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ABSTRACT

Modular and quasimodular forms have played an important role in gravity and string the-
ory. Eisenstein series have appeared systematically in the determination of spectrums and
partition functions, in the description of non-perturbative effects, in higher-order corrections
of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special
solutions of Einstein’s equations. In the present lecture notes we present a class of such
solutions in four dimensions, obtained by requiring (conformal) self-duality and Bianchi
IX homogeneity. In this case, a vast range of configurations exist, which exhibit interest-
ing modular properties. Examples of other Einstein spaces, without Bianchi IX symmetry,
but with similar features are also given. Finally we discuss the emergence and the role of
Eisenstein series in the framework of field and string theory perturbative expansions, and
motivate the need for unravelling novel modular structures.

To appear in the proceedings of the Besse Summer School on Quasimodular Forms — 2010.
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1 Introduction

Modular forms often appear in physics as a consequence of duality properties. This comes
either as an invariance of a theory or as a relationship among two different theories, under



some discrete transformation of the parameters. The latter transformation can be a simple
Z, involution or an element of some larger group like SL(2, Z). The examples are numerous
and have led to important developments in statistical mechanics, field theory, gravity or
strings.

One of the very first examples, encountered in the 19th century, is the electrtic-magnetic
duality in vacuum Maxwell’s equations (see e.g. [1]), which are invariant under interchang-
ing electric and magnetic fields. This was revived in the more general framework of Abelian
gauge theories by Montonen and Olive in 1977 [2] and culminated in the Seiberg—-Witten du-
ality in supersymmetric non-Abelian gauge theories [3]. There the duality group SL(2,Z)
acts on a complex parameter T = % + %ﬁi, where 0 is the vacuum angle and g is the coupling
constant. The modular transformations give thus access to the non-perturbative regime of
the field theory.

In statistical mechanics, the Kramers—Wannier duality [4] predicted in 1941 the existence
of a critical temperature T. separating the ferromagnetic (T < T) and the paramagnetic
(T > T¢) phases in the two-dimensional Ising model. The canonical partition function of
the model, computed a few years later by Lars Onsager [5], is indeed expressed in terms of
modular forms.

Over the last 30 years, modular and quasimodular forms have mostly emerged in the
framework of gravity and string theory. At the first place, one finds (see e.g. [6]) the canonical
partition function of a string of fundamental frequency w at temperature T

Z=—— (1.1)

where g = exp 2inz = exp —w/kT and 7(q) the Dedekind function (we refer to the appendix
for definitions and conventions on theta functions, (A.1)-(A.5)). The average energy stored

in a string at temperature T is thus

dlnZ hw
E) =G ~ a2

(1.2)

where E;(z) the weight-two quasimodular form. Again, the modular properties of these
functions translate into a low-temperature/high-temperature duality, which exhibits a criti-
cal temperature, signature of the Hagedorn transition.

In the above examples the modular group acts on a modular parameter related to the
temperature. There is a plethora of examples in gravity and string theory of more geometri-
cal nature, related to gravitational configurations and in particular to instantons.

An instanton is a solution of non-linear field equations resulting from an imaginary-time

i.e. Euclidean action S[¢] as
éS

5 0. (1.3)



It should not to be confused with a soliton. The latter is a finite-energy solution of non-linear
real-time equations of motion and appear in a large palette of phenomena such as the prop-
agation of solitary waves in liquid media (as e.g. tsunamis') or black holes in gravitational
set ups.

Instantons have finite action and enter the description of quantum-mechanical processes,
which are not captured by perturbative expansions, as their magnitude is controlled by
exp —1/¢ at small coupling ¢ (in electrodynamics § = ¢’/ic). These phenomena include
quantum-mechanical tunneling and, more generally, decay and creation of bound states.
Their amplitude is weighted by exp(—5/r), where S is the action of the instanton solution
interpolating between initial and final configurations (see [8] for a pedagogical presentation
of these methods).

All interacting (i.e. non-linear) field theories exhibit instantons. These emerged origi-
nally in Yang-Mills theories [9,10] as well as in general relativity [11-13]. In the latter case,
their usefulness for the description of quantum transitions is tempered by quantum incon-
sistencies of general relativity. Such configurations turn out nevertheless to be instrumental
in modern theories of gravity, supergravity and strings for at least two reasons.

At the first place, some gravitational instantons falling in the class of asymptotically lo-
cally Euclidean (ALE) spaces have the required properties to serve as compactification set
ups for superstring models usually defined in space-time of dimensions 10. This is the
case, for example, of the Eguchi-Hanson gravitational instanton [12,13], which appears as
a blow-up of the C,/Z, A;-type singularity, or of more general Gibbons-Hawking multi-
instantons [14].

The second reason is that supergravity and string theories contain many scalar fields
called moduli. Their dynamics is often encapsulated in non-linear sigma models, which
happen to have as a target space certain gravitational instantons such as the Taub-NUT,
Atiyah-Hitchin, Fubini-Study, Pedersen or Calderbank-Pedersen spaces [11,15-21]. Due to
some remarkable underlying duality properties, most of the spaces at hand are expressed in
terms of (quasi) modular forms, and this makes them relevant in the present context.

It should be finally stressed that in the framework of string and supergravity theories,
quasimodular forms do not appear exclusively via compactification or moduli spaces. Re-
cent developments on the perturbative expansions in quantum field theory reveal how rele-
vant the spaces of quasimodular forms are for understanding the ultraviolet behaviour and
its connections with string theory acting as a ultraviolet regulator [22]. They also call for

introducing new objects, which stand beyond the realm of Eisenstein series [23].

1A valuable account of these properties can be found in [7].



2 Solving Einstein’s equations

It is a hard task in general to solve Einstein’s equations. In four dimensions with Euclidean
signature, following the paradigm of Yang-Mills, the requirement of self-duality (or of a
conformal variation of it) often leads to integrable equations. Those are in most cases re-
lated to self-dual Yang-Mills reductions, and possess remarkable solutions (see. e.g. [24]). It
should be mentioned for completeness that self-duality can also serve as a tool in more than
four dimensions. In seven or eight dimensions, it can be implemented using G, or quater-
nionic algebras [25-28]. It is not clear, at present, whether in those cases some interesting
and non-trivial relationship with quasimodular forms emerge. We will therefore not pursue

this direction here.

2.1 Curvature decomposition in four dimensions

The Cahen-Debever-Defrise decomposition, more commonly known as Atiyah-Hitchin-
Singer [29,30], is a convenient taming of the 20 independent components of the Riemann
tensor. In Cartan’s formalism, these are captured by a set of curvature two-forms (a,b, ... =
1,...,4)
1
R, = dw'y + @' Ay = SR%0° A 0, 2.1)

where {6} are a basis of the cotangent space and w?®, = I'?, 6 the set of connection one-

forms obeying the requirement of vanishing torsion
1
T“de%waAW::EW%WAGC: : (2.2)

The cyclic and Bianchi identities (d A d6” = d A dw”, = 0), assuming a torsionless connec-

tion, read:

R, AOP = 0,
dRab + wac /\ Rcb - Rac /\ wcb = O. (24)

We will assume the basis {6} to be orthonormal with respect to the metric g

g = 6,,0°6", (2.5)
and the connection to be metric (Vg = 0), which is equivalent to

Wap = —Wpy- (2.6)

The latter together with (2.2) determine the connection.

The general holonomy group in four dimensions is SO(4), and g is invariant under local



transfromations A(x) such that
07 = A17,6, 2.7)

under which the connection and curvature forms transform as

wh = ATVWAT + ATTAAS, (2.8)
RY = AT RO, (2.9)

Both w,, and R,;, are antisymmetric-matrix-valued one-forms, belonging to the representa-
tion 6 of SO(4).

Four dimensions is a special case as SO(4) is factorized into SO(3) x SO(3). Both con-
nection and curvature forms are therefore reduced with respect to each SO(3) factor as
3 x 1+1 x 3, where 3 and 1 are respectively the vector and singlet representations (i, j, ... =
1,2,3):

= % <w0i + ;€ijkwjk> , A= % <w0i — ieijkwjk> , (2.10)
Si = % (ROZ- + ;eiijfk> , Ai = % <R01- - ;eijkw'k) , (2.11)

while (2.1) reads:
Si=d% —epX AZF,  A; = dA;i+ e Al A AR (2.12)

Usually (X;, Sj) and (A;, A;) are referred to as self-dual and anti-self-dual components of
the connection and Riemann curvature. This follows from the definition of the dual forms
(supported by the fully antisymmetric symbol €abed”)

1
a]ﬂb - ieahcdwcd’ (213)
>a 1 a dpc
R b — 56 be R s (214)

borrowed from the Yang—Mills3 . Under this involutive operation, (¥;, S;) remain unaltered
whereas (A;, A;) change sign.

