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Abstract. — We study two particular continuous prenormal forms as defined by Jean Ecalle
and Bruno Vallet for local analytic diffeomorphism of Cν : the Trimmed form and the Poincaré-
Dulac normal form. We first give a self-contain introduction to the mould formalism of Jean
Ecalle. We provide a dictionary between moulds and the classical Lie algebraic formalism
using non-commutative formal power series. We then give full proofs and details for results
announced by J. Ecalle and B. Vallet about the Trimmed form of diffeomorphisms. We then
discuss a mould approach to the classical Poincaré-Dulac normal form of diffeomorphisms.
We discuss the universal character of moulds taking place in normalization problems.
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1. Introduction

In this paper we study the set of local analytic resonant diffeomorphisms of Cν using

the theory of continuous prenormalization developped by J. Ecalle ([6],[7]). We assume

that diffeomorphisms have a diagonalizable linear part and we work in a chart where the

linear part is diagonal. The diffeomorphism is called in this case in prepared form. Let

f be a diffeomorphism in prepared form. Roughly speaking a prenormal form of f is a

diffeomorphism fpren, conjugated to f , of the form fpren = flin + frem where frem is made

of resonant terms. A normal form is a prenormal form containing the minimal number

of resonant terms, with formal invariants as coefficients. Although a normal form can be

considered as the simplest prenormal form, it is not in general possible to compute it.

Even if an algorithmic procedure can be obtained [2], its exact shape is related to the

vanishing of certain quantities depending polynomially on the Taylor coefficients of the

diffeomorphisms. This can not be decided by a computer.

We look for calculable prenormal forms, i.e. prenormal forms which can be obtained

using a procedure which is algorithmic and implementable. As an example of such prenor-

mal forms, we study continuous prenormal forms as defined by J. Ecalle [6].

We mainly focus on two particular continuous prenormal forms, one introduced by J.

Ecalle and B. Vallet [7] called the Trimmed form and the classical Poincaré-Dulac normal

form. The framework of continuous prenormalization is the mould formalism developped

by J. Ecalle since 1970. We provide a self-contained introduction to this formalism, omit-

ting some aspects which will not be used in this paper. We refer to ([3],[4]) for more details.

The Trimmed form is first studied. We give complete proofs for results which are

announced by J. Ecalle and B. Vallet [7] with (or without) a sketch of proof. In particular,

we give all the details for the computations of the different moulds associated to the

Trimmed form. We also give closed formulae for these moulds using a different initial

alphabet.
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The Poincaré-Dulac normal form is then discussed in the mould framework and com-

pared to the Trimmed form. We obtain two universal moulds Poin• and Dulac•. These two

universal moulds are associated to the Poincaré normalization procedure and the Poincaré-

Dulac normal form. It seems impossible to obtain such objects using the existing methods

of perturbation theory. The mould formalism provides a direct and algorithmic way to

capture the universal features of a normalization procedure.

2. Diffeomorphisms, automorphisms and continuous prenormalization

We consider local analytic diffeomorphisms of Cν with 0 as a fixed point and a diagonal-

izable linear part. We work in a given analytic chart where the linear part is assumed to be

in diagonal form. In such a case, the diffeomorphism is called in prepared form by J. Ecalle.

Let f : Cν → Cν , ν ∈ N defined by

(2.1) f(x1, . . . , xν) = (eλ1x1, . . . , e
λνxν) + h(x1, . . . , xν),

with f(0) = 0, and h = (h1, . . . , hν), hi ∈ C{x} for all i = 1, . . . , ν. We denote by flin the

linear part of f , i.e. flin(x1, . . . , xν) = (eλ1x1, . . . , e
λνxν).

J. Ecalle looks for the substitution operator associated to f , denoted by F and defined

by

(2.2) F :
C{x} → C{x},
φ 7→ φ ◦ f,

where ◦ is the usual composition of functions.

As f is a diffeomorphism, the substitution operator F is an automorphism of (C{x}, ·)
where · is the usual product of functions on C{x}, i.e. for all φ, ψ ∈ C{x}, we have

(2.3) F (φ · ψ) = Fφ · Fψ,

and F−1(φ) = φ ◦ f−1.

J. Ecalle uses the following result, which is a direct consequence of the Taylor expansion

theorem:
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Lemma 1. — Let f be an analytic diffeomorphism of Cν in prepared form and F its

associated substitution operator. There exist a decomposition of F as

(2.4) F = Flin

Id +
∑

n∈A(F )

Bn

 ,

where A(F ) is an infinite set of indices n ∈ Zν, Flin the substitution operator associated to

flin, and for all n ∈ A(F ), Bn is a homogeneous differential operator of degree n, i.e. for

all m ∈ Nν,

(2.5) Bn(xm) = βn,mx
n+m, βn,m ∈ C.

In the following, we work essentially with the substitution operator F . In order to

simplify our statements, we call diffeo(s) the automorphism F associated to a given diffeo-

morphism f .

Definition 1. — Let F and Fconj be two local analytic diffeos of Cν. The diffeo Fconj is

called conjugated to F if there exists a change of variables h of Cν such that the associated

substitution operator denoted by Θ satisfies

(2.6) Fconj = Θ · F ·Θ−1.

The substitution operator Θ is called the normalizator in the following. When the

change of variables h is of class formal, Ck or Cω, we speak of a formal, Ck or analytic

normalization.

Definition 2. — Let F be an analytic diffeo of Cν in prepared form. A prenormal form

for F , denoted by Fpran, is an automorphism of C{x} conjugated to F such that

(2.7) Fpran · Flin = Flin · Fpran.

J. Ecalle has introduced in [6] and extensively studied in [7] a very particular class of

prenormal forms called continuous prenormal forms.

