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Abstract

We study two closely related operads: the Gelfand-Dorfman operad GD and the Conformal Lie

Operad CLie. The latter is the operad governing the Lie conformal algebra structure. We prove

Koszulity of the Conformal Lie operad using the Gröbner bases theory for operads and an operadic

analogue of the Priddy criterion. An example of deformation of an operad coming from the Hom

structures is considered. In particular we study possible deformations of the Associative operad from

the point of view of the confluence property. Only one deformation, the operad which governs the

identity (α(ab))c = a(α(bc)) turns out to be confluent. We introduce a new Hom structure, namely

Hom–Gelfand-Dorfman algebras and study their basic properties.
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1 Introduction

One of the key notions of the two-dimensional Conformal Field Theory is the operator
product expansion (OPE) of chiral quantum fields (see e.g. [11] ):

Φ(x)Ψ(y) =
∑
n∈Z

(Φ(n)Ψ)(y)

(x− y)n+1
.

This defines a binary operation Φ(n)Ψ on the space of chiral fields for each n ∈ Z. These
binary operations, along with the identity field and the unary operation ∂ = ∂/∂y form
a structure, called a vertex (or chiral) algebra, which has been axiomatized by Borcherds
[3]. The most important part of the OPE is its singular part since it allows to compute
commutators of chiral fields. This involves only the binary operations Φ(n)Ψ for each n ∈
Z+, and along with the unary operation ∂, forms a structure, called a Lie conformal algebra,
which has been axiomatized by Kac [11].

Definition. A Lie conformal algebra is a C[∂] - module R endowed with binary bilinear
over C operations (n) : R×R → R for each n ∈ Z+, which satisfy the following axioms:

(c1) a(n)b = 0, n ≫ 0,

1



(c2) (∂a)(n)b = −na(n−1)b, a(n)∂b = ∂(a(n)b) + na(n−1)b,

(c3) a(n)b = −
∞∑
j=0

(−1)(n+j)∂(j)(b(n+j)a),

(c4) a(m)(b(n)c)− b(n)(a(m)c) =
m∑
j=0

(
m

j

)
(a(j)b)(m+n−j)c.

In the axiom (c3) and further on we use the divided power notation: ∂(n) = ∂n/n!.

Lie conformal algebras occur naturally in Classical Field Theory as well. Namely, con-
sider a linear local Poisson bracket

{ui(x), uj(y)} = Hij(u(y), u
′(y), · · · , u(s)(y); ∂/∂y)δ(x− y),

where H = (Hij(∂/∂y)) is a matrix differential operator of finite order, linear in the ui
and their derivatives, and let Hij(λ) =

∑
s∈Z

Hs
ij

λs

s! be its symbol. Then the C[∂] - module,

consisting of linear combinations of functions ui and their derivatives, is a Lie conformal
algebra, endowed with the products ui(s)uj = Hs

ji, s ∈ Z+.

One of the simplest examples of a linear local Poisson bracket, when H has order one,
was studied by Gelfand and Dorfman [6]; it is defined by the following symbol:

Hij(λ) =
∑
s

csijus +
∑
s

dsiju
′
s + λ

(∑
s

(dsij + dsji)us

)
,

where csij and dsij are constants, satisfying certain quadratic relations. In order to explain
these relations, consider the C-span V of the ui, and denote by [, ] and ◦ the bilinear
products, with the structure constants csij and dsij respectively. Then (Hij(λ)) defines a
local Poisson bracket if and only if [, ] is a Lie algebra bracket, ◦ is a left symmetric algebra,
such that the operators of right multiplications commute, and these two binary operations
satisfy the compatibility condition (5) below. Such a structure is called a Gelfand-Dorfman
algebra. The special case, when the bracket is zero, is called a Novikov algebra [2], [22].

We consider in this paper operads, which describe the structure of the Gelfand-Dorfman
algebras, and of the Lie conformal algebras. We denote by CLie the operad, which controls
the structure of Lie conformal algebras, and we call it the CLie (conformal Lie) operad.
In Theorem 5.2 (Section 5) we prove that CLie is Koszul, using the Gröbner bases theory
(Diamond Lemma) for operads and an operadic analogue of the Priddy criterion. An
explanation of these tools will be given in Section 2.

The complete list of relations for operations ◦ and [, ], defining a left(right) Gelfand-
Dorfman algebra is the following:

(1) (a ◦ b) ◦ c− a ◦ (b ◦ c) = (b ◦ a) ◦ c− b ◦ (a ◦ c) (left-symmetric),

(2) (a ◦ b) ◦ c = (a ◦ c) ◦ b (right Novikov),

(3) [a, b] = −[b, a] ,
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(4) [[a, b], c] + [[c, a], b] + [[b, c], a] = 0 ,

(5) [c ◦ a, b]− [c ◦ b, a] + [c, a] ◦ b− [c, b] ◦ a− c ◦ [a, b] = 0 .

We call an algebra satisfying these relations a right GD-algebra. The algebra with
opposite multiplication to ◦, will be called a left GD-algebra.

In Section 3 we touch upon the question of the deformation theory for operads. Well-
known classes of algebras, such as Associative, Lie, Jordan, Novikov, Nambu, Poisson,
Gerstenhaber, Batalin-Vilkovisky, etc. are governed by corresponding operads, they consist
of algebras over those operads.

