ABOUT THE TRIMMED AND THE POINCARE-DULAC
NORMAL FORM OF DIFFEOMORPHISMS

by
Jacky CRESSON & Jasmin RAISSY

Abstract. — We study two particular continuous prenormal forms as defined by Jean Ecalle
and Bruno Vallet for local analytic diffeomorphism of C¥: the Trimmed form and the Poincaré-
Dulac normal form. We first give a self-contain introduction to the mould formalism of Jean
Ecalle. We provide a dictionary between moulds and the classical Lie algebraic formalism
using non-commutative formal power series. We then give full proofs and details for results
announced by J. Ecalle and B. Vallet about the Trimmed form of diffeomorphisms. We then
discuss a mould approach to the classical Poincaré-Dulac normal form of diffeomorphisms.
We discuss the universal character of moulds taking place in normalization problems.
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1. Introduction

In this paper we study the set of local analytic resonant diffeomorphisms of C” using
the theory of continuous prenormalization developped by J. Ecalle ([6],[7]). We assume
that diffeomorphisms have a diagonalizable linear part and we work in a chart where the
linear part is diagonal. The diffeomorphism is called in this case in prepared form. Let
f be a diffeomorphism in prepared form. Roughly speaking a prenormal form of f is a
diffeomorphism fpen, conjugated to f, of the form fpen = fiin + frem Where frem is made
of resonant terms. A normal form is a prenormal form containing the minimal number
of resonant terms, with formal invariants as coefficients. Although a normal form can be
considered as the simplest prenormal form, it is not in general possible to compute it.
Even if an algorithmic procedure can be obtained [2], its exact shape is related to the
vanishing of certain quantities depending polynomially on the Taylor coefficients of the
diffeomorphisms. This can not be decided by a computer.

We look for calculable prenormal forms, i.e. prenormal forms which can be obtained
using a procedure which is algorithmic and implementable. As an example of such prenor-

mal forms, we study continuous prenormal forms as defined by J. Ecalle [6].

We mainly focus on two particular continuous prenormal forms, one introduced by J.
Ecalle and B. Vallet [7] called the Trimmed form and the classical Poincaré-Dulac normal
form. The framework of continuous prenormalization is the mould formalism developped
by J. Ecalle since 1970. We provide a self-contained introduction to this formalism, omit-

ting some aspects which will not be used in this paper. We refer to ([3],[4]) for more details.

The Trimmed form is first studied. We give complete proofs for results which are
announced by J. Ecalle and B. Vallet [7] with (or without) a sketch of proof. In particular,
we give all the details for the computations of the different moulds associated to the
Trimmed form. We also give closed formulae for these moulds using a different initial
alphabet.
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The Poincaré-Dulac normal form is then discussed in the mould framework and com-
pared to the Trimmed form. We obtain two universal moulds Poin® and Dulac®. These two
universal moulds are associated to the Poincaré normalization procedure and the Poincaré-
Dulac normal form. It seems impossible to obtain such objects using the existing methods
of perturbation theory. The mould formalism provides a direct and algorithmic way to
capture the universal features of a normalization procedure.

2. Diffeomorphisms, automorphisms and continuous prenormalization

We consider local analytic diffeomorphisms of C” with 0 as a fixed point and a diagonal-
1zable linear part. We work in a given analytic chart where the linear part is assumed to be

in diagonal form. In such a case, the diffeomorphism is called in prepared form by J. Ecalle.

Let f:C”" — C”, v € N defined by
(2.1) flxy,...,2,) = (eMay,...,eMw,) + bz, ... 2,),

with f(0) =0, and h = (hy,...,h,), h; € C{z} for all i = 1,...,v. We denote by fi, the

linear part of f, i.e. fin(x1,...,2,) = (eMay, ..., eMw,).

J. Ecalle looks for the substitution operator associated to f, denoted by F' and defined
by

Clzy — C{zj,
¢ = ¢of,

where o is the usual composition of functions.

(2.2) F:

As f is a diffeomorphism, the substitution operator F is an automorphism of (C{z},)

where - is the usual product of functions on C{xz}, i.e. for all ¢,1 € C{z}, we have
(2.3) F(¢-4)=F¢- Fy,
and F~1(¢) = ¢o fL.

J. Ecalle uses the following result, which is a direct consequence of the Taylor expansion

theorem:
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Lemma 1. — Let f be an analytic diffeomorphism of C” in prepared form and F its

associated substitution operator. There exist a decomposition of F' as

(2.4) F=Fu [Id+ ) B.|,

neA(F)

where A(F) is an infinite set of indices n € 7V, Fy, the substitution operator associated to
fiimn, and for all n € A(F), B, is a homogeneous differential operator of degree n, i.e. for
all m € N¥,

(2.5) B(2™) = Buma™™™, Bam € C.

In the following, we work essentially with the substitution operator F'. In order to
simplify our statements, we call diffeo(s) the automorphism F' associated to a given diffeo-
morphism f.