2A remark is in order here for D = 7 and 8. The octonionic structure constants $upy & B,y €1{1,...,7} and
the dual Gy-invariant antisymmetric symbol ¢*#7° allow to define a duality relation in 7 and 8 dimensions with
respect to an SO(7) D Gy, and an SO(8) D Spin, respectively. Note, however, that neither SO(7) nor SO(8) is
factorized, as opposed to SO(4).

3Note the action of the duality on the components, as d)"b = f“b CQC, 72”12 = %R“b . SN o4

ia _ 1.8 fre
e = feberfc’
Ra _ 1.8 fpe
RY%yqr = 2€ 4 Ripepr

and similarly for the Weyl part or the Riemann.



Following the previous reduction pattern, the basis of 6 independent two-forms can be
decomposed in terms of two sets of singlets/vectors with respect to the two SO(3) factors:

. A
¢ = ON0+ Ee’jkef/\(?k, (2.15)
. 1.

i 0 i~ pj k
Xo= 0ON0 — eyt no- (2.16)

In this basis, the 6 curvature two-forms S; and A; are decomposed as

(3> _ (‘P) , 2.17)
A X
where the 6 X 6 matrix r reads:

A Ct wt ct\ s
r= - 4+, 2.18
(c B) <c w) 6 ° (2.18)

The 20 independent components of the Riemann tensor are stored inside the symmetric

N =

matrix r as follows:
o s =Trr =2Tr A = 2Tr B = R/2 is the scalar curvature.
e The 9 components of the traceless part of the Ricci tensor S, = Ry, — 7 gab (Rap = R, ;)

are givenin C* = (C7)" as

Soo =TrC", S = eijkC];(, Sij=Cif +C;; —TrC'a. (2.19)

e The 5 entries of the symmetric and traceless W™ are the components of the self-dual

Weyl tensor, while W~ provides the corresponding 5 anti-self-dual ones.

In summary,

1
S, = VV;r 1254}1 + C+)(] (2.20)

1 1
A = W+ 123)(1 + CZ] qb (2.21)

where 1
W 7W+¢] W = 2W )(] (2.22)

are the self-dual and anti-self-dual Weyl two-forms respectively.
Given the above decomposition, some remarkable geometries emerge (see e.g. [31] for
details):

Einstein C* =0 (< Ry, = %&b)



Ricciflat C* =0, s=0

Self-dual 4, =0< {W~ =0, C*=0,s5s=0}
Anti-self-dual S; =0« {W* =0, C* =0, s =0}
Conformally self-dual W~ =0

Conformally anti-self-dual W' =0

Conformally flat WHr =W~ =0

Note that self-dual and anti-self-dual geometries are called half-flat in the mathematical lit-
erature, whereas self-dual and anti-self-dual is meant to be conformally self-dual and anti-
self-dual.

2.2 Einstein spaces

The self-dual and anti-self-dual geometries have a special status as they are automatically
Ricci flat:
Ai=00rS;=0=C*=0, s=0. (2.23)

They provide therefore special solutions of vacuum Einstein’s equations, which include
gravitational instantons already quoted in the introduction such as Eguchi-Hanson, Taub-
NUT or Atiyah-Hitchin.

More general solutions are obtained by demanding conformal self-duality on Einstein

spaces
WH=00orW =0 and C*¥ =0 (2.24)

with non-vanishing scalar curvature*
s = 2A. (2.25)

Those are the quaternionic spaces and include other remarkable instantons such as Fubini-
Study, Pedersen or Calderbank—Pedersen.
Conditions (2.24) and (2.25) can be elegantly implemented by introducing the on-shell

Weyl tensor

W = Rab _ %9“ N (2.26)

These 6 two-forms can be decomposed into self-dual and anti-self-dual parts:

_ A 1 1 i
Wi+ = Sl' — ECPZ = Wf + E(S — ZA)(PZ + EC;X], (227)
.y A 1 1., .
Wo = Ai— =W+ E(s —2A)xi + 5Cij ¢ (2.28)

4Requiring vanishing C* amounts to demanding the space to be Einstein (R,;, = % Qap), which implies that
its scalar curvature is constant.



Quaternionic spaces are therefore obtained by demanding
W =0o0r W~ =0. (2.29)

Furthermore, using the on-shell Weyl tensor (2.26), the Einstein—-Hilbert action reads:
sEHzl/ caea (W + 2077 607) no° 67 (2.30)
327G Jm, € 6 ’ '

3 Self-dual gravitational instantons in Bianchi IX

Inspired by applications to homogeneous cosmology (see e.g. [32]), spaces M, topologically
equivalent to R x M3 have been investigated extensively in the cases where M3 are homo-
geneous of Bianchi type. These foliations admit a three-dimensional group of motions acting
transitively on the leaves M3.

The study of all Bianchi classes (I-IX) has been performed (for vanishing cosmological
constant) in [33-35] and more completed recently in [36]. It turns out that only Bianchi IX
exhibits a relationship with quasimodular forms.

3.1 Bianchi IX foliations
Under the above assumptions, a metric on My can always be chosen as (see e.g. [37])
ds?> = dr* + gij(t)aiaj, (3.1)

where ¢,i = 1,2, 3 are the left-invariant Maurer—Cartan forms of the Bianchi group, satisfy-
ing

1.
do' = Ecl]-kaf Aok, (3.2)

This geometry admits three independent Killing vectors ¢;, tangent to M3 and such that

(61, 6j] = ' (3.3)
In the case of Bianchi IX, the group is SU(2). Using Euler angles, the Maurer-Cartan
forms read:
ol =sindsiny de + cosyp dd
0?2 = sin®cos P de — sinyp dd (3.4)
03 = cosdde + dy
with0 <8 < 7,0 < ¢ <27,0 < ¢ < 47. The structure constants are ci]-k = —ei].k = —(51[(—:4]'](



with €123 = 1. Similarly the Killing vectors are

§1 = —singcotddy + cospdy + Si“‘Pa,,

sin ¢
¢2 = cos g cot¥dy + sin ¢ dy — Z?;;P dy (3.5)
53 - a(P.

Although for some Bianchi groups it is necessary to keep g;; in (3.1) general, for Bianchi
IX it is always possible to bring it into a diagonal form, without loosing generality (for a
systematic analysis of this, see [36]). We will make this assumption here, introduce three
arbitrary functions of time Q' as well as a new time coordinate defined as dt = vQ1Q203dT,
and write the most general metric (3.1) on a Bianchi IX foliation as

0203 2 030! 2 0l0? 2
2 b 10203 472 1 2
ds? = 6,06 = Q' + 5 (o) + =55 () + 55 (). 3)
For this metric, the two-form basis (2.15) and (2.16) reads:
¢ = OOKAT Ao + Qo A dF, (3.7)
X' = QOMT A — Qidd A dF, (3.8)

where i, j, k are a cyclic permutation of 1,2, 3 without over i. Using Egs. (2.2), (2.6) and (2.10),
one finds for the corresponding Levi—Civita connection

s 1 O'+00F 400N O+ 00N (3.9)
L 4/010203 Qi QO Ok ' '
N OJOk N OkOi e OiO)J )
A 1 -0 o -0 OfF-00h (310)
4/Q10208 o @’ OF

where f stands for df/dr (as previously, i, j, k are a cyclic permutation of 1,2,3 and no sum
over i is assumed) .

3.2 First-order self-duality equations

From now on, will focus on self-dual solutions of Einstein vacuum equations (anti-self-dual
solutions are related to the latter e.g. by time reversal). Following (2.10), self-duality equa-
tions (2.23) read:

dA; + €Al N AF = 0. (3.11)

Equations (3.11) are second-order. They admit a first integral, algebraic in the anti-self-dual

connection A;:

Nj o
Ai = %0'] with )\1] =0or (51] (312)



Put differently, vanishing anti-self-dual Levi—-Civita curvature can be realized either with a
vanishing anti-self-dual connection, or with a specific non-vanishing one that can be set to
zero upon appropriate local SO(3) C SO(4) frame transformation (see [31] for a general
discussion, [38] for Bianchi IX, or [36] for a more recent general Bianchi analysis). These two
possibilities lead to two distinct sets of first-order equations. In the present case, using (3.10)
one obtains:
Ai=0e {01 — 020, O2=0%0, O°= 0102}, (3.13)

and

Ol = 020° - 0! (Q* + OF)
=02 =030 - 02 (Q® + Q) (3.14)

O} =010 -0 (' +0?).