We study several examples of deformation of operads. We emphasize that algebras
over those deformed operads are Hom–algebras, defined in the extensive literature over
the last years [14, 15, 16, 20, 21]. This notion should be distinguished from the notion of a
deformation of an algebra over a given operad, developed and heavily used before in varying
generality [13, 1, 5]. We use here a naive version of a deformation of an operad, in order to
provide examples which could lead to the general theory. Namely, by a deformation of an
operad we mean here the following.

Consider an operad A, and introduce an extra generator h in the presentation of this
operad by generators and relations. An extra operator corresponds in the algebra represen-
tation to a unary operation α : A → A. Then we write down relations, involving h, of the
deformed operad Ah in a certain way, such that if h = id, we get the old relations. This
new operad Ah can be considered as a deformation of A.

The examples of deformations we consider here govern exactly the notion of Hom–
structures. For example, for operad Ass, defined by one generation operation m and one
relation:

- ,

consider a deformed operad Assh, defined by two generators, a binary operation m, and a
unary operation h, and a relation

- ,

The operation h denoted here by an empty dot and m by a filled one. An algebra over
the operad Assh is a Hom-associative algebra defined in [15].

We therefore study here examples of deformations of operads inspired by Hom–structures.

We consider all operads which can be obtained from Ass by deformations, of this kind,
introducing an extra generator — a unary operation. We classify them from the point of
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view of the confluence property of the deformed operad. Application of the version of the
Gröbner bases theory for nonsymmetric operads (which allows to deal with operations of
arbitrary arity), leads to the result, that only one of those deformations is an operad with
confluent presentation. This is the operad which governs the identity (α(ab))c = a(α(bc)).
In particular, this operad is Koszul.

In Section 4 we introduce the notion of a Hom–Gelfand-Dorfman (Hom–GD) algebra.
Namely we suggest to study a certain particular deformation of Gelfand-Dorfman operad.
As it was explained above the Gelfand-Dorfman structure is an enriched version of the
Novikov structure, corresponding to more general type of local Poisson bracket. The latter
have been extensively studied (see for example [22], [4] and references therein), including
the Hom versions [20]. We establish a number of basic properties of the Hom–GD algebra,
the algebra over a certain deformation of the operad GD.

2 Gröbner bases theory for operads

In this section we remind the definition of the (symmetric, shuffle, nonsymmetric) operad
and set up the basics of the Gröbner bases theory for operads, analogous to the Gröbner
bases theory for algebras presented by generators and relations. For more detailed intro-
duction to various aspects of operads, including those discussed here see [19] and [18].

The main ingredient for the development of the analogue of the Gröbner bases theory for
algebras in the operadic setting is the notion of shuffles and their orderings, which appeared
first in this context in the paper due to Hoffbeck [10]. After introducing shuffles one can
deal with elements of the free symmetric operad (trees with marked leaves and vertices)
exactly in the same manner, as one can do with monomials in the free associative algebra.
This was written down precisely in the paper due to Dotsenko and Khoroshkin [8].

To explain main points of the Gröbner bases theory for operads presented by generators
and relations, where elements of the free operad are depicted by tree-monomials, we will
need to clarify how to order tree-monomials, and what means that one tree-monomial divides
another. On the basis of this the whole Gröbner bases theory works in a very much parallel
way, as in the case of algebras.

Let us start with the definition of an operad. The notion of an operad can be made very
general, depending on the category, where we prefer to work. The key point is to define the
’product’, which makes a category of ’collections’ into a monoidal category.

The first basic notion is a collection.

Definition. We define a nonsymmetric collection as a functor from the category of non-
empty finite ordered sets Ord (with order-preserving bijections as morphisms) to the cate-
gory of vector spaces Vect.

In this case a nonsymmetric collection is just the same as a graded vector space.

However to get a more general definition one can substitute the category of vector spaces
by graded vector spaces, or dg-vector spaces, i.e. chain complexes, which is done for objects
appearing in, say, algebraic topology.
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Definition. We define a symmetric collection as a functor from the category of non-empty
finite sets Fin (with bijections as morphisms) to the category of vector spaces Vect.

In this case a symmetric collection is also called a ’S-module’, which means it is a set
of right k[Sn]-modules M(n) for any n ∈ Z+.

Note, that it can be shown that all vector spaces P(I), for I ∈ Fin are defined by
P(n)=P({ ¯1, n}), so that P(n), n ∈ Z+ is usually what is meant by a collection.

Now we can define a natural compositions of these collections.

Definition. Let P and Q be two nonsymmetric collections. Their nonsymmetric composi-
tion is defined by the formula.

P ◦ Q(I) =
⊕
k

P(k)⊗ (
⊕

f :I→{1̄,k}

Q(f−1(1))⊗ · · · ⊗ Q(f−1(k)) )

Here the sum is taken over all monotonically non-decreasing surjections f .

Definition. Let P and Q be two nonsymmetric collections. Their shuffle composition is
defined by the formula.

P ◦sh Q(I) =
⊕
k

P(k)⊗ (
⊕

f :I→{1̄,k}

Q(f−1(1))⊗ · · · ⊗ Q(f−1(k)) )

Here the sum is taken over all shuffling surjections f , i.e. those for which f−1(i) <
f−1(j), if i < j.

