that p; = py = %, which entails q; = q» = % In this case, G = F is such a Bayesian
inverse as can be checked.

Remark 4.10. It is a curious fact that Bayesian inference does not exist in the simple situation
covered in this example of the bit flip map. This is particularly surprising since a classical
analogue’ of this situation may be considered to be the following. If M,(C) is replaced with C2,

the states w and £ are replaced by the (dual) probability vectors [p; p»] and [q1 q2], and Fis

the (doubly) stochastic matrix given by F = Ré ?f ] , then the relationships q; = A1p1 + A2p2 and

q2 = A2p1 + Aqp2 still hold. Furthermore, a Bayesian inference exists regardless of the values of
p1 and p,. Namely,

A A
c_ P 1/d1 P2A2/d1 . (411)

P1A2/q2 paAi/q2
Note that q1, g2 € (0,1) because A, A; € (0,1).

4.2 Positive operator-valued measures

Definition 4.12. A positive operator-valued measure (POVM) on the Hilbert space C™ is a

collection of positive operators {F,}ycy in M, (C), where Y is a finite set and ) Fy = 1.
yey
Equivalently, these data are described by a (necessarily completely) positive unital map F :

CY ~~>M,,(C), since one can identify Fy with F(ey), where ey is the function on Y whose value
atyis 1 and is zero everywhere else. If A is a finite-dimensional C*-algebra, an operator system

9This is not an analogue in the rigorous sense of category theory but only in the sense of what some may
consider a classical analogue based on the fact that we have used diagonal density matrices. Such analogies have
been shown to be misleading in other cases as well and have led to the discovery of concepts such as the quantum
discord [38].
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in A is a (complex) vector subspace O C A that contains 1,4 and is closed under the involution
of A. If A -+ A is a linear map, the fixed point set of ¢ is the vector subspace of A given by

Fix(¢):={A €A : ¢(A)=A}. (4.13)

If A = My(C) is a matrix algebra and ¢ = } , Ady, is a Kraus decomposition of ¢, the
interaction algebra associated with the Kraus operators {V} is given by Alg({Vy}), the algebra
generated by the Kraus operators, i.e. all polynomials in the {V}.

We recall some important facts due to Kribs [30] (see also [20, Remark 2.1 and Theorem 3.4]).

Theorem 4.14. Let My, (C) ~&+ M, (C) be a completely positive unital and trace-preserving map with
a Kraus decomposition ¢ = ), Ady,. Then

i. Alg({V}) is a (unital) C*-subalgebra of M, (C) and depends only on the map @ and not the specific
choice of Kraus operators (as such, it will henceforth be denoted by Alg()).

ii. The fixed point set of ¢ is a (unital) C*-subalgebra of M, (C) and equals the commutant of the
interaction algebra, i.e.
Fix(¢) = Alg(¢)" € Mn(C). (4.15)

The equivalent formulation of a POVM as a CPU map allows us to ask when a POVM has
a Bayesian inverse. For this, we have a thorough and detailed result given by Proposition 4.19
below.

Lemma 4.16. Let Ay denote the ij-th entry of A € My (C). Then Ay = tr(AE;;). Furthermore, if
F: Mn(C) ~>Mm(C) is a linear map, then F is x-preserving if and only if F*, the Hilbert—Schmit dual
of F, is x-preserving.

Proof. Using Dirac bra-ket notation gives

tr(AE;) = ) (KAElk) = > (KAJj)(ilk) = Y (1K) (KIAJ) = ({IAlj) = Ay, (4.17)

k k k

where the completeness relation } ", [k) (k| = 1,, has been used in the fourth step. The second
claim follows from the first. Namely, if F is x-preserving, then

(F*(AT))i]. = tr(F(ANE;;) = tr(ATF(Ej1)) = tr(F(E;1)TA)
(4.18)
= tr(F(Ey)A) = tr(EyF*(A)) = tr(F (A)'E;) = (F(A)T)..

Y

by cyclicity of trace, the x-preserving property of trace, and the x-preserving property of F. A
similar calculation proves the converse. n

Proposition 4.19. Let M, (C) m C be a state on My, (C), let Y be a finite set, let CY EsCble

a state on CY, and let C¥ N M (C) be a state-preserving POVM. Set Fy := F(ey) and qy = tr(pFy)
for eachy € Y. Then the following are equivalent.
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i. A Bayesian inverse of (F, w) exists.

ii. The commutation rule
o, Fyl =0 VyeY\Ny (4.20)
holds.

iii. The density matrix p is in the commutant of the algebra generated by the operator system
/
span{F, : y€Y), ie peF (CY> C M (C). 4.21)

iv. The density matrix p satisfies

> VReVF =p, (422)

yey
i.e. p is in the fixed point set for the CP map 3y Ad\/E.

When one (and hence all) of these conditions is satisfied, a Bayesian inverse is &-a.e. uniquely determined
and a representative is given by the formula

M (C) ~E5 CY

A GA):= ) wey—i— > nlltr(A)ey.

YEY\Nyq Qy yeNg

(4.23)

Proof. Set A := M(C) and B := C". Note that &ley) = qy forally € Y. Hence, fory € Ng,
which means e, € PéBPL, Lemma 3.48 implies Fy, € PLAP. Hence, Fyp = 0 fory € Ny
and therefore tr(pAF,) = 0 = qyG(A)y so that the Bayes condition holds automatically for all

Yy € Ny for any linear map A L, B, Here, G(A)y := (evy o G)(A) denotes the y-th component
of G(A).
(i=-ii) Suppose a Bayesian inverse G exists. The Bayes condition entails tr(pAFy) = E,(G (A)ey) =
qyG(A)y forally € Yand for all A € A. Thus,
B tr(pAFy)

dy

Since G is CP, its y component evy o G is also CP. In particular, evy o G is *-preserving, which
means G(A'T)y = G(A)y for all A € A. This implies

G(A), VyeY\N, VAEA (4.24)

tr(pAFy) = tr(FyAp) Yy eY\Ng VAcA (4.25)

because the trace is *-preserving and because F,, and p are positive (and hence self-adjoint). By
cyclicity of the trace, this is equivalent to

tr([Fy, pJA) =0 VyeY\Ng VAcA (4.26)

By plugging in A = Ej; for all the values of i,j € {1,..., m}, this shows all components of the
matrix [Fy, p] must vanish, i.e.

[Fy,p] =0 VyeY\Nqg. (4.27)
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(i«ii) Suppose that condition (4.20) holds. In what follows, we will prove that G as defined
in (4.23) is a Bayesian inverse of (F,w). The Bayes condition is satisfied by (4.23) because
qyG(A)y = tr(pAFy) for ally € Y\ Ng, and the Bayes condition holds automatically on y € N4
by the first paragraph in the proof. Furthermore, G is easily seen to be unital. What is left
to prove is that G is in fact CP. Since the trace is CP, it suffices to focus on the formula when
Yy € Y\ Ng. Note that since both p and F, are positive and commute by assumption ii, their
product pFy = Fyp is positive. Hence,

tr(pyAFy) = tr (Ad £=(A))  VyeY\Ng ¥A€A (4.28)

This shows G is CP.

(ii>iii) This follows immediately from the functional calculus, the fact that the F, are positive
operators, and since [Fy, p] = 0 holds automatically for ally € Ny.

(ili=>iv) Let ¢ = } .y Ad SR Then ¢ is completely positive unital and trace-preserving.
Indeed, unitality follows from the fact that F is a POVM. Furthermore, trace-preservation of ¢
follows from the fact that ¢* = ¢ and ¢ is unital if and only if ¢* is trace-preserving. By Kribs’
theorem (Theorem 4.14), Fix(¢) = Alg(¢)’ C A. Now, assume p satisfies condition iii. Then,
by the functional calculus, p € Alg(¢)" C A. Hence, by Kribs’ theorem, p € Fix(¢). In fact,
combining earlier observations, we have shown

> VEeFy=p= >  VReVRy (4.29)

yeY YeEY\Ngq

(iv=-iii) Assume p € Fix(¢) so that p satisfies iv. Then by Kribs" theorem again, p € Alg(¢)’ C
A. Since the commutant Alg(¢)’ C A equals the commutant F(CY)/ C A (by the functional
calculus and properties of commutants), p satisfies iii. [

Remark 4.30. Proposition 4.19 generalizes our result for projection-valued measures (PVMs) [42,
Theorem 6.28]. Indeed, if F defines a PVM (i.e. a unital *~homomorphism, where each F is an
orthogonal projection), then [Fy, p] = 0 for ally € Y holds if and only if p = Zy cy FypFy, ie. p
equals its Liiders projection with respect to the PVM.

Remark 4.31. Unitality, self-adjointness, and the Bayes condition were sufficient to imply that G
(when evaluated on Y \ Ng) is CP in the proof of Proposition 4.19. This remark will be relevant
later when we discuss our more general quantum Bayes’ theorem.

4.3 Ensemble of states

The following setup is in some sense dual to the previous example. A collection/ensemble
of states (sometimes called an ensemble preparation) on a quantum system is a CPU map

M, (C) L. €X. Given a state CX ~2+ C and a state M, (C) o) C such that wo F = ¢,
one could ask when a Bayesian inverse of (F, w) exists. This question could not be analyzed in
the disintegration setting because there are no *-homomorphisms from M, (C) into CX when
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n > 1. The reason F is called a collection of states is because for each x € X, the functional
evy o F defines a state on M (C). Let o be the density matrix associated to this state. Since F is
state-preserving, this means that 0 = ) .y px0x, where px := w(ey). This follows from

tr(oB) = w(F(B)) = w (Z FX(B)eX> = pur(oxB) VB € My(C). (4.32)

xeX xeX

Thus, we have a convex combination of states forming &. A Bayesian inverse in this situation is

a CPU map CcX S, M, (C), which itself is determined by the images of the basis vectors {ex} in
cX.

