Hochschild cohomology, the characteristic morphism
and derived deformations

Wendy Lowen

ABSTRACT

A notion of Hochschild cohomology HH*(A) of an abelian category A was defined by
Lowen and Van den Bergh (2005) and they showed the existence of a characteristic mor-
phism y from the Hochschild cohomology of A into the graded centre 3*(D?(A)) of the
bounded derived category of A. An element ¢ € HH?(A) corresponds to a first order
deformation A, of A (Lowen and Van den Bergh, 2006). The problem of deforming an
object M € D’(A) to D(A.) was treated by Lowen (2005). In this paper we show that
the element x(c)ys € Ext? (M, M) is precisely the obstruction to deforming M to DY(A.).
Hence this paper provides a missing link between the above works. Finally we discuss
some implications of these facts in the direction of a “derived deformation theory”.

1. Introduction

Let k be a commutative ring. It is well known that for a k-algebra A, there is a characteristic
morphism x4 of graded commutative algebras from the Hochschild cohomology of A to the graded
centre of the derived category D(A). If k is a field, this morphism is determined by the maps, for
M € D(A),
M ®% —: HH(A) = Extlop, 4 (A, A) — Ext’y (M, M)

The characteristic morphism plays an important role for example in the theory of support vari-
eties ([1], [6], [25]). Characteristic morphisms were generalized to various situations where a good
notion of Hochschild cohomology is at hand. Recently, Buchweitz and Flenner defined and studied
Hochschild cohomology for morphisms of schemes or analytic spaces, and proved the existence of a
characteristic morphism in this context ([4]). In [14], Keller defined the Hochschild cohomology of
an exact category as the Hochschild cohomology of a certain dg quotient. For an abelian category A,
this is precisely the Hochschild cohomology of a “dg enhancement” of the bounded derived category
D’(A). Consequently, the projection on the zero part of the Hochschild complex (see §2.5) is itself
a natural dg enhancement of a characteristic morphism

XA HHE(A) — 3°(D°(A))

where the right hand side denotes the graded centre of DY(A) (see §4.2). Explicitely, x4 maps a
Hochschild n-cocycle ¢ to a collection of elements x.4(c)y € Ext’y(M, M) for M € Db(A). The
main purpose of this paper is to give an interpretation of y 4(c)as in terms of deformation theory.

In [22], a deformation theory of abelian categories was developed. Its relation with Hochschild
cohomology goes through an alternative definition of the latter given by the authors in [21], and
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shown in the same paper to be equivalent to Keller’s definition. Let us consider, from now on, an
abelian category 4 with enough injectives, and let us assume that k is a field. Then Inj(.A) is a
k-linear category and we put

HH,(A) = HH"(Inj(A)) (1)
The main advantage of Inj(.A) is that, considering it as a ring with several objects, its deformation
theory is entirely understood in the sense of Gerstenhaber’s deformation theory of algebras ([9]). It

is shown in [22] that the abelian deformation theory of A is equivalent to the linear deformation
theory of Inj(.A), justifying (1). An abelian deformation B of A gives rise to a morphism

D*(B) — DP(A) (2)

and an obstruction theory for deforming objects M € D°(A) to D°(B), which is the subject of [20].
The main theorem of the current paper (see also Theorem 4.8) states

THEOREM 1.1. Consider ¢ € HH?2 (A) and let A, be the corresponding (first order) deformation of
A. For M € D*(A), the element x.(c)y € Ext? (M, M) is the obstruction against deforming M to
an object of D?(A,).

Hence, the characteristic morphism x 4 is a natural ingredient in a theory describing the simul-
taneous deformations of an abelian category together with (families or diagrams of) objects in the
abelian (or derived) category. The details of this theory remain to be worked out.

In [20], (2) is expressed in terms of complexes of injectives in A and B, and the obstructions
are expressed in terms of the element ¢ € HHZ (A) = HH?(Inj(A)) corresponding to the abelian
deformation. Essentially, our approach for proving the above theorem is tightening the relation
between HH}, (A) and HH (A).

