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Abstract

We establish pointwise and distributional fractal tube formulas for a large class of compact subsets of Euclidean
spaces of arbitrary dimensions. These formulas are expressed as sums of residues of suitable meromorphic functions
over the complex dimensions of the compact set under consideration (i.e., over the poles of its fractal zeta function).
Our results generalize to higher dimensions (and in a significant way) the corresponding ones previously obtained
for fractal strings by the first author and van Frankenhuijsen. They are illustrated by several examples and applied
to yield a new Minkowski measurability criterion.
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Résumé

Formules de tubes fractales et un critère de Minkowski mesurabilité pour des sous-ensembles com-

pacts de l’espace euclidien. Nous obtenons des “formules de tubes fractales” pour une large classe de compacts
de l’espace euclidien en dimension arbitraire. Plus précisément, la formule de tube fractale est exprimée comme
une somme de résidus (de fonctions méromorphes convenables) prise sur l’ensemble des dimensions complexes
(i.e., les poles de la fonction zêta fractale associée) du compact considéré. Nos résultats généralisent à des dimen-
sions quelconques (et de façon significative) les résultats correspondants obtenus pour des cordes fractales par le
premier auteur et van Frankenhuijsen. Nous les utilisons pour obtenir un critère de Minkowski mesurabilité et les
illustrons à l’aide de plusieurs exemples. Pour citer cet article : M. L. Lapidus, G. Radunović, D. Žubrinić, C. R.
Acad. Sci. Paris, Ser. I 340 (2005).
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1. Introduction

We begin by stating some definitions and results from the research monograph [8] that will be needed
in this article, as well as by recalling some well-known notions. Given a bounded subset A of RN (always
assumed to be nonempty in this paper), we denote its δ-neighborhood by Aδ := {x ∈ RN : d(x,A) < δ}.
Here, d(x,A) := inf{|x − y| : y ∈ A} is the Euclidean distance between the point x and the set A. 3

Furthermore, for a compact subset A of RN and r ≥ 0, we define its upper r-dimensional Minkowski

content, Mr(A) = lim supt→0+ tr−N |At|, and its upper box dimension, dimBA = inf{r ≥ 0 : Mr(A) =
0}. The value Mr(A) of the lower r-dimensional Minkowski content of A, is defined analogously as
Mr(A), except for a lower instead of an upper limit, and similarly for the lower box dimension dimBA.
If dimBA = dimBA, this common value is called the Minkowski (or box) dimension of A and denoted
by dimB A. If 0 < MD(A)(≤)MD(A) < ∞, for some D ≥ 0, the set A is said to be Minkowski

nondegenerate. It then follows that dimB A exists and is equal to D. Moreover, if MD(A) exists and is
different from 0 and ∞ (in which case dimB A exists and then necessarily, D = dimB A), the set A is said
to be Minkowski measurable.

We will now introduce the notions of distance and tube zeta functions of compact sets and state their
basic properties. These definitions have enabled us in [8–10] to develop a higher-dimensional extension
of the theory of complex dimensions of fractal strings ([12]), valid for arbitrary compact sets.

Definition 1.1 (Fractal zeta functions, [8]) Let A be a compact subset of RN and fix δ > 0. We define

the distance zeta function ζA of A and the tube zeta function ζ̃A of A by the following Lebesgue integrals,
respectively, for some δ > 0 and for all s ∈ C with Re s sufficiently large:

ζA(s; δ) :=

∫

Aδ

d(x,A)s−Ndx and ζ̃A(s; δ) :=

∫ δ

0

ts−N−1|At| dt. (1)

It is not difficult to show that the distance and tube zeta functions of a compact subset A of RN satisfy
the following functional equation, which is valid on any connected open set U ⊆ C to which any of the
two zeta functions has a meromorphic continuation (see [8, §2.2]):

ζA(s; δ) = δs−N |Aδ|+ (N − s)ζ̃A(s; δ). (2)

Furthermore, in the above definition (see Eq. (1)), the dependence of the zeta functions on the parameter
δ > 0 is inessential, from the point of view of the theory of complex dimensions (see Def. 1.4 below).
Indeed, it is shown in [8] that the difference of two distance (or tube) zeta functions of the same compact
set A, and corresponding to any two different values of the parameter δ, is an entire function.