Definition. Let P and Q be two symmetric collections. Their symmetric composition is
defined by the formula

P ◦ Q(I) =
⊕
k

P(k)⊗k[Sk] (
⊕

f :I→{1̄,k}

Q(f−1(1))⊗ · · · ⊗ Q(f−1(k)) )

Here the sum is taken over all surjections f .

It can be proven that defined above composition (nonsymmetric, shuffle, symmetric)
makes the set of corresponding (nonsymmetric or symmetric) collections into a monoidal
category, i.e. the pentagon and triangular diagrams are satisfied, and the proper unital map
is present.

Now any monoid in the corresponding monoidal category we call a (nonsymmetric,
shuffle, symmetric) operad.

Example Let V be a vector space, denote by EndV the operad of multilinear mappings.
It is a collection Hom(V ⊗n, V ), n ≥ 0 of all multilinear mappings, with the composition
maps, defined in a natural way.
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Definition. An algebra over an operad P is a vector space V together with an operadic
morphism from P to a corresponding operad of multilinear mappings EndV .

The ’building blocks’ for the compositions we just defined (which serves as a monoidal
product) are the following elementary compositions. We will need them later for the Gröbner
bases theory for symmetric operads. The case of symmetric operads is what we mainly
will need for our results, so we deal with this version of the Gröbner bases theory. The
nonsymmetric case is easier, and could be obtained as a particular case of the symmetric
one.

Definition. We say that an element a of an operad P has an arity n, if it belongs to
P(n+ 1).

Definition. Let P be a symmetric operad, for elements a ∈ P(n) and b ∈ P(m) we define

1. a nonsymmetric elementary composition a ◦i b as the operation

a(x1, · · · , xi−1, b(xi, xi+1, · · · , xi+m−1), xi+m, · · · , xm+n−1)

2. a shuffle elementary composition a ◦i,σ b as the operation

a(x1, · · · , xi−1, b(xi, xσ(i+1), · · · , xσ(i+m−1)), xσ(i+m), · · · , xσ(m+n−1))

where the bijection σ : {i+1, · · · ,m+n−1} → {i+1, · · · ,m+n−1} is a (m−1, n− i)-
shuffle, which means:

σ(i+ 1) < · · · < σ(m+ n− 1)

and

σ(i+ 1) < · · · < σ(m+ n− 1).

3. a symmetric elementary composition a ◦i,σ b as the operation

a(x1, · · · , xi−1, b(xi, xσ(i+1), · · · , xσ(i+m−1)), xσ(i+m), · · · , xσ(m+n−1))

where σ ia an arbitrary permutation from Sm+n−1.

Consideration of a shuffle operad instead of a symmetric operad does not lead to any
loss of information, it just corresponds to a certain choice of representatives. If we present
elements of the free symmetric operad as decorated trees in the space, then to take a shuffle
representative of that tree, means to put it into the plane in a certain, canonical way (as it
is usually done with trees). The resulting plane tree will be an element of the free shuffle
operad.

In a more rigorous way, it could be formulated as follows: for two symmetric collections
P and Q, for a forgetful functor from symmetric to shuffle categories of collections, the
following holds:
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(P ◦ Q)F = PF ◦sh QF ,

that is, the forgetful functor is monoidal.

So from now on our main object will be the free shuffle operad. We will use the well-
known presentation of elements of the free operad by decorated trees. Our rooted tree is a
connected graph of genus 0, whose vertices are labeled (by operations). Each vertex should
have at least one input and exactly one output, corresponding to edges. The ends of edges,
which are not vertices are called leaves, except for one. There should be exactly one edge,
which has neither a vertex nor a leave at one end, but instead a distinguished output vertex,
called the root of the tree. There are obvious simplest trees: the degenerate tree, containing
no vertices, and corolla, containing only one vertex.

If we want to put a tree on the plane, we just fix an increasing (from left to right) order
for the inputs in each vertex. It is a usual procedure to order inputs of a given vertex i as
follows: we compare the minimal leaves, one can reach from the given input, if this leave is
smaller, the input is smaller. They are situated in the plane accordingly. This particular
way of putting the tree on the plane corresponds to the choice of a shuffle representative.

We will think of the free shuffle operad FP , generated by a symmetric collection P,
as a set of planar representatives of trees corresponding to basic (corolla) operations of
the collection (in each arity P(n)), and all trees obtained from them by elementary shuffle
compositions. The latter can be defined in terms of drafting and relabeling the trees. We
call those planar representatives shuffle trees tree-monomials.

Definition. We say that the degree of a tree-monomial is a number of operations (vertices)
involved in it.

Now we can define the first essential for the Gröbner bases theory notion of divisibility
for the tree-monomials.

Definition. A tree-monomial w is divisible by a tree-monomial v, if the underlying tree for
w (non-labeled) contains as a (non-labeled) subtree an underlying tree of v, and decorations
are compatible in the following way: the vertices which are common for both trees w and
v have the same labels and the leaves of v are decorated according to the following rule:
first is a leave through which we can get to the smallest leave of the tree w, second – to the
second smallest, and so on. If v has such labeling, it divides w.

Since all tree-monomials of the free operad are obtained from corollas by elementary
shuffle compositions, it is easy to see that w can be obtained form v by a sequence of
elementary shuffle compositions.

Here we can see a difference with the notion of divisibility for monomials in the free
associative algebra, which are ’one-dimensional’: w is divisible by v means, there exists r, l,
such that w = lvr. Shuffle trees are ’two-dimensional’, so composition could be applied not
only from the left, or from the right.