For a differential graded category a, let C(a) denote its Hochschild complex ([14]). Let Dgg(A)
be a dg model of D’(A) constructed using complexes of injectives. The natural inclusion Inj(.A) C
Dy, (A) induces a projection morphism

C(Dag(A)) — C(Inj(A)) (3)

which is proven in [21] to be a quasi-isomorphism of Bo,-algebras. The Byo-structure of the Hochschild
complexes captures all the operations relevant to deformation theory, like the cup product and the
Gerstenhaber bracket, but also the more primitive brace operations (see §2.3). In §3, we explicitely
construct a Bs-section

embrs : C(Inj(A)) — C(Dgg(A))
of (3) (Theorem 3.22). In the notation, § is the element in C!(Dgg(A)) determined by the differen-
tials of the complexes of injectives, and embr, short for “embrace”, refers to the brace operations.
More concretely, for ¢ € C™(Inj(A)), we have

n

embrs(c) = Z c{6®my

m=0
After introducing the characteristic morphism in §4.3, we use the morphism embrs to prove Theorem
1.1 in §4.4.

The morphism embrg also throws some light on the following question, which is part of a research
project in progress:

Question. Given an abelian deformation B of an abelian category A, in which sense can we interpret
D?(B) as a “derived” deformation of D?(A)?

More precisely, the morphism embrs gives us a recipe to turn a linear deformation of Inj(.A) (and
hence an abelian deformation of A) into a deformation of Dgg(A)... as a cdg category! Here cdg, as
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opposed to dg, means that apart from compositions m and differentials d, the category has “cur-
vature elements” correcting the fact that d? # 0. This “small” alteration has serious consequences,
ruining for example the classical cohomology theory.

In Theorem 4.18 we show that the cdg deformation of Dgg(A) contains a maximal partial dg
deformation which, at least morally, is precisely Dgg(B) (see also Remarks 4.19 and 4.20). The part

4

of Dgg(A) that gets dg deformed in this way is spanned by the “zero locus” of the characteristic

element
(M= xalom) e ] BExti(M,M)
Ob(D?(A))
Hence, an object M € D’(A) contributes to the dg deformation of Dgg(A) if and only if it deforms,
in the sense of [20], to an object of D*(B).

2. Ajp,oc[-categories

Ao-algebras and categories are by now widely used as algebraic models for triangulated categories
(see [2], [13], [16], [17] and the references therein). Although the generalization to the A [-setting
causes serious new issues, a large part of the theory can still be developed “in the Ao-spirit”. In
this section we try to give a brief, reasonably self contained account of the facts we need. For more
detailed accounts we refer the reader to [12], [18] for A-algebras, to [19], [23] for A, -categories
and to [24] for Ay [-algebras.

2.1 A word on signs and shifts
Let k£ be a commutative ring. All the algebraic constructions in this paper take place in and around
the category G(k) of Z-graded k-modules. For M, N € G(k), we have the familiar tensor product

(M ®N)" = ®iezM' ® N
and internal hom

[M, NP = [ [ Hom(M’, M**P)

1€EZ

over k. For m € M", the degree of m is |m| = i. We adopt the Koszul sign convention, i.e. G(k) is
endowed with the well known closed tensor structure with “super” commutativity isomorphisms

M@N—NQM:mon— (—1)""yem (4)

and the standard associativity and identity isomorphisms. The closed structure is determined by
the evaluation morphism

[M,N]@ M — N : (f,m) — f(m)
Furthermore, we make a choice of shift functors on G(k). For i € Z, let X'k € G(k) be the object
whose only nonzero component is (X'k)~¢ = k. The shift functors are the functors

Y =Yk®-:Gk) — Gk): M r— XM =Yke M

For m € M, we put om = 1@m € %?M. All the canonical isomorphisms (and in particular the signs)
in this paper are derived from the above conventions. The most general canonical isomorphisms we
will use are of the form, for My,..., M,, M € G(k):

@ : XTI N @ @ My, M) — [SUM; @ -+ @ X M, 2V M| (5)
defined by p(c'= 1= "ing)(citmy,...,0"my,) = (—=1)%‘¢(m1, ..., m,) where

a= (i1 + - +in)le| +iglma| + - +in(|ma] + -+ [mn-1])
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2.2 The Hochschild object of a (graded) quiver

In this section and the next one we will introduce the Hochschild complex of an Ajy -category
(see also [12], [18]) in two steps. Our purpose is to distiguish between the part of the structure that
comes from the Ay ,-structure (next section) and the part that does not (this section). This will
be useful later on when we will transport Ay o [-structures.