Definition 3. — Let F be a diffeo of Cν in prepared form given by

F = Flin

Id +
∑

n∈A(F )

Bn

 .
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A continuous prenormal form Fpren is an automorphism of C{x} of the form

(2.8) Fpren = Flin

 ∑
n∈A(F )∗

PrennBn

 ,

where A(F )∗ is the set of sequences n = (n1, . . . , nr), ni ∈ A(F ), r ≥ 0, Prenn ∈ C
satisfying

(2.9) Prenn = 0 if ‖ n ‖6= 0,

with ‖ n ‖= n1 + · · ·+ nr for all n ∈ A(F )∗, n = n1 . . . nr, and Bn = Bn1 . . . Bnr with the

usual composition of differential operators.

These forms are calculable using the formalism of moulds developed by J. Ecalle since

1970.

3. Moulds and prenormalization

3.1. Reminder about moulds. — We provide a self-contained introduction to the

formalism of moulds and we refer to the articles of J. Ecalle or to the lectures ([3],[4]) for

more details.

3.1.1. Moulds and non-commutative formal power series. — We denote by A an alphabet,

finite or not. A letter of A is denoted by a. Let A∗ denotes the set of words constructed on

A, i.e. the sequences a1 . . . ar, r ≥ 0, with ai ∈ A, with the convention that for r = 0 we

have the empty-word denoted by ∅. We denote with bold letter a a word of A∗. We have a

natural action on A∗ provided by the usual concatenation of two words a, b ∈ A∗, which

glues the words a to b, i.e. ab.

Definition 4. — Let K be a ring (or a field) and A a given alphabet. A K-valued mould

on A is a map from A∗ to K, denoted by M•.

The evaluation of M• on a word a ∈ A∗ is denoted by Ma

As an example, we define a C-valued mould on A(F ) by

(3.1)
Pren• : A(F )∗ −→ C

n 7−→ Prenn.

The mould Pren• is obtained collecting the coefficients of a formal power serie∑
n∈A(F )∗

PrennBn. There exist a one-to-one correspondence between moulds and formal
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power series.

For r ≥ 0, we denote by A∗
r the set of words of length r, with the convention that

A∗
0 = {∅}. We denote by K〈A〉 the set of finite K-linear combinations of elements of A∗,

i.e. non-commutative polynomials on A with coefficients in K, and by Kr〈A〉 the set of

K-linear combination of elements of A∗
r, i.e. the set of non-commutative homogeneous

polynomials of degree r. We have a natural graduation on K〈A〉 by the length of words:

(3.2) K〈A〉 =
∞⊕

r=0

Kr〈A〉.

The completion of K〈A〉 with respect to the graduation by length denoted by K〈〈A〉〉 is

the set of formal power series with coefficients in K. An element of K〈〈A〉〉 is denoted by

(3.3)
∑
a∈A∗

Maa, Ma ∈ K,

where this sum must be understood as

(3.4)
∑
r≥0

∑
a∈A∗r

Maa

 .

Let M• be a K-valued mould on A, its generating serie denoted by ΦM belongs to K〈〈A〉〉
and is defined by

(3.5) ΦM =
∑
a∈A∗

Maa,

or in a condensed way as
∑
•

M••. This correspondence provide a one-to-one mapping

from the set of K-valued moulds on A denoted by MK(A) and K〈〈A〉〉.

3.1.2. Moulds algebra. — The set of moulds MK(A) inherits a structure of algebra from

K〈〈A〉〉. The sum and product of two moulds M• and N• is denoted by M•+N• and M• ·N•

respectively and defined by

(3.6)
(M• + N•)a = Ma +Na,

(M• · N•)a =
∑

a1a2=a

Ma1

Na2

,

for all a ∈ A∗ where the sum corresponds to all the partition of a as a concatenation of

two words a1 and a2 of A∗.
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The neutral element for the mould product is denoted by 1• and defined by

(3.7) 1• =

{
1 if • = ∅,
0 otherwise,

Let M• be a mould. We denote by −−M• the inverse of M• for the mould product when it

exists, i.e. the solution of the mould equation:

(3.8) M• ·−−M• = −−M• ·M• = 1•.

3.1.3. Composition of moulds. — Assuming that A possesses a semi-group structure, we

can define a non-commutative version of the classical operation of substitution of formal

power series.

We denote by ? an internal law on A, such that (A, ?) is a semi-group. We denote by

‖ ‖? the mapping from A∗ to A defined by

(3.9)
‖ ‖?: A∗ −→ A,

a = a1 . . . ar 7−→ a1 ? · · · ? ar.

The ? will be omitted when clear from the context.

The set K〈〈A〉〉 is graded by ‖ ‖?. A homogeneous component of degree a ∈ A of a

non-commutative serie ΦM =
∑
a∈A∗

Maa is the quantity

(3.10) Φa
M =

∑
a∈A∗, ‖a‖?=a

Maa.

We have by definition

(3.11) ΦM =
∑
a∈A

Φa
M .

Definition 5 (Composition). — Let (A, ?) be a semi-group structure. Let M• and N•

be two moulds on MK(A) and ΦM , ΦN their associated generating series. The substitution

of ΦN in ΦM , denoted by ΦM ◦ ΦN is defined by

(3.12) ΦM ◦ ΦN =
∑
a∈A∗

MaΦa
N ,

where Φa
N is given by Φa1

N . . .Φar
N for a = a1 . . . ar.

We denote by M• ◦ N• the mould of MK(A) such that

(3.13) ΦM ◦ ΦN =
∑
a∈A∗

(M• ◦ N•)aa.
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Equation (3.13) define a natural operation on moulds denoted ◦ and called composition.

Using ‖ ‖? we can give a closed formula for the composition of two moulds.