Next important step is to define an ordering on the tree-monomials, which is compatible
with shuffle compositions.
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More precisely, we say, that the ordering on tree-monomials from FP is admissible, if

first, the elements of smaller arity are smaller:

a ∈ FP(n), b ∈ FP(m), n < m =⇒ a < b1

and if for a, a′ ∈ FP(n) and b, b′ ∈ FP(m)

a ≤ a′ and b ≤ b′,

then for all elementary shuffle compositions

a ◦i,σ b ≤ a′ ◦i,σ b′.

We give here two examples of ordering, obeying this property.

I.Path-lexicographic ordering

To explain this ordering we encode a tree by a certain sequence consisting of words in
an alphabet corresponding to operations, and one permutation of the labels on the leaves.
Let a be a tree-monomial with n leaves. Associate to a a sequence of words (u1, · · · , un),
obtained in the following way: for the leave marked by i, the word ui consists of the sequence
(of operations), marking those vertices of the tree, one has to pass going from the root to
the leave marked i. It is, of course, unique. However the information contained in these
sequences is still not enough to distinguish tree-monomials. So we add an extra bit to the
sequence: a permutation σ ∈ Sn, which lists the labels on the leaves of the tree-monomial
(according to the definition it is a planar tree, so we can list leaves from left to right). The
described map from tree-monomials to sequences of the type (u1, · · · , un, σ) is an injection.

Hence if we define how to order such sequences, it will give us an ordering on the
tree-monomials. The order on the sequences will be degree-lexicographical:

first, the longer sequence is bigger: (u1, · · · , un, σ) > (u′1, · · · , u′m, σ′) if n > m;

if sequences have the same length, we compare sequences element-wise, using the fol-
lowing order on words and permutations.

Words are compared degree-lexicographically (from left to right).

If all words coincide, we compare permutations, for them we use reverse lexicographical
order: suppose for two permutations σ and σ′ the first from the left position, where entries
σi and σ′

i are different is i, then if σi > σ′
i, we say that σ < σ′.

This ordering is admissible. Of course it allows slight variations, we can use the reverse
lexicographic order instead of the usual one, compare words from right to left, and so on.

The choice of a correct ordering might be very essential for the conclusions one can
deduce from the Gröbner bases computations.

Let us describe here also another type of possible ordering.

1Note that this condition could be omitted, provided the d.c.c. property holds for the ordering. In fact,
even milder restriction on the ordering is actually needed. For example, if relations are homogeneous, then
the ordering, where elements of bigger arity are smaller is also admissible
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II.Forest-lexicographic ordering

Let a and b be tree-monomials with leaves labeled by arbitrary finite subsets I, I ′ ⊂ N
respectively. Consider first operations at the roots of a and b, which we call A and B
respectively. We have k and l trees, where k and l defined by arities of the operations A
and B, starting at A and B, so:

a = A(a1, · · · , ak); b = B(b1, · · · , bl)

Leaves of the trees a and b become disjoint unions of the sets of leaves of trees a1, · · · , ak
and b1, · · · , bl which we denote Ij ⊂ I and I ′j ⊂ I ′ respectively. Thus,

I = I1 ⊔ · · · ⊔ Ik, I
′ = I ′1 ⊔ · · · ⊔ I ′l ,

where, as usual, for tree-monomoials we have minI1 < · · · < minIk and minI ′1 < · · · < minI ′l .

We compare a and b as follows. First, we compare sets I and I ′ of leaves of those trees.
If I and I ′ are arbitrary finite subsets of natural numbers, to compare them we first order
the numbers:

I = {i1 < · · · < ik}, I ′ = {i′1 < · · · < i′l},

and then order them (reverse)lexicographically: suppose 1 < 2 < · · · < n, and if jth
place is the first (from the left) where ij < i′j then I > I ′. If I < I ′ then a < b.

When I = I ′, we compare A and B: if A < B, then a < b.

In the case I = I ′ and A = B, we say that a < b if: for the smallest j, such that pairs
(Ij , aj) ̸= (I ′j , bj) do not coincide, either Ij < I ′J or Ij = I ′J and aj < bj . It is a recursive
definition of the ordering.

Since we have now the ordered monoid of tree-monomials with shuffle composition, as a
multiplication, compatible with the ordering, we can define reduction and proceed with the
definition of Gröbner basis. Then, after defining the concept of ambiguity and s-polynomial
we can formulate a criterion that a given set of elements of the free operad forms a Gröbner
basis, and the Buchberger algorithm for constructing the Gröbner basis.

The following steps in the Gröbner bases theory are absolutely analogous to the case of
the bases in the free associative algebras.

If the tree w is divisible by v, there is a sequence of shuffle compositions which could be
applied to v to obtain w, denote it by mw,v. It is possible to apply the same sequence of
shuffle compositions to any other tree z with the same set of inputs as in v. The result of
this operation we denote by mw,v(z).

If we have two tree-polynomials (linear combination of tree-monomials) f and g and the
highest tree-monomials of them divide one another: f̄ is divisible by ḡ, then we define a
result of a reduction of f by g, as the polynomial

rg(f) = f −
cf
cg

mf̄ ,ḡ(g).
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The reduction has the property that the resulting polynomial is smaller then the initial
one, due to the admissibility of the ordering w.r.t. the composition product.