Let k be a commutative ring. A graded k-quiver is a quiver enriched in the category G(k). More
precisely, a graded k-quiver a consists of a set of objects Ob(a) and for A, A" € Ob(a), a graded
object a(A, A’) € G(k). Since we will only use graded k-quivers in this paper, we will systematically
call them simply quivers. The category of quivers with a fixed set of objects admits a tensor product

a®b(A, AI) == @AIIO(AH, A/) ® b(A, A/)
and an internal hom
[a,b](A, A") = [a(A, A"),b(A, A)]

We put [a,b] = []4 a[a, b](A, A)). A morphism of degree p from a to b is by definition an element
of [a, b]P. The tensor cocategory T(a) of a quiver a is the quiver

T(a) = ®pz0a®"

equiped with the comultiplication A : T'(a) — T'(a)®T'(a) which separates tensors. There are natu-
ral notions of morphisms and of coderivations between cocategories and there is a G(k)-isomorphism

[T(a),a] = Coder(T'(a),T(a))
The object [T'(a), a] is naturally a brace algebra. We recall the definition.

DEFINITION 2.1. (see also [10]) For V € G(k), the structure of brace algebra on V consists in the
datum of (degree zero) operations

Vel V(@) s x {2, 2 )

satisfying the relation z{x1,...zpm Hy1,.. . yn} =

Z(_l)a‘r{yh SR xl{yiu s }7 Yji - - - 7xm{yim7 s }7yjm7 cee yn}
where a = Y0 |z E;’;l |y1|. The associated Lie bracket of a brace algebra is

(@,9) = x{y} — (=) y{a}
A brace algebra morphism (between two brace algebras) is a graded morphism preserving all the

individual brace operations.

PROPOSITION 2.2. Let V' be a brace algebra. The tensor coalgebra T (V') naturally becomes a
(graded) bialgebra with the associative multiplication M : T(V) @ T(V) — T(V') defined by the
compositions

My, :VE* @V S T(V)QT(V) —T(V) —V
with
Myg(x;21,...20) = 2{w1, ..., 20}

and all other components equal to zero. The unit for the multiplication is 1 € k = V%0,

Proof. This is standard (see [11]). A coalgebra morphism M is uniquely determined by the compo-

nents Mj,; and the brace algebra axioms translate into the associativity of M. O
Put
[T(a),an = [0 0] =[] [0(4n1,45) © - @ a(Ag, A1), a(Ap, Ay)]
Ag,...,An€a
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The brace algebra structure on [T'(a), a] = [],,5,[T'(a), a]nis given by the operations
[T(a), )]n @ [T(a), a)ln, @ -~ @ [T(a), 0)]ny, — [T(a), O)]n—btmitoms
with
${o1, b} =) $(10- ©aOIQ 0ol -al)

The associated Lie bracket corresponds to the commutator of coderivations. We put Ba = T'(Xa)
and Cy,(a) = [T'(Xa), Xa] = [Ba, Xa]. Summarizing, the quiver a yields towering layers of (graded)
algebraic structure:
(0) the quiver a, i.e. the graded objects a(A, A’);
(1) the cocategory Ba =T (Xa);
(2) the brace algebra Cy,.(a) = [Ba, Xa] = Coder(Ba, Ba) which is in particular a Lie algebra and
(0°) the associated Hochschild object C(a) = ¥~1Cy,(a);
(1’) the bialgebra T(Cy(a)) = BC(a);
There is a natural inclusion

Cy(a) — T(Cyr(a) = BC(a) (6)
of (2) into (17).