Lemma 2. — Let (A, ?) be a semi-group and M•, N• be two moulds of MK(A). We have

for all a ∈ A∗,

(3.14) (M• ◦ N•)a =

l(a)∑
k=1

∑
a1...ak=∗a

M‖a1‖?···‖ak‖?Na1

. . . Nak

,

where a1 . . . ak =∗ a denotes all the partitions of a such that ai 6= ∅, i = 1, . . . , k.

Proof. — Equation (3.12) is equivalent to

(3.15)

ΦM ◦ ΦN =
∑
r≥0

∑
b=b1...br∈A∗r

M b1...br

 ∑
a1∈A∗, ‖a1‖?=b1

Na1

a1

 . . .

 ∑
ar∈A∗, ‖ar‖?=br

Nar

ar

 .

Let a ∈ A∗ be a given word of A∗. Each partition of a of the form a = a1 . . . ak, k =

1, . . . , l(a), occurs in the sum (3.15) with a coefficient given by

(3.16) M b1...brNa1

. . . Nak

,

where bi =‖ ai ‖?. Collecting all these coefficients, we obtain the formula (3.14) for the

coefficient of a in ΦM ◦ ΦN .

The neutral element for the mould composition is denoted by I• and defined by

(3.17) I• =

{
1 if l(•) = 1,
0 otherwise,

where l(•) denotes the length of a word of A∗.

3.1.4. Exponential and logarithm of moulds. — We denote by (K〈〈A〉〉)∗ the set of for-

mal power series without a constant term. We define the exponential of an element

x ∈ (K〈〈A〉〉)∗ , denoted by exp(x) using the classical formula

(3.18) exp(x) =
∑
n≥0

xn

n!
.

The logarithm of an element 1+x ∈ 1+ (K〈〈A〉〉)∗ is denoted by log(1+x) and defined by

(3.19) log(1 + x) =
∑
n≥0

(−1)n+1x
n

n!
.

These two applications have their natural counterpart in MK(A).
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Definition 6. — Let M• be a mould of MK(A) and ΦM the associated generating serie.

Assume that exp(ΦM) is defined. We denote by ExpM• the mould satisfying the equality

(3.20) exp

(∑
•

M••

)
=
∑
•

ExpM• • .

Simple computations lead to the following direct definition of Exp on moulds:

(3.21) ExpM• =
∑
n≥0

[M•](×n)

n!
,

where [M•](×n), n ∈ N, stands for

(3.22) [M•](×n) = M• · · ·M•︸ ︷︷ ︸
n times

.

The same procedure can be applied to define the logarithm of a mould.

Definition 7. — Let M• be a mould of MK(A) and ΦM the associated generating serie.

Assume that log(1+ΦM) is defined. We denote by LogM• the mould satisfying the equality

(3.23) log

(
1 +

∑
•

M••

)
=
∑
•

LogM• • .

A direct definition of Log is then given by

(3.24) LogM• =
∑
n≥0

(−1)n+1
[M•](×n)

n!
.

As exp and log satisfy exp ◦ log = log ◦ exp = 1, we have

(3.25) Exp (LogM•) = Log (ExpM•) = 1•.

3.1.5. A technical lemma. — In this section, we derive simple results for the exponential

and logarithm of moulds with non-zero components only on words of length 1.

Lemma 3. — Let us denote by Z• a mould of MK(A) such that Z• = 0 for all • of length

different from 1. For all a ∈ A∗, r ≥ 1, we have

[Z•]a×r =

{
Za1 . . .Za2 if l(a) = r, a = a1 . . . ar,
0 otherwise.

(3.26)

[ExpZ•]a = 1a +
1

l(a)!
[Z•]a(×l(a)) ,(3.27)

[LogZ•]a =
(−1)l(a)+1

l(a)!
[Z•]a(×l(a)) .(3.28)
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Proof. — We first remark that equations (3.27) and (3.28) easily follow from equation

(3.26).

The proof of equation (3.26) is done by induction on r. Formula (3.26) is trivially true

for r = 1. Assume that formula (3.26) is true for r ≥ 1. By definition, we have

(3.29) [Z•](×r+1) = Z• × [Z•](×r) .

Let a = ab, then by assumption on Z• we obtain

(3.30) [Z•]ab(×r+1) = Za [Z•]b(×r) .

As the mould [Z•](×r) is non-trivial only on words of length r, we deduce that the mould

[Z•](×r+1) is non-trivial only on words of length r + 1.

Moreover, using the fact that [Z•]a1...ar

(×r) = Za1 . . .Zar for all ai ∈ A, we also deduce that

[Z•]
a1...ar+1

(×r+1) = Za1 . . .Zar+1 . This concludes the proof.

3.2. Prenormalization. — Let F be a diffeo in prepared form given by

F = Flin

Id +
∑

n∈A(F )

Bn

 .

Let ΦΘ be an automorphism of C{x} of the form

(3.31) ΦΘ =
∑

n∈A(F )∗

ΘnBn,

where Θn ∈ C for all n ∈ A(F )∗, i.e. ΦΘ ∈ C〈〈B〉〉, where B = {Bn}n∈A(F ) and

Θ• ∈MC(A(F )).

Using the moulds 1• and I• we write Id +
∑

n∈A(F )

Bn as an element of C〈〈B〉〉:

(3.32) Id +
∑

n∈A(F )

Bn =
∑
•

(1• + I•)B•.

We assume that F is conjugated to an automorphism Fconj via ΦΘ. Equation (2.6) is then

given by

(3.33) Fconj = ΦΘ · F · Φ−1
Θ .