Definition. The Gröbner basis of the operadic ideal I is the set of tree-polynomials, such
that any element of I can be reduced to zero by elements of this set.

To give a criterion, which allows to check whether the given set of tree-polynomials is a
Gröbner basis, we need two more definitions.

Definition. If the monomial is divisible by two other monomials, it is called an ambiguity.

It means the monomial allows two different applications of reduction. The polynomial
which we get if we subtract results of those two different applications of reductions is called
s-polynomial corresponding to the ambiguity.

Criterion If all ambiguities formed by the set of tree-polynomials are solvable (or there
are no ambiguities), which means that corresponding s-polynomials can be reduced to zero,
then this set of tree-polynomials forms a Gröbner basis of the ideal generated by them.

The Buchberger algorithm for construction of the Gröbner basis, from the given set of
tree-polynomials also works exactly like in algebra case.

We will use the following Priddy’s criterion of Koszulity, which in operadic setting is
explained in [19].

Theorem 2.1. If an operad P has a presentation by generators and relations with a
quadratic Gröbner basis (basis of degree two), then it is Koszul.

3 Deformations of the operad Ass

In the paper [9] there is a list of 10 a priori possibilities to introduce the notion of Hom–
associative algebra. Let us have an unary linear operation α : A → A on the linear space of
an algebra A. A priori, we can consider various generalised versions of associativity, defined
w.r.t. α. The list of possible identities [9] is the following:

I1 : (ab)α(c) = α(a)bc

I2 : (aα(b))c = a(α(b)c)

I3 : (α(a)b)c = a(bα(c))

II0 : (α(ab))c = a(α(bc))

II1 : (α(a)α(b))c = a(α(b)α(c))

II2 : (α(a)b))α(c) = α(a)(bα(c))

II3 : (aα(b))α(c) = α(a)(α(b)c)
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III : α((ab)c) = α(a(bc))

III ′ : α(ab))α(c) = α(a)(α(bc))

III ′′ : (α(a)α(b))α(c) = α(a)(α(b)α(c))

The corresponding operads, which carry information on the identities I0 — III ′′ we
denote OI0 , · · · ,OIII′′ respectively. Our goal is to classify them with respect to the conflu-
ence property of their natural presentation by generators and relations, as a nonsymmetric
operad. Those presentations are as follows. Generators of these operads are the unary
operation α, denoted by an empty dot, and the binary operation µ denoted by a filled dot:

{
,

}
.

The first one corresponds to the multiplication µ and the second to the linear map α.

The relations are respectively:

I1

- ,

I2

-

I3

-

II0

-
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II1

-

II2

-

II3

-

III

-

III ′

-

III ′′

-

Theorem 3.1. Only one Hom–deformation of the associative operad Ass is confluent,
namely the one given by relation II0.

Proof. Applying the Gröbner basis theory for nonsymmetric operads [10, 8, 19], to these
presentations, we can check that only one of them satisfies the confluence property:
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−→
↓ ↓

→ →

Using the analogue of the Priddy criterion for nonsymmertic operads we deduce that
OII0 is Koszul.

Let us give an example of the case where the confluence does not hold. Consider, say,
an ambiguity formed by relation I2.

−→
↓ ̸=

−→

The verification of the confluence for all other operads in the list shows that the conflu-
ence does not hold for them.

4 Hom Gelfand-Dorfman algebras

In this paragraph we define a Hom–deformation of the Gelfand-Dorfman (GD) algebra,
which have been defined, and its origin discussed in the introduction.

We define a Hom–GD algebra as follows. It is a quadruple (A, ◦, [, ], α), where A is a
linear space, ◦ and [, ] are bilinear operations from A × A to A, and α is a linear space
homomorphism from A to A. They should satisfy the following identities:
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(1)∗ (a ◦ b) ◦ α(c)− α(a) ◦ (b ◦ c) = (b ◦ a) ◦ α(c)− α(b) ◦ (a ◦ c) (Hom–left-symmetric)

(2)∗ (a ◦ b) ◦ α(c) = (a ◦ c) ◦ α(b) (Hom–right Novikov)

(3)∗ [a, b] = −[b, a]

(4)∗ [[a, b], α(c)] + [[c, a], α(b)] + [[b, c], α(a)] = 0

(5)∗ [c ◦ a, α(b)]− [c ◦ b, α(a)] + [c, a] ◦ α(b)− [c, b] ◦ α(a)− α(c) ◦ [a, b] = 0

Since GD algebra is a Lie algebra w.r.t. the operation [, ] and a Novikov algebra w.r.t.
the operation ◦, a Hom–GD algebra will be naturally Hom–Lie [15] and Hom–Novikov [20],
but with the additional compatibility condition between two operations and α, defined by
(5)∗.

First, note that for the defined in such a way Hom–GD algebras the following natural
connection with Hom–Novikov algebras holds.

Theorem 4.1. The algebra (A, ◦α, [◦]α) with two operations, one of which is Hom–Novikov,
i.e. satisfies the identities (1)∗, (2)∗, and anotheris obtained from it as [a, b]α = a◦αb−b◦αa,
is a Hom–GD algebra.