Definition 1. — Let F' and Fionj be two local analytic diffeos of C¥. The diffeo Fion; 15
called conjugated to F if there exists a change of variables h of C¥ such that the associated
substitution operator denoted by © satisfies

(2.6) Fomj =0 -F-07%

The substitution operator © is called the normalizator in the following. When the
change of variables h is of class formal, C* or C%, we speak of a formal, C* or analytic

normalization.

Definition 2. — Let F' be an analytic diffeo of C¥ in prepared form. A prenormal form
for F, denoted by Fypan, is an automorphism of C{z} conjugated to F such that

(27) Fpran : Flin = Flin : Fpran-

J. Ecalle has introduced in [6] and extensively studied in [7] a very particular class of
prenormal forms called continuous prenormal forms.

Definition 3. — Let I be a diffeo of C” in prepared form given by

F=Fy [Id+ ) B,

neA(F)
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A continuous prenormal form Fe, is an automorphism of C{x} of the form

(2.8) Fpen=Fin | > Pren™Bn |,

NeA(F)*
where A(F)* is the set of sequences n = (ni,...,n,), n; € A(F), r > 0, Pren™ € C
satisfying

(2.9) Pren™ =0 if | n|[#0,
with || n ||=ny+---+n, foralne A(F)", n=ny...n,, and Bn = By, ... B, with the

usual composition of differential operators.

These forms are calculable using the formalism of moulds developed by J. Ecalle since
1970.

3. Moulds and prenormalization

3.1. Reminder about moulds. — We provide a self-contained introduction to the
formalism of moulds and we refer to the articles of J. Ecalle or to the lectures ([3],[4]) for
more details.

3.1.1. Moulds and non-commutative formal power series. — We denote by A an alphabet,
finite or not. A letter of A is denoted by a. Let A* denotes the set of words constructed on
A, i.e. the sequences a; ...a,, r > 0, with a; € A, with the convention that for r = 0 we
have the empty-word denoted by . We denote with bold letter a a word of A*. We have a
natural action on A* provided by the usual concatenation of two words a, b € A*, which

glues the words a to b, i.e. ab.

Definition 4. — Let K be a ring (or a field) and A a given alphabet. A K-valued mould
on A is a map from A* to K, denoted by M®.

The evaluation of M® on a word a € A* is denoted by M?

As an example, we define a C-valued mould on A(F') by

Pren®: A(F)* — C
(3.1) n — Pren™.

The mould Pren® is obtained collecting the coefficients of a formal power serie

Z Pren™Bp. There exist a one-to-one correspondence between moulds and formal
NEA(F)*
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power series.

For » > 0, we denote by A’ the set of words of length r, with the convention that
A = {0}. We denote by K(A) the set of finite K-linear combinations of elements of A*,
i.e. non-commutative polynomials on A with coefficients in K, and by K,(A) the set of
K-linear combination of elements of A}, i.e. the set of non-commutative homogeneous
polynomials of degree r. We have a natural graduation on K(A) by the length of words:

(3.2) K(4) = P K. (A).

The completion of K(A) with respect to the graduation by length denoted by K((A)) is
the set of formal power series with coefficients in K. An element of K((A)) is denoted by

(3.3) > M?a, M?eK,
acA*

where this sum must be understood as

(3.4) ST v

r>0 \ AcA}

Let M*® be a K-valued mould on A, its generating serie denoted by ®,; belongs to K((A))
and is defined by

(3.5) Oy = Y M2,
AcA*

or in a condensed way as g M*®e. This correspondence provide a one-to-one mapping

from the set of K-valued moulds on A denoted by Mk (A) and K((A)).

3.1.2. Moulds algebra. — The set of moulds Mx(A) inherits a structure of algebra from
K((A)). The sum and product of two moulds M* and N* is denoted by M*+N*® and M*-N*
respectively and defined by
(Mo + No)a — Ma + ]\]a7
(3.6) (M*-N"2 = Y MANE
ata?=a

for all a € A* where the sum corresponds to all the partition of a as a concatenation of
two words a' and a? of A*.
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The neutral element for the mould product is denoted by 1°* and defined by
) SR

0  otherwise,

Let M* be a mould. We denote by M* the inverse of M* for the mould product when it
exists, 2.e. the solution of the mould equation:

(3.8) M- M = MM =1,

3.1.3. Composition of moulds. — Assuming that A possesses a semi-group structure, we
can define a non-commutative version of the classical operation of substitution of formal

power series.

We denote by x an internal law on A, such that (A, x) is a semi-group. We denote by
|| ||+ the mapping from A* to A defined by
A — A4

a=ay...a, —— a;*---*a,.

(3.9)

The « will be omitted when clear from the context.

The set K((A)) is graded by || ||x. A homogeneous component of degree a € A of a

non-commutative serie ®,; = Z M?a is the quantity
acAa*

(3.10) *y = Y M?%a
acA*, ||al«=a
We have by definition
(3.11) Oy =) D).
acA

Definition 5 (Composition). — Let (A, *) be a semi-group structure. Let M* and N°*
be two moulds on My(A) and @y, Py their associated generating series. The substitution
of @y in @y, denoted by Py o Py is defined by

(3.12) by ody =Y MY,

acA*

where ®% is given by O3 ... ®Y fora=ay...a,.