The automorphism Fconj can be written as

(3.34) Fconj = Flin

(∑
•

C•B•

)
.
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Equation (3.33) is then equivalent to

(3.35) Flin

(∑
•

C•B•

)
=

(∑
•

Θ•B•

)
Flin

(∑
•

(1• + I•)B•

)(∑
•

−−ΘB•

)
,

where −−Θ is such that −−Θ ·Θ• = Θ• ·−−Θ = 1•, i.e. Φ−1
Θ =

∑
•

−−ΘB•.

In order to explicit C• we need to understand the action of a formal power serie of

C〈〈B〉〉 on Flin. We have the following fundamental lemma:

Lemma 4. — Let M• ∈MC(A(F )) . We have

(3.36)

(∑
•

M•B•

)
Flin = Flin

(∑
•

e∆ (M•)• B•

)
,

where e∆ is a map from MC(A(F )) to MC(A(F )) defined by

(3.37) e∆ (M•)n = e−λ.‖n‖Mn for all n ∈ A(F )∗.

Proof. — Let Bn = Bn1...nr such that Bni
(xm) = βni

mx
m+ni , βni

m ∈ C, i = 1, . . . , r, for all

m ∈ Nν . We have

(3.38) Bn(xm) = βn1
m+nr+···+n2

βn2
m+nr+···+n3

. . . βnr
m xm+n1+···+nr .

As Flin(x
m) = eλ.mxm we obtain

(3.39)

Bn (Flin(x
m)) = eλ.mBn(xm),

= e−λ.(n1+···+nr)eλ.(m+n1+···+nr)Bn(xm),

= e−λ.(n1+···+nr)Flin (Bn(xm)) ,

= Flin

(
e−λ.(n1+···+nr)Bn(xm)

)
.

This concludes the proof.

Next lemma gives an explicit formula to compute the mould C• assuming that the mould

Θ• is known.

Lemma 5. — Equation (3.35) is equivalent to the mould equation

(3.40) C• = e∆ (Θ•) · (1• + I•) ·−−Θ.
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Proof. — Using lemma 4, we have

(3.41)

Flin

(∑
•

C•B•

)
=

(∑
•

Θ•B•

)
Flin

(∑
•

(1• + I•)B•

)(∑
•

−−ΘB•

)
,

= Flin

(∑
•

e∆ (Θ•) B•

)(∑
•

(1• + I•)B•

)(∑
•

−−ΘB•

)
,

= Flin

(∑
•

(
e∆ (Θ•) · (1• + I•) ·−−Θ

)
B•

)
.

This concludes the proof.

As a consequence, choosing carefully the normalizator ΦΘ, we can obtain an inductive

expression for the mould of normalization C•.

We will give explicit formulae for C• using specific moulds for Θ• in the next section.

3.3. Universality of moulds and prenormalization. — Lemma 5 gives an important

feature of the mould formalism in the context of continuous prenormalization. Formula

(3.40) is valid whatever is the underlying alphabet A(F ). We then obtain a universal

object underlying the prenormalization problem which is studied.

For example, in the context of linearization, i.e. Fconj = Flin, the universal mould of

linearization which defined the linearizing change of variables is given as follow (see [3]

Chap. III for more details):

Theorem 1. — Let L = {Lr}r≥1, r ∈ N, be the set of C-valued functions Lr : Cr → C
defined by

(3.42) Lr(x1, . . . , xr) =
[(
e−(x1+···+xr) − 1

) (
e−(x2+···+xr) − 1

)
. . .
(
e−xr − 1

)]−1
,

for all (x1, . . . , xr) ∈ Cr \ Sr where the singular set Sr is given by

(3.43) Sr = {xr = 0}
⋃
{xr + xr−1 = 0}

⋃
. . .
⋃
{x1 + · · ·+ xr = 0}.

If F possesses a non-resonant linear part λ, the mould of formal linearization is given for

all n ∈ A(F )∗, n = n1, . . . , nr, by

(3.44) Θn1...nr = Lr(ω1, . . . , ωr),

where ωi = ni.λ for i = 1, . . . , r.
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This result can not be obtained using other existing formalisms. Of course, anybody

knows that an expression like (3.44) is the important quantity entering the linearization

problem. However, the previous result associates universal coefficients from which one can

compute the desired linearization map for a given particular diffeo F by posing

ΦΘ =
∑

n∈A(F )∗

ΘnBn.

4. The Trimmed form

In this section, we give complete proofs of results concerning the Trimmed form defined

by J. Ecalle and B. Vallet announced in [7] with a sketch of proof and without explicit

computations.

4.1. Cancelling non-resonant terms. — In this section, we give a mould approach to

the classical problem of cancellation of non-resonant terms.

4.1.1. Around the Baker-Campbell-Hausdorff formula. — Let F be a diffeo in prepared

form given by (2.4). The operator Id +
∑

n∈A(F )

Bn is an automorphism of C{x} which can

be viewed as the exponential of a vector field, i.e.

(4.1) Id +
∑

n∈A(F )

Bn = exp

 ∑
m∈A(F )

Dm

 ,

where Dn is a homogeneous differential operator of degree m and order 1, i.e. a derivation

on C{x}, m = (m1, . . . ,mν) ∈ Zν , with all mi ∈ N, i = 1, . . . , ν except at most one which

can be −1, and A(F ) the set of degrees coming in the decomposition.

We look for an automorphism given by the exponential of a vector field V given by

(4.2) V =
∑

n∈A(F )∗

demnBn,

or equivalently given on the alphabet A(F )∗ by

(4.3) V =
∑

m∈A(F )∗

DemmDm,

where Vm=m1...mr = Vm1Vm2 . . . Vmr with the usual composition of differential operators.
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The action of expV on F is given by

(4.4) expV · F · exp(−V)

Equation (4.4) can be analyzed using the moulds expression of V and F with respect to

the alphabet A(F ). We have the following lemma:

Lemma 6. — Equation (4.4) is equal to

(4.5) expV · F · exp(−V) = Flin exp
(
Ṽ + D−V + . . .