Proof. It is known that structure obtained in such a way is Hom-Novikov, and of course
from the Hom left-symmetric identity (1)∗ it follows that the associated Lie bracket [◦]α
satisfies the Hom Jacobi identity. So we need to check only that (5∗) is satisfied. Indeed,

[c ◦ a, α(b)]α − [c ◦ b, α(a)]α + [c, a]α ◦ α(b)− [c, b]α ◦ α(a)− α(c) ◦ [a, b]α =

(c ◦α a) ◦α α(b)− α(b) ◦α (c ◦α a)− (c ◦α b) ◦α α(a) + α(a) ◦α (c ◦α b)+

(c ◦α a− a ◦α c) ◦α α(b)− (c ◦α b− b ◦α c) ◦α α(a)− α(c) ◦α (a ◦α b− b ◦α a).

Clearly, the right-hand side is canceled due to (1∗) and (2∗).

We can consider a particular case of Hom–GD algebra defined by α : A → A, which is a
homomorphism of GD algebras. Namely, we can introduce a new algebra with operations
◦α and [, ]α, where a ◦α b = α(a ◦ b) and [a, b]α = α(a ◦ b). We prove below, that this is
indeed Hom–GD algebra.

Theorem 4.2. Let (A, ◦, [, ]) be a GD algebra and α a GD algebra morphism, then Aα =
(A, ◦α, [, ]α), where a ◦α b = α(a ◦ b) and [a, b]α = α([a, b]α), is a Hom–GD algebra.

Proof. Since α is a GD algebra morphism, i.e. α(a◦b) = α(a)◦α(b) and α([a, b]) = [α(a), αb],
it is easy to verify, that
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1. (a ◦α b) ◦α α(c) = α2((a ◦ b) ◦ c),

2. [[a, b]α, α(c)]α = α2([[a, b], c]),

3. [a, b]α ◦α α(c) = α2([a, b] ◦ c),

4. [a ◦α b, c]α = α2([a, b] ◦ c).

Indeed, for example,

[a, b]α ◦α α(c) = α(α([a, b]) ◦ α(c)) = α2([a, b] ◦ c),

The first equality allows to prove identities (1∗) and (2∗) for Aα, the second one could
be used to verify the Jacobi identity (3∗). The last two guarantee identity (5∗). The
anticommutativity of [, ]α is immediate.

In terms of deformations of an operad, this special case of deformations has the feature,
that set of relations of the deformed operad Ah contains as a subset relations of A, which is
of course not the case in general. In general we haveA = ⟨x |F (x)⟩, andAh = ⟨x, h | F̃ (x, h)⟩
such that F̃ (x, h) coincide with F (x), when h is trivial. In the case when α is an algebra
homomorphism, we have A = ⟨x |F (x), G(x, h)⟩, where G(x, id) = F (x).

5 Conformal Lie operad

We will study here an operad CLie, associated to Lie conformal algebra structure, and derive
its Koszulity. There is another way to describe this structure (defined in the introduction),
by taking their generating function, called the lambda bracket structure. We let for any
a, b ∈ R

[aλb] =

∞∑
n=0

λn

n!
a(n)b.

Then we get an equivalent definition of a Lie conformal algebra [11], [12]:

Definition. We define a binary operation, called λ – bracket, on the C[∂] module R: R×
R → C[∂, λ]⊗C[∂] R : a⊗ b → [aλb], as an operation satisfying the following axioms.

I.(sesquilinearity)

[∂aλb] = −λ[aλb]

[aλ∂b] = (∂ + λ)[aλb]

II. (antisymmetry)
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[bλa] = −[a−λ−∂b]

III. (generalised Jacobi identity)

[aλ[bµc]]− [bµ[aλc]] = [[aλb]λ+µc]

The Gelfand-Dorfman algebras considered above are closely related to the Lie conformal
algebras, as it was explained in the introduction. Here we give a formal proof. Namely,
having at hands Gelfand-Dorfman algebra with two operations (◦, [, ]) we can construct the
λ bracket as follows:

Proposition 5.1. The binary operation

[aλb] = [a, b] + ∂(a ◦ b) + λ(a ◦ b+ b ◦ a)

satisfies axioms of λ bracket if and only if the operations (◦, [, ]) form a Gelfand-Dorfman
algebra.

Proof. We need to check that the above λ-bracket satisfies axioms

II. (antysymmetry)

[bλa] = −[a−λ−∂b]

and

III. (generalised Jacobi identity)

[aλ[bµc]]− [bµ[aλc]] = [[aλb]λ+µc]

if and only if for all a, b the multiplication is

right symmetric:

ass(a, b, c) = ass(a, c, b) : ass(a, b, c) = (ab)c− a(bc)

left Novikov:

a(bc) = b(ac)

and left Gelfand-Dorfman:

[ac, b]− [bc, a] + b[c, a]− a[c, b]− [a, b]c = 0.

To check I, we observe that

∂(ba) + λ(ba+ ab) = −∂(ab) + (λ+ ∂)(ab+ ba).
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To check II, each of three terms can be rewritten in the following way:

[[aλ, b]λ+µc] = [[a, b] + ∂(ab) + λ(ab+ ba)λ+µ c] =

[[a, b]λ+µ c] + [∂(ab)λ+µ c] + λ[(ab+ ba)λ+µ c] =

−(λ+ µ)[abλ+µ c] + λ[(ab+ ba)λ+µ c] =

−µ[abλ+µ c] + λ[baλ+µ c] =

= µ([a.b]c+ ∂((ab)c) + (λ+ µ)((ab)c+ c(ab)))+

λ([b, a]c+ ∂((ba)c+ (λ+ µ)((ba)c+ c(ba))).