Lemma 4.33. Let 0 € My (C) be a density matrix with associated support denoted by P. There exists

a unique positive (semidefinite) matrix & whose support equals P and such that 06 = P = &o. When

P=1,, then 6 =0 L

Proof sketch. This is a simple linear algebra exercise: diagonalize o, invert the non-zero entries,
and then undiagonalize. [

Notation 4.34. The matrix & in Lemma 4.33 is called the pseudoinverse of o.

Proposition 4.35. Using the notation of the previous paragraphs, a Bayesian inverse G for the pair
(M (C) L CX, CX L+ C) exists if and only if

pxlo,0x] =0 VxeX (4.36)
When this commuting condition holds,
Gley) = Py (amx + Pg) Vx e X. (4.37)
determines a Bayesian inverse of (F, w).

Proof. In what follows, we set Gy := G(ey).

(=) Assume a Bayesian inverse G exists. Since G is positive and unital, this means G > 0 for
allx € Xand ), .x Gx = 1y, respectively. Plugging in B := Ej; € My(C) and A := e, € CX into
the Bayes condition (3.28) gives

(3.28)

(0Gx)ij = tr(oGyEji) w (exF(Eji)) = pxevx (F(Eji)) = pxtr(oxEji) = px(0x)yj, (4.38)

i.e.
0Gx = PxOx VxeX (4.39)

Since the right-hand-side of this is self-adjoint, the left-hand-side must be as well. This entails
the condition
[Gx, 0l =0 VxeX (4.40)

Thus,

Px00x @39 00Gy ) ocGyo @3 Px0x0, (4.41)
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which proves (4.36).

(<) Conversely, suppose this commuting condition holds. Then p«[P;, ox] = 0 by the functional
calculus for o. Hence,

pxo-xé- — pxpgv()_x& — 6(px60x)6 — 6(px0x6)6 — 'pxa'(TXPE — prf(fx. (4.42)

Thus, the matrix Gy is positive because the product of two commuting positive operators is
positive and since projections are positive. The map G is unital because

G(Ix) =) Gx=08) pxox+ ) pxPf=00+Pf =P +Pf =1, (4.43)

xeX xeX xeX

To see that G satisfies the Bayes condition, first note that Pey, or < Pg because [pyxoy, 0] = 0 and
Px0x < 0imply [Pey, oF, Pz] = 0. Hence,

tr(0G(ex)B) = pxtr(PLoxB) = pxtr(oxB) = w(exF(B)). (4.44)

Since x € X and B € M,,(C) were arbitrary, this proves the claim. n

4.4 After wave collapse

Set A := My (C), let H € A be self-adjoint with spectrum o(H), and let {Py} (1) be the orthog-
onal projections onto the corresponding eigenspaces of H. Set F := } , ;) Adp,. Let pbea
density matrix on A with corresponding state w :=tr(p - ). Let 0 = ZAEU(H) PapP» be the den-
sity matrix associated to w o F. Set & := tr(o - ). In this section, we will analyze the conditions
for (F, w) to have a Bayesian inverse. This setup describes what happens to a system A after
the observable H has been measured and the result of the measurement has been forgotten or
is hidden (cf. Lecture 11 of [51]). One can also think of ¢ as describing the statistical ensemble
of density matrices that the original density matrix p “collapses” into upon measurement of
the observable H. The corresponding non-negative numbers tr(pP,) are the probabilities that
the eigenvalue A is obtained after the measurement. In a single run of such an experiment, the
density matrix p reduces to P)pP,.

Proposition 4.45. Using the notation in the previous paragraph, (F, w) has a Bayesian inverse G if and
only if p = 0. When a Bayesian inverse exists, it is unique and is given by G = F* =F = ) , Adp,.

The proof of this proposition will be postponed until after our main theorem (Theorem 5.62),
more precisely after Lemma 5.101 and Definition 5.108.

5 A quantum Bayes’ theorem for matrix algebras

In this section, we will find conditions for the existence and uniqueness of Bayesian inference
on matrix algebras.
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5.1 Bayes maps and the supported corner

Proposition 5.1. Let B := M, (C) U M (C) = A bea CPU map, let A e C be a state

represented by a density matrix p, and set & := woF = tr(o - ), where o is a density matrix representing

&. Let Py denote the support of &. Then a Bayes map A & B must necessarily satisfy
P:G(A) = 6F*(pA) VAeA, 5.2)

or equivalently
G*(BP:) =F(B6)p VB eB. (5.3)

Conversely, any linear map G satisfying (5.2) is a Bayes map. In particular, if o is invertible, then
G(A) =0 'F(pA) VAcA (5.4)
is the unique linear (necessarily unital) Bayes map.

Proof. Suppose G is a Bayes map for (F, w). Plugging in B := Ej; into (3.28) gives

(3.28) [

(0G(A)).,

ij = tI‘(O‘G(A)Eﬁ)

tr(pAF(Eﬁ))

tr(F(pA)Ej) = (F(pA));  (5.5)

for all A € A. Since this equation is true for all i and j, it holds as matrix equations, i.e. cG(A) =
F*(pA) for all A € M,,,(C). Multiplying both sides by & on the left gives (5.2).

Let us now prove that (5.3) is equivalent to (5.2). This argument is similar to earlier ones
involving the trace (see the proof of Lemma 3.42 for example). Assuming (5.2), we have!?

(5.2)

(PéG(A))ij (6F*(pA))1j
Lem 4.16/ Ym 4.16
tr(PgG(A)Eji) tr(é-F*(pA)Eji)
(( cyclicity of trace cyclicity of trace)) (3.4) (5.6)
tr(G(A)E;iPe) tr(pAF(E;;6))
3 4)\ cyclicity of trac /
tr(AG*(E;iP;)) tr(AF(E;;6)p)

Since this is true for all A € A, we obtain G*(E;;P¢) = F(E;;6)p. Since this is true for all i, j this
proves (5.3), the bottom line in (5.6). Reading the calculation upwards proves the converse.

10 After (5.6), we will stop explicitly writing when (3.4) and cyclicity of trace are used.

30



Now suppose that G is a linear map satisfying (5.2). Then

tr(0G(A)B)  tr(pAF(B))

7 N\

tr(oP¢G(A)B) tr(pAF(B)P,)
(5-2)// \\nnngwg
tr(o6F*(pA)B) tr(pAF(BPg + BP{)Py,) ’ (5.7)

Lemma 4. 33\ /(3 50)

tr(F*(pA)BP;)  tr(pAF(BP:)Py)
N %
tr(pAF(BP:))

which is the Bayes condition.

Finally, the formula (5.4) and uniqueness of G when o is invertible follows from (5.2) and
Lemma 3.20. |

Proposition 5.1 tells us that when o is invertible, a unique unital Bayes map exists, but we
have made no such claim that this map is positive. Without requiring positivity, we already
have a solution to the existence of unital Bayes maps.

Corollary 5.8. Let A,B,F, w,p, &, o, and Pg be as in Proposition 5.1. Then the unital linear map
A~SeB uniquely determined by the projections

1
P:G(A) := 6F*(pA), PfG(A)Py:=PiF(Ap)s, and P{G(A)Py = n—ltr(A)Pé (5.9)
forall A € A is a unital Bayes map for (F, w).
Proof. First note that the projections specify G everywhere since G(A) = PG(A) + PéG (A)P: +

PéG (A)Pé. The map G satisfies condition (5.2) and therefore satisfies the Bayes condition by
Proposition 5.1. The calculation

1
G(lm) = 6F(p) + PeF'(p)6 + —tr(lm)Py = 60+ Pgod+ Py =Pe+ Py =Tn  (510)
proves that G is unital. [ |
Therefore, causal quantum Bayes maps exist, but they might not be implementable as quan-
tum operations. In what follows, we will find conditions on F and p that guarantee when a

(CPU) Bayesian inverse exists.

Definition 5.11. Let B > C be a state with associated support Pz. The subalgebra P; BP; will
be called the supported corner of B with respect to the state .
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When the density matrix o is invertible, a necessary condition for a Bayes map to be com-
pletely positive is that it preserve the involution (this is the implication i=-vi in Proposition 5.12
below). This result is closely related to a theorem of Nakamura, Takesaki, and Umegaki, which
states that a positive conditional expectation is automatically completely positive [36]. In our
case, we are working with morphisms that are a bit weaker than conditional expectations (the
latter of which can be viewed as assuming F to be an injective *-homomorphism) and we will
only assume that (the supported corner of) our Bayes maps are *-preserving rather than posi-
tive.l!

Proposition 5.12. Let F, G, w, p, &, and o be as in Proposition 5.1 with G a Bayes map for (F, w). Then
the following conditions are equivalent.

i. Adp, o G is x-preserving.
ii. PeF*(pA)o = oF*(Ap)Pg forall A € My (C).
iii. F(oB)p = pF(Bo) for all B € PcM,,(C)Ps.
iv. Let U € My, (C) be a unitary matrix diagonalizing p, i.e. UpU' = p, with p diagonal. Let F =
Ady oF. Then, the Choi matrix of F{ ; := F* o Ady+ satisfies
(p ® 6)Choi(Fy ;) (Im ® P¢) = (1 ® P¢)Choi(F{;) (p ® &) (5.13)

(hence, Choi(F; ;) commutes with p @ & = p © o~ when Py = 1p).

v. Let U € My, (C) be a unitary matrix diagonalizing p as in item iv and let V € My (C) be a unitary
matrix simultaneously diagonalizing o, &, and Pg, i.e. VioV = o, VI6V = &, and VIPV = Py,
with bold symbols representing diagonal matrices and states.'?> Let Fy := Ady o F o Ady and
viGut = Ady+ o G o Adys. Then, the Choi matrix of uFyv o Adp, satisfies

[Choi(uFv o Adp, ), 6 ® p| =0. (5.14)
vi. Adp, o G is completely positive.