We denote by M® o N* the mould of Mg(A) such that

(3.13) Oy ody =Y (M oN")%a
AcA*
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Equation (3.13) define a natural operation on moulds denoted o and called composition.

Using || ||« we can give a closed formula for the composition of two moulds.

Lemma 2. — Let (A, %) be a semi-group and M®, N°® be two moulds of Mx(A). We have
for all a € A*,

I(a)

(3'14) (M' o N')a _ Z Z M||a1||*...||ak||*Na1 o Nak7
k=1 a1 _aria
where al ... a* x a denotes all the partitions of a such thata® 4 0,i=1,... k.

Proof. — Equation (3.12) is equivalent to

(3.15)
Dyodby=Y_ » = M > N¥all . N¥a'
720 b=b1...breAT~ ateAr, [|at]s=b areAx, ||aTH*—bT
Let a € A* be a given word of A*. Each partition of a of the form a = a' ok =
1,...,1l(a), occurs in the sum (3.15) with a coefficient given by
(3.16) Mot AT N
where b; =|| a’ ||,. Collecting all these coefficients, we obtain the formula (3.14) for the
coefficient of a in O, 0 Oy O

The neutral element for the mould composition is denoted by I* and defined by

(3.17) 1':{ 1 ifli(e)=1

0  otherwise,
where [(e) denotes the length of a word of A*.

3.1.4. Exponential and logarithm of moulds. — We denote by (K((A))). the set of for-
mal power series without a constant term. We define the ezponential of an element
x € (K((A))). , denoted by exp(z) using the classical formula

n

(3.18) exp(x) = Z %

n>0
The logarithm of an element 1 +z € 1+ (K((A))). is denoted by log(1+ x) and defined by
n xn
(3.19) log(1+z) = Z(—l) HH'
n>0

These two applications have their natural counterpart in Mg (A).
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Definition 6. — Let M* be a mould of Mg(A) and ®y; the associated generating serie.
Assume that exp(®yy) is defined. We denote by ExpM® the mould satisfying the equality

(3.20) exp (Z M'.) => ExpM’e.

Simple computations lead to the following direct definition of Exp on moulds:

. [M.](Xn)
(3.21) ExpM® =) —
n>0
where [M*] )., n € N, stands for
(3.22) [M.](Xn) - M. s M. .
n times

The same procedure can be applied to define the logarithm of a mould.

Definition 7. — Let M® be a mould of Mg(A) and ®y; the associated generating serie.
Assume that log(14 ®yy) is defined. We denote by LogM® the mould satisfying the equality

(3.23) log (1 +) M°.> =) LogM*e.

A direct definition of Log is then given by

(3.24) LogM® = Z(—l)"HM.

n!
n>0

As exp and log satisfy exp olog = logoexp = 1, we have
(3.25) Exp (LogM*®) = Log (ExpM®) = 1°.

3.1.5. A technical lemma. — In this section, we derive simple results for the exponential
and logarithm of moulds with non-zero components only on words of length 1.

Lemma 3. — Let us denote by 7Z° a mould of Mx(A) such that Z°* = 0 for all e of length
different from 1. For alla € A*, r > 1, we have

ca | 2.2 l(a)=r, a=ay...a,,
(3.26) 2%, = { 0 otherwise.
[ ] 1 [ ]
(3.27) [ExpZe]® = 12 + Ty Joxicay) -
oA (_1)l(a)+1 1A
(3.28) [LogZ*]” = Tl 2] Caay) -
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Proof. — We first remark that equations (3.27) and (3.28) easily follow from equation
(3.26).

The proof of equation (3.26) is done by induction on r. Formula (3.26) is trivially true
for r = 1. Assume that formula (3.26) is true for r > 1. By definition, we have

(3.29) 2] iy = Z° X [2%) () -

Let a = ab, then by assumption on Z* we obtain

e1ab a oD
(330) [Z ](xr+1) =7 [Z ](Xr) :

As the mould [Z°] is non-trivial only on words of length r, we deduce that the mould

(xr)

[Z°] (%41 1s non-trivial only on words of length r + 1.

Moreover, using the fact that [Z°](};" = Z* ... Z" for all a; € A, we also deduce that
[Z']?;rﬁ;’l = 7% ... 7%+ This concludes the proof. O
3.2. Prenormalization. — Let F' be a diffeo in prepared form given by

F=TFy, | 1d+ Z B,
neA(F)

Let ®g be an automorphism of C{z} of the form
(3.31) o= »_ ©"Bp,
NeA(F)*
where O™ € C for all n € A(F)*, i.e. ®g € C((B)), where B = {B,},ear) and
©° € Mc(A(F)).