)
,

where the . . . stands for a formal power serie beginning with words of length at least 2, and

D and Ṽ are vector fields defined by D =
∑

m∈A(F )

Dm and

(4.6) Ṽ =
∑

m∈A(F )∗

e−λ.‖m‖DemmDm,

respectively.

Proof. — Using the Baker-Campbell-Hausdorff formula (BCH2), we obtain

(4.7)
expD · exp(−V) = exp (D ? (−V)) ,

= exp (D−V + h.o.t.) ,

where h.o.t. stands for higher order terms.

Using lemma 4, we have

(4.8) expV · Flin = Flin · exp Ṽ,

where Ṽ is given by

(4.9) Ṽ =
∑

m∈A(F )∗

e−λ.‖m‖DemmDm.

As a consequence, applying again (BCH2) we obtain

(4.10)
exp Ṽ · exp(D ? (−V)) = exp

(
Ṽ ? (D ? (−V))

)
,

= exp
(
Ṽ + D−V + . . .

)
,

where the . . . stand for a formal power serie beginning with words of length at least 2.

This concludes the proof.



TRIMMED AND POINCARÉ-DULAC NORMAL FORM 15

4.1.2. The simplified form and the moulds dem• and Dem•. — The main consequence of

lemma 6 is that we can cancel the non-resonant terms of D using a simple vector field V.

Theorem 2 (Simplified form). — Let V be the vector field defined by the mould

(4.11) Dem• =

 Im

1− e|m|.λ for m ∈ A(F )∗ \ R(F ),

0 otherwise,

where R(F ) is the set of resonant words of A(F )∗, i.e. m ∈ R(F ) if and only if m.λ = 0.

We denote by dem• the associated mould on MC(A(F )), i.e.

(4.12) V =
∑
•

Dem•D• =
∑
•

dem•B•.

We call simplified form of F and we denote by FSem the automorphism obtained from F

under the action of expV. We have

(4.13)

FSem = Flin

 ∑
m∈A(F )∗

SemmDm

 ,

= Flin

 ∑
n∈A(F )∗

semnBn


with the mould Sem• given by

(4.14) Sem• = e∆ (Exp(Dem•)) · Exp(I•) · Exp(−Dem•),

and the mould sem• given by

(4.15) sem• = e∆ (Exp(dem•)) · (1• + I•) · Exp(−dem•).

Proof. — We have FSem = expV · F · exp(−V) with V =
∑

n∈A(F )∗

demnBn. As a conse-

quence, we have expV =
∑

n∈A(F )∗

(Exp dem•)nBn and the formula for sem• follows from

lemma 5 using Θ• = Exp(dem•).

For Sem•, we first use lemma 4 to obtain

(4.16) expVFlin = Flin

 ∑
m∈A(F )∗

[
e∆ (ExpDem•)

]n
Dm

 .
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As a consequence, the conjugacy equation is equivalent to

(4.17)
FSem = expV · F · exp(−V),

= Flin

(∑
•

e∆ (ExpDem•) D•

)(∑
•

ExpI•D•

)(∑
•

Exp(−Dem•)D•

)
,

= Flin

(∑
•

[
e∆ (ExpDem•) · ExpI• · Exp(−Dem•)

]•
D•

)
.

This concludes the proof.

The mould Sem• can be compute explicitly. We first introduce some convenient nota-

tions:

Let m = m1 . . .mr be a word of length r, r ≥ 1. We denote by m≤i and m>i the word

(4.18) m≤i = m1 . . .mi, m>i = mi+1 . . .mr.

Moreover we denote by d(m) the index of the last mi in m = m1 . . .mr such that λ.mi = 0,

and we denote by q(m) the first index just before of the first zero ωj = λ.mj.

Theorem 3. — For all m ∈ A(F )∗, we have
(4.19)

Semm =
(−1)l(m)

l(m)!
[Dem•]m(×l(m)) +

1
l(m)!

+
l(m)+1∑

j=d(m)+1

(−1)l(m>j) [Dem•]m
≥j

(×l(m≥j))

l(m<j)!l(m≥j)!
+ e−λ.‖m‖ 1m

+
q(m)∧(l(m)−1)∑

i=1

e−λ.‖m≤i‖

l(m≤i)!
[Dem•]m

≤i

(×l(m≤i))×(−1)l(m)

l(m)!
[Dem•]m

>i

(×l(m>i)) +
1

l(m>i)!
+

l(m>i)+1∑
j=d(m>i)+1

(−1)l(m>j)≥j
[Dem•](m

>i)≥j

(×l((m>i)≥j))

l((m>i)<j)!l((m>i)≥j)!

 .

The proof is done in appendix B.

4.2. The Trimmed form. — The Trimmed form is constructed by induction applying

successively the previous simplification scheme to remove non-resonant terms of higher

and higher degrees. The mould formalism allows us to explicit some particular moulds

underlying this construction as well as algorithmic and explicit formulae for some of them.

4.2.1. The Trimmed form up to order r. — We can use the simplification procedure pre-

viously defined inductively in order to cancel non-resonant terms of higher and higher

degrees.
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Definition 8 (Trimmed form up to order r). — Let r ∈ N, the Trimmed form up to

order r is defined as Fr
Sem obtained from F after r successive simplifications, i.e.

(4.20) F = F0
Sem

Simp1

→ F1
Sem

Simp2

→ . . .
Simpr

→ Fr
Sem,

where Simpi is the automorphism of simplification defined by

(4.21) Simpi = exp(Vi),

with Vi the vector fields associated to the mould Dem• on the alphabet A(Fi−1
Sem) associated

to Fi−1
Sem.