Proof.
(i=ii) Suppose that Adp, o G is x-preserving. Then

e 5.2 i 52) .y . )
o7 (pAN Py L2 p G (AN P == (P:G(A)P:)T L2 (6F/(pA)P)| = PF*(ATp)s,  (5.15)

where we have also used that F* is -preserving because F* is CP. Multiplying the left and right
by o and using the properties of o, P, and 6 gives the claim.

We would like to thank Luca Giorgetti and Alessio Ranallo for discussions clarifying some of these points.
Further details elaborating these, and other, points will appear elsewhere.

12This can be done because o, &, and P are self-adjoint and commute with each other and are therefore simul-
taneously diagonalizable via the same unitary.
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(ii=iii) Since P:F*(pA)o = oF*(Ap)P¢ is a matrix equation, the corresponding ij components
are also equal. By using the properties of the trace,

(PEF*(pA)U)i). B (UF*(AD)Pg)ij

Lem 4.16/ \Lem 4.16

tr(PeF*(pA)okE;;) tr(oF*(Ap)PeEj)
o=0Pg ( )) o=Pro . (5.16)
tr(oP:E;iP:F*(pA)) tr(F*(Ap)P:EjiP¢0)

\ /

tr (F(GPgEiin)pA) tr(pF(PaniPao)A)
The bottom of this gives
tr( (F(oPeE;iPe)o — pF(PeEPe0))A) =0 VA € Mn(C). (5.17)
For this to be true, the term to the left of A must vanish. In other words,
F(oPgE;iPs)p = pF(PE;iPg0) (5.18)

for all i,j. Hence, iii holds.

(iii=-i) Since Adp, o G is x-preserving if and only if G* o Adp, is *-preserving by Lemma 4.16, it
suffices to prove the latter. In this case,

G*(P:BTP) EL F(P:Bl&)p = (oF(6BP;))| 22 (,F(6B60))'

53)
189 g+

(5.19)
= (F(c6B&)p) o6BP;) = G*(P:BP:)T.

(i<iv) Recall that G is a Bayesian inverse of (F, w) if and only if Gyt := G o Ady+ is a Bayesian
inverse of (yF, w = w o Ady;i) (cf. Lemma 3.39). Let {pi} denote the eigenvalues of p. Recall
that a linear map ¢ between matrix algebras is *-preserving if and only if its Choi matrix is self-
adjoint, Choi()" = Choi(¢). In this case, Adp, o G is *-preserving if and only if Adp, o Gyt is
x-preserving if and only if Choi(Adp, o Gyj1) is self-adjoint, and the latter is given by

Choi(Adp, o Gy;:) Z B @ Pe Gy (M) Py &2 Z B @ 6F;; (pEY)Pe
- ZpiEgn '® GF (EE)' )P = Z pEij '® OFs (Egj ))Pa (5:20)
— .

= (p ® 6)Choi (Ft) (1m ® Pg).
Taking the adjoint of this and equating it to itself proves the claim.

(iev) Set

) (5.21)

e

~ Ja;' wheng;>0
o when g; =0
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where {q;} consists of the eigenvalues of 0. The Choi matrix of yGy, o Adp, is equal to

Choi(uGy o Adp,) = )_EM @ UG* (VPLES P VU
¥
=Y eVeouc (PgVEg‘)VT Pou £2 3 M @ UF(PVELVis)pU!
ij ij
=Y EM e uR(vP EVe ViuTupuf = Y EMg; o UF(VPEEMNPulp 22
1 \v_/

_s 2
n)a
Ei; a;Pe

— ZEU O'®qu<AdpE( B )) p = Choi(uFy o Adp, ) (6 ® p).

ij

This is self-adjoint if and only if G* o Adp, is x-preserving, which holds if and only if Adp, o G
is *-preserving.

(i=vi) In this part of the proof, we will assume that p and o have been diagonalized with all
non-vanishing eigenvalues appearing on the top-left block. The reason we can do this is the
following. As in Lemma 3.39, let U be a unitary such that UfpU = p with p diagonal, and let
V be a unitary such that VigV = o, VTPQV = Pg, and V6V = &, where the bold matrices are
diagonal. By Lemma 3.39, G is a Bayesian inverse of (F, w) if and only if \+Gy;+ is a Bayesian
inverse of (yFy, w := wo Ady:). Since U and V are unitary, Adp, o G is CP (or *-preserving) if
and only if Ady o Adp, o G o Ady; is CP (or *-preserving). Since the latter map equals

AdVT o Adpa oGo Aduf = 1AC].])‘E o Adv’[ oGo AduT = dep‘;w o VTGUTI (523)

the map Adp, o G is CP (or x-preserving) if and only if Adp, oGy is. This has established
that we can assume p and o are diagonal. As such, let r be the rank of 0. Write F = } |, Ady,,
where Vq is an m x n matrix whose ij-th entry will be written as V;j for the purposes of this
proof (and later proofs). Then the Choi matrix of Adp, o G is given by

Choi(Adp, 0G) = 3 EMV @ PeG(EJ)Pe 22 3 E™ & 6F (pEJV)Pe

i 1]
=Y Moo (pE Z BV e (‘piﬁ‘z VLE;?“]VOCPJ
l) %4
pi/.ql U 0 O V_ioivjoc . V_ioivjoc
Y S EMe|| ~ o || 62
- 0 pi/qr 0 n—r
x i) 0 o 0 0. VloTCl \/Jolc NN VloTCl Vﬁil
%V_{’{Vﬁ a %V_ﬁvﬁ 0
= Z Z E™M® “
— "] %vg;vﬁ e %V{’T‘Vﬁf 0
] 0 . 0 On_r
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while taking the adjoint of the Choi matrix gives

Pj Pj
qivgv“ RVEVE 0
Choi(Adp, o G)' ZZE - 5 (5.25)
VY Bvavs o Bvave o
0 0 O r

due to the summation over all i, j. Self-adjointness of the Choi matrix equates (5.24) with (5.25)
and gives

p—;Zv_& ﬁ‘:%Zv_gg C kel Ljefl,...,m) (5.26)
0.4 [0 8

This condition is so strong that it actually implies positivity of this matrix. Indeed, if we set

m;:[ BvE \/%Vf; 0 - 0 oo \/%vgi1 \/§ @ o], (5.27)

then
PiPi v PiPi V7o i
o Vi Ve YV 0
S wlw. =Y 5 g —— plp’ _© | =Choi(Adp, 0 G). (528)
m PR JERVEVE L [ERVEVE g
I 0 0 On—r |

To see the last equality in (5.28), first notice that condition (5.26) can be rewritten as

PiqiBijit = PjqiBijki, where By = Z\/_ﬁi g (5.29)
(04

If Bijiw = 0, then /PiqiBijit = /PjqxBijit- If Bijiw # O, then piqy = pjqx so again /piqiPij =
V/PjdkBij- Thus, we have

ﬁﬁijld:\/ﬁﬁijkl Vkle{l,...,r}, i,je{l,..., mk. (5.30)
dk qu
Hence,
5.30
plp) ﬁu w Y ZI Bijkt, (5.31)

which proves (5.28). This shows that Adp ¢ © G is completely positive by Choi’s theorem.
(vi=1) This direction is immediate since all positive matrices are self-adjoint. n
Corollary 5.32. Let F, G, w, p, &, and o be as in Proposition 5.1 with G a Bayes map for (F, w). Let

F =), Ady, bea Kraus decomposition of F. Suppose further that any of the equivalent conditions in
Proposition 5.12 hold. Then Adp, o G has a Kraus decomposition given by

(5.33)

Adp, 0G=Ad zoF 0Ad 5=) Ad g o
x
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Proof. A Choi matrix for Adp, o G was constructed in (5.24) in the proof of Proposition 5.12.