2.3 The Hochschild complex of an A ,-category
DEFINITION 2.3. ([12]) Let a be a quiver. An Ay o(-structure on a is an element b € C;.(a) satisfying

b{b} =0 (7)
The morphisms
b, : La®" — Ya

defining b are sometimes called (Taylor) coefficients of b. The couple (a,b) is called an Ajy -
category. If by = 0, it is called an A -category. If b, = 0 for n > 3, it is called a cdg category. If
bp =0 and b, =0 for n > 3, it is called a dg category.

Remark 2.4. Consider b € C}, (a).
i) The equation (7) can be written out completely in terms of the coefficients b,, of b ([19], [24]).
ii) If we consider b as a coderivation inside [Ba, Ba]!, then (7) is equivalent to
b*=bob=0
iii) If we consider b as an element of the bialgebra BC(a) through (6), then (7) is equivalent to
b = M(b,b) =0 (8)
where M is the multiplication of BC(a).

The easiest morphisms to consider between Ay -categories are those with a fixed set of objects.
To capture more general morphisms, one could follow the approach of [19] for A, -categories.

DEFINITION 2.5. ([12]) Consider Ajy ,.[-categories (a,b) and (a’,d’) with Ob(a) = Ob(a’). A (fized ob-
ject) morphisms of Ajo,c0[-categories is a (fixed object) morphism of differential graded cocategories
f: Ba — Bd’ (i.e. a morphism of quivers preserving the comultiplication and the differential). It
is determined by morphisms

fn: (Za)®" — Xd
for n > 0.
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An A oo[-structure on a introduces a load of additional algebraic structure on the tower of §2.2.
The Hochschild differential on Cp,.(a) associated to b is given by

d= <ba _> € [Cbr(a)7cb7‘(a)]l : qb - <ba qb)
and makes Cy,(a) into a dg Lie algebra. The complex X ~1Cy,(a) is (isomorphic to) the classical
Hochschild complex of a. Similarly, considering b € BC(a)!, we define a differential
D = [b,~]u € [BC(a), BC(a)]' : ¢ — [b, ¢

where [—, —]as denotes the commutator of the multiplication M determined by the brace operations.
As D is a coderivation, it defines an Ay ,.[-structure on C(a). Let us examine the coefficients

Dy, : ¥C(a)®" — %.C(a)

of this Ay o[-structure. By definition, Dy (¢1,...,¢n) = M1,u(b; b1, .., ¢n) — Mp1(d1, ..., én;b),
so for n = 1 we have

whereas for n > 1 we have

Dn(¢1a B ¢n) = b{¢1a e aﬁbn}
The differential D makes BC(a) into a dg bialgebra. By definition, this makes C(a) into a Bo-
algebra [11]. Summarizing, we obtain the following tower:
(0) the A [-category a;
(1) the dg cocategory Ba =T (Xa);
(2) the By-algebra Cy,.(a) = [Ba,Xa] = Coder(Ba, Ba) which is in particular a dg Lie algebra
and

(0°) the associated Hochschild compler C(a) = X~1Cy,(a);
(1’) the dg bialgebra T(Cy,(a)) = BC(a);

By a Boo-morphism (between Boo-algebras By and By) we will always mean a graded morphism

(super)commuting with all the individual operations on B; and Bs. A Bo-morphism is a brace
algebra morphism, and a very particular case of a morphism of A..,-algebras.

2.4 Limited functoriality
The following tautological proposition will be used later on to transfer Hochschild cochains:

PROPOSITION 2.6. Consider quivers a and b and a brace algebra morphism ¥ : Cy,.(a) — Cy,.(b).
If b is an Ajg [-structure on a, then W(b) is an Ay ,[-structure on b and

U : Cyr(a,b) — Cyp(b, ¥ (b))
is a Boo-morphism.