Using the moulds 1* and I* we write Id + Z B,, as an element of C((B)):

neA(F)
(3.32) Id+ > B,=)Y (1*+I°)B..
neA(F) o
We assume that F' is conjugated to an automorphism Fo,; via ®g. Equation (2.6) is then
given by
(3.33) Froonj = Po - F - 0.

The automorphism Fi,; can be written as

(3.34) Fronj = Fiiy (Z C‘B.) .
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Equation (3.33) is then equivalent to

(3.35) Flin (Z C‘B.> = (Z @'B.) Flin (Z(r + I')B.) (Z -@B) ,

where -6-is such that -0 ©* = ©* - ©-=1° i.e. dg' = OB,

In order to explicit C* we need to understand the action of a formal power serie of
C((B)) on Fj;,. We have the following fundamental lemma:

Lemma 4. — Let M* € Mc(A(F)) . We have

(3.36) (Z M‘B.> Fiin = Fiin (Z et (M)? B-) :
where e® is a map from Mc(A(F)) to Mc(A(F)) defined by

(3.37) e (M*)™ = e MMIAM for all n € A(F)*.

Proof. — Let Bn = B,,..n, such that B, (™) = gliz™t" pri € C,i=1,...,r, for all
m € N¥. We have

= Syt
(3.38) Bn(z™) = ks Dimngeing < - O & o

As Fiin(2™) = ™2™ we obtain

Bn(F]m((L’m)) = eA'mBn($m>,

(3 39) — ef)\.(nl+---+nr)€)\.(m+n1+---+nr)Bn<xm)’
' = MRy (By(an)),
= Fin (efA'(nlJr"'JrnT)Bn(ﬂEm)) '
This concludes the proof. ]

Next lemma gives an explicit formula to compute the mould C*® assuming that the mould

©° is known.

Lemma 5. — FEquation (3.35) is equivalent to the mould equation

(3.40) C*=e2(0%) - (1°+1°) - ©
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Proof. — Using lemma 4, we have

(5 - (g )

(3.41) = Fin Ze ) < doar+r) B.) <Z @B)
— Fi Z ) (1°+1°) - )B.).

This concludes the proof. O

As a consequence, choosing carefully the normalizator g, we can obtain an inductive

expression for the mould of normalization C°.
We will give explicit formulae for C*® using specific moulds for ©° in the next section.

3.3. Universality of moulds and prenormalization. — Lemma 5 gives an important
feature of the mould formalism in the context of continuous prenormalization. Formula
(3.40) is valid whatever is the underlying alphabet A(F). We then obtain a universal
object underlying the prenormalization problem which is studied.

For example, in the context of linearization, i.e. Fionj = Fiin, the universal mould of
linearization which defined the linearizing change of variables is given as follow (see [3]
Chap. III for more details):

Theorem 1. — Let L = {L,},>1, 7 € N, be the set of C-valued functions L, : C" — C
defined by

(3.42) Lo(w,. . yap) = [(e@tte0 1) (emCatoben) ) (e —1)] 7,
for all (xq,...,x,) € C"\ S, where the singular set S, is given by
(3.43) Sy ={a, =0 Jzr + 2o =0} Hon + -+ =0}

If F' possesses a non-resonant linear part \, the mould of formal linearization is given for
alne A(F)", n=ny,...,n,, by

(3.44) oMt = L (wy,...,w,),

where w; = n; X fori=1,...,r.
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This result can not be obtained using other existing formalisms. Of course, anybody
knows that an expression like (3.44) is the important quantity entering the linearization
problem. However, the previous result associates universal coefficients from which one can
compute the desired linearization map for a given particular diffeo F' by posing

Po = Z O"By.

NEA(F)*

4. The Trimmed form

In this section, we give complete proofs of results concerning the Trimmed form defined
by J. Ecalle and B. Vallet announced in [7] with a sketch of proof and without explicit

computations.

4.1. Cancelling non-resonant terms. — In this section, we give a mould approach to

the classical problem of cancellation of non-resonant terms.

4.1.1. Around the Baker-Campbell-Hausdorff formula. — Let F be a diffeo in prepared

form given by (2.4). The operator Id + Z B,, is an automorphism of C{x} which can
neA(F)
be viewed as the exponential of a vector field, i.e.

(4.1) Id+ Y B.=exp| > Dul,

neA(F) meA(F)

where D,, is a homogeneous differential operator of degree m and order 1, i.e. a derivation
on C{z}, m = (mq,...,m,) € Z", with all m; € N, i = 1,..., v except at most one which
can be —1, and A(F') the set of degrees coming in the decomposition.

We look for an automorphism given by the exponential of a vector field V given by
(4.2) V= Z dem™ By,
NeA(F)*
or equivalently given on the alphabet A(F)* by
(4.3) V= Y Dem™Dpn,
MeA(F)*

where Vim—m,..m, = VinyVin, - - - Vin,, with the usual composition of differential operators.