Ai = 51']‘%]

Historically, both systems were studied in the 19th century in the search of integrals lines
of vector fields. The first is the Lagrange system, appearing as an extension of the rigid-
body equations of motion. It is algebraically integrable and was solved a la Jacobi. The
second set is called Darboux—Halphen and appeared in Darboux’s work on triply orthogonal
surfaces [39]. Generically, it does not possess any polynomial first integral, and was solved
by Halphen in full generality using Jacobi theta functions [40].

In the late seventies, integrable systems of equations such as Lagrange or Darboux—
Halphen emerged in a systematic manner in self-dual Yang-Mills reductions [24]. This has
led many authors to investigate these equations in great detail and, in particular, to unravel
their rich integrability properties (see e.g. [41-43] as a sample of the dedicated literature). It
took a long time, however, to realize that these systems were actually related with gravita-
tional instantons, foliated by squashed spheres.

When all three ('s are identical, the leaves of the foliation are isotropic three-spheres
with SU(2) x SU(2) isometry generated by the above left Killing vectors ¢;,i = 1,2,3 (3.5),
as well as by three right Killing vectors

e = —sinycotddy + cosPdg + Zﬁ;’; dy

ey = —costpcotddy —sinhds + ¥ g, (3.15)

sin ¢

e3 = 61,,.

Lagrange and Darboux-Halphen systems are equivalent in this case (actually related by time
reversal), ) = +0?, and the solutions lead to flat Euclidean four-dimensional space.

More interesting is the case where Ol = 0?2 # 3. Here, the leaves are axisymmet-
ric squashed three-spheres, invariant under an SU(2) x U(1) isometry group generated by
¢i,i = 1,2,3 and e3. On the one hand, the Lagrange system leads to two distinct gravitational
instantons known as Eguchi-Hanson I and II [12,13], out of which the first has a naked singu-

10



larity and is usually discarded. On the other hand, the Darboux—Halphen equations deliver
the celebrated Taub—NUT instanton [11].

Thanks to the algebraic integrability properties of Lagrange system, it took only a few
months to Belinski et al. to generalize the Eguchi—-Hanson solution to the case where Q! #
0?2 # )3 [44] - the symmetry is strictly SU(2) but the solution is plagued with naked singu-
larities. A similar generalization of the Taub—-NUT solution turned out much more intricate,
and after some fruitless attempts [38], Atiyah and Hitchin reached a regular solution, eli-
gible as a gravitational instanton and expressed in terms of elliptic functions [15]. It was
only realized in 1992 by Takhtajan [41] that first-order self-duality equations for Bianchi IX
gravitational instantons were in fact Lagrange and Darboux-Halphen systems, and that the
Atiyah-Hitchin instanton was a particular case of the general solution found by Halphen in
1881 [40].

It is finally worth mentioning that the above systems of ordinary differential equations
also appear in the framework of geometric flows in three-dimensional Bianchi IX homoge-
neous spaces. The original mention on that matter can be found in [45]; later and indepen-
dently it was also quoted in [46]. At that original stage, this relationship was limited to the
case of Bianchi IX with diagonal metric. It was proven recently to hold in full generality in
all Bianchi classes [47,48].

4 The Darboux—Halphen system

The Darboux—-Halphen branch of the self-duality first-order equations of Bianchi IX folia-
tions in vacuum is the most interesting for our present purpose as it is the one related with

quasimodular forms.

4.1 Solutions and action of SL(2,C)

Consider the system in the complex plane: w'(z), z € C satisfying
dol — (20 — w! (w? + @)
dd—“f = wiw! — w? (0® + W) (4.1)
do? — (ple? — w3 (w! + w?) .

The general solutions of this system have the following properties [40,41]:

e The ws are regular, univalued and holomorphic in a region with movable boundary
(i.e. a dense set of essential singularities). The location of this boundary accurately
determines the solution.

11



e If wi(z) is a solution, thus

; 1 . (az+b c a b
v'(z) = ! , € SL(2,C 4.2
@'(z) (cz+d)2w <c2+d> +cz+d (c d) 2,€) (4.2)

az+b

is another solution® with singularity boundary moved according to z — %Z£3.

The resolution of the equations and the nature of the solutions strongly depend on whether

1 2

the ws are different or not. In the case where w! = w? = w?, the solution is simply

R (4.3)
zZ—2Zp

with zg an arbitrary constant. Under SL(2,C), the new solution @&'(z) is of the form (4.3)
with the pole displaced according to

dzo—b
e (4.4)

czo—a

If w! = w? # w? the solutions are still algebraic:
1 zZ—z
12 3 *

2 _ ) — 45
@ zZ—2zp @ (z —zp)? (4:5)

with two arbitrary constants: zg,z.. A simple pole for w!?, and double for w® appears at
zo, whereas z, is a root for w?®. Acting with SL(2,C) keeps the structure (4.5) with new

parameters:

d - b - *
_fz20mb s s 20722_ (4.6)
€zo —4a (czo —a)

Zo =

The fully anisotropic case is our main motivation here. In this case no algebraic first
integrals exist and the general solution (see [40-42]) is expressed in terms of quasimodular
forms, w' € QMj (T'(2)), where T(2) is the level-2 congruence subgroup of SL(2,Z) (the
subset of elements of the form (25) = (19) mod 2) . Concretely

w'(z) = 5% log £(z) 4.7)

5The same property holds for the Lagrange system (3.13), limited to the subgroup of transformations of the

form (S 1%). This solution-generating pattern based on the SL(2,R) is closely related to the Geroch method
[49,50].

12



with £¥(z) triplet® of holomorphic weight-2 modular forms of T(2). Again, the SL(2,C) ac-
tion (4.2) generates new solutions {w'} — {@'} with a displaced set of singularities in C,
whereas the SL(2,Z) C SL(2,C) acts as a permutation on ws.

Note for completeness that real solutions of the real coordinate T are obtained from the

general solutions as

1d
oy i Ly 2 A 0
OY(T) =iw"(iT) = ¥ls log £°(iT). (4.8)
According to (4.2), new real solutions are generated as
. 1 (AT + B C A B
ONT) = (0% , € SL(2,R). 49
(T) (CT + D)? (CT+D>+CT+D (C D) % R) @)

4.2 Relationship with Schwartz’s and Chazy’s equations

Anisotropic solutions of the Darboux-Halphen system (w! # w? # w?) exhibit relationships
with other remarkable equations. Define

(Ul — (,()3

For ' solving Darboux-Halphen equations, A is a solution of of Schwartz’s equation

A 3 /A 2 1 1 1 1 N2
/V_Z()U) :_2<A2+(/\—1)2_)\(/\—1)>(A) ' (1D

Conversely, any solution of the latter equation provides a solution for the Darboux-Halphen

system as the following triplet:

d)\/dz d/\/dz d/\/dz
1 _ 2 3 _
= =37 ¢ ~axpowy (412)

from which it is straightforward to show that

gl =0. (4.13)
We also quote for completeness
1 w'—w? 1-A & —?
= = ) 4.14
1-A  wd—w? A w! — w3 (4.14)

®Notice their general transformations as generated by z — —1/zand z + 1 :

z— —1/z (51 52 83)—)22(82 51 —53)
z—z+1 : (51 & 53)*)7(53 & 51)

13



Define now
y=-2 (wl Fw? w3) : (4.15)

Again, for solutions of Darboux—Halphen equations «, y a solution of Chazy’s equation [51]
y" = 2yy” —3(y')% (4.16)
The first and second derivatives of y provide the remaining symmetric products
yp &8y P
y = 2 <w1w2 + w?w® + w3w1) , (4.17)
Y = —12wlw?d’ (4.18)
The Jacobian relating {w!, w?, &} to {y,y,y"},
] = (w! — 0*)(w? — &) (w® — wh) (4.19)

is regular for w! # w? # w?. The latter are alternatively obtained by solving the cubic
equation

1 1 1
3, 1 2, 1"
w -I-Zyw +2yw+—12y =0, (4.20)

for any solution y of Chazy’s equation.

4.3 The original Halphen solution

A particular solution of the Darboux system (3.14) is the original Halphen solution [40]. In

this language, it corresponds to Ay = %2/#4:

&l = imd} wh = & (B2 — 04— )
Eh=—indy S (wh=ZL(E+08i+0) (4.21)
& = —ind} wh =Z (B2 + 05— 07).