Let us briefly summarize the main properties of the distance and tube zeta functions (see [8, Ch. 2]):

If A is a compact subset of R
N , then the tube zeta function ζ̃A( · ; δ) is holomorphic in the half-

plane {Re s > dimBA} and dimBA coincides with the abscissa of (absolute) convergence of ζ̃A( · ; δ).
Furthermore, if the box (or Minkowski) dimension D := dimB A exists and MD(A) > 0, then ζ̃A(s; δ) →
+∞ as s ∈ R converges to D from the right. The above statements are also true if we replace ζ̃A by ζA

Email addresses: lapidus@math.ucr.edu (Michel L. Lapidus), goran.radunovic@fer.hr (Goran Radunović),
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and in the preceding sentence assume, in addition, that D < N . Finally, we have the scaling property;
that is, if for a λ > 0 we let λA := {λx : x ∈ A}, then ζλA(s;λδ) = λsζA(s; δ) and ζ̃λA(s;λδ) = λsζ̃A(s; δ).

If A is a Minkowski nondegenerate subset of RN (so that D := dimB A exists), and for some δ > 0

there exists a meromorphic extension of ζ̃A( · ; δ) to a neighborhood of D, then D is a simple pole of

ζ̃A( · ; δ), and res(ζ̃A( · ; δ), D) is independent of δ. Furthermore, we have MD(A) ≤ res(ζ̃A( · ; δ), D) ≤
MD(A). In particular, if A is Minkowski measurable, then res(ζ̃A( · ; δ), D) = MD(A). If, additionally,
D < N , the analogous statement and conclusion is true for the distance zeta function ζA and we have
(N − D)MD(A) ≤ res(ζA( · ; δ), D) ≤ (N − D)MD(A). Moreover, if A is Minkowski measurable, then
res(ζA( · ; δ), D) = (N −D)MD(A).

Let us now introduce some additional definitions, which are adapted from [12] to the present, much
more general, context of compact subsets of an arbitrary Euclidean space, RN (with N ≥ 1):

The screen S is the graph of a bounded, real-valued, Lipschitz continuous function S(τ), with the
horizontal and vertical axes interchanged: S := {S(τ) + iτ : τ ∈ R}. The Lipschitz constant is denoted
by ‖S‖Lip. Furthermore, we let supS := supτ∈R S(τ) ∈ R. For a compact subset A of RN , we always
assume that the screen S lies to the left of the critical line {Re s = D}, i.e., that supS ≤ D. Moreover,
the window W is defined as W := {s ∈ C : Re s ≥ S(Im s)}. The set A is said to be admissible if its
tube (or distance) zeta function can be meromorphically extended to an open connected neighborhood of
some window W .

Definition 1.2 (d-languid set; adapted from [12, Def. 5.2]) An admissible compact subset A of RN is
said to be d-languid if there exists a δ > 0 such that ζA(s; δ) satisfies the following growth conditions:
There exist real constants κ and C > 0 and a two-sided sequence (Tn)n∈Z of real numbers such that
T−n < 0 < Tn for n ≥ 1, limn→∞ Tn = +∞ and limn→∞ T−n = −∞, satisfying the following two
hypotheses, L1 and L2:

L1 There exists c>N such that |ζA(σ + iTn; δ)| ≤ C(|Tn|+ 1)κ, for all n ∈ Z and all σ ∈ (S(Tn), c).

L2 For all τ ∈ R, with |τ | ≥ 1, we have that |ζA(S(τ) + iτ ; δ)| ≤ C|τ |κ.
Definition 1.3 (Strongly d-languid set; adapted from [12, Def. 5.3]) A compact subset A of RN is said
to be strongly d-languid if for some δ > 0, ζA(s; δ) satisfies L1 with S(τ) ≡ −∞ in condition L1; i.e., for
every σ < c and, additionally, there exists a sequence of screens Sm(τ) : τ 7→ Sm(τ)+ iτ for m ≥ 1, τ ∈ R

with supSm → −∞ as m → ∞ and with a uniform Lipschitz bound, supm≥1 ‖Sm‖Lip < ∞, such that

L2’ There exist B,C > 0 such that |ζA(Sm(τ) + iτ ; δ)| ≤ CB|Sm(τ)|(|τ |+1)κ, for all τ ∈ R and m ≥ 1.