14 JACKY CRESSON & JASMIN RAISSY
The action of expV on F'is given by

(4.4) expV - F-exp(—V)

Equation (4.4) can be analyzed using the moulds expression of V and F' with respect to
the alphabet A(F"). We have the following lemma:

Lemma 6. — FEquation (4.4) is equal to

(4.5) expV - F-exp(=V) = F,exp <\7+D—V—I—...>,
where the ... stands for a formal power serie beginning with words of length at least 2, and
D and V are vector fields defined by D = Z D,, and
meA(F)
(4.6) V=Y eMMIDem™Dpy,
MeA(F)*
respectively.

Proof. — Using the Baker-Campbell-Hausdorff formula (BC H,), we obtain

expD-exp(=V) = exp(Dx(-V)),

(4.7) = exp(D—-V +hot.),

where h.o.t. stands for higher order terms.

Using lemma 4, we have
(4.8) expV - Fiiy = Fiyy - exp V,
where V is given by

(4.9) V= Z e MMIDem™ Dy,
MeA(F)*

As a consequence, applying again (BC Hy) we obtain

expV-exp(D*(=V)) = exp(V«*(Dx (—V))> ;

(4.10) ~
= exp V+D—V+...>,

where the ... stand for a formal power serie beginning with words of length at least 2.
This concludes the proof. O
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4.1.2. The simplified form and the moulds dem® and Dem®. — The main consequence of

lemma 6 is that we can cancel the non-resonant terms of D using a simple vector field V.

Theorem 2 (Simplified form). — Let V be the vector field defined by the mould
]Il’l
(4.11) Dem® = { T omx for mEAFARE),

0 otherwise,

where R(F) is the set of resonant words of A(F)*, i.e. m € R(F) if and only if m.\ = 0.
We denote by dem® the associated mould on Mc(A(F)), i.e.

(4.12) V=> Dem*D, = ) _dem*B,.

We call simplified form of F' and we denote by Fsenm the automorphism obtained from F
under the action of exp V. We have

Fsem = Fin Z Sem™ Dy |,
(4.13)

with the mould Sem® given by
(4.14) Sem® = e (Exp(Dem®)) - Exp(I*) - Exp(—Dem®),
and the mould sem® given by
(4.15) sem® = e (Exp(dem®)) - (1° +1*) - Exp(—dem®).

Proof. — We have Fgep, = expV - F' - exp(—V) with V = Z dem™Bp. As a conse-

NeA(F)*
quence, we have expV = Z (Exp dem')Il Bn and the formula for sem® follows from
NeA(F)*
lemma 5 using ©°® = Exp(dem®).
For Sem®, we first use lemma 4 to obtain
(4.16) exp VFi, = Fiin Z [eA (EXpDem')} n Dm

MeA(F)*
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As a consequence, the conjugacy equation is equivalent to

(4.17)
Fsem = expV - F .exp(—V),

Fiin Z (ExpDem®) > (Z ExpI*D > (Z Exp(—Dem®)D, ),

Flin Z [e® (ExpDem®) - Expl® - EXp(—Dem')]. D.) .
This concludes the proof. ]
The mould Sem® can be compute explicitly. We first introduce some convenient nota-

tions:

Let m = m; ...m, be a word of length , » > 1. We denote by m=! and m>* the word
(4.18) mS=my...m;, M =mi...m,.
Moreover we denote by d(m) the index of the last m; in m = m; ...m, such that A.m; = 0,
and we denote by ¢(m) the first index just before of the first zero w; = A.m;.

Theorem 3. — For allm € A(F)*, we have

(4.19)
. -
Semm N (—].)l(m) [Dem.]m n 1 N Z(Inz)'f‘l (_1)l(m>a) [Dem']{?l(il’le)) 4 efA"‘mH 1m
" I(m)! OAm)) =g myr " 1(m<7)!(m=7)!
j=d(m)+1
qM)AUMM)—=1) 5 im<i|| _
e ° <z
+ £ W [Dem ](xl(mii)) X
i N> . >i\>j
e R S “mgﬂ (=)= Deme] T 12
! (xl((m=>*)) >i) >i)<5)| >i)>7)|
I(m) (! e im0
The proof is done in appendix B.
4.2. The Trimmed form. — The Trimmed form is constructed by induction applying

successively the previous simplification scheme to remove non-resonant terms of higher
and higher degrees. The mould formalism allows us to explicit some particular moulds
underlying this construction as well as algorithmic and explicit formulae for some of them.

4.2.1. The Trimmed form up to order r. — We can use the simplification procedure pre-
viously defined inductively in order to cancel non-resonant terms of higher and higher

degrees.
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Definition 8 (Trimmed form up to order r). — Let r € N, the Trimmed form up to

T

Sem Obtained from F after v successive simplifications, i.e.

order r is defined as F

Simp' Simp” Simp” _,.
— ceo = Fgo,

(4.20) F =F}

Sem

Féem
where Simp" is the automorphism of simplification defined by
(4.21) Simp’ = exp(V;),

with V; the vector fields associated to the mould Dem® on the alphabet A(Fi,l) associated
to F&!