This is also the solution found by Atiyah and Hitchin [15] as the Bianchi IX gravitational
instanton solution relevant for describing the configuration space of two slowly moving
BPS SU(2) Yang-Mills-Higgs monopoles [52,53]. The corresponding Chazy’s solution and

derivatives are combinations of (holomorphic) Eisenstein series (see appendix, Egs. (A.6)):

YH = i7TE2
yiy =2 (E3 — E4) (4.22)
Y =~ (B3 — 3E,Ey4 + 2Es) .

Starting from (4.21) all solutions are obtained by SL(2,C) action (4.2).
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5 Back to Bianchi IX self-dual solutions

Any real solution {Q)(T)} of the Darboux-Halphen system provides a four-dimensional
self-dual solution of Einstein vacuum equations in the form (3.6). Not all these solutions are

however bona fide gravitational instantons as some regularity requirements must be fulfilled.

5.1 Some general properties

An elementary consistency requirement is that the metric (3.6) should not change sign along
T. In particular, a simple root of a single () turns out to be a genuine curvature singularity.
Assuming e.g. linearly vanishing Q! and introducing as time coordinate the proper time T

around the root, the metric locally reads:
) 2 2 2
ds® ~ dt? + =7 (0’1) +YT7? (((72) + () ) (5.1)

with E, Y constants. This metric has a curvature singularity at T = 0.

Other pathologies can appear, which do not necessarily affect the consistency of the solu-
tion. Poles of some (s or multiple roots are potential natural boundaries or (non-)removable
coordinate singularities such as bolts or nuts. The latter are fixed points of some Killing vec-
tors & (V(,¢,) = 0), for which the matrix V,{, is respectively of rank 2 and 4. A general,
complete and detailed presentation of these properties is beyond the scope of these notes
and is available in the original paper [54]. For our purpose here, we recall two generic sit-
uations, where again we present the metric in local proper time T around a fixed point at
T=0:

Rank 2 - bolt This singularity is removable if the metric behaves as

At m a8 () () A ()

22 2 (5.2)
= dt?+ L5 (dy + cos 9dg)” + {2 (dv? + sin® ddg?),
and provided ¥/2 € [0,27[. Locally the geometry is thus R? x S2.
Rank 4 — nut This singularity is removable if the metric behaves as
ds? ~ d2+ % ((01)*+ (02) + (%)
7 (@) @)+ (@) .

= d72+ T (d9? + sin 8dg? + (dy + cos 19dg0)2> .

For a nut, the local geometry is R* (here in polar coordinates).
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5.2 Behaviour of Darboux-Halphen solutions

As already pointed out, there are thee distinct cases to consider: () all equal, Q! = Q? # O3
or Q! £ 2 £ O3, In the first case,

1
T-Tp

O Vi, (5.4)
and the four-dimensional solution corresponds to flat space. When only two ()s are equal,

the isometry group is extended to SU(2) x U(1) and real solutions read:

1 o T-T

0l = s
T-Tp (T - To)?

(5.5)

There are 3 special points: T = T,, To and T — co. One can analyze their nature by zooming
around them, using proper time:

o At T — co one recovers the behaviour (5.3) and this point is a nut.

e Around T = Tj one finds

ds? ~ d7? + 72 (d6? + sin? 9d¢?) + (dy + cos 9dg)? . (5.6)

1
To — T
This is an S! fibration over IR?, the fiber being dy + cos 9d ¢. It is called Taubian infinity

(see [54]) and appears as a natural “boundary”.

o At T = T. there is a curvature singularity as the metric behaves like (5.1) with & =

(str) ¥ = ()"

One therefore concludes that in order to avoid the presence of naked singularities, the singu-
lar point T = T, should be hidden behind the Taubian infinity i.e. Ty, < Tj (see Fig. 1). Under
this assumption, the self-dual solution at hand is well behaved and provides the Taub-NUT
gravitational instanton [11,31]. It is most commonly written as:

dr? 1 2 —
ds? = :fZTT + (P —m?) (((71> + (02)2> +m2:+Z (), (5.7)
where m? = 1 > 0and m(r —m) = 21

The case where Q! # (% # ) is the most interesting in the present context since it
involves quasimodular forms. The real Halphen solution (see Eq. (4.21) with z = iT or
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Figure 1: Generic solution Q! = 0% < (%,

g = exp —27T)) reads:

QL(T)=Z(E—95—105) <0
O}(T) = £ (E> + 04 + 8}) 58)
OF(T) = £ (E2+ 95 — 83) < Of.

It is defined for T > O witha poleat T = 0:

1. _ 7 23 1
QH ~~ _ﬁ, QH ~~ T. (5-9)
Around this pole, the behaviour of the metric is
ds? ~ — (dr> + 72 ((03)2 + (02)2> + 2 (Ul)Z (5.10)
T ’ '

and we recover a Taubian infinity (S! fiber over R?). The large-T behaviour is exponential
towards a constant

O ~ Famexp —nT, O} ~ 7/2+4mwexp —2nT (5.11)
with

ds? ~ — (dT2 + g <(01)2 + ((73)2> + 472 (02)2> ) (5.12)
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This is precisely a bolt as in Eq. (5.2) with n = 4,{ = +/7/2 and permutation of principal
directions 2 and 3. All this is depicted in Fig. 2.

Figure 2: Halphen original solution (Qll{ <0< ng{ < QZH)

As already quoted, the self-dual vacuum geometry corresponding to Halphen’s original
solution is the Atiyah-Hitchin gravitational instanton [15]. Using modular transformations

(4.9), one constructs all other real solutions with strict SU(2) isometry (i.e. with all ()’ differ-

; 1 . (AT + B C
OT)= —0 . 5.13
(T) (CT+D)? H(CT+D>+CT+D -13)

ent):

Are those well behaved?

The answer is no because a root of one () always appears between the Taubian infinity
and the bolt. This root is a curvature singularity, which spoils the regularity of the solution.
In order to elaborate on that, we first observe that in Eq. (5.13), g%g must be positive, as
real ()}, are only defined for positive argument. Assume for concreteness that

. AT+B A
fer+p ¢~ G119
On the one hand, at large T

O = % + 0 (1/12), (5.15)

and trading T for the local proper time one finds a nut (see (5.3)). On the other hand, the
values To, = —D/c < Ty = —B/A correspond to two poles, and Q(T) are defined for T < Tw
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or Ty < T with reflected behaviour. For Ty $ T

T 1 1
A~ 0¥ 1
2A2 (T—TQ)Z, T —To (5.16)
(note the sign flip in Q') and
12 g2 2 2\2 3\2 LAZ 1)
ds? ~ d? + 7 ((02)" + ()°) + = (o). (5.17)

Therefore T = Tj is a Taubian infinity (S! fiber over R3), and as T moves from T = T to
T — 400 one moves from the Taubian infinity (“boundary”) to a nut. A similar conclusion
is reached when scanning T from T, to —co.

The problem arises because there is always a value T, such that Ty < T, < co with Q! =
0 < O3 < Q2 (see Fig. 3). This unavoidable root is a genuine curvature singularity of the
metric. Because of this, no anisotropic solution of the Darboux—Halphen system other than
the original one ((4.21) or (5.8)) provides a well-behaved Bianchi IX gravitational instanton.

05/
04/

03]

Figure 3: Generic solution for Ty < Tand 0 < Q! < Q% < Q2.

5.3 A parenthesis on Ricci flows

Ricci flows describe the evolution of a metric on a manifold, governed by the following first-
order equation:

agii

aTl] = —Rjj, (5.18)
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where R;; stands for the Ricci tensor of the Levi-Civita connection associated with g;; (see
e.g. [55]). It was introduced by Hamilton in 1981 [56] in order to gain insight into the ge-
ometrization conjecture of Thurston (see e.g. [57]), a generalization of Poincaré’s 1904 con-
jecture for three-manifolds, finally demonstrated by Perel’'man in 2003 [58]. Ricci flows are
also important in modern physics as they describe the renormalization group evolution in
two-dimensional sigma-models [59].

The case of homogeneous three-manifolds is important as it appears in the final stage
of Thurston’s geometrization. Homogeneous three-manifolds include all 9 Bianchi groups
plus 3 coset spaces, which are Hs, H X S1, 8% x S! (S" and H,, are spheres and hyperbolic
spaces respectively) [60,61]. The general asymptotic behaviour was studied in detail in [62].
A remarkable and already quoted result [45—48] is the relationship between the parametric
evolution of a metric

/QZQB 2 0301 0102
d§2 = Ql (0'1> —+ ﬁ (02)2 —+ F ((73)2 (519)

on M3 of Bianchi type’, and the time evolution inside a self-dual gravitational instanton

on My = R x M3 as given in (3.6): the equations are the same (t in (5.18) and T in (3.6)
are related as dt = VQ!0203dT). Ricci flow on three-spheres is therefore governed by the
Darboux—Halphen equations (3.14).