Proof. For ¢ € T(Cy,(a,b)), we are to show that T'(¥)([b, ¢]) = [¥(b), T(¥)(¢)], which immediately
follows from the fact that W preserves the brace multiplication. ]

Let b C a be the inclusion of a full subquiver, i.e. Ob(b) C Ob(a) and b(B, B") = a(B, B’). Using
the induced Bb — Ba, there is a canonical restriction brace algebra morphism

T - Cbr(a) — Cbr(b>

If (a,b) is an Ajg [-category, b can be endowed with the induced Ajgo-structure 74(b) and
becomes a Bo-morphism (see Proposition 2.6). The A o[-category (b, 75(b)) is called a full Afg o[-
subcategory of a. In particular, for every object A € a, (a(A, A),74(b)) is an Ay ,.[-algebra.
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2.5 Projection on the zero part
Let a be an Ay o[-category. By the zero part of Cy,.(a) we mean
Cir(a)o = [T(Sa),Salo = [ ] Sa(4, 4)
A€a
Consider the graded morphisms
o - CbT(a) — Cbr(a)o
and o : Cp(a)g — Cp,(a). The morphism
b€ [Sa, Za)' = [] [Za(4,4'),Sa(4, 4]
AA€a
determines degree 1 morphisms (b1)4 : Ya(A, A) — Xa(A, A) and a product morphism
b : Cpr(a)o — Cir(a)o
Let d : Cpr(a) — Cp,(a) be the Hochschild differential.

ProrosiTiON 2.7. We have

blA = modoyg
In particular, if a is an Ay-category, mo : (Cyr(a),d) — (Cp(a)o,b%) is a morphism of differential
graded objects.

Proof. For an element x € Ya(A, A), we have m4(d(z)) = (b,z) = bi{z} = b1(z). O

2.6 From Ya to a

The Hochschild complex of a and the Byo-structure on ¥C(a) are often expressed in terms of a
rather than ¥a. This can be done using the canonical isomorphisms

El_n[a(An,l, An) R ® Cl(Ao, Al), Cl(Ao, An)] (9)

|

[Ea(An,l, An) R Q EG(A(), Al), EQ(A[), An)]
determined by the conventions of §2.1, thus introducing a lot of signs. We define the bigraded object
C(a) by
C"(a) = [ [a(An-1,40) @--- @ a(Ao, A1), a(Ao, Ap)]
Ag,...An

An element ¢ € C¥" has degree |¢| = i, arity ar(¢) = n and Hochschild degree deg(¢) = i + n.
We put CP(a) = [[;,,—, C?"(a). The Boo-stucture of Cy,(a) is translated in terms of operations
on C(a) through (9). The complex C(a) will also be called the Hochschild complex of a and its
elements are called Hochschild cochains. For a Hochschild cochain ¢ € C*"(a), the corresponding
element of Cy,(a) has

D) (O fuy - 0 f1) = (1) DUnEHRlG (£ f)

This identification is different from other ones, used for example in [11], [19], [24]. Nevertheless, it
allows us to recover many standard constructions (up to minor modifications). For example, the
operation

dot : Cbr(a)n ® Cbr(a)m - Cbr(a)n—‘rm—l : (HZ, y) — .%'{y}
gives rise to the classical “dot product”

o: C'"(a) ® CP"™(a) — CiHImtm=—1

7
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on C(a) given by

per) = Z 1®n k—1 QYR 1®k> (10)

where
e = (deg(¢) + k+ 1)(ar(¢p) + 1)

In the sequel, when no confusion arises, we will not distinguish in notation between the operations
on Cp,(a) and the induced operations on C(a). In particular, the brace operations will always be
denoted using the symbols { and }. An A j-stucture b € C} (a) on a will often be translated into
an element p € C2(a), which will also be called an Ajp,co[-stucture on a. Similarly, we will speak
about brace algebra and B.-morphisms between Hochschild complexes C(a), C(a’).