Using theorem 2, we deduce the following useful result:

Theorem 4. — For all r ∈ N, the Trimmed form up to order r denoted Fr
Sem possesses

a mould expansion, i.e. there exists moulds denoted by rSem• ∈ MC(A(F )) and rsem
• ∈

MC(A(F )) such that

(4.22) Fr
sem = Flin

(∑
•

rSem•D•

)
= Flin

(∑
•

rsem
•B•

)
.

Despite its moulds expansion, the Trimmed form up to order r is not a prenormal form

as it remains non-resonant terms for sequences of length l ≥ r + 1.

4.2.2. The moulds rsem
• and rSem•. — The mould rsem

• has a simple expression in

function of sem•.

Lemma 7. — For all r ∈ N, we have

(4.23) rsem
• = sem• ◦ · · · ◦ sem•︸ ︷︷ ︸

r times

.

Proof. — The simplification procedure can be written as follows:

(4.24)
∑
•

I•B• 7−→
∑
•

sem•B•.

Iterating this mapping we go from step i to i+ 1

(4.25)
∑
•

isem
•B• =

∑
•

I•i+1B• 7−→
∑
•

i+1sem
•B• =

∑
•

sem•
i+1B•,

where
∑
•

I•i+1B• denotes the homogeneous decomposition constructed on Fi
sem.

By definition of the composition for moulds we have

(4.26)
∑
•

sem•
i+1B• =

∑
•

(sem• ◦ isem
•) B•,
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from which we deduce the recursive relation

(4.27) i+1sem
• = sem• ◦ isem

•.

We conclude by induction on i.

For the mould rSem• we have a more complicated formula:

Lemma 8. — For all r ∈ N, we have

(4.28) Log[rSem•] = Log(Sem•) ◦ · · · ◦ Log(Sem•)︸ ︷︷ ︸
r times

.

The fact that we must take the Log of Sem• instead of Sem• is related to the fact that the

alphabet of derivation i+1D• constructed at step i from Fi
sem is not related to

∑
• iSem•D•

but to its logarithm.

Proof. — The simplification procedure can be written as follows:

(4.29) exp

(∑
•

I•D•

)
7−→

∑
•

Sem•D• = exp

(∑
•

Log(Sem•)D•

)
.

Iterating this mapping we go from step i to i+ 1

(4.30)

exp

(∑
•

Log[iSem•]D•

)
= exp

(∑
•

I•i+1D•

)
↓

exp

(∑
•

Log[i+1Sem•]D•

)
= exp

(∑
•

Log(Sem•)i+1D•

)
,

where
∑
•

I•i+1D• denotes the homogeneous decomposition constructed on
∑
•

Log[iSem•]D•.

By definition of the composition of moulds, we deduce that

(4.31) Log[i+1Sem•] = Log(Sem•) ◦ Log[iSem•].

We conclude the proof by induction on i.

4.2.3. The Trimmed form. —

Definition 9. — The Trimmed form of F is the limit of the simplification procedure.
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Theorem 5. — The Trimmed form is a continuous prenormal form given by

(4.32)

FTrem = Flin

 ∑
m∈A(F )∗

TremmDm

 ,

= Flin

 ∑
n∈A(F )∗

tremnBn


with the moulds Trem• and trem• defined by

(4.33)
Trem• − 1• = limstatr→∞ [Sem• − 1•](◦r) ,

trem• − 1• = limstatr→∞ [sem• − 1•](◦r) ,

where limstat is the stationary limit.

The proof is a direct consequence of the simplification procedure.

Remark 1. — Following ([7] §.7) we have divergence and resurgence of the simplification

procedure. This is not the case when working directly with the diffeomorphism instead of

its associated automorphism of substitution. However, this problem can be avoided (see [7]

p.8).

4.2.4. The mould Trem•. — We can compute the mould Trem• using a simple remark.

By definition, we have the following identities

Trem• = Sem• ◦ Trem•,(4.34)

Trem• = Trem• ◦ Sem•.(4.35)

Using the first equation and the definition of composition for moulds we obtain for all

m ∈ A(F )∗

(4.36) Tremm = Sem‖m‖Tremm + s.l,

where s.l denotes terms which depend on Trem• for words with a strictly short length than

l(m).

The mould Trem• takes non-trivial values only on resonant words, i.e. m ∈ A(F )∗ such

that ‖ m ‖ .λ = 0. However, the mould Sem• is equal to 1 on resonant words of length

1. As a consequence, equation (4.36) can not be used to compute the mould Trem• by

induction on the length of words.
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Using equation (4.35) we obtain

(4.37) Tremm = TremmSemm1 . . . Semmr + s.l.

4.3. About Ecalle-Vallet results. — All our computations have been done in the

alphabet DA(F ). However, J. Ecalle and B. Vallet [7] use the initial alphabet BA(F ) to

formulate their results. In order to compare our approach, we first give a simple formula

connecting the two alphabets. We then discuss the essential differences between the moulds

dem•, sem• and trem• with the moulds Dem•, Sem•, and Trem•. The main point is that

contrary to our moulds, Ecalle-Vallet moulds can not be expressed via closed formulae,

except for dem•.

4.3.1. Relation between the alphabets BA(F ) and DA(F ). — By definition, we have the

identity

(4.38) 1 +
∑

n∈A(F )

Bn = exp

 ∑
m∈A(F )

Dm

 .

Using the logarithm, we obtain

(4.39) log

1 +
∑

n∈A(F )

Bn

 =
∑

m∈A(F )

Dm.

As
∑

n∈A(F )Bn =
∑

n∈A∗(F )

InBn, we have

(4.40)
∑

n∈A∗(F )

(LogI•)nBn =
∑

m∈A(F )

Dm.

We finally deduce the following relation between DA(F ) and BA(F ):

Lemma 9. — For all Dm ∈ DA(F ), we have

(4.41) Dm =
∑

n∈A(F )∗, ‖n‖=m

(LogI•)nBn.