It was shown that Choi(Adp, o G) = P Q?LQ?CX. Hence, if we demand Adp, o G has a Kraus
decomposition of the form Adp, o G = Zﬁ Adwﬁ, then it must be the case that

(Adp, 0 G)(Eyj) = > WREyW] = > WeielW) = ) (Wgei)(Wpej)' (5.34)
B B B

But this is precisely the ij-th block of the Choi matrix. Hence, we can set

VeVt Vi
P1y/oc Pmy/o
W= |\ @ Vir g Vi | = VEVip. (5.35)
0 0
i 0 0 ]

Note that the expression on the right still holds even if we did not choose a basis in which o and
p have been diagonalized. To see this, we temporarily use the notation from the proof of (i=vi)
in Proposition 5.12. In doing so, we have

de_p‘2 oG = AdeAdpa OVTGUT OAdu = Ad\/OAd\/gOVTFﬁT OAd\/ﬁoAdu

] 5.36
:Ad\/goAdVoVTFuToAdqudﬁ:ZAd\/gv;ﬁ (5.36)
o8

by the way in which the bold versions of these mathematical objects have been defined. [

Remark 5.37. Let p € M, (C) be a density matrix and M, (C) S M (C) a CP map with
Kraus operator decomposition F = ) Ady,. Set o := F*(p). Themap L := } ,Ad NG is
what Leifer calls the Bayesian inverse of F [32,33], which he obtains by a variant of the Choi-
Jamiolkowski isomorphism. This map was later described diagrammatically by Coecke and
Spekkens [10] and Jacobs [23] and was further enhanced in the work of Leifer and Spekkens [34].
There are several important comments to be made with regards to Leifer’s map versus ours.
First, the notion of a.e. equivalence was not discussed in any of these works and therefore the
uniqueness of Bayesian inverses was not addressed. In particular, how should the Bayesian
inverse be defined off the support (what we call the supported corner)? Second, the map H is
not in general unital unless o is invertible. Furthermore, even if o is invertible, the Bayesian
inverse of the Bayesian inverse is not in general a.e. equivalent to the original map F unless p
is also invertible. However, this restricts the analysis of CPU Bayesian inversion to states that
have full support and therefore ignores, in particular, pure states. Third, our arrival at Corol-
lary 5.32 comes at a cost. While Leifer makes no assumptions about the relationship between
the density matrices and the map F to construct his Bayesian inverse L, we have enforced ad-
ditional (in general non-trivial) constraints as in Proposition 5.12 to accomplish this task. This
is due to our reliance on the categorical expression of the classical Bayes’ theorem presented in
Theorem 2.23, which was used to define Bayesian inversion in the non-commutative setting in

36



Definition 3.26. We make no claims as to which perspective is correct or wrong, and we suspect
both have their appropriate domains of applicability. One interesting curiosity is the arrival at
the form of the Bayesian inverse in Corollary 5.32 through a more structural perspective. An-
other benefit of our categorical approach is that it offers an explicit construction of the Bayesian
inverse off of the support. Therefore, our definition is capable of handling density matrices
regardless of their support. This will be explained in Theorem 5.62 after we go through a few
more examples and preparation.

Proposition 5.38. A Bayesian inverse always exists for any pair of CPU maps of the form

M, (C) =295 v () -2 L (5.39)

where VI : C™ — C™ is an isometry. A representative for such Bayesian inverse is given by

Mm(C) 5 A S VIAV + %tr(A)(vTV)L. (5.40)

Before proving this, some explanation is needed. Note that since V' is an isometry, then x n
matrix V'V is a projection. An interesting point about this result is that a Bayesian inverse of a
Kraus rank one CPU map need not be Kraus rank one. We first prove a little lemma that will
be used elsewhere as well.

Lemma 5.41. Let V : C™ — C™ be a coisometry (i.e. VVI = 1,) and let M, (C) m Cbea

state. Set o := VipV and write the corresponding state on My (C) as &, so that & = w o F. Then VIVis
a projection satisfying
Pe <VIV and (VIV)E <PE (5.42)

In particular,
Pe =P:VIV=VIVP, and (VIV): =P (VIV): = (VIV)iPL (5.43)
Proof of Lemma 5.41. The fact that VIV is a projection follows from V1 being an isometry. Since
Vive = Vivvipy = Vipy = ¢ = of = (ViVe)' = of (VIV)T = oVl (5.44)

V1V is a projection satisfying cVIV = o = VIVo. Because P is the smallest projection satisfy-
ing this condition, Pz < VIV. The other claims follow from the properties of projections and
orthogonal complements. [

Proof of Proposition 5.38. The proof involves several small steps which will be done one at a
time. These include showing that G is unital, completely positive, and finally that it satisfies
the Bayes condition. The first two are simple to prove. Indeed,

G(1,,) = VIVt nlltr(]lm)(VTV)L = ViV ViVt =1, (5.45)
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proves unitality. Complete positivity can be proved in several ways. The first term is clearly
completely positive while the latter term is the composite

Lir( ) (Viv)t

My (C) ~Tois C My (C) (5.46)

of CP maps, which is CP. The last map in (5.46) sends A € C to A(VIV)+ which is a (not neces-
sarily unital) *-homomorphism and hence CP.

Finally, the Bayes condition holds because
tr(0G(A)B) = tr <O‘ (VTAV+ nlitr(A)(VTV)L) B>

— tr (vavaAVB) n n%tr(A)tr (a(vTV)LB)

(5.47)
Lem S A tr(pAVBVI) + nlltr(A)tr (oPg(VTV)LB)
= tr(pAF(B))
forall A € M;,(C) and B € M,,(C). [ |

Remark 5.48. It may seem that Proposition 5.38 seems to contradict Proposition 5.12 since we
were able to find a Bayesian inverse for (Ady, w) without any additional commutativity re-
quirements. However, it turns out that these commutativity requirements are satisfied. Indeed,

F(oB)p = VoBV'p = VoP: VIVBVIpVVI = VoVIVBGV! = pF(Bo) (5.49)

by Lemma 5.41. Also, the formula for P;G(A) in (5.2) seems quite different from the for-
mula (5.40). Nevertheless, they agree because

1 .
P:G(A) =P:VIAV + n—ltr(A)Pg(VTV)L — 60VIAV = 6VIpVVTAV = 6VIpAYV, (5.50)

where Lemma 5.41 was used again to eliminate the second term in the second expression.

5.2 Matrix completion and Bayesian inversion

We will now begin to provide further characterizations for when Bayesian inverses exist and
how to construct Bayesian inverses when the density matrices have non-vanishing nullspaces.
For this, we recall a useful theorem from linear algebra.

Lemma 5.51. Let

(5.52)

ar

B ¢

be a self-adjoint matrix, where A is an m x m matrix, € is an n x n matrix, and ‘B is therefore m x n.
Then 9 > 0 if and only if the following three conditions hold:

. A>0,
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ii. ker(2A) C ker(%*), and
iii. € —BIAB > 0, where N is the pseudoinverse of .

Furthermore, when 9t > 0, then

K SRR [ R R U

Bl ¢ [BIAV2 (@—BIAB)2] [BIAV2 (€ —BIAB)/2
Proof. See Theorem 4.3 in [18] for an exceptionally clear review of the concepts and for the proof

(see also Theorem 5.2 in [53]).13 The last equality follows from matrix multiplication and the
fact that PoB = B, where Py is the support of 2(. This is because

image(B) = ker(BH)+ C ker(A)* = image(QlT) = image(%A) (5.54)

by the second condition and the relationship between kernels and images of operators and their
adjoints. n

Remark 5.55. Lemma 5.51 will occasionally be used slightly differently than as stated. We will
be presented with a matrix 9t and a projection P and will decompose It via

M = PINP + PP + PLONP + PP (5.56)

This decomposition can be viewed as expressing 9t via a decomposition as in Lemma 5.51 by
the adjoint action with some unitary and removing the appropriate zero entries. More pre-
cisely, let {vy,...,vs} and {vg.1,...,Vinin} be orthonormal bases of image(P) and image(P+),
respectively. Let U be the unitary uniquely determined by Uvy = ey (the standard basis) for all
k. Then there exist matrices 2, 8, ©, and ¢ such that

2A 0

umu*:l— } u%u*:{o B 00

f
00 0 0}’ ol {@ 0

U

}, and Uueu' = [O 0} (5.57)

(Appendix A provides a special case that will be used in the proof of Theorem 5.62). Then, I
is self-adjoint if and only if AT = 2, ® = BT, and ¢ = ¢. Furthermore, M > 0 if and only if

i. A>0,
ii. ker(2) C ker(87), and
iii. € —BTAB > 0, where U is the pseudoinverse of 2.

13Technically, Gallier assumes the matrices are real and his second assumption reads (1, — AN)B = 0. The
reality condition poses no issue if one uses adjoints instead of transpose. The condition (1, —A2)B = 0 is
equivalent to ker(A) C ker(B1) by the following argument. Assume (1, — A3)B = 0 holds. Taking the adjoint
gives Bf = BIUAA. Thus, if v € ker(2A), then Bfv = BIAAv = 0. Conversely, suppose ker() C ker(B1).
Note that by the properties of the pseudoinverse, (1, —AA) = A —AAA = A — A = 0, which shows that
image(1m — 9A) C ker(A) C ker(BT). Hence, BT (1, —AA) = 0, which gives the desired result by taking
adjoints. For us, it will be more computationally convenient to check a kernel condition than to compute the
pseudoinverse of a matrix.
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Notation 5.58. Let try; (¢) : M (C) ® My (C) ~>M; (C) denote the partial trace, which traces
out the first factor and is uniquely determined by the formula

try, () (A®B) :==tr(A)B VA € Mn(C), B € M,(C). (5.59)
Equivalently, try, (c) is the Hilbert-Schmidt dual of the *-homomorphism C — 1, ® C.

Lemma 5.60. Let A € M (C) @ My (C) with A > 0 and tryg, (c)(A) < 1n. Then there exists a
B € M (C) @ My (C) with B > A and tryg, (¢)(B) = 1n

Proof. Take
1
Bi= A+ —(In® (Ln— iy ) (A)) ): (5.61)
Since 1,, — trMm(Q(A)) > 0 by assumption, B > A. Secondly, try, (c)(B) = 1. [ |

Theorem 5.62. [A Bayes’ theorem for matrix algebras] Let F, p, w, o, &, and Pg be as in Proposition 5.1.
Set

A = ZE ® 6F* pE( NPy and B = ZE ® 6F* pE( e, (5.63)
ij=1 1,j=1

which are matrices in My (C) @ Mn(C). Then (F, w) has a (CPU) Bayesian inverse if and only if
A=A and  try (o (%T ﬁws) < PL. (5.64)

If, in addition, try;, (c) (B'UB) = P, then the Bayesian inverse is unique (a-priori, it is only &-a.e.
unique).