Definition 1.4 (Complex dimensions, [8]) Let A be an admissible compact subset of RN . Then, the
set of visible complex dimensions of A (with respect to U) is defined as P(ζA( · ; δ), U) := {ω ∈ U :
ω is a pole of ζA( · ; δ)}. If U = C, we say that P(ζA( · ; δ),C) is the set of complex dimensions of A.4

2. Pointwise and distributional tube formulas and a criterion for Minkowski measurability

In this section, we state and sketch the proof of our main results, the pointwise and distributional tube
formulas, valid for a large class of compact subsets of RN (see Thms. 2.1 and 2.2 below), along with an
associated Minkowski measurability criterion (see Thm. 2.3). These results extend to higher dimensions
the corresponding tube formulas and Minkowski measurability criterion obtained for fractal strings in [12],

4. Clearly, P(ζA( · ; δ), U) is a discrete subset of C and is independent of δ; hence, so is P(ζA( · ; δ),C). Therefore, we
will often write P(ζA, U) or P(ζA,C) instead.
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§8.1 and §8.3, respectively. We point out that the detailed proofs of our main results (stated in a much
more general form and within the broader context of relative fractal drums) can be found in the long
paper corresponding to this note, [11]. Moreover, we note that in light of (2), Thms. 2.1, 2.2 and 2.3 have
an obvious analog for tube (instead of distance) zeta functions. Also, the exact tube formula stated in
Thm. 2.1 has a counterpart with error term (much as in Thm. 2.2). Finally, we refer to [11] and [12, §13.1]
for many additional references on tube formulas in various settings, including, [1–3, 5–8, 13, 16].

The key observation in deriving Thms. 2.1 and 2.2 below is the fact that the tube zeta function of a
compact set A in RN is equal to the Mellin transform of its modified tube function f(t) := χ(0,δ)(t)t

−N |At|,
where χE denotes the characteristic function of the set E. More precisely, one has that ζ̃A(s; δ) =

{Mf}(s) :=
∫ +∞

0 ts−1f(t) dt, where M denotes the Mellin transform. One then applies the Mellin

inversion theorem (see, e.g., [15, Thm. 28]) to deduce that |At| = 1
2πi

∫ c+i∞

c−i∞
tN−sζ̃A(s; δ) ds, for all

t ∈ (0, δ), where c > dimBA is arbitrary. One then proceeds in a similar manner as in [12, Ch. 5] for the
case of fractal strings. More precisely, one works with a k-th primitive function of t 7→ |At| in order to
be able to represent the above integral as a sum over the complex dimensions contained in the window
W . Here, k ∈ N is taken large enough to ensure pointwise convergence of this sum. From this result, one
then derives the distributional tube formula for every value of k (even for k ∈ Z), and, in particular, for
k = 0. In this way, we obtain the fractal tube formulas expressed in terms of the tube zeta function and
then use the functional equation (2) in order to translate them in terms of the distance zeta function.

Theorem 2.1 (Pointwise tube formula) Let A be a compact subset of RN such that dimBA < N .

Furthermore, assume that there exists a constant λ > 0 such that λA is strongly d-languid for some δ > 0
and κ < 1. Then, for every t ∈ (0, λ−1 min{1, δ, B−1}) the following exact pointwise tube formula is valid

(where B is the constant appearing in L2’ of Def. 1.3 above) : 5

|At| =
∑

ω∈P(ζA,C)

res

(
tN−s

N − s
ζA(s), ω

)
. (3)

In the case when κ ∈ R, we usually only have a distributional tube formula. Furthermore, if A is
only d-languid, we will have a distributional error term, with information about its asymptotic order
given in the sense of [12, §5.4]. Namely, the distribution R ∈ D′(0, δ) is said to be of asymptotic order

at most tα (resp., less than tα) as t → 0+ if when applied to a test function ϕ ∈ D(0, δ), 6 we have
that 〈R, ϕa〉 = O(aα) (resp., 〈R, ϕa〉 = o(aα)), as a → 0+, where ϕa(t) := a−1ϕ(t/a) (and the implicit
constants may depend on ϕ). We then write that R(t) = O(tα) (resp., R(t) = o(tα)) as t → 0+.