Solutions of the Darboux-Halphen system describe Ricci-flow evolution if Vi Q' (T) > 0,
assuming that this holds at some initial time Ty. It is straightforward to see that this is always
guaranteed. Indeed, it is true when at least two ()s are equal, as one can see directly from
the algebraic solutions (5.4) and (5.5). More generally, suppose that 0 < O} < Q% < O3 (the
subscript refers to the initial time Tp) and that (); has reached at time T; the value Q% =0,
while Q%, Qi’ > 0. From Egs. (3.14) we conclude that at time Tj, O% =0l = —Q% Q% <
0 and Q% = Q% Q% > 0. This latter inequality implies that {); vanishes at T; while it is
increasing, passing therefore from negative to positive values. This could only happen if )}
were negative, which contradicts the original assumption. However, if indeed Q} < 0 and
03,03 > 0, there is a time T; where (! becomes positive and remains positive together with
0? and O until they reach the asymptotic region.

Solutions (5.4) and (5.5) show that the asymptotic behaviour of (s is clearly /1, when at
least two (s are equal. In the more general case, the large-T behaviour is readily obtained
thanks to the quasimodular properties of the solutions (see footnote 6):

1 1\ 1
12,3 _ 2,13 = -
QY1) = ~50 <T> + (5.20)

"The precise statement is actually formulated for more general, non-diagonal metrics, as explained in detail
in [48], and is valid in all Bianchi classes. For Bianchi IX, the diagonal ansatz exhausts, however, all possibilities.
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Therefore, for finite and positive Q) = ('(0),

O = % + subleading at large T, 5.21)

as one observes in Fig. 4. Note that this does not hold for the solution (5.8) because for the
latter T = 0 is a pole and Q) = ()'(0) is neither finite, nor positive for all i. The behaviour at
large T is not 1/1, but exponential (see Eq. (5.11) and Fig. 2).

Figure 4: Generic behaviour for 0 < Q} < Q3 < (3.

As a consequence of the generic behaviour (5.21) of Qs for positive and finite initial con-

ditions, the late-time geometry on the S under the Ricci flow is

1 2 2 2
2 o~ 1 2
ds Nﬁ<(a) + (%) +(03)>. (5.22)
This is an isotropic (round) three-sphere of shrinking radius®. It is worth stressing that this
universal behaviour is specifically due to the quasimodular properties of the solution, re-
flected in the non-covariant 1/T term of (5.20).

8 At large times, the original SU(2) or SU(2) x U(1) isometry group gets enhanced to SU(2) x SU(2), while
the volume shrinks to zero. These are generic properties along the Ricci flow: the isometry groups may grow in
limiting situations, whereas the volume is never preserved, but shrinks for positive-curvature geometries:

av _

. . 0gji
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6 Bianchi IX foliations and conformal self-duality

So far, we have considered self-dual solutions of Einstein’s equations. These satisfy Egs.
(2.23) and are Ricci flat. Solutions of the Darboux—Halphen system involving quasimodular
forms are relevant in particular when Bianchi IX foliations are considered. The Lagrange and
Darboux—Halphen systems, and more general modular and quasimodular forms emerge,
however, in set ups where no self-duality and/or Bianchi IX foliation is assumed. Einstein
conformally (anti-)self-dual spaces i.e. quaternionic spaces turn out to exhibit such interest-
ing relationships.
Conformally self-dual Einstein spaces satisfy (see Egs. (2.29))

—

1

This two—form is defined in (2.28) as the anti-self-dual part of the on-shell Weyl tensor (2.26).
The latter includes a cosmological constant A and (6.1) implies that this space is Einstein
(Rap = Agap) on top of being conformally self-dual (W™ = 0).

6.1 Conformally self-dual Bianchi IX foliations

Assuming the four-dimensional space be a foliation M4 = R x M3 with M3 a general ho-
mogeneous three-sphere invariant under SU(2) isometry, we can in general endow it with a
metric (3.6). The Levi—-Civita connection one—forms of the latter are given in (3.9) and (3.10)).
Conformal self-duality condition (6.1) does not require the flatness of the anti-self-dual com-
ponent of the connection A; as in (3.11). Hence, no first integral like (3.12) is available.

In order to take advantage of the conformal self-duality condition (6.1) and reach first-
order differential equations as in the case of pure self-duality, we can parameterize the con-
nection A; and X; and demand that (6.1) be satisfied. This is usually done by setting both A;
and X; proportional to o', asin (3.12), with a T-dependent coefficient though (see e.g. [63]):

Y, = —%ai, (6.2)
A
A = 2()11.0'1. (63)

Using Egs. (3.9) and (3.10), one obtains a relationship between {()'} and {B;, A;}:
Of = QJOF — OF (A + &) = —QVOF + O (B, + By) - (6.4)

Furthermore, Eqgs. (2.27) and (2.28) lead to the following expressions for the on-shell Weyl
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tensor:

—~ 1 . A
Wﬁ — _{W(Bi+BjBk—Bi(Bj+Bk))+6}4)1
1 . B, i
_ m(Bi—BjBk_Bi(Bj+Bk))+2(Qi)2 X, (6.5)
~ 1 . A, i
Wi = aarees Bt Adet A (A4 8) = s 19
1 . AY
+ 9 1aiozes (B — BBk + A (8 + M) — 2 0 X' (6.6)

The additional (with respect to (6.4)) first-order equations for {B;} or {A;} are obtained by
imposing on-shell conformal self-duality. The canonical method for that is to demand that
both coefficients of ¢' and x' in (6.6) vanish. This guarantees (see (2.27)) a conformally self-
dual, Einstein manifold with scalar curvature R = 4A, in other words a quaternionic space.

Solving the system of equations obtained for conformally self-dual, Einstein manifolds
depends drastically on whether or not the isometry is strictly SU(2), i.e. the leaves of the
Bianchi IX foliation are anisotropic, triaxial spheres. When the isometry is extended to
SU(2) x U(1) (two equal Qs), the equations are algebraically integrable (as in the Darboux—
Halphen system (3.14)) and no relationship appears with modular or quasimodular forms.
This leads to a variety of well known biaxial solutions (see [16,17,63] as well as [64] for a
detailed presentation of the resolution) such as (anti-)de Sitter—Taub-NUT, (anti-)de Sitter—
Eguchi-Hanson, (pseudo-)Fubini-Study — CP,, Pedersen (the parentheses correspond to
negative A) ... When all (s are equal, the leaves are round, uniaxial three-spheres, and the
only four-geometries are the symmetric S* or Hy (depending again on the sign of A).

Although straightforward, the above approach leads for the triaxial case to equations
which are not known to be integrable. Hence, their resolution is not systematic and general.
An alternative strategy has been proposed by Tod and Hitchin [65, 66], based on twistor
spaces and isomonodromic deformations (see also [67,68]). In a first step, one sets A to
zero in (6.6) and demands the coefficient of x' to vanish. This is equivalent to demanding
conformal self-duality and zero scalar curvature (W~ = s = 0) without setting C jj to zero.
Thus, the space is not Einstein and has zero scalar curvature. The final step is to perform a
conformal transformation, which allows to restore a non-vanishing scalar curvature, while
simultaneously setting C;; = 0. One thus obtains a quaternionic space.

Explaining the details of this procedure is beyond our present scope, and we will there-
fore limit our presentation to the issues involving modular forms, which stem out of condi-

tions W~ = s = 0. These are imposed by demanding that the coefficient of x’ vanishes in
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(6.6) and setting A = 0:
Ay = DAz — Ay (Do + As)
I Ay = A3y — Dy (A3 + D) (6.7)
Ay =MDy — As (A1 + D).

They are supplemented with Egs. (6.4), which read for {A;}:

Ql = 0203 — Ql (Az —+ Ag)
II 02 =030 - 02 (Ag + Al) (68)
O =0102-03 (Al + Az) .
Before pursuing the present investigation any further, it is worth making contact with the

results of Sec. 3.2 on genuine self-duality equations. Assuming the system I and II satisfied
ie. W™ =5=0,A; (Eq. (2.21)) reads:

1 . 1 AN A; .
= 2O = J _ 0t !
A 2Cl] ¢ 20y (Qjﬂk Qi> ¢ (69)

Purely self-dual Einstein vacuum spaces are obtained by demanding C; =0(e Ry =0
since the scalar curvature vanishes). This leads to the two known possibilities for Bianchi
IX vacuum self-dual Einstein geometries met in Sec. 3.2, and satisfying either one of the
following systems:

e Lagrange (3.13) for A; =0,

e Darboux-Halphen (3.14) for A; = Q.