Sem *

Using theorem 2, we deduce the following useful result:

r
Sem

Theorem 4. — For all v € N, the Trimmed form up to order r denoted F possesses

a mould expansion, i.e. there exists moulds denoted by ,Sem® € Mc(A(F)) and ,sem® €
Mc(A(F)) such that

(4.22) Fl . =Fu, (Z rSem'D.) = Flin (Z Tsern'B.) )

Despite its moulds expansion, the Trimmed form up to order r is not a prenormal form
as it remains non-resonant terms for sequences of length [ > r + 1.

4.2.2. The moulds ,sem® and ,Sem®. — The mould ,sem® has a simple expression in

function of sem?®.

Lemma 7. — For all r € N, we have
(4.23) ysem® =gem® o ---osem®.
r times
Proof. — The simplification procedure can be written as follows:

(4.24) D I'Be— ) sem®B,.
Iterating this mapping we go from step i to 7 + 1

(4.25) ZisenfB. = ZI'i+1B. — Ziﬂsem'B. = Zsem'HlB.,

i

where Z I*;11B. denotes the homogeneous decomposition constructed on Fy, .

By definition of the composition for moulds we have

(4.26) Z sem®;;1Be = Z (sem® o ;sem®) B,,
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from which we deduce the recursive relation
(4.27) ;r1sem® = sem® o ;sem®.
We conclude by induction on 1. ]

For the mould ,Sem® we have a more complicated formula:

Lemma 8. — For all r € N, we have

(4.28) Log[.Sem®] = Log(Sem®) o - - - o Log(Sem?®) .

A
r times

The fact that we must take the Log of Sem® instead of Sem?® is related to the fact that the
alphabet of derivation ;;D, constructed at step i from F’__ is not related to Y, ;Sem*D,
but to its logarithm.

Proof. — The simplification procedure can be written as follows:

(4.29) exp (Z I'D.) — Z Sem*D, = exp (Z Log(Sem')D,) .

Iterating this mapping we go from step ¢z to ¢ + 1

exp (Z Log[iSem°]D.> = exp (Z I'iHD.)

(4.30) l

exp (Z Log[iHSem']D.) = exp (Z Log(Sem')iHD.) ,

where Z I*;11D, denotes the homogeneous decomposition constructed on Z Log[;Sem*®|D,.

By definition of the composition of moulds, we deduce that
(4.31) Log[i+159em®] = Log(Sem®) o Log[;Sem®].
We conclude the proof by induction on . O

4.2.83. The Trimmed form. —

Definition 9. — The Trimmed form of F is the limit of the simplification procedure.



TRIMMED AND POINCARE-DULAC NORMAL FORM 19

Theorem 5. — The Trimmed form is a continuous prenormal form given by

FTrem = Flin Z Tl"emmDm ;

mMeA(F)*

(4.32)

NeA(F)*
with the moulds Trem® and trem® defined by
1-](07")

trem' _ 10 — limstatrqoo [Sem' _ 10](07”) ,

Trem® — 1° = limstat, o, [Sem® —

9

(4.33)

where limstat is the stationary limat.
The proof is a direct consequence of the simplification procedure.

Remark 1. — Following ([7] §.7) we have divergence and resurgence of the simplification
procedure. This is not the case when working directly with the diffeomorphism instead of
its associated automorphism of substitution. However, this problem can be avoided (see [7|

p.8).

4.2.4. The mould Trem®. — We can compute the mould Trem® using a simple remark.
By definition, we have the following identities

(4.34) Trem® = Sem*® o Trem®,

(4.35) Trem® = Trem® o Sem®.

Using the first equation and the definition of composition for moulds we obtain for all
m € A(F)*

(4.36) Trem™ = Sem™ Trem™ + 5.1,

where s.I denotes terms which depend on Trem® for words with a strictly short length than

[(m).

The mould Trem® takes non-trivial values only on resonant words, i.e. m € A(F)* such
that || m || .\ = 0. However, the mould Sem® is equal to 1 on resonant words of length
1. As a consequence, equation (4.36) can not be used to compute the mould Trem® by

induction on the length of words.
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Using equation (4.35) we obtain

(4.37) Trem™ = Trem™Sem™ ...Sem™ +s.l.

4.3. About Ecalle-Vallet results. — All our computations have been done in the
alphabet D). However, J. Ecalle and B. Vallet [7] use the initial alphabet Bar) to
formulate their results. In order to compare our approach, we first give a simple formula
connecting the two alphabets. We then discuss the essential differences between the moulds
dem®, sem® and trem® with the moulds Dem®, Sem®, and Trem®. The main point is that
contrary to our moulds, Ecalle-Vallet moulds can not be expressed via closed formulae,
except for dem®.