Analogously we rewrite [aλ[bµc]] and [bµ[aλc]].

Then we can consider their sum as a polynomial in ∂, µ, λ, so it is zero iff ’coefficients’
of all monomials in the variables ∂, µ, λ are zero.

The fact that the coefficient of ∂ is equal to zero means that the left GD-identity is
satisfied.

The coefficient of µ is:

−[ab, c] + [b, ca] + b[a, c] + [a, c]b+ [a, b]c+ c[a, b]− [a, bc+ cb]

According to GD identity we can substitute

−[ab, c] = −[cb, a] + c[b, a]− a[b, c]− [a, c]b

into the previous expression, which after some cancelations gives us:

[bc, a]− [ac, b] = −a[c, b] + b[c, a] + [b, a]c,

which is again GD identity.

The same will happen with the coefficient of λ.

The coefficient of ∂2 is equal to zero iff left Novikov identity is satisfied.

The coefficients of µ2, λ2, λµ, λ∂, µ∂ are zero iff the right symmetric identity holds.
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This close connection between those two structures motivates us to look at the properties
of the operad governing conformal Lie algebras.

Let us define the operad CLie, which will actually be a family of operads CLiek,
parametrised by the positive integers. The first axiom of the Lie conformal algebra says
that big enough products are zero. Hence we define operads CLiek, k ∈ Z, such that in the
Lie conformal algebras over each of them all operations (n) for n > k are zero.

Definition. The set of generating operations for the operad CLiek is formed by the oper-
ations {a, b}n,j = ∂(j)(a(n)b), for n, j = 0, 1, 2, · · · . The set of relations on this generators is
the following:

(F3) {a, b}n,0 = −
k∑

j=0

(−1)n+j{b, a}n+j,j

(F4) {a, {b, c}n,0}m,0 − {b, {a, c}m,0}n,0 =
m∑
j=0

(
m

j

)
{{a, b}j,0, c}n+m−j,0.

Theorem 5.2. The Conformal Lie operad CLie is Koszul.

Proof. To prove Koszulity we pass to the corresponding shuffle operad CLiesh and construct
a Gröbner bases there, according to Section 2. The important step will be to choose a
suitable ordering of tree-monomials. Then we will apply the Priddy criterion of Koszulity
(see Theorem2.1).

The shuffle operad is generated by elements {a, b}n,j , a < b. The presentation of those
operations by tree-monomials looks as follows:

21

n, j

So the relations are obtained by substitution of (F3) to (F4), whenever we need to
change the order of inputs.

The operad CLiesh is given by relations:

(G4) {a, {b, c}n,0}m,0 −
k∑

j=0

(−1)n+j{{a, c}m,0, b}n+j,j =
m∑
j=0

(
m

j

)
{{a, b}j,0, c}n+m−j,0
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for any a < b < c, n,m = 0, 1, 2, · · · .
In the language of tree-monomials the defining relations look as follows:

31 2

m, 0

n, 0

−(−1)n+j
k∑

j=0

21 3

n+j,j
m, 0

−
m∑
j=0

(
m

j

) 31 2

m+ n− j, 0
j, 0

We will choose now an appropriate admissible ordering on the tree-monomials, which
will lead to a quadratic Gröbner basis.

Let us take a path-lexicographic ordering defined in section 2, but we should decide how
to order operations, marked in our case by pairs m, j. We order those pairs lexicographically
from right to left, i.e. {(m, i)} > {(n, j)}, whenever i > j, or i = j and m > n. We suppose
symbols themselves ordered as follows: 0 < 2 < 3 < · · · < 1 − − all as numbers, but 1 is
bigger than others. In particular, the operation (m, 0) is always smaller then (n, j), j ̸= 0
and (m, i) is smaller then (n, 1) if i ̸= 1.

Under the above ordering, when comparing tree-monomials in the relations, we conclude
that the highest tree monomial has the shape

21 3

n+ 1, 1
m, 0

This follows from the inequalities:

{(m, 0), (m, 0)(n, 0), (m, 0)(n, 0), (123)} < {(n+ j, j)(m, 0), (n+ j, j), (n+ j, j)(m, 0), (132)}

{(n+m− j, 0)(j, 0), (n+m− j, 0)(j, 0), (m+ n− j, 0), (123)}

< {(n+ j, j)(m, 0), (n+ j, j), (n+ j, j)(m, 0), (132)}.

We should find out now which ambiguities this set of highest words (when m and n are
ranging over 0,1,2,..) can form. For this we need to prove the following
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Lemma 5.3. For arbitrary n,m = 0, 1, 2, · · · the operations a(n)b and ∂(a(m)b) do not
coincide.

Proof. For any fixed n we construct a free C[∂] module Mn, together with operations a(n)b
on it, which satisfy axioms (c1)-(c4), but such that a(n)b ̸= ∂(a(m)b) for any m = 0, 1, 2, · · · .
This means for any n we will have a concrete conformal Lie algebra Mn, where a(n)b ̸=
∂(a(m)b) for any m. The statement of the lemma will follow then.

As it has been pointed out for example in the Remark(2.2) in [12], if we define operations
satisfying (c3) and (c4) on the basis of a free C[∂]-module R, they can be extended uniquely
to the whole R, according to (c2). So we construct our examples having this in mind. All
our modules Mn will be free modules over C[∂], with the basis consisting of three elements,
which we denote a, b, c. So all what we need is to define operations satisfying (c3) and (c4)
on a, b, c, such that x(n)y ̸= ∂(x(m)y) for any n,m and for some elements x and y in Mn.