The proof is based on the fact that a differential operator Bn is of order ‖ n ‖.

4.3.2. The mould dem•. — By definition, we have the identity

(4.42)
∑

n∈A(F )∗

demnBn =
∑

m∈A(F )\RA(F )

Dm

1− em.λ
.

Using lemma 9, we deduce:
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Lemma 10. — The mould dem• of MC(A(F )) is defined for all n ∈ A(F )∗ by

(4.43) demn =
(−1)l(n)+1

l(n)!

1

1− e‖n‖.λ
[I•]n(×l(n)) 1N(F )(n),

where N(F ) = {n ∈ A(F )∗, ‖ n ‖ .λ 6= 0} is the set of non-resonant words of A(F )∗ and

1J is the indicatrice of the set J , i.e. 1J(x) is equal to 1 if x ∈ J , 0 otherwise.

This mould is defined directly by Ecalle-Vallet without any details (see [7], p.30).

Proof. — Equation (4.42) can be rewritten as

(4.44)
∑

n∈A(F )∗

demnBn =
∑

m∈A(F )

Dm

1− em.λ
1{m.λ6=0}(m).

Using lemma 9, we have

(4.45)

∑
m∈A(F )

Dm

1− em.λ
1{m.λ6=0}(m) =

∑
m∈A(F )

∑
n∈A(F )∗, ‖n‖=m

(LogI•)n

1− em.λ
Bn,

=
∑

n∈A(F )∗

(LogI•)n

1− e‖n‖.λ
1N(F )Bn,

using the fact that

(4.46)
⋃

m∈A(F )

{n ∈ A(F )∗, ‖ n ‖= m} = A(F )∗,

by assumption.

Using lemma 3 for the mould I•, we obtain for all n ∈ A(F )∗

(4.47) LogIn =
(−1)l(n)+1

l(n)!
[I•]n(×l(n)) .

Replacing LogI• by its expression in equation (4.45) we conclude the proof.

5. The Poincaré-Dulac normal form

The Trimmed form is constructed using cancellation of non-resonant terms as the clas-

sical Poincaré-Dulac normal form. However, these two prenormal forms do not coincide in

general. We introduce the universal mould associated to the Poincaré-Dulac normal form

and the universal mould of the associated cancellation procedure. The difference between

the two procedures lies in the treatment of the homogeneous components of the diffeomor-

phism. For a classical approach to the Poincaré-Dulac normal form we refer to ([1] §.B
p.178).
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5.1. Homogeneous components and the Trimmed form. — We keep the notations

introduced in §.4.1. In order to discuss the cancellation of non-resonant terms, we must

write our prepared form as follows:

(5.1) Id +
∑

n∈A(F )

Bn = expD = exp

 ∑
m∈A(F )

Dm

 = exp

(∑
k≥1

Dk

)
,

where

(5.2) Dk =
∑

n∈A(F ), |n|=k

Dm,

denotes the homogeneous component of degree k of the vector field D.

For a given vector field D we introduce the following degree of resonance, denoted by K:

(5.3) K = min
k≥1

{Nk 6= ∅} ,

where Nk denotes the set of non-resonant letters m ∈ A(F ) of degree k, i.e.

(5.4) Nk = {m ∈ A(F ) | | m |= k, m.λ = 0} .

As a consequence, we have

(5.5) D =
∑

1≤k<K

Dk + DK +
∑
k>K

Dk.

The first sum up to order K − 1 is made of resonant terms. The first non-resonant terms

belong to DK .

The field V introduced in §.4.1.2 cancel the non-resonant terms of degree K but intro-

duces several other terms in the homogeneous components of degree > K which can be

non-resonant. As a consequence, even if the field V is constructed in order to cancel all

the non-resonant terms of the vector field D we have an effective cancellation only for the

components of degree K.

As a consequence, the vector field V must be modified in order to cancel only non-

resonant terms of degree K.
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Theorem 6 (Poincaré normalization procedure). — Let S be the vector field defined

by the mould

(5.6) Den• =


1

1− em.λ
for m ∈ NK(F ),

0 otherwise,

We denote by den• the associated mould on MC(A(F )), i.e.

(5.7) S =
∑
•

Den•D• =
∑
•

den•B•.

We call simplified form of F and we denote by FPoin the automorphism obtained from F

under the action of expS. We have

(5.8)

FPoin = Flin

 ∑
m∈A(F )∗

PoinmDm

 ,

= Flin

 ∑
n∈A(F )∗

poinnBn


with the mould Poin• given by

(5.9) Poin• = e∆ (Exp(Den•)) · Exp(I•) · Exp(−Den•),

and the mould poin• given by

(5.10) poin• = e∆ (Exp(den•)) · (1• + I•) · Exp(−den•).

The proof is exactly the same as those of theorem 2.

5.2. The Poincaré normal form of order r. — We apply the Poincaré normalization

procedure inductively in order to cancel non-resonant terms in homogeneous components

of higher and higher degree.

Definition 10 (Poincaré normal form up to order r). — Let r ∈ N, the Poincaré

normal form up to order r is defined as Fr
Poin obtained from F after r successive simplifi-

cations, i.e.

(5.11) F = F0
Poin

Simp1

→ F1
Poin

Simp2

→ . . .
Simpr

→ Fr
Poin,

where Simpi is the automorphism of simplification defined by

(5.12) Simpi = exp(Si),

with Si the vector fields associated to the mould Den• on the alphabet A(Fi−1
Poin) associated

to Fi−1
Poin.
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Using theorem 6, we obtain:

Theorem 7. — For all r ∈ N, the Poincaré normal form up to order r denoted Fr
Poin

possesses a mould expansion, i.e. there exist moulds denoted by rPoin• ∈ MC(A(F )) and

rpoin• ∈MC(A(F )) such that

(5.13) Fr
Poin = Flin

(∑
•

rPoin•D•

)
= Flin

(∑
•

rpoin•B•

)
.