6.2 Solving I & II with Painlevé VI

Systems I and II (Egs. (6.7) and (6.8)) describing general conformally self-dual Bianchi IX
foliations with vanishing scalar curvature (W~ = s = 0) were studied e.g. in [69,70] prior to
their uplift to quaternionic spaces. Further developments in relation with modular proper-
ties can be found in [71,72].

As usual it is convenient to move to the complex plane, introduce w’(z) and J;(z) and
trade the dot for a prime as derivative with respect to z in (6.7) and (6.8). Real solutions are
recovered as previously: QY (T) = iw!(iT) and A,(T) = i6,(iT).

The system I is that of Darboux—Halphen for J;(z) (see (3.14)). Given a solution J;(z) one
can solve the system II for w'(z). Furthermore, the SL(2,C) solution-generating technique

described in (4.2) can be generalized in the present case: given a solution &;(z) and w'(z),

< 1 az+b c
) = (cz—l—d)251 (cz+d> " cz+d (610
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and

; . b
P(2)= <”z+ ) 6.11)
(cz+d) cz+d
provide another solution if (?Y%) € SL(2,C).
Assuming &; # 5, # &3 i.e. the triaxial situation (implying automatically w! # w? # w?),
we can readily obtain the general solution of the system I as in (4.7),
1d ;

51(2) = —Ealogg (Z), (612)
with £!(z) a triplet of weight-two modular forms of I'(2) C SL(2,Z). These can be expressed
as in (4.12), where A is a solution of Schwartz’s equation (4.11). Define now a new set of
functions w;(z) as

@ 6.13)
w; = .
L Veigk (

(1, ], k cyclic permutation of 1,2, 3), and insert the solutions (6.12) in system II (6.8). The latter

becomes
dw;  wowsz dwy wiwy dws  wiws (6.14)
dv A7 dA A=1" dA A(A—1) '

Notice the first integral w? — w3 + w3. Even though the value of this integral is arbitrary, the
uplift of the corresponding conformally self-dual geometry with zero scalar curvature to an
Einstein manifold is possble only if the constant is 1/4 (see [65, 66]).

The system of equations (6.14) can be solved in full generality with w; expressed in terms
of solutions y(A) of Painlevé VI equation [73] (see also [74] for a more general overview):

> _ WMy -1) 1 1
o = I (o) (o) o
_ y=Myy-1)? 1 1
@ = R (o) (o) ©19
_ =AMy -1 1 1
@ = St (o ay) o) &40
Here, ( )
AA=1)y 1 1 1
- - - 6.18
TN T Ay -1 AN (619)
and y is a solution of Painlevé VI equation (f’ = df/da):
w11 1 1 ) 1 1 1 ,
o= Gt W ()
(y—Ayly—1)° A, A-1 3AMA-1)
e (e ) (649
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6.3 Back to quasimodular forms

We will for concreteness concentrate on the original solution of system I, the Halphen solu-
tion corresponding to Ay = /¢4, This is sufficient as any other can be generated by SL(2,C)

transformations. Equations (6.14) (system II) read now

W) = indjwyws, wh = —indwswy, wj = —imd3wyws. (6.20)

In this form, the system can be solved in terms of Jacobi theta functions with characteristics

[72], as an alternative to the solution (6.15)—(6.17). This makes it relevant in the present
framework.

The solution with w? — w3 + w3 = 1/4 - required for the subsequent promotion to quater-

nionic geometries — read:

- 1 9,8["11(0]2)
“E) = R e0R) eE0k) o
i/ 9,0(,%,](0]z)
wy(z) = 27195(0]z)04(0]z) ﬁ[§]+(1()|z) ’ (6.22)
) —eim/2 9,8 1(0]2)
N BB ) o

Here a,b € C are moduli, mapped under the SL(2,C) transformations (6.10) and (6.11) to
other complex numbers. If 4, b are integers and the transformation is in SL(2, Z), the solution
is left invariant, up to permutation of the three components.

It would be interesting to present the geometrical structure of the conformally self-dual
zero-curvature spaces obtained with the solutions at hand, following the general procedure
used in Sec. 5.2. This would definitely bring us far from the original goal. The interested
reader can find useful information in the already quoted literature, both for these spaces and
for their quaternionic uplift. Note in that respect that even though many families of solutions
exist (here in the triaxial case, or more generally for biaxial three-sphere foliations), very
few are singularity-free among which, the Fubini-Study or the Pedersen instanton (SU(2) x
U(1) isometry), or the Hitchin—Tod solution (strict SU(2) symmetry).

As a final remark, let us mention that (6.21), (6.22), (6.23) also capture the self-dual Ricci
flat solutions discussed in Sec. 3 and given in Egs. (4.21) i.e. the Atiyah—Hitchin gravitational
instanton. They correspond to the choice 2 = b = 1 mod 2, that must be implemented with
care: consider a = 1+ 2¢,b = 1 4 2zpe and take the limit € — 0. One finds (a useful identity
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for this computation is given in (A.5):

_ 1 i 4 4 g4
T (Z_%ZO - (Ez 9 ﬂ3>>, (6.24)
i i 7T
I - Z(E 4y ot 2
w _— <Z+ZO = ( 2+193+194>>, (6.25)
i i 7T
= L (L (B et —0t)). 2
ws 0392 <z+zo 6 ( 2+ 9 194>> (6.26)

A modulus zj is left in the solution; under SL(2, Z) it transforms as

dzo+ Db
czo+a

(6.27)

For finite zg the corresponding metric is Weyl-self-dual with zero scalar curvature The zy —
ico limit corresponds to the Ricci-flat, Atiyah-Hitchin instanton (Riemann-self-dual).

6.4 Beyond Bianchi IX foliations

We would like to close our overview on conformally self-dual geometries with another fam-
ily of quaternionic solutions, related to modular forms but not of the type My = R x M3
with homogeneous M3. Indeed, self-duality (Eq. (2.23)) or conformal self-duality (Egs.
(2.24) and (2.25)) can be demanded outside ot the framework of foliations.

On can indeed assume an ansatz for the metric of the Gibbons-Hawking type [14]:

2 _ gl de') & Bs.dridy
ds* =@ (dt + @;dx' ) + Pfj;dx'dy. (6.28)

Here ® and @; depend on x only, and thus 9 is Killing. With this ansatz more general self-
dual solutions are obtained with U(1), U(1) x U(1) or U(1) x Bianchi isometry. Determining
quaternionic spaces, i.e. conformally self-dual and Einstein, is however far more difficult. It
is a real tour de force to find the most general quaternionic solution with U(1) x U(1) isometry
and this was achieved by Calderbank and Pedersen in [21], following the original method of
Lebrun [68]. This will be our last example, where a new kind of modular forms emerge.

In coordinates {p, 7,6, ¢} with frame

dy + ndo

a=./pdp, B = 7

vy=do, d=dy, (6.29)
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The metric reads:

40? (F2+F2) — F?

d52 = 4F2p2 (’)/2 + 52)
[(F —2pF,) & = 20F,B]" + [(F + 20F,) B - ZPFW“]Z‘ (6.30)
P2 (402 (B2 + ) — 2]
Here F, = 0,F and F,;, = 9, F, where F(p, 7) is a solution of
0 (ag + ag) F=3F (6.31)

The metric (6.30) has generically two Killing vectors, dg,dy and F (p,17) is a harmonic
function on H, with eigenvalue 3/4. Indeed, the metric on the hyperbolic plane is

dp* + dn?
ds?, = "pz” (6.32)
and Eq. (6.31) can be recast as
A, F = 3F. (6.33)

Solving (6.33) leads inevitably to modular forms of T = 1 + ip, even though algebraic solu-
tions are also available.