Let us first construct appropriate modules for n = 0, 1 for illustration, and then give a
general construction.

In M0, define a(0)b = c, b(0)a = −c and the rest of the products of elements from the
basis a, b, c are equal to zero:

a(0)c = 0, c(0)a = 0,

b(0)c = 0, c(0)b = 0, and

z(i)w = 0 for all i > 0, and z, w ∈ M0.

Surely (c3) and (c4)are satisfied in this case. We choose a(0)b and b(0)a related in such
a way, that (c3) is satisfied, and (c4) is satisfied since with such a multiplications each
product of three elements should be zero.

Now ensure that the lemma condition is satisfied for n = 0,m = 0, 1, 2, · · · . Indeed,

c = a(0)b ̸= ∂(a(m)b) = ∂(0) = 0

for any m = 1, 2, · · · , and

c = a(0)b ̸= ∂(a(m)b) = ∂c

for m = 0.

These hold true since c is an element in the basis of the free C[∂] module, so c ̸= 0 and
c ̸= ∂c.

Take now n = 1 and construct the module M1. Suppose

a(1)b = c, b(1)a = c.

Then (c3), considered as a triangular system of equations, which express operations
a(n)b via operations with bigger numbers, will give us the equation

a(0)b = b(0)a− ∂(b(1)a).
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The possible solution is a(0)b = 0 and b(0)a = ∂c. The rest of operations on the pairs
from a, b, c we again put to be zero. The axiom (c4) is again automatically satisfied.

The conditions of the lemma hold for n = 1 and any m:

c = a(1)b ̸= ∂(a(m)b)

since ∂(a(m)b) = 0 form = 0; ∂(a(m)b) = ∂c form = 1 and ∂(a(m)b) = 0 form = 2, 3, · · · .
Describe now the general construction of Mn. Let Mn be a free C[∂] module with the

basis {a, b, c}, endowed with the following operations:

a(i)b = 0, for any i > n

a(n)b = c, b(n)a = (−1)n+1c

a(n−1)b = 0, b(n−1)a = (−1)n+1∂c

a(n−2)b = 0, b(n−2)a

· · ·

a(0)b = 0, b(0)a

All products of other pairs of elements of the basis are equal to zero.

We claim that

1). a(n)b ̸= ∂(a(m)b) for any m. Indeed, a(n)b = c is not equal to one of the following:

∂(a(0)b) = ∂(0) = 0

∂(a(1)b) = ∂(0) = 0

· · ·
∂(a(n−2)b) = ∂(0) = 0

∂(a(n−1)b) = ∂(0) = 0

∂(a(n)b) = ∂c

The reason why c ̸= ∂c and c ̸= 0 is again that c is an element of the basis of the free
C[∂] module.

2). Axioms

(c3) a(r)b = −(−1)r+j
∞∑
j=0

∂(j)(b(r+j)a)

and (c4) are satisfied in Mn for arbitrary r.
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Indeed, for 0 ≤ r ≤ n the equality

a(r)b = −(−1)r+j
k∑

j=0

∂(j)(b(r+j)a) =

−((−1)n−1∂(n−r−1)(b(n−1)a) + (−1)n∂(n−r)(b(n)a)) = 0

holds, when b(n−1)a = (−1)n+1∂c and b(n)a = (−1)n+1c.

For r > n all terms of the axiom (c3) are zero, so it is automatically satisfied.

The axiom (c4) also holds true for such a multiplications since the product (n) of any
two elements of the basis is either zero or c. If it is zero, the product (m) with the third
element is also zero. If it is c, due to our definitions of the products, c, multiplied by
any other element of the basis, again give zero. So any combination of products of three
elements from the basis is zero.

Remark. We can give another proof of this lemma, which rely on the construction of
current Lie algebras. Namely, take the current Lie algebra C = G⊗A, where G is non-abelian
Lie algebra. Define on C a Lie conformal structure in the following way: a(0)b = [a, b], a(n)b =

0, n = 1, 2, · · · .a, b ∈ G. Then, since according to axiom (c2) (∂(n)a)(m)b = (−1)na(m−n)b,

we can find two elements A = ∂(n)a, B = b, for which A(n)B ̸= ∂A(m)B for any n,m.

Indeed, (∂(n)a)(n)b = (−1)na(0)b, ∂((∂(n)a)(m)b) = (−1)n∂(a(m−n)b), which is equal to
(−1)n∂(a(0)b), if m = nand zero otherwise.

Since we have ensured, that the operations a(n)b and ∂(a(m)b) do not coincide for arbi-
trary m and n, the highest words of the Jacobi relations can not give rise to any ambiguity.
The highest words of those relations w.r.t our ordering are of the shape {{a, c}m,0, b}n+1,1,
depicted above by the left comb labeled tree. This means this presentation by generators
and relations of the operad CLie, with respect to the chosen ordering of tree-monomials,
is formed by a combinatorially free set of quadratic (degree two) tree monomials. As a
consequence, quadratic relations form a Gröbner basis.

From this we can conclude that the operad is Koszul, due to the analogues of the Priddy
criterion for operads (see Theorem 2.1 in section 2).
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