Proof.
(=) Suppose that (F, w) has a Bayesian inverse G. Then by Proposition 5.1

(I ® Pg) (Choi(G)) (In®P:)=2A and (I ®P¢) (Choi(G)) (I ® Pé) =B, (5.65)
Since G is CP, 2 > 0, and therefore 2" = 2(. Now, set
¢ := (1 ® P{)(Choi(G)) (Im ® Pg). (5.66)

Since G is CP,
Choi(G) =2A+ B +BT+¢ > 0. (5.67)

By Lemma 5.51, € > B19%. This combined with unitality of G gives

PE = try, (o) (€) = tryg,, () (BIAB). (5.68)

(<) Conversely, suppose that (5.64) holds. In what follows, we will construct a Bayesian inverse
G. Since a linear map G is determined by its Choi matrix, we will define G by constructing its
Choi matrix and we will use Lemma 5.51 to prove this Choi matrix is positive. Set

(T ® Pg)(Choi(G)) (1 @ Pg) :=2A, (L @ P)(Choi(G)) (1 @ PE) := B, (5.69)
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(Lm ® P£)(Choi(G)) (L ® Pg) := BT, (5.70)

and
N 1 A
¢ = (Ln ® Py )(Choi(G)) (1 ® Pg) := BTAB + — (]1m ® (Pf — trMm[C)(%TQL‘B))) (5.71)

Since the Choi matrix has now been specified, this defines a linear map G. By (5.69) and Propo-
sition 5.1, G is a Bayes map. Since 2! = 2, Proposition 5.12 implies 2 > 0 because

Adp, © G = (L, ® P¢)(Choi(G)) (1 ® Pg) = . (5.72)

This proves the first condition in Lemma 5.51 (cf. Remark 5.55). To prove the second condition,
namely ker(2A) C ker(B1), choose a basis in which p and o have been diagonalized as in the
proof of (i=-vi) in Proposition 5.12. In addition, write F = }_, Ady, and use the notation from
the proof of (i=vi) in Proposition 5.12. Now, by applying a suitable permutation matrix U (cf.
Remark 5.55 and Appendix A), 2 and B can be written as

2 0 0 B

uaut = [ usut = | 5.73
A { 0 0} and B [O O} , (5.73)

where (recall that 2 was computed earlier in (5.24), but we use its form in (5.25))

BVEVE - DVEVE  DaVEVE, . EaVEVE,

A=) : : (5.74)

TEVEVE o BVEVE  EBVRVE o BVEV

BVEVE o BVEVE VRV o BVEVE,

and (*B is obtained by a calculation similar to (5.24), but with 1, and 0, replaced by 0, and
Ln—+, respectively, and then all 0’s are dropped)

[ P1\/ox\/x Piyxy/« P1y/x\ /o Piy/x /o
avll 1r+1 77 avllvln q1 Vllvm,r—H q1 V11 Vinn
Piy/x\/x Piy/ox\/x Piy/x\/x .. Piyayax
qr vlrvl,r—i-l qr Vlrvln qr Vlrvm,r+1 qr Vlrvm‘rl
B=) : : (5.75)
o8 Pmy/x \yx .. Pmya Pmy/x x Pmy/x \/x
qT le Vl,r+1 qnl1 le Vln qT le Vm,r+1 qT le an
_};_Tv%rvffr-g-l T %v%rvlan };_Tvglrv%,r-;-l };_TV%rV%n ]
Now, suppose that the vector
T
w = |:W11 cee Wi ot Wit er] (576)
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is in the kernel of 2. Setting Q to be the number of Kraus operators used in F = ) Ady,_, let
il € C® be the vector whose a-th component is

Z Z Py (5.77)

lel

Using this,
DI I 1g P_V 1 VikWik V_ﬁu“

Aw =) => | (5.78)

* Zl 1Zk 1 qlv kalk V_%ruoc
shows that w € ker(2l) is equivalent to
(Vi) =0  Vje{l...,m} Le{l,... 1}, (5.79)

where \7)~1 has a-th component given by V;i and we assume the inner product is conjugate-linear
in the left entry. However, 1i is itself a linear combination of the \7)~1 since

m ) ~
u= Z Z %Wikvik. (580)

Hence, i = 0 since it is orthogonal to, and in the span of, a collection of vectors. Now, comput-
ing Biw gives

X Yk %fomvﬁiwik [ (Vi31,T) ]
Zl 1 Zk 1 qlvlnvlkwlk <\71n/ ﬁ>
Blw=>)" — : = 0. (5.81)
A DI M quﬁ,rﬂvﬁiwik (Vinr 41, 0)
PREPRI qu nViowie | L (Vinn, )|

This proves that the first two conditions of Lemma 5.51 hold (cf. Remark 5.55). By Lemma 5.60,
¢ > B1AB, which implies Choi(G) > 0, and therefore corresponds to a CP map G.

The constructed G is also unital for the following reasons. First, recall that G(1,) = 1, if
and only if try, () (Choi(G)) = 1, because

m
G(Lm) = Y G(EJY) = tryr,, (o) (Choi(G)). (5.82)
i=1
Second,
m
Z P:6F* (p =PeoF (p) =Poo =Py = > P.oF(pE")P{ =0. (5.83)
i=1



Hence, B provides zero contribution to try, (c)(Choi(G)), i.e. tryg, (c) (A + B +BT) = P;. Thus,

G(1n) = tra, () (ChOl(G)) = tI‘Mm(C)(Ql) + trMm(C)(QI) = P: + Pé =1;. (5.84)

The equality tryg, (¢)(€) = Pf holds by the definition of € in (5.71) and Lemma 5.60. Notice
that if try (c) (BIAB) = Pé, then € necessarily equals B9 and the Bayesian inverse is
unique. |

The second condition in Theorem 5.62 is not automatically satisfied even if the first one
holds. The following example illustrates a situation where a CP Bayesian inverse exists on the
supported corner but not the full algebra.

Example 5.85. Fix q € (0,1),

q 0 0
. 110 _1vaq 0 0 10 v1—=q O
[8 = ] N L PR U I PV R B s

and let M3(C) LS My(C) be given by F := Ady, + Ady,. If w :=tr(p - ) and & = tr(o - ) then
¢ = w oF. Furthermore, F is CPU. The Choi matrix of the Bayesian inverse, where we know
how it is defined, is given by

1 0 0 00 /&8
0 1 0o 00 /i
Choi(G) = | Y 0  @(En) 0 0 o@(Ep) (5.87)
0 0 0 00 0
0 0 0 00 0
1—;q 14y @(Ea) 0 0 o(Ex)

where the ¢ terms correspond to }_; ; Ei(jz) ® PéG (EEJZ)) Pé and are as of yet unknown. The first
condition of Theorem 5.62 is clearly satisfied. However, upon permuting this Choi matrix (as
in Appendix A) and setting (these matrices were underlined in the proof of Theorem 5.62)

1000 0 /52
o= [0 L OO0 g w0 /], (5.88)
0000
0 0
0000 o o
we see that
e 00
R il (5.89)

Taking the partial trace of this over M, (C) gives the bottom-right entry. Since TE‘E + % >2>1
for all g € (0,1), the Choi matrix Choi(G) above can never be completed to a positive matrix
whose partial trace is 1,.
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5.3 Special cases of Bayesian inversion

Here, we analyze Kraus decompositions for Bayesian inverses in certain special cases. We
also describe the relationship between joint distributions and conditionals. Finally, we analyze
Bayesian inversion for wave collapse and reconstruct the disintegration formula for Bayesian
inverses of deterministic maps. The issue presented in Example 5.85 never occurs if at least one
of p or o is invertible, as the following corollary explains.

Corollary 5.90. Let A, B,F, w,p, &, o, and Pg be as in Proposition 5.1. If either p or o is invertible,
then a Bayesian inverse for (F, w) exists if and only if

P:F (pA)o = oF (Ap)Py VA € Mu(C). (5.91)

When o is invertible and (5.91) holds, the Bayesian inverse equals
G=) Ad V= (5.92)
x

When p is invertible and (5.91) holds, a Bayesian inverse is of the form

G=) Ad Vaviyp T AdpL, (5.93)
04

where P = 1, —Pg.

Proof. When o is invertible, this is a special case of Corollary 5.32. If p is invertible, then the
matrix ‘B in Theorem 5.62 vanishes due to the condition o = F*(p). In more detail, suppose that
p and o have been diagonalized (the vanishing of ‘B will not depend on such a diagonalization).
Using the notation of the proof of (i=-vi) in Proposition 5.12 by writing F = } | Ady,_, the
condition 0 = F*(p) can be expressed as

1 0 0 - 0] VAR VBV ViV VIV ]
0 qgr 0 --- 0 Uk V_g\/ﬁ s |Viorc|2 V_iorcvi 1 T V_iorcviorcl
0 000 %; VeV ViaVe Vil VAR
0 --- 0 0 --- 0] | VEVE Ve V_iOTCLVio,(r—H s VER
Because p; > 0 for all i by assumption, this implies
=0 Vke{r+1,...,n}, ie{l,....m}, xe{l,..., QL (5.95)

Since ‘B is defined only in terms of these components of V¥, the matrix 8 vanishes. Hence,
both conditions in Theorem 5.62 hold. The fact that ‘8 vanishes means that PG (A)Pé =0and
PéG (A)Pg = 0forall A € My, (C). Therefore, € = %]lm ® Pé by (5.71), which, upon going from
the Choi matrix to the corresponding linear map, reproduces (5.93). n
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Remark 5.96. Remark 2.46 sets the background for the following discussion. The formulation of
Theorem 5.62 describes how to go from conditional to conditional bypassing the intermediate
stage of constructing a joint distribution. Unlike in the classical setting, the joint state on A ® B
from the Bayes condition will rarely be a state in quantum theory. Even for the simplest case
where A = B = M, (C) (withn > 1), F := id, and an arbitrary state w : A ~~>C, one cannot
construct a joint state via w o 4 o (id4 ® F), even though a Bayesian inverse clearly exists (it is
G =id). The reason is due to the non-commutativity of multiplication. In order for

A®B3A®B— w(AF(B)) (5.97)

to be a state, one needs additional restrictions which are not generally equivalent to a Bayesian
inverse existing. For example, if w is tracial, then the functional (5.97) is indeed a state (this is
true even for arbitrary positive unital F). The proof of this is relatively straightforward because

w(a*aF(b*b)) = w(aF(b*b)a*) = (wo Adq o F)(b*b) > 0. (5.98)

Another sufficient condition for (5.97) to be a state is that the image of F lands in the commutant
A’ C A. This is also a drastic condition because if A = M,,(C), then the commutant consists
only of scalar multiples of the identity. This condition is only sufficient but not necessary. There
are intermediate cases where w is neither tracial and F does not land in the commutant A’ C A.
When A and B are matrix factors and w = tr(p - ), then Proposition 5.99 below covers these
cases simultaneously.