One proves:
LeEMMA 2.8. Consider ¢ € C*"(a) and 6 € C/°(a). We have
B8} = (~1y VD05, g)

2.7 The Hochschild complex of a cdg category

By the previous section a cdg category is a graded quiver a together with
i) compositions pa =m € [[4, 4, a,[0(A1, A2) ® a(Ag, A1), a(Ag, Az)]°
ii) differentials iy = d € [ 4, 4,[0(Ao, A1), a(Ag, A1)]*
iii) curvature elements pg = c € [[ 4 a(4, A)*
satisfying the identities:

i) d( )=0

i) d®=-m(c®1-1®c)
iii) dm = m(d®1+1®d)

) m(m®1) =m(l&m)

Remark 2.9. Note that ii) differs from the conventional d?> = m(c® 1 —1®c) ([12], [24]). However,
it suffices to change ¢ into —c to recover the other definition.

v

Ezample 2.10. Let a be a linear category. An example of a cdg category is the category PCom(a) of
precomplexes of a-objects. A precomplex of a-objects is a Z-graded a-object C' (with C* € a) together
with a Z-graded a-morphism d¢ : C — C of degree 1. We have PCom(a)(C, D)" =[], a(C?, D*™)
and, for f: D — Fand g:C — D:

i) m(f.g)i = (f9)i = fir|g9i

ii) d(f) = 0pf — (=M fép

i) cc = —02
Inside PCom(a), we have the usual dg category Com(a) of complexes C' of a-objects, for which

cc = 6% = 0. We will use the notations Com™(a) and Com™(a) for the respective categories of
bounded below and bounded above complexes.

As an example of the passage from Xa to a, let us use (10) to compute the Hochschild differential
on C(a) for a cdg category a. The differential on Cy,.(a) is given by

(cc+d+o " m,—)
8
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Consider ¢ € C*"(a). By definition
(oc+d+ o7 m,o'7"¢) = dot(oc+ d + o m, 0t "p) — (=1)1 " Fidot(o! T p, 0 + d + o m)
The corresponding three terms in terms of C(a) are:

i) [c,¢] = cop— (—1)%e@+1 o ¢ which equals

n—1
Z(_l)k+1¢(1®nfkfl Rec® 1®k)
k=0
i) [d,¢] =dep— (—1)%e@+1p e d which equals
n—1
(1 g — (1) Y (1 6 do 199)
k=0

iii) [m,¢]=me¢d— (—1)deg(¢’)+1¢ e m which equals
Z k+1¢ 1®n— k—1 Qm® 1®k) ( 1)n+1m(1 ® ¢)

If we look at the bigraded object C»" with i being the “vertical” grading and n being the “hor-
izontal” grading, then dj, = [m, —] defines a horizontal contribution whereas d, = [d,—] defines a
vertical contribution to the Hochschild differential d. Clearly, up to a factor (—1)"*!, the horizontal
contribution generalizes the classical Hochschild differential for an associative algebra. If we look at
the “n-th column” graded object

C = J] [a(An1,40) @ - @a(Ag, A1), a(Ag, An)]
Ag,...An

then the vertical contribution on C*" is (—1)"*! times the canonical map induced from d. Compared
to the dg case, we have a new curved contribution d. = [c,—] which goes “two steps up and one
step back”. The curved contribution is zero on the zero part C*°. In the Hochschild complex of an
arbitrary A oo[-category, there are additional contributions going “n steps down and n + 1 steps
ahead” for n > 1.

3. A B.-section to twisted objects

Let a be a quiver. As explained in §2.4, an inclusion a C a’ of a as a subquiver of some a’ induces
a morphism of brace algebras 7w : C(a’) — C(a). This section is devoted to the construction of
certain quivers @’ = Tw(a) of “twisted objects over a” for which 7 has a certain brace algebra section
embrs. The morphism embrs will be used in §3.3 to transport A o[-structures from a to Tw(a).
Quivers of twisted complexes encompass the classical twisted complexes over a dg category ([3], [5],
[15]), but also the “infinite” quivers of semifree dg modules ([5]) as well as quivers of (pre)complexes
over a linear category. The morphism embrs is such that in those examples, it induces the correct
Ajp,oo[-structures on these quivers, thus defining a Be-section of 7. It will be used in §4.3 to define
the characteristic dg morphism of a linear category a, which allows us to prove Theorem 4.8 and
hence Theorem 1.1. This chapter is related to ideas in [7], [8], [19].