Theorem 2.2 (Distributional tube formula) Let A be a d-languid compact subset of RN , for some

δ > 0 and κ ∈ R. Furthermore, assume that dimBA < N and denote by V(t) the distribution generated

by t 7→ |At|. Then, we have the following distributional equality:

V(t) =
∑

ω∈P(ζA,W )

res

(
tN−s

N − s
ζA(s), ω

)
+R(t). (4)

More precisely, the action of V(t) on a test function ϕ ∈ D(0,∞) is given by

〈
V , ϕ

〉
=

∑

ω∈P(ζA,W )

res

({Mϕ}(N − s+ 1)

N − s
ζA(s), ω

)
+
〈
R, ϕ

〉
. (5)

5. We write here and in Thm. 2.2 below ζA(s) instead of ζA(s; δ) since the residues in the formula do not depend on the
parameter δ in any way.

6. Here, D(0, δ) := C∞

c (0, δ) is the standard space of infinitely differentiable test functions with compact support.
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In Eq. (4), the distributional error term R(t) is O(tN−supS) as t → 0+. Moreover, if S(τ) < supS for

all τ ∈ R, then R(t) is o(tN−supS) as t → 0+. If, in addition, λA is strongly d-languid for some λ > 0,
then, for test functions in D

(
0, λ−1 min{1, δ, B−1}

)
, we have that R ≡ 0 and W = C; hence, we obtain

an exact tube formula in that case.

One of the applications of the above results is a Minkowski measurability criterion for a compact d-
languid subset of RN (see Thm. 2.3 below), which generalizes [12, Thm. 8.15] to higher dimensions. In the
proof of Thm. 2.3, one direction is a consequence of the distributional tube formula (Thm. 2.2 above) and
the uniqueness theorem for almost periodic distributions (see [14, §VI.9.6, p. 208]). The other direction
follows from a generalization of the classic Wiener–Ikehara Tauberian theorem (see [4]).

Theorem 2.3 (Minkowski measurability criterion) Let A be a compact subset of RN such that

D := dimB A exists and D < N . Furthermore, assume that A is d-languid for a screen passing be-

tween the critical line {Re s = D} and all the complex dimensions of A with real part strictly less than

D. Then, the following statements are equivalent:

(a) A is Minkowski measurable.

(b) D is the only pole of the distance zeta function ζA located on the critical line {Re s = D}, and it is

simple.

There exist d-languid compact sets (and even fractal strings, see [12, Exple. 5.32]) which do not satisfy
the hypothesis of Thm. 2.3 concerning the screen. We point out that Thms. 2.1 and 2.2 can be applied to
obtain tube formulas for a variety of well-known fractal sets, as is illustrated by the following examples.
Furthermore, Exple. 2 below shows how our results can be applied to derive the tube formula of a
self-similar fractal set in R3. We also note that fractal tube formulas can be obtained for examples of
higher-dimensional fractal sets that are not self-similar, such as “fractal nests” and “geometric chirps”;
see [8] for the definitions of these notions. In such examples, we will generally obtain a distributional (or
pointwise) tube formula with an error term; see [11] for details.

Example 1 Let A be the Sierpiński gasket in R2, constructed in the usual way inside the unit triangle.
Then, for δ > 1/4

√
3, the distance zeta function ζA is given for all s ∈ C by

ζA(s; δ) =
6(
√
3)1−s2−s

s(s− 1)(2s − 3)
+ 2π

δs

s
+ 3

δs−1

s− 1
,

which is meromorphic on the whole complex plane (see [8, §3.2]). In particular, P(ζA,C) = {0} ∪(
log2 3 +

2π
log 2 iZ

)
and by letting ωk := log2 3 + pki and p := 2π/ log 2, we have that res(ζA( · ; δ), ωk) =

6(
√
3)1−ωk/

(
4ωk(log 2)ωk(ωk − 1)