Proposition 5.99. Set A := M, (C) and B := M, (C). Fix a state A m C and a PU map
F:B~>A Ifp € F(B) C A, then the linear functional uniquely determined by the assignment
A® B> A®B— w(AF(B)) is a state.

Proof. Let A = a*a € A and B € B be positive. Since F is positive, F(B) is positive. Since
A is finite dimensional, the algebra generated by F(B) is equal to F(B)” C A by the double
commutant theorem (cf. [48, Section 2]). Hence, by the functional calculus, the positive square
root ¢ := 1/F(B) is in Alg(F(B)), and therefore ¢ € F(B)”. Therefore,

tr(pAF(B)) = tr(pa*ac*c) = tr(cpa*ac*) = tr(pca*ac*) = w((ac*)*(ac*)) = 0. (5.100)
Unitality of w follows from unitality of F. n

We are now in a position to prove Proposition 4.45 for wave collapse, which we will accom-
plish by illustrating more explicitly how one can obtain Bayesian inverses via matrix comple-
tions. However, to do so, and to also help us prove several other results of interest, we state a
lemma that will allow us to compute pseudoinverses of Choi matrices.

Lemma 5.101. Let M,,(C) U M (C) be a CP map. Then there exist QO-many Kraus operators {Vy}
for F and strictly positive numbers {\} such that

tr(VIVp) = Audop Yo, B €{l,..., QL (5.102)
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Furthermore, in terms of such a set of Kraus operators for F = 3, Advy,,

support(Choi(F)) = Choi (Z Adlv(x> and  Choi(F) = Choi (Z Ad/\lva) . (5.103)
0.8 X x

VA«

Proof. The fact that Kraus operators satisfying (5.102) can be found for any CP map is a sim-
ple consequence of the existence of an orthogonal basis of eigenvectors of a positive matrix.
Although this is a standard result, its proof provides useful techniques that also prove the re-
maining part of the lemma. Indeed, since the Choi matrix is positive, it can be expressed as
Choi(F) = ) avcxv&, where the set of v, € C* @ C™ = C™" is orthogonal (and each v, can be
assumed to be non-zero). One then sets Ay := vfxvo( and Vy to be the unique matrix satisfying

V(xel
Vo = , (5.104)
Vaen

where {ey, ..., en} is the standard basis for C™. Orthogonality of these vectors is then precisely
the statement

n

n

Aadap = (Va, vg) = > (Vuej) Vaej = ) (e), VEVpey) = tr(VLVp). (5.105)
j=1 j=1

Therefore, one can set uy 1= /\Ql/ 2\/0(. With this definition, the set {uy} is an orthonormal set of

vectors in C™". Hence, ) Ugtl, is an orthogonal projection. Thus,

Choi (ZAd 1 ) ZEU ®Z/\ (Vyei) V(xeJ Z/\_VO‘VT Zu“uT (5.106)

is indeed a projection, and in fact the support of Choi(F). Finally,

Choi(F)Choi (Z AdAlv“) (Z Agtg] ) Z uﬁu =) uul, (5107

which coincides with the support of Choi(F). n

Definition 5.108. A Kraus decomposition satisfying the conditions of Lemma 5.101 will be
called an orthogonal Kraus decomposition.

Proof of Proposition 4.45. We briefly recall some notation and set up some basic facts. Let F =
> Adp, with {P,} a family of orthogonal projections such that ) , P\ = 1, (here, the projec-
tions are associated with the eigenspaces of a self-adjoint matrix H whose spectrum is denoted
by o(H)). Let 0 := }_, PApP) with p a density matrix and let P; denote the support of o, S, the
support of PypP,, and set

Ay = tr(S,) = rank (PypP,). (5.109)
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Note that S)S, = 6,,S) and Py = ), S) because PAP,, = 85,P) and Sy < P). We will frequently
make use of identities such as

P)\G = S}\O‘ = S)\GSA = P}\O‘P)\ = GS)\ = O'P)\ (5110)

and so on (and similarly for functions of o by the functional calculus). As a result of the orthog-
onality of the Py,

6=> ,PApPr = Z ProP» and therefore S36 = PA& = PypPy = 6Py = 6S. (5.111)
A

We now move on to the proof and first suppose that p = 0. Then it is straightforward to
check G = }_, Adp, is a Bayesian inverse of (F, w).

Conversely, suppose that (F, w) has a Bayesian inverse G. We will break the proof into three
parts. In the first part, we derive some relationships that will be useful in the latter two parts.
In the second part, we compute the pseudo-inverse of the Choi matrix of Adp, o G. In the third
part, we prove the conditions of Theorem 5.62 are satisfied and explicitly find the Bayesian
inverse to conclude the proof.

1. First,
(5.2)

P 1
A /PaG(A)Pa -\rop5 2 )
> A PeOPApAPAP: Cor532  2_) PePAAPPAGPg

/ 2 A Ad 5, p(A) \ . (5.112)

\\ (5.111) //

2 A PAGPAP, 2aAdp 5 5(A) 2 A PAApPGPy

which implies
PAGPAP) = Adp)\\/gﬁ(A) = PAApGP, VA eMn(C), Aeo(H). (5.113)
Taking the trace of the two ends of this for a fixed A and using cyclicity of trace gives
tr(PAGpA) = tr(p6P \A) VAeMn(C) =  Pr6p=pGPy. (5.114)
Multiplying on the left by P, with u # A and multiplying on the right by o gives
0="Pup6Pro =PupSy V(i A) € (o(H) x o(H)) \A(c(H)). (5.115)

ii. The pseudoinverse of 2 := Choi(Adp, o G) is given by

2 = Choi (Z Ad, 1p ﬁ> (5.116)
A

by Lemma 5.101, which holds since the Kraus decomposition along the middle list of equal-
ities in (5.112) is orthogonal, and since

> HP)\\/g\/aekHz = tr (\/WEPAPM@\/@ = tr(PAGPAPPA) = tr(Sh) = Ay, (5.117)
k
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iii. Set
B = (L ® Pg) Z Z Eyj ® 6PApEyPy | (1 ® PE). (5.118)

The following calculation of BB will be done in two steps. First, (dummy indices are
frequently relabelled)

(5.113) & (5.116)
g SAE0T0 | 5T Eyfu® P)\GpEU PA6P0E Py (]1m ® Pg)
ij,k1 A
2 Mo, kE dauPAGP

Z Z By P}\O‘P}\p) (PAOPAR) b 5 oF Py (]1m ® Pg) (5.119)
7\

5.117
6117 ZZEu@ PrGPEP, (tmepd).

Multiplying BT on the left gives

BigB — (]1m ® Pg) > Y EEa® PAEUpP;\GPHGpEkLP <11m ® Pg)

k1 A
ke A (5.120)

r(pPAGPAGP)
= (tneP) ZZEU —)\PAEU-P)\ (tm@PE).

Now, notice that

tr(pPAGPAGP) = ) tr(PupPAdPAGDP) = D tr(PupSAGSAESAPP,)
0 0 (5.121)
5.115
ey tr(PApPAGPAGPP)) = tr(S3) = tr(Sh) = Ay,

where the first equation holds by cyclicity of trace and because }_,, P, = 1. Hence,
BB = (1 @ P ) D Ey® ) PAEsPy (1m®PE) = Choi(Ady, o F).  (5122)

Taking the partial trace of BB gives

(€ )(%Tm%) =Py Y ) tw(Ey) PAEGPAPE =Pf ) Pr) EuPaPy =Py, (5.123)
ij A 6"” A i
ij

Hence, the last condition of Theorem 5.62 is satisfied, and so the Bayesian inverse of the
wave collapse is uniquely specified. In fact, the Bayesian inverse can be computed explic-
itly since Choi(G) is now completely known. But first, it helps to simplify the expression
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by using Lemma 5.51 to factor the Choi matrix of G. For this, note that

%12 — Choi <Z Ad/\_3/4P;\\/§\/§> . (5.124)
A A
Then, one can show
A A 1
A2+ B 2= Eye ) —7PAEijpOP (5.125)
i A
and ;
Choi(G) = (911/2 + 93*211/2) (a‘tl/z + %Tﬁl/z) — Choi(F) (5.126)

using similar calculations to the ones that have already been done. This proves that the
Bayesian inverse is G = F.