Let us mention for example

;72
F=,/p+ o (6.34)

which leads to a metric on CP, with U(1) x SU(2) isometry [18], or

£ P20
2vp

with U(1) x Heisenberg’ symmetry [75]. Solutions for F(p,7) with strict U(1) x U(1) isom-
etry open Pandora’s box for non-holomorphic Eisenstein series such as (see (A.9))

(6.35)

F=E(t, 1), (6.36)

which has a further discrete residual symmetry SL(2,Z) C SL(2,R). These will be dis-
cussed in Sec. 7 and we refer to the appendix for some precise definitions. Very little is
known at present on the geometrical properties of the corresponding quaternionic spaces,
or on the fields of application these spaces could find in physics. In string theory, they are
known to describe the moduli space of hypermultiplets in compactifications on Calabi-Yau

9Heisemberg algebra is Bianchi II.
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threefolds [76]. The relevance of the Calderbank and Pedersen metrics in this context was
recognized in [77]. For further considerations on the role of modular and quasimodular foms
as string instantonic contributions to the moduli spaces of these compactifications, we refer
to [78-83] and in particular to the recent review [84].

7 Beyond the world of Eisenstein series

To end up this review we would like to elaborate on some connections between quantum
field theory and modular forms. This originates from the specific structure of the pertur-
bative expansions in string and field theory, and calls for develping more general modular
functions than the non-holomorphic Eisenstein series discussed earlier in these notes.

7.1 The starting point: perturbation theory

Perturbative expansions in quantum field theory are expressed as sums of multidimensional
integrals, obtained by applying Feynman rules or unitarity constraints. These integrals are
plagued by various divergences that need to be regulated. It was remarked in [85, 86] that
the coefficients of these divergences are given by multiple zeta values in four dimensions.
Since this original work, it has become more and more important to further investigate the
relationship between quantum field theory and the structure of multiple zeta values. This
connection has fostered important mathematical results as in instance [87,88], which have
been reviewed in the recent Séminaire Bourbaki by Pierre Deligne [89].

The next observation is that the above mentioned field-theory Feynman integrals arise
as certain limits of string-theory integrals defined on higher-genus Riemann surfaces. They
are actually obtained from the boundary of the moduli of higher-genus punctured Riemann
surfaces. This bridge to string theory sets a handle to the world of modular functions.

There are indeed two motivations for embedding the analysis into a string theory frame-
work. The first is of physical nature: perturbative string theory is free of ultraviolet diver-
gences, so it provides a well-defined prescription for regularizing field-theory divergences.
In other words, string theory acts as a specific regularization from which we expect to learn
more on the fundamental structure of the quantum field theories. The second motivation
is directly related to the topic of this text: string theory is the ideal arena for exploring the
number theoretic considerations of quantum field theory and their close connection with
modular forms.

In the present notes we will focus on the case of the tree level and genus one, following
the string analysis in [22,90] and the mathematical analysis in [91]. We will explain in partic-
ular that (non-holomorphic) Eisenstein series are not enough for capturing all available in-

formation carried by the integrals under consideration. The presentation will be schematic,
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aiming at conveying a message rather that providing all technical details. For the latter, the
interested reader is referred to the quoted literature.
Let us consider the following integral defined on the moduli space of the genus-g Rie-

mann surface with four marked points:

A® (s, t,u) / du / l—IdZZZ exp ( ) Zuc’ki-k]-P(zi,z]-)> , (7.1)

1<i<j<4

where M is the moduli space of the closed Riemann surface ¥, of genus g. There are four
punctures whose positions z; are integrated over. We have introduced k; + kx + k3 + ks =0
with k; - k; = 0 representing external massless momenta flowing into each puncture. We
will also set the Mandelstam variables s = 2k - ko = 2k3 - kg, t = 2ky - ks = 2ko - k3 and
u = 2kq - ks = 2ky - kg, obeying s +t 4+ u = 0 for the massless states at hand. The physical
scale is the inverse tension of the string «'.

The propagator or Green'’s function P(z, w) is defined on this Riemann surface by

0 = d?z ./ —gP(z,w), (7.2)
28
_ 27-[ _
_ — @) () _ T8z
0,0:P(z, w) 276\ (z) f &z~ (7.3)
9.00P(z,w) = —2m6@(2)+n Z w(z)(SmO)7, w](w), (7.4)

where the ds? = gzzdzdz is the metric on the Riemann, () the period matrix, and w; with
1 < I < g the first Abelian differentials.
7.2 Genus zero: the Eisenstein series

At genus 0, i.e. for the Riemann sphere, the propagator is simply given by
PO (z,w) =log|z — w|?, (7.5)

and the integral in (7.1) can be evaluated to give

1 T(A+as)TA+at)T
(0) —
AT (s b u) aBstu T(1—a/s)T(1—a't)T

(14 a'u)
(1—a'u)

_ 1 exp (_ Z 2@(2n+1) [((X S)n + (a/t)n + (06’11)”]) . (76)

aBstu = 2n+1

The masses of string theory excitations are integer, quantized in units of 1/«. It is therefore
expected that the a’ expansion of the string amplitude in (7.6) is given by multiple sums over
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the integers, but it is remarkable that this expansion involves only odd zeta values of depth

one. For o’ < 1 a series expansion representation reads:

A0 (s, tu) = ) C(pag) oyod, (7.7)

where we have introduced 05 = (a's)? + (a't)? + (a'u)? and 03 = 3a’stu. Since 07 = (a's) +
(a't) + (a'u) = 0, we immediately see that all ;, = («’s)" + (at)" + («’u)" with n > 2 are

given by [90] ( )
On pHqg—1! roo\P ro3\1
N 2P+Z3q:n plq! ( 2 ) ( 3 ) ' @8)

The coefficients c(, ;) are polynomial in odd zeta values of weight 2p + 3q — 3. It is no-

table that at a giV:rz)order n = 2p + 3q — 3, the space of these coefficients has dimension
dy = |[(n+2)/2] — | (n+2)/3], which coincides with the dimension of the space of the
holomorphic Eisenstein series of weight n (see appendix). This hint calls for further inves-
tigation, and we would like to mention the recent work connecting the &’ expansion in (7.7)
and the motivic multiplet zeta values [92].

One can expand the integrand of (7.7) and obtain each coefficient c(,, ;) as a linear combi-

nation of the multiple integrals of the propagator P(%)(z;, zj) (given in (7.5)):

Ci’llz,n13,i’ll4,l’l23,lflz4,n34 - /52 H dzzl' H P(O) (Zi/ Zj)nij. (79)

1<i<j<4 1<i<j<4

The integrand of this expression is the product of the propagators connecting the punctures
with multiplicities 1,5, 1 < i < j < 4, as depicted on Fig. 5. The contributions in (7.7) are the
lowest-order to the full string-theory amplitude of the four-point (four punctures) processes
described here.

In Egs. (7.6)—(7.7), we encountered the zeta values

fs)=y L (7.10)

5
nzln

Extending the sum over the integers 7 to a lattice like p = m +tn € AV =7+ 17, wherel?
T e h={zeC Im(z) > 0}, one gets the (non-holomorphic) Eisenstein series

1

E(t,7)= ), P (7.11)
pez+tz 1P
where |p|> = (m + nt)(m + nt) is the natural Euclidean norm on the lattice A(Y). This

10The modular parameter 7 is expressed in alternative ways throughout these notes: T = Re(t) + iSm(t) =
T1+iT2 =17+1p
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Figure 5: Graph of a vacuum Feynman diagram on the Riemann surface X;. The punctures
are connected by 7;; > 0 links representing the number of two-dimensional propagators.

expression can be made modular-invariant in a trivial way by multiplying by Sm(7)°,

Sm(T)s
ES(T,T) = 2 ’ ?22 . (7.12)
pPEZ+TZ P

This Eisenstein series is an eigenfunction of the hyperbolic Laplacian (6.31) with eigenvalue
s(s—1):
A Es(T,T) =s(s — 1) Es(T, T). (7.13)

The case s = 3/2 was discussed in Sec. 6.4, Egs. (6.34)—(6.36), from a different physical per-
spective.

7.3 Genus one: beyond

At this stage of the exposition the reader may wonder how the above generalization of the
zeta values (7.10) into modular forms (7.12) arises in string theory. We will sketch how this
goes and show that new automorphic forms are actually needed, standing beyond the well
known Eisenstein series. This requires going beyond the sphere (7.5)—(7.7).