3.1 Some quivers over a

Let a be a quiver. In this section we define the quiver Twyee(a) of formal coproducts of shifts of a-
objects twisted by a morphism of degree 1. First we define the quiver Free(a). An object of Free(a)
is a formal expression M = @;c;X™i A; with I an arbitrary index set, A; € a and m; € Z. For

9
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another N = @®;c;X" B; € Free(a), the graded object Free(a)(M, N) is by definition
Free(a)(M, N) = [[ &;=" ™ a(A;, B;)

2

An element f € Free(a)(M, N) can be represented by a matrix f = (fj;), where fj; represents the
element o7 f};.

DEFINITION 3.1. For M, N as above, consider a morphism f € Free(a)(M, N). For a subset S C I,
let ®¢(S) C J be defined by

p(S)={jeJ|Fies fj # 0}
We say that f € Free(M, M) is intrinsically locally nilpotent (iln) if for every i € I there exists
n € N with ®7({i}) = 2.
PROPOSITION 3.2. The canonical isomorphisms
[a(An-1,An) @ -+ ® a(Ag, A1), a(Ag, Ap)] (11)
|
[Linmin-1g(A, 1, Ap) ®@ - @ B170a(Ag, A1), B ~0a(Ag, Ay)]
for Ay, € a, ny, € Z define a morphism of brace algebras
C(a) — C(Free(a)): ¢ — ¢ (12)
with
S(frr-- s f)ji= D (D D(Fn)jn s (Fam1ka ik zs s (F2)kakrs (F1)kys) (13)

kn—l»--'vkl

LEMMA 3.3. Consider ¢ € C(a) and (fn,..., f1) € Free(a)(My—1,M,) ® --- ® Free(a)(Mp, M).
Write My = ®;c1X* A; and consider S C I. There is an inclusion

P fnf)(S) C P, (Pr i (- P, (5)))

Proof. Suppose j is not contained in the right hand side. Then for every sequence j = ky, ..., k1, ko =
i with i € S one of the entries (fy)r,k,_, is zero. But then, looking at the expression (13), clearly
&(fns---, f1)ji = 0 whence j is not contained in the left hand side. O

Next we define the quiver Twgee(a). An object of Tweee(a) is a couple (M, §y7) with M € Free(a)
and

Sar € Free(a)(M, M)?

For (M,d0n1), (N,0n) € TWeree(a), Tweee(a)((M,drr), (N,0n)) = Free(a)(M, N). Consequently, the
dps determine an element

5 € CH{TWiree())

The isomorphisms (11) also define a morphism of brace algebras
C(a) — C(Twfree(a)) : o — ¢ (14)

which is a section of the canonical projection morphism C(Twgree(a)) — C(a). In the next section
we show that for certain a C Tw C Twsee,

m: C(Tw(a)) — C(a) (15)
has another section depending on §, which can be used to transport Ay ,o-structures.

10



HOCHSCHILD COHOMOLOCY, THE CHARACTERISTIC MORPHISM AND DERIVED DEFORMATIONS

DEFINITION 3.4. A quiver of locally nilpotent twisted objects over a is by definition a quiver Tw(a)
with a C Tw(a) C Twee(a) such that for every ¢ € C(a), for every
(fn, - fl) S Tw(a)(Mn_l, Mn) K& TW(G)(M(), Ml)

with Mo = @ierX* A;, and for every ¢ € I there exists mo € N such that for all m > mg, ®,({i}) = @
for

g = ¢m+n{5®m}(fna e fl)

Ezample 3.5. If a is concentrated in degree zero, then Twyee(a) is a quiver of locally nilpotent
twisted objects over a. Indeed, for ¢ € C(a), there is only a single m for which the component ¢,
is different from zero.

PROPOSITION 3.6. Let Twipii(a) C Twyee(a) be the quiver with as objects the (M, dyr) for which
Onr € Free(a)(M, M) is intrinsically locally nilpotent. Then Twiyi(a) is a quiver of locally nilpotent
twisted objects over a.