Hence, p = G*(0) = )_, PApPA = 0. [ |

In the following example, we will work out Bayesian inverses for *-homomorphisms B LA
where A and B are matrix algebras. Although we know from [41] that Bayesian inverses of *-
homomorphisms are automatically disintegrations, and we already know the solution to the
disintegration problem [42], it is helpful to explicitly work out the solution from our matrix
completion perspective.

Example 5.127. Every *-homomorphism of matrix algebras is of the form

B 1= Mn(C) 5 M, (C) @ Mn(C) = A

(5.128)
B — 1, ® B

up to a unitary conjugation on the codomain of F (cf. Lecture 10 in [51]). Let B Le), e

a state on B and write &£ = tr(p - ) := w o F. Note that F* = tro, (o) in this case. An arbitrary
density matrix p can be expressed as a linear combination

p=) Tp®o0p, (5.129)
B

where 13 € M,(C), op € My (C), and such that {13} is a linearly independent set of matrices
(coefficients can been absorbed into the op matrices).!* The fact that p is a density matrix means
p=>0and ZB tr(tg)tr(op) = 1. The fact that F*(p) = o entails

o=try,) | D_Te®0p | =) tr(tp)op. (5.130)
B B

40One can take {tp}tobe{E g’)}, which we will later. In this case, 0y; is precisely the ij-th block of p.
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By Proposition 5.1, a Bayesian inverse G of (F, w) must satisfy

P:G(C ®B) = btry, (o) (Z(rﬁ ® 0p)(C® B)) = > tr(tgC)60pB (5.131)
B B

for all C € M;,(C) and B € M;,(C). Hence, the Choi matrix of Adp, o G, with G a Bayesian
inverse of F, must be of the form

Ch01 AdpE o G Z EU ®Ek1 (Z tr T[gE GGBEl(d)P )

ij,k,1 (5.132)
- Z Z @ Ekl ® 6GBE1(<1)PE,
Bkl
Self-adjointness of Adp, o G entails
> Y by @ (60sE] P — PeE0p6) =0. (5.133)
Bkl
Since TE ® E]((Tf) are linearly independent for all 3, k, and 1, we obtain
G“O“BBPa = PEBO'BE\)' VB e My(C) and V B. (5134)

Taking the trace of this expression and taking the trace after multiplying both sides by o gives
[6,08] =0 and [0,08] =0 VB, (5.135)
respectively. Now, from Equation (5.131) and Proposition 5.12, we obtain

Y tr(tgC)60pBP; = Y tr(tgC)PBops ¥ C € My(C), B € My (C). (5.136)
B B

Since &, 0p, and P¢ all commute by (5.135), this implies

[Z tr(tC)op0, PgBPal =0 VBe&My(Q), (5.137)
B

which says ZB tr(tp C)op 6 is in the commutant of P M, (C)P; inside M, (C). Since ZB tr(tgC)opd
is also in P M, (C)Pg, this gives
Y tr(tpClogd o Py ¥V C € My(C), (5.138)
B

where o« means “proportional to.” At this point, it is convenient to specialize to a particular
choice of linearly independent set {tg} by choosing the elementary matrices {E(p)} The propor-

tionality constraint entails 03;6 oc P¢ for all 1,j (choose C = E ) Multiplying on the right by
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o gives 0yjP; o 0. Taking the adjoint and using the fact that this holds for all i,j also shows
Pg0ij o< 0. This proportionality forbids o3 to have nonzero P 03P and Pz 03P contributions.
Hence,

Oij = CijO'—f— Pé(ﬁjpé (5.139)

for some constants c; € C with ¢;; = ¢yj. Thus,

p=) CiiEg)) Do+ ) Ei(jp] ® Py oyPy. (5.140)

ij i
LetT:=) ;;cy ES’). Then T is positive because
T = trMn(C) (Ad1p®p£(p)) > 0. (5141)

Furthermore, T is a density matrix because

o =F(p) =try,(c)(P) = Z Cii0 + Z PioyPy = Z ciio + P oPy = tr(7)o, (5.142)
i i i —

which entails tr(t) = 1. Since

p=t®0+) E @PloyP; (5.143)

i)

is the sum of a density matrix (T ® o) and another positive matrix, the latter must therefore
vanish in order for p to also be a density matrix.

Now that p = T ® o has been established, the Choi matrix of Adp (oG becomes
2 := Choi(Adp, 0 G) = T' ® Choi(Adp,) (5.144)

and the other known part of the Choi matrix due to the expression (5.2) is

B = (1, ® Ly ® Pe) (Choi(G)) (L, @ Ly ® PH) = 7' @ Y Ej) @ PeEyL PE. (5.145)
kL
Since
Pgel
Choi(Adp,) = | : | [(Pee))T -+ (Pgen)l] (5.146)
Pgen

is a rank one matrix, it can be normalized to a rank 1 projection and thus its pseudo-inverse can
be easily calculated. It is given by (cf. Lemma 5.101)

Choi(Adp,) = (Z||P£e1||2> Choi(Adp,) = Cho1(Adp£) (5.147)
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where r = Y ' ;||Pzei||? = tr(Pg) is the rank of P¢. Hence,

1 —
= 172 Z (TT & Eij & PéEﬁPg) (TT QE® PgEklpg) <TT ® Emo ® PEEmoPé>
1, m,0

1
= T‘_2 Z TT REg® Pé_EijPEEjkPEEkLPé_
ikl (5.148)

1
== Z T @By ® (Pei)(Peej) (Peej) (Peex) (Peer) (Prey)!
Lkl

=Y 1T ®E;® (Pfe)(Pie) ZT ® Eyj ® Py EijPy = 7' ® Choi(Adp, )

Now taking the partial trace gives

I, (C)eMn (C) (55@1%) Ztr )tr(Eyj)Pg EyjPg = ZPéEuPE =Py (5.149)

Thus, applying Theorem 5.62 gives a unique Bayesian inverse. In fact, these calculations show

which agrees with the disintegration formula from [42].

6 A quantum Bayes’ theorem for finite-dimensional C*-algebras

Theorem 5.62 can be relatively easily generalized to the finite-dimensional C*-algebra setting.
Most of the work was already done, and the main challenge is to set up all the notation. We
refer the reader to Section 5.2 in [42] for more background. The following notation will be used
throughout this section.

Notation 6.1. The general form of a finite-dimensional C*-algebra is a direct sum of matrix
algebras. Hence, we set

A=@P My (C) and B:=PHMy,(C), (6.2)

xeX yey

where X and Y are finite sets. Since every element A € A can be expressed as P, .x A, a state
A~ C on A can be expressed as

A3 A w(A) =) pur(pAy), (6.3)

xeX

where {p} defines a probability measure on X and py is a density matrix on M, (C) for every

x € X. Similarly, we let B £, C be written (somewhat abusively) as £ =: ) .y qytr(oy - )
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with the understanding that given B = P, .y By, one plugs in By into the term tr(oy - ). Let
Ny ={xeX : px=0and Ng:={yecY : qy =0} Let Py and Qy be the supports of py
and oy, respectively. Let P, and 9, be the supports of pxpx and qyoy, respectively. In many
of the arguments that follow, we will often use the identities pxPx = pxBx and qyQy = qyQy.
Note that Py, and Py, the supports of w and &, are equal to Py, = Pyex Px and Pr = Py ey Qy.
Hence,

No = AP = D (M (CBL) = B (Mom, (CIPY) (64
xeX xe€X\Nyp,
and similarly
Ne = BPE = D (Mny (C)Qj) = P (Mny (C)Qj). (6.5)
yey YEY\Ng

Every linear map B L5 A has a “matrix decomposition” with yx-th entry given by a linear

map M, (C) AEJAX/» M, (€), which is CP for all x € X and y € Y if and only if F is CP.

If a lemma is written without proof, it is because the proof is straightforward or similar to
proofs we have already been exposed to in earlier sections.

Lemma 6.6. Let M,,(C) ~%+ My, (C) be a positive map and let P € M, (C) be an orthogonal projection.
IfPQ(A)P =0forall A >0, then @ (Mn(C)) C P-M;n(C)P-.

Proof. This is proved in Lecture 7 of [51]. Briefly, Po(A)P = (\/(p(A)P)T(\/(p(A)P) = 0 implies
V@(A)P = 0and Py/@(A) = 0 for all A > 0 (the latter follows from the first by taking the
adjoint). Hence @(A) € PL M, (C)P+ for all A > 0. The rest follows from the fact that every
element of M, (C) is a linear combination of four positive matrices. [

Lemma 6.7. In terms of Notation 6.1, the condition w o F = & is equivalent to'®

Qoy =D PFiylpd)  Yyev. 6.8)

xeX

If F is positive, then
PxFiy () =0 and  Fuy(Mn, () € BrMum, (OOBF YV (x,y) €XxNg. (69
If F is 2-positive, then

Fay <Mny (C)Qj) CMp (COPL  VYxeX yeV. (6.10)
Proof. For any By € M, (C), the state-preserving condition gives

D putr(pxFay(By)) = qytr(oyBy). (6.11)

xeX

15F;y denotes the Hilbert-Schmidt adjoint of Fxy,.
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Equation (6.8) follows from this by calculations similar to those we have seen earlier. When
Y € Ny, the equality pxFy, (px) = 0in (6.9) follows from (6.8) and the fact that pxFy,(px) > 0 for
all x € X and the only way a sum of positive operators adds to zero is if each of them are zero.
For the second condition in (6.9), lety € Nq and By € My, (C). Then,

0= E(By) = w(F(By)) = prtr<pxey(By)) = prtr (pi/zny(By)piﬂ) . (6.12)
xeX xeX
If By > 0, then
putr (0 Py (By)p?) =0 WxeX (6.13)
because pxp,lc/ 2ny (By) p}/ 2 > 0. Since the trace is faithful and pxp,lc/ ZFXy (By) p,l/ 2 > 0, this implies
pxp}(/ zny (By)p}(/ 2 _ 0. Since every matrix can be expressed as a linear combination of at most

four positive matrices, pxp,l/ ZFXy (My,, (©)) p}(/ 2_0. Multiplying both sides by 02 gives

('Bxey (Mny (C))mx =0. (6.14:)

Since Fyy is positive, the second claim in (6.9) follows from Lemma 6.6. Finally, condition (6.10)
follows from (6.4), (6.5), and Lemma 3.48. |

Proposition 6.15. Suppose F is positive and unital. A linear map A LB satisfies the Bayes condition
for (F, w) if and only if (cf. Notation 6.1)

qytr(o_y GyX(AX)By) = pxtr(prxey (By )) (6.16)
forall Ax € M, (C), By € My, (C) and for all x € X,y € Y. If G satisfies the Bayes condition, then

QyGuyx(Ay) = Z—;‘&;Fzy(px/\x) ¥ Ax € M, (C) ¥ (x,y) € X x (Y\Ng). (6.17)

Conwversely, suppose there exists a linear map G satisfying (6.17). Then G is a Bayes map for (F, w).