At genus one, the Green’s function is given by

%1(z[7)
%(07)

P (z,0) = —i log

(7.14)
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The amplitude in (7.1) reads:

stu / /
sz T

where F = {1;|Re(7)| < 3, Sm(t) >0, Re(1)? 4+ Sm(7)*> > 1} is a fundamental domain
for SL(2,Z),and T = {z;|Re(z)| < 3,0 < Sm(z) < Sm(1)}.
No closed form for the integral in (7.15) is known, in particular because of the presence of

W) o~ Licicj<a 2“/ki‘kjp<1)(zi_zi), (7.15)
1<i<j<4

non-analytic contributions in the complex (s, f)-plane. For a rigorous definition of this inte-
gral we refer to [93]. The expression for the genus-one propagator in (7.14) has an alternative

representation:
1

27T

Sm(zp)
Y e n 4C(n1), (7.16)
PEZ+TZ | |

()(z 0) =

where C(t,%) = log|v27(7)| is a modular anomaly. Since the latter is z-independent, it
drops out of the sum in (7.15) because of the momentum-conservation condition Y+ ; k; = 0.
The integrand of (7.15) is therefore modular-invariant. From now on we will only consider
the modular-invariant part of the propagator

1
27T

_ - Sm(zp)
Yy ZeTu. (7.17)

( ) z, 0
( ) pPEZATZ ’p|2

Following the developments on the sphere, we can analyze the expansion of the ampli-
tude (7.15) for ' < 1. In this regime one gets integrals of the type (7.9), but this time with
the genus-one propagator

- dzzl A .
D”12,H13,H14,7123,”24,"34 (T/ T) = / H T P(l) (Zir Zj>n1]- (7-18)
T 1<i<j<4

The product runs over the entire set of links with multiplicities nij, 1 <i<j <4, of the
graph I depicted in Fig 5. By construction these integrals are modular functions for SL(2, Z).
Performing the integration over the position of the punctures one gets an alternative form

for the modular function D, . ., (T, T) given by

Sm (1)
>’

(7.19)

Dt~ £ 116( L) T]

pi€l i j—ui propel’ |p1

where the sum is over all the propagators p; of the graph I'. If there are n, propagators
connecting the vertices 1 and 2, we have 1y, different elements of the lattice p; = m; + ™n; €
Z + 12,1 <i < nyp. At each vertex v; of the graph we impose momentum conservation by
demanding that the sum of the incoming momenta p; flowing to this vertex (j — v;) be zero.
This is represented by the delta function constraint 5(}_;_,,, pj) with 6(m + tn) = 6(m)d(n).
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The above sums Dy, ,, (T, T), introduced in [22], are generalizations of the Eisenstein
series, that we will call Kronecker—Eisenstein following [91]. With each modular function
Dn,,,...n5, (T, T) we associate a weight given by the sum of the integer-valued indices n;;. Let
us focus for concreteness on the particular case of n propagators between two punctures,

and refer to [22] for the general case. We define

Di(t,7):= Y ¢ (Z p,) > (7.20)

picZ+1Z  \i=1 i1 47tlpil

The special cases n = 2 and 3 are given!! in [22, appendix B]

Dor,T) = (7.21)
Ds(T,T) = E(Si;’)?ntgéi). (7.22)

However, in general these modular functions do not reduce to Eisenstein series, as it can
easily be seen by evaluating the constant terms. For n > 2 it is always possible to decompose
the modular form D, (7, T) as [22]

D, (t,7T) = Py(Es(T,T)) + 6u(T, T) (7.23)

with P,(Es(7, T)) a polynomial in the Eisenstein series E;(T, T) (see Egs. (7.12) and (A.9)) of
the form

Pu(E(%,7)) = pu(C2n-+1)) + ¢ 4%1 Bt O+ T (:;s)na(r, DE(1,7),  (7.24)
where p,({(2n + 1)) is polynomial of degree two in the odd zeta values of total weight n.
The remainder J,(7, T) in (7.23) is a modular form whose constant Fourier coefficient does
not vanish but tends to zero for 7, — 0.

Although the definition of the modular functions Dy, ., (T, T) given in (7.20) looks sim-
ilar to the double-Eisenstein series introduced in [94], one finds that, as opposed to the latter,
their constant term involves depth-one zeta values [22] only. Hence, they provide a natu-
ral modular-invariant generalization of the polynomials in the odd zeta values met in (7.9).
One way to obtain multiple zeta values is to insert in (7.20) the generalized propagator used
by Goncharov in [91]. Whether the generalization introduced by Goncharov does appear
in string theory is an open question. From the original physical perspective, this question is
relevant because it translates into the (im)possibility of appearance of multiple zeta values as

counter-terms to ultraviolet divergences in quantum field theory. This might have important

1The case n = 3 has been worked out by Don Zagier.
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consequences in supergravity.
As a final comment, let us mention that although our discussion was confined to the case
of modular functions for SL(2,Z), most of the above can be generalized to the framework

of automorphic functions for higher-rank group [23].

8 Concluding remarks

In the present lecture notes we have given a partial — in all possible senses — review of the
emergence of (quasi)modular forms in the context of gravitational instantons and string the-
ory. These forms often appear as the consequence of remarkable, explicit or hidden symme-
tries, and turn out to be valuable tools for unravelling a great deal of properties in a variety
of physical set ups. The latter include monopole scattering, Ricci flows, non-perturbative (in-
stantonic) corrections to string moduli spaces (via their Fourier coefficients), or perturbative
expansions in quantum field theory (via string amplitudes).

We have described how the classical holomorphic Eisenstein series, whose theory is
nicely presented in [95,96], occurs in the context of gravitational instantons or in studying
non-perturbative effects. We have also encountered the non-holomorphic Eisenstein series,
the analytic properties of which are described in [97,98]. This whole analysis has led us to
argue that one needs novel types of modular functions, standing beyond the usual Eisen-
stein series. Although the analytic properties of these series are still poorly understood, they
seem to be a corner stone for understanding the challenging nature of interactions in string

theory and its consequences in quantum field theory.
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A Theta functions and Eisenstein series

We collect here some conventions for the modular forms and theta functions used in the
main text. General results and properties of these objects can be found in [95,96].

Introducing q = exp 2i7ntz, we first define

o]

n(z) = ql/“ljl(l—q”), (A1)
d
Ex(z) = %alogm (A.2)

as the Dedekind function and the weight-two quasimodular form, whereas

0(z) = Y g7 a5(z) = Y 472, tu(z) = Y ()P g (A3)
peZ pez peEZ

are the Jacobi theta functions. More generally, one introduces

0 [Z] (v]z) = Y exp (imz(m +a/2)* + 2irt(v + b/2) (m + 2/2)) (A.4)

meZ.
with 8[;] = 81, 8[y] = 0, 8[)] = 03, 8[J] = V4. Let us also mention the following relation

9 ["[‘51222‘)}] (0fz) = 9 ["‘ ;2“’] (0]z) = eim(w+1+20) g m (0 + wzz). (A5)

The first holomorphic Eisenstein series are

Ep(z) =1-24Y 5 1

Ei(z) =1+ 24055, 1°0 (A.6)
Eol(z) = 1504 550, 1207

Notice that E4(z) and E¢(z) are modular forms of weight 4 and 6, whereas E;(z) is the already
quoted weight-two quasimodular form. The modular-invariant of weight two is the non-
holomorphic combination E;(z) — 3/x3m(z). It is a classical result that the space of modular
forms of weight k is spanned by E{E! with 2a + 3b = k. The dimension of this space is
dp = [(k+2)/2] — [(k+2)/3].

In the main text we also consider non-holomorphic Eisenstein series Es(z,Z) with z =
x+1y,y > 0and x € R. These are defined as modular-invariant eigenfunctions of the
hyperbolic Laplacian (see Egs. (6.31), (7.12) and (7.13))

yA(9% +97) Es(z,2) = s(s — 1)Es(z,2), (A7)
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with polynomial growth at the cusps (y — 0):

S
ES <Z/ Z_) = Z yizsl (AS)
mmZ0) Mz + 1

for s € C with large enough real part for convergence. One can extend the definition by
analytic continuation [97] for all s # 1 using the functional equation I'(s)7t °Es(z,2z) =
['(1/2 —s)7t/?75 E;_4(z,2). These series have the following Fourier expansion:

o2s-1(|n)

=17 K,_1/,(27t|1|y) €2™"* (A.9)

26(25)Ex(2,2) = 28(25) y* +28(25 — 1)y~ + 492 ¥
n#£0

where &(s) = {(s)T(s/2)7t~/? is the completed zeta function, K,_1/, is the K-Bessel function
and o, (1) = Ly, d* (see e.g. [99] for details).
Finally, let us mention how the non-holomorphic series are connected to the holomorphic

ones. For that, one considers the following generalization of the non-holomorphic Eisenstein

functions: i

E®) (7,5) = 4 _ Al
These series transform under a modular transformation v = (%4) € SL(2,Z) as

EX(y 2,9 -2) = (cz+d)®(cz +d) E{" (2, 2). (A.11)
Chosing s = n € INand @ = —n, we recover the holomorphic Eisenstein series E,So’fn) (z,2) =

E,(z).
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