4.8.1. Relation between the alphabets Bary and Dypy. — By definition, we have the
identity
(4.38) 1+ Z B, = exp Z D,

neA(F meA(F)

Using the logarithm, we obtain

(4.39) log | 1+ Z B,|= > D

neA(F meA(F)
AS Y camyBn=">_ T1™Bn, we have
NeA*(F)
(4.40) > (LogI’)™ Z Dy,
NeA*(F) meA(F

We finally deduce the following relation between D4y and By(r):

Lemma 9. — For all D,, € D), we have

(4.41) D, = > (LogI*)™Bn.
neA(F)-, |nj=m

The proof is based on the fact that a differential operator Bp is of order || n ||

4.8.2. The mould dem®. — By definition, we have the identity
D
4.42 dem™Bp, = — .
(10 > ot S
NeA(F MmEA(F)\R A(F)

Using lemma 9, we deduce:
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Lemma 10. — The mould dem® of Mc(A(F)) is defined for alln € A(F)* by
n (_1)l(n)+1 1 o1l
(443) dem™ = T T = omr Loy v (),
where N(F) = {n € A(F)*, || n || .\ # 0} is the set of non-resonant words of A(F)* and
1; is the indicatrice of the set J, i.e. 1;(x) is equal to 1 if x € J, 0 otherwise.

This mould is defined directly by Ecalle-Vallet without any details (see [7], p.30).

Proof. — Equation (4.42) can be rewritten as

D,
(4.44) > dem"Bp= ) T onx Hmazoy (m).
NeA(F)* meEA(F)

Using lemma 9, we have

D, Logl®)®
> T o Hmazop(m) - = > >, %an

meA(F) meA(F) NeA(F)*, ||Nn|l=m
11—
NeA(F)*

using the fact that
(4.46) U mecar), [In|=m}=AF),
meA(F)
by assumption.
Using lemma 3 for the mould I°®, we obtain for all n € A(F)*

n (_1>l(n)+1
Replacing Logl® by its expression in equation (4.45) we conclude the proof. O

5. The Poincaré-Dulac normal form

The Trimmed form is constructed using cancellation of non-resonant terms as the clas-
sical Poincaré-Dulac normal form. However, these two prenormal forms do not coincide in
general. We introduce the universal mould associated to the Poincaré-Dulac normal form
and the universal mould of the associated cancellation procedure. The difference between
the two procedures lies in the treatment of the homogeneous components of the diffeomor-
phism. For a classical approach to the Poincaré-Dulac normal form we refer to ([1] §.B
p.178).
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5.1. Homogeneous components and the Trimmed form. — We keep the notations
introduced in §.4.1. In order to discuss the cancellation of non-resonant terms, we must

write our prepared form as follows:

(5.1) Id + Z B, =expD = exp Z D,, | =exp <Z Dk) )

n€A(F) meA(F) k>1

where

(5.2) D= > Dy,

neA(F), |n|=k

denotes the homogeneous component of degree k of the vector field D.

For a given vector field D we introduce the following degree of resonance, denoted by K:
(5.3) K = min {Ni # 0},
where N}, denotes the set of non-resonant letters m € A(F) of degree k, i.e.
(5.4) Ny ={me A(F) | |m|=k, mA=0}.

As a consequence, we have

(5.5) D= ) D;+Dg+>» Dy
1<k<K k>K

The first sum up to order K — 1 is made of resonant terms. The first non-resonant terms
belong to Dg.

The field V introduced in §.4.1.2 cancel the non-resonant terms of degree K but intro-
duces several other terms in the homogeneous components of degree > K which can be
non-resonant. As a consequence, even if the field V is constructed in order to cancel all
the non-resonant terms of the vector field D we have an effective cancellation only for the

components of degree K.

As a consequence, the vector field V must be modified in order to cancel only non-

resonant terms of degree K.
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Theorem 6 (Poincaré normalization procedure). — Let S be the vector field defined
by the mould

1
(5.6) Den® =4 1 _—¢¢m?
0 otherwise,

We denote by den® the associated mould on Mc(A(F)), i.e.
(5.7) S = Z Den*D, = Zden'B,.

for m e Ng(F),

We call simplified form of F' and we denote by Fpyin the automorphism obtained from F
under the action of expS. We have

Fromn = Fin Z Poin™Dp |,

(5.8) MEA(F)*
= Fun Z poin™ Bp
NeA(F)*
with the mould Poin® given by
(5.9) Poin® = e® (Exp(Den®)) - Exp(I*) - Exp(—Den®),
and the mould poin® given by
(5.10) poin® = e® (Exp(den®)) - (1° +I*) - Exp(—den®).

The proof is exactly the same as those of theorem 2.

5.2. The Poincaré normal form of order r. — We apply the Poincaré normalization
procedure inductively in order to cancel non-resonant terms in homogeneous components

of higher and higher degree.