)
(for all k ∈ Z) and res(ζA( · ; δ), 0) = 3

√
3 + 2π. One can easily check,

by using the scaling property of the distance zeta function, that λA is strongly d-languid, for any λ ≥ 2
√
3

with κ = −1. Hence, we can apply Thm. 2.1 in order to obtain the following exact pointwise tube formula,
valid for all t ∈ (0, 1/2

√
3), and which coincides with the one obtained in [5–7] and also, more recently,

in [1]: 7

|At| =
∑

ω∈P(ζA,C)

res

(
t2−s

2− s
ζA(s; δ), ω

)
=

6
√
3 t2−log2 3

log 2

∞∑

k=−∞

(4
√
3)−ωkt−pki

(2− ωk)(ωk − 1)ωk

+

(
3
√
3

2
+ π

)
t2.

Example 2 Let A be the three-dimensional analog of the Sierpiński carpet. More precisely, we construct
A by dividing the closed unit cube of R3 into 27 congruent cubes and remove the open middle cube,
then we iterate this step with each of the 26 remaining smaller closed cubes; and so on, ad infinitum. By
choosing δ > 1/6, we deduce that ζA is meromorphic on C and given for all s ∈ C by (see [11])

7. By Thm. 2.3 (and in accord with [5–7]), it follows that the Sierpiński gasket is not Minkowski measurable.
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ζA(s; δ) =
48 · 2−s

s(s− 1)(s− 2)(3s − 26)
+

4πδs

s
+

6πδs−1

s− 1
+

6δs−2

s− 2
.

In particular, P(ζA,C) = {0, 1, 2} ∪
(
log3 26 + piZ

)
, where p := 2π/ log 3. Furthermore, we have that

res(ζA( · ; δ), 0) = 4π − 24/25, res(ζA( · ; δ), 1) = 6π + 24/23, res(ζA( · ; δ), 2) = 96/17 and, by letting
ωk := log3 26 + pki, (for all k ∈ Z), res(ζA( · ; δ), ωk) = 24/

(
13 · 2ωkωk(ωk − 1)(ωk − 2) log 3

)
. One easily

checks that the hypotheses of Thm. 2.1 are satisfied, and thus we obtain the following exact pointwise
tube formula, valid for all t ∈ (0, 1/2):

|At| =
24 t3−log3 26

13 log 3

∞∑

k=−∞

2−ωkt−pki

(3− ωk)(ωk − 1)(ωk − 2)ωk

+

(
6− 6

17

)
t+

(
3π +

12

23

)
t2 +

(
4π

3
− 8

25

)
t3.

In particular, we conclude that dimB A = log3 26 and, by Thm. 2.3, that the three-dimensional Sierpiński
carpet is not Minkowski measurable (as expected). Note also that the part 6t+ 3πt2 + 4πt3/3 from the
above equation is exactly equal to |It| − |I|, where I is the unit cube of R3.

We conclude this note by pointing out that, in a precise way, the above results generalize the corre-
sponding ones obtained for fractal strings in [12, §8.1 & §8.3]. Namely, this can be seen from the fact
that for the geometric zeta function ζL of a nontrivial fractal string L = (lj)j≥1 and the distance zeta
function of the set AL := {ak :=

∑
j≥k lj : k ≥ 1}, we have that ζAL

(s; δ) = s−121−sζL(s) + 2s−1δs,
where δ > l1/2, and this identity holds on any subdomain U of C to which any of the two zeta functions
has a meromorphic continuation; see [8, §2.1]. Hence, if U ⊆ C \ {0}, then ζL and ζAL

have the same
visible complex dimensions in U .
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[8] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory

of Complex Dimensions, research monograph, Springer, New York, 2016, to appear, approx. 570 pages.
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[10] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions of relative fractal drums,
J. of Fixed Point Theory and Appl. No. 2, 15 (2014), 321–378. Festschrift issue in honor of Haim Brezis’ 70th birthday.
(DOI 10.1007/s11784-014-0207-y.) (Also: e-print, arXiv:1407.8094v3 [math-ph], 2014; IHES/M/15/14, 2015.)
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