Proof. Consider ¢, (fn,...f1) and i as in Definition 3.4 and put §; = dpz,. For m € N, consider

gm = Omini0®™}(fn, ..., f1). This g, is a sum of expressions
o = s (05 fry 070 OF™ 1, 65™)
with my, + -+ +mo =m. For &, ({i}) to be empty, it suffices by Lemma 3.3 that
5 (P, (- (2, (P5°({i})))) = 2 (16)
We recursively define numbers p; and finite sets S; for [ = 0,...,n in the following manner. Put

So = {i}. Once S; is defined, p; is such that @gll(Sl) = @ (such a p; exists since ¢; is iln) and
Si = UpeNCI'leCI)gl(Sl). By the pigeonhole principle, if m > p, + -+ + po, every gm,,....m, With
My + -+ -+ mgo = m has at least one m; > p;, and consequently (16) holds true. Hence in Definition
3.4, it suffices to take mg = p, + - - - + po. O

3.2 A word on topology

Although not strictly necessary, it will be convenient to use a bit of topology to understand and
reformulate definition 3.4. The language of this section will be used in the proof of Proposition 3.11.
All the topologies we consider will turn the underlying k-modules into topological k-modules, so in
particular we can speak about completions. Put C = Cy,.(Tw(a)) for some arbitrary full subcategory
Tw(a) C TWeee(a). To manipulate certain elements of BJC = [],,5,(XC)®" that are not in BC, it
will be convenient to consider a certain completion BC of BC. As a first step we endow BC with
a complete Hausdorff “pointwise” topology 7g. To do so we suppose that a is naturally a complete
Hausdorff topological k-quiver, i.e. the a(A, A’) are complete Hausdorff topological k-modules (if
there is no natural topology, the a(A, A") are endowed with the discrete topology).

Now consider the algebra multiplication
M : BC® BC — BC

defined by the brace operations. We suppose that M preserves Cauchy nets with respect to 7y. For
every ¢ € Cy.(a) C BC we consider the map

Next we endow BC with the “weak topology” 7 C 7y which is by definition the initial topology
for the collection (My)4, and we let BC denote the completion of BC with respect to 7. The My
have natural continuous extensions

My : BC — BC (17)

11
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LEMMA 3.7. For ¢ € BC, the map MY = M(—,v) : BC — BC preserves Cauchy nets with
respect to 7. Consequently, there is a natural continuous extension
MY : BC — BC (18)

Proof. Suppose we have a 7-Cauchy net (z,), in BC. We have to show that M (¢, M(z4,)) is
7o-Cauchy for every ¢ € Cy,.(a). This follows since M is associative and preserves Cauchy nets. [J

DEFINITION 3.8. Let a be a topological k-quiver. A quiver of twisted objects over a is by defini-
tion a quiver a C Tw(a) C Twyee(a) such that for the canonical § € C!'(Tw(a)) the sequence
(>t 0%%) >0 converges in BC to a unique element

o0
e® = Z SOk
k=0

Remark 3.9. We noticed that the same suggestive exponential notation is used in [8].

PROPOSITION 3.10. Let a be a k-quiver and consider a C Tw(a) C Twgee(a). The following are
equivalent:
i) Tw(a) is a quiver of twisted objects over a where a is endowed with the discrete topology.

ii) Tw(a) is a quiver of locally nilpotent twisted objects over a.

Proof. By definition of the completion, the sequence converges in BC if and only if for every
¢ € Cpr(a), the sequence (31 #{6%%})m>0) converges for the “pointwise discrete” topology 7o on
BC. By definition of this topology, this means that for every (f,,..., f1) and ¢ € I as in Definition
3.4, there exists an mg such that the general term ((3_1o #{6®*}(fn, ..., f1)(i)) becomes constant
for m > myg. This is clearly equivalent to the fact that the expressions ¢{6®*}(f,, ..., f1)(i) become
zero for k > my. O

3.3 Transport of Ay -structures to Tw(a)

Let a be a topological quiver and consider the inclusion a C Tw(a) of a into a quiver of twisted
objects over a (in particular, Tw(a) can be a quiver of locally nilpotent twisted objects over an
arbitrary quiver a). Let