As for the moulds rsem
• and rSem•, we have explicit inductive formulae to compute the

moulds rpoin• and rPoin• using only poin• and Poin•.

5.3. The Poincaré-Dulac normal form. — The mould formulation of the Poincaré-

Dulac normal form is:

Definition 11. — The Poincaré-Dulac normal form of F is the limit of the Poincaré

normalization procedure.

Theorem 8. — The Poincaré-Dulac normal form is a continuous prenormal form given

by

(5.14)

FDulac = Flin

 ∑
m∈A(F )∗

DulacmDm

 ,

= Flin

 ∑
n∈A(F )∗

dulacnBn


with the moulds Dulac• and dulac• defined by

(5.15)
Dulac• − 1• = limstatr→∞ [Poin• − 1•](◦r) ,

dulac• − 1• = limstatr→∞ [poin• − 1•](◦r) ,

where limstat is the stationary limit.

The mould Dulac• (or dulac•) is the universal part of the Poincaré-Dulac normal form as

it does not depends on the exact values of the coefficients coming in the Taylor expansion

of the diffeomorphism. It seems impossible to characterize such kind of object without

using moulds.
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Appendix A

About the Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff formula covers at least two formulae which are of interest

for the computation of continuous prenormal forms for vector fields and diffeomorphisms.

Let A and B be two linear operators. We denote by

expA =
∑
k≥0

Ak

k!
,

where Ak = A ◦ · · · ◦ A, k times. The Baker-Campbell-Hausdorff formula is given by

(expA) .B .(exp(−A)) =
∑
m≥0

Bm

m!
, (BCH1)

where

(A.1) Bm = [A,B]m = [A[A, . . . , [A,B]] . . . ],

with the convention that B0 = B.

A consequence of this formula is

expA expB = exp(A ? B), (BCH2)

where

(A.2) A ? B = A+B +
1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]] + . . .

Appendix B

Proof of theorem 3

In order to compute the mould Sem•, we first compute ExpI• · Exp(−Dem•). We have

(B.1)

(ExpI• · Exp(−Dem•))n =
∑

n1n2=n

(ExpI•)n
1

Exp(−Dem•)n
2

,

=
∑

n1n2=n

(
1n

1

+
1

l(n1)!
[I•]n

1

(×l(n1))

)(
1n

2

+
(−1)l(n2)

l(n2)!
[Dem•]n

2

(×l(n2))

)
,

=
∑

n1n2=n

(
1n

1

1n
2

+ 1n
1 (−1)l(n2)

l(n2)!
[Dem•]n

2

(×l(n2))

+1n
2 1

l(n1)!
[I•]n

1

(×l(n1)) +
(−1)l(n2)

l(n1)!l(n2)!
[I•]n

1

(×l(n1)) [Dem•]n
2

(×l(n2))

)
.
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It is clear that (ExpI• · Exp(−Dem•))∅ = 1. If l(n) ≥ 1 we have

(B.2)

(ExpI• · Exp(−Dem•))n =
(−1)l(n)

l(n)!
[Dem•]n(×l(n)) +

1

l(n)!
[I•]n(×l(n))

+
∑

n1n2=n
n1 6=∅

(
(−1)l(n2)

l(n1)!l(n2)!
[Dem•]n

2

(×l(n2))

)
,

=
(−1)l(n)

l(n)!
[Dem•]n(×l(n)) +

1

l(n)!

+

l(n)+1∑
j=d(n)+1

(−1)l(n≥j) [Dem•]n
≥j

(×l(n≥j))

l(n<j)!l(n≥j)!
.

Now we can compute Sem•.

(B.3)

Semn =
(
e∆ (Exp(Dem•)) · Exp(I•) · Exp(−Dem•)

)n
,

=
∑

n1n2=n

(
e∆Exp(Dem•)

)n1
(

(−1)l(n2)

l(n2)!
[Dem•]n

2

(×l(n2))

+
1

l(n2)!
+

l(n2)+1∑
j=d(n2)+1

(−1)l((n2)≥j) [Dem•]
(n2)≥j

(×l((n2)≥j))

l((n2)<j)!l((n2)≥j)!

)
,

=
∑

n1n2=n

e−λ.‖n1‖
(

1n
1

+
1

l(n1)!
[Dem•]n

1

(×l(n1))

)
×

(
(−1)l(n2)

l(n2)!
[Dem•]n

2

(×l(n2)) +
1

l(n2)!
+

l(n2)+1∑
j=d(n2)+1

(−1)l((n2)≥j) [Dem•]
(n2)≥j

(×l((n2)≥j))

l((n2)<j)!l((n2)≥j)!

)
,

=
(−1)l(n)

l(n)!
[Dem•]n(×l(n)) +

1

l(n)!
+

l(n)+1∑
j=d(n)+1

(−1)l(n≥j) [Dem•]n
≥j

(×l(n≥j))

l(n<j)!l(n≥j)!

+ e−λ.‖n‖ 1n +

q(n)∧(l(n)−1)∑
i=1

e−λ.‖n≤i‖

l(n≤i)!
[Dem•]n

≤i

(×l(n≤i))×(−1)l(n>i)

l(n>i)!
[Dem•]n

>i

(×l(n>i)) +
1

l(n>i)!
+

l(n>i)+1∑
j=d(n>i)+1

(−1)l(n>i)≥j
[Dem•]

(n>i)≥j

(×l((n>i)≥j))

l((n>i)<j)!l((n>i)≥j)!

 .

This concludes the proof.
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