Proof. Equation (6.16) follows directly from the Bayes condition. Equation (6.17) follows a sim-
ilar analysis to the one in Proposition 5.1. Conversely, suppose there exists a linear map G
satisfying (6.17). In what follows, we will prove (6.16). First, lety € N4. Then

pxtr(prxey(By)) = pxtr<prxey(By )gpx) =0 (6.18)

because Fyy (By) € P M, (C)B5 by (6.9). Now, lety € Y\ Ng so that gy # 0. Then essentially
the same argument as in (5.7) goes through using (6.10) in place of (6.10). Note that one uses
that fact that Qy = Qy for y € Y\ Ng and pxPx = pxBx for x € X. This proves that G is a Bayes
map. |

Lemma 6.19. Suppose A Ls Bisa Bayes map for (F,w) and let (x,y) € X x (Y\ Ng). Then
Adg, o Gyx : M, (€C) ~>Mn, (C) is +-preserving if and only if it is CP.
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Proof. By Proposition 6.15, Adg, o Gyx takes the form
(Adg, o Gyx)(Ay) = ZXAF* (xA)Qy ¥ Ay € My, (C). (6.20)
y

If py = 0, then Ade o Gyy is the zero map and is therefore CP. If px # 0, by Proposition 5.12,
all of the items listed in that proposition are equivalent to Adq, o Gyx being *-preserving. In
particular, Ade o Gyx is CP. [ |

Lemma 6.21. The following conditions on a linear map A S Bare equivalent.

i. Gisunital.
ii. Gsatisfies ) _cx Gyx(1m,) = In, forally €Y.
iii. G satisfies 3 x tryg, () (Choi(Gyy)) = 1n, forally €.

Theorem 6.22 (A Bayes’ theorem for finite-dimensional C*-algebras). For each x € X and y €
Y\ Ng, set (cf. Notation 6.1)

My
Ayx = Z_ZZ Ei(]jnx)@) oy Fry (px i )Qy and Byy = Z: Z E (M) e ayFry (px i )er (6.23)
ij=1 i,j=1

which are matrices in M, (C) @ M, (C). Then (F, w) has a (CPU) Bayesian inverse if and only if
A=Ay V(oY) €Xx (VAN (6.24)

and
2 (© (%ﬁx%x%yx) <Qy VyeY\N (6.25)

xeX

The proof will be similar to the proof of Theorem 5.62 with a few minor changes. We will
therefore spell this out, but on occasion we will shorten arguments which would otherwise be
repetitive.

Proof of Theorem 6.22.
(=) Suppose that (F, w) has a Bayesian inverse G. Then by Proposition 6.15,

(T, ® Qy) (ChOi(ny)) (T, ® Qy) = Ayx and (I, ® Qy) (ChOi(ny)) (I, ® Qi,_) = Byx

(6.26)

hold forall (x,y) € X x (Y\ Ng). The rest of the proof in this direction follows similar arguments
as in the proof of Theorem 5.62.

(«<) Conversely, suppose the two conditions hold. Fory € N, set

tr(Ay)

me(c) S Ax ny(Ax) = W

In, VxeX (6.27)
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Note that Gx is completely positive and satisfies
Y Gullm) =1n, VYyeN, (6.28)
xeX

Fory € Y\ Ny, most of the proof follows through as in the proof of Theorem 5.62. In particular,
one builds Gyy in terms of its Choi matrix by using (6.26). The first main difference occurs in
defining €yx = (L, ® Qj) (Choi(Gyy)) (Lm, ® Qj), which can be set as

1 —_—
Cyx 1= B Ay By + —— . ( (Qj -t (%LX,%X,%X,)» : (6.29)
X X

x'eX

Note that €y > 0 and satisfies

Dty () = Q. (6.30)

With these definitions, G has been defined everywhere and automatically satisfies the Bayes
condition by the assumptions made. Finally, (6.28), (6.30),

2 (© = Qy, and Dty ©(By) =0 VyeY\N, (6.31)
xeX xeX
show G is unital by Lemma 6.21. [

In the following example, we will describe when Bayesian inverses exist for quantum in-
struments.

Example 6.32. An instrument on a Hilbert space }{ indexed by a finite set Y is a CPU map
B(H) @ CY ~~B(H). In what follows, let K be finite-dimensional so that such a map specifies

a family of CP maps M, (C) SR M (C), indexed by y € Y, such that } .y Fy is CPU. Given
a state w = tr(p - ) on M (C), set & :== woF. Set qy = tr(F;(p)). If g, = 0, let oy be any
density matrix, while if q, # 0, set oy = %F{j(p). Then & = Zer qytr(oy - ). A Bayesian
inverse of (F, w) would consist of a family Gy : M (C) ~~ M (C) of CPU maps (note the
difference and that Fy was not required to be unital). At present, we have not yet found a
simpler description of when Bayesian inverses exist other than to demand the assumptions in
Theorem 6.22. Nevertheless, if one has an explicit instrument with known states, then it should
not be too difficult to apply the criteria of Theorem 6.22 to see if a CPU Bayesian inverse exists.
Furthermore, one may always compute the required pseudoinverses (provided they are not too
large) to determine the formula for the Bayesian inverse.

Finally, we end with the verification that Theorem 6.22 reproduces the standard classical
Bayes’ theorem as a corollary.

Example 6.33. Suppose m, = 1and ny = 1 for all (x,y) € X x Y in Theorem 6.22. In this case, F
can be viewed as a matrix of (linear transformations given by multiplication by) non-negative
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numbers. In this case, F},, = Fxy as numbers. If gy # 0, then Qy = 1y, so that 2y, = —qux ,

Byx = 0, and ¢y, = 0. The two conditions in Theorem 6.22 are automatically satisfied. Hence
a Bayesian inverse exists. When qy # 0, one sets Gy := %. When qy = 0, the assignment

in (6.27) defines Gyx as Gy := % Thus, our proof of our quantum Bayes’ theorem reproduces
classical Bayesian inference.

A Permutations of the Choi matrix

Let M, (C) L M, (C) be a linear map. Decompose the Choi matrix of G as'®

—_ G(Elrln))tl G(ElT))tr . G(E(m) tl G(Egm))tr -
G(E)™ G(ER)” G(EW)” G(ER)”

Choi(G) = : : (A.1)
SEN) GER)T . G(Em)! s
G(Em)™ G(EM)™ G(Emm)” G(Emm)”

so that
i ij

b br| *
GED)" 6 (e

G [m] tl e (m)ytr
(E )1 (E5) (A2)

br need not be the same, but we

Note that the size of the square matrices G (E%m))tl and G (E;m))
assume that the size of G (Ei[;“))tl equals the size of G(EE{U)tl for all ,j,k,1 € {1,...,m}, and

similarly for G (E%m))br and G (E]({T{l))br. Then, there exists a permutation matrix U such that

GES)" - GEM)" [GED)" - GER"
UChoi(G)Uuf = ml mm ml mm (A.3)

G(ET)™ - G(EM)™ G(E)™ -+ G(ER)r

| GER)” - [GER)T SETNT - GER)T

(which corresponds to the matrix [Q% %} in the proof of Theorem 5.62). This is just a special

case of what is discussed in Remark 5.55, where the projection P is of the form 1, ® [ILOT Ono_r}
with 0 < r < n. The permutation matrix U is the matrix associated to the permutation

(1 2 3 4 oo 2m—3 2m—2 2m—1 Zm) (Ad)

1 m+1 2 m+2 --- m—1 2m-—1 m 2m

16¢ — top, b = bottom, r = right, | = left. The matrix rows and columns have been colored to illustrate how one
slides them to obtain the permutation discussed afterwards.
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i
j
blocks of the appropriate sizes. If G (Egn) )% has size v x r, then G (Egn) )bT has size (n —1) x (n —
1), and the general form of U is

where ; means that the i-th row is sent to the j-th row. Note that this is a permutation for the

(1, 0 0 0 0 0 |
o o0 1, O 0 0
O 0 0 o0 1, O
U= A.
0 I, 0 O 0 0 (A-5)
0 0 0 1p, 0 0
0o 0 0 0 0 Tnr]
For example, the matrix U that achieves this for (5.87) is
1, 0 0 O
10 0 1, O
U= 0 1 0 O (A-6)
0 0 0 1y
and corresponds to the permutation
12 3 4
(1 32 4) ’ (A7)

which swaps the second and third blocks but leaves the first and fourth blocks alone.
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