Definition 10 (Poincaré normal form up to order r). — Let r € N, the Poincaré

T

normal form up to order r is defined as Fp_;, obtained from F after r successive simplifi-

cations, 1.e.
. 1 . 2 . T
Simp PL Slgp Slgl)p P

Poin»

(5.11) F=F}

Poin
where Simp’ is the automorphism of simplification defined by

(5.12) Simp" = exp(S;),

with S; the vector fields associated to the mould Den® on the alphabet A(Fil) associated

Poin
i—1
to FPoin .
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Using theorem 6, we obtain:

'

Theorem 7. — For all v € N, the Poincaré normal form up to order r denoted Fp .,

possesses a mould expansion, i.e. there exist moulds denoted by .Poin® € Mc(A(F)) and
+poin® € Mc(A(F)) such that

(5.13) Fr. = Fin (ZTPoin'D.> = Fiin (Zmoin’B,) .

As for the moulds ,sem® and ,.Sem®, we have explicit inductive formulae to compute the
moulds ,poin® and ,Poin® using only poin® and Poin®.

5.3. The Poincaré-Dulac normal form. — The mould formulation of the Poincaré-

Dulac normal form is:

Definition 11. — The Poincaré-Dulac normal form of F is the limit of the Poincaré

normalization procedure.

Theorem 8. — The Poincaré-Dulac normal form is a continuous prenormal form given

by

FDulaC = Fin Z DlﬂaCmDm ’
(5.14)

with the moulds Dulac® and dulac® defined by

10](07’)

dulac® — 1°* = limstat, .. [poin® — 1°]°"

Dulac® — 1* = limstat, ., [Poin® — ,

(5.15)
where limstat s the stationary limit.

The mould Dulac® (or dulac®) is the universal part of the Poincaré-Dulac normal form as
it does not depends on the exact values of the coefficients coming in the Taylor expansion
of the diffeomorphism. It seems impossible to characterize such kind of object without

using moulds.
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Appendix A
About the Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff formula covers at least two formulae which are of interest
for the computation of continuous prenormal forms for vector fields and diffeomorphisms.

Let A and B be two linear operators. We denote by
Ak
exp A = Z

where A¥ = Ao ... 0 A, k times. The Baker—Campbell—Hausdorﬂ formula is given by
By,

(exp A) .B.(exp(—A) = > — (BCHy)
m>0
where )
(A.1) B =1[A,Bln,=[AlA,...,[A B]...],
with the convention that By = B.
A consequence of this formula is
exp Aexp B = exp(A x B), (BCH>)
where
(A.2) AxB=A+B+ - [A B] + 112 [A, [A, B]] — %[B, [A,B]] + ...
Appendix B

Proof of theorem 3
In order to compute the mould Sem®, we first compute Expl® - Exp(—Dem®). We have
(B.1)

(Expl® - Exp(—Dem®))™ = Z (ExpI®)™ Exp(—Dem®)™",

nn=n

. 1 ! :  (—1)i0%)
_ n o1l n o1l

)

n'n=n ,
)zm ) i

1 2 1 ( 1 oD

n'n2=n (
1 ( 1) ot o1N2

+1n2l(n ) [I.] xi(nty) W [I ](Xl(nl)) [Dem ](XI(HQ))

2

)
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It is clear that (Expl® - Exp(—Dem®))” = 1. If [(n) > 1 we have

_1)im
(Epr'-Exp(—Dem'))n = (l(lr)l) [Dem*® ](Xl(n))—i— l(l) [I']{lxl( 1))
)Z(HQ) o2
T Z < n!)!l(n2)! [Dem]<xz(n2)>>=
(B.2) i
(—1)'™ n 1

= W{Dem']( xi(M ))—i-m

1(n) nzs
! ( 1) n])[De ](Xl(n>J))

+ Z n<J ‘l(n>J)'

j=d()+1
Now we can compute Sem®.
(B.3)
Sem™ = (eA (Exp(Dem®)) - Exp(I*) - Exp(—Dem'))n,
A o n1 (_1)l(n2) o n2
— Z (e®Exp(Dem®)) Tad [Dem®] 2y
ninz=n n2 1 / n2) ) (n2)>'
)+ >j . =J
Lo Z e [Dem®) s ime)2)
I(n2)! [((0?)<)((n?)=7)! ’

j=d(N?)+

1 1
_ - |nt n' N
= E e~ MMl <1 + )] [Dem ](Xl(nl))> X

nn2=n « 2) ‘) (112)>'
2 I(M2)+1 [ 1\i((N?)2d . 2J
((—1)l(n : [Dem‘]?Q( o)+ 1 4 Z (=1) [Dem ](xl((n2)>f)))
PAY| xi(n 2\<35)1 2)>75)1 ’
I(0?)! [ SN (CORITERRE
>j P § B
_ )™ on 1 (=)' [Dem [ )
= Ty P loamy + gy 2 [(n</)l(n29)!
j=d(1)+

g(M)A(I(MN)-1) o=
L

<i
[Dem®]msiy) X

— [(n=?)!
. i i\>j o1(NN>%)27
(_1)l(l'l>1) 5 oo 1 (N>H41 (_1)l(n> )= [Dem ]Eill((i'l>z)27))
I(n>7)! [Dem®]ym>r) + 77—y I(n>)! + Z (n>1)<0)ll((n>9))!

j=d(1>%)+1

This concludes the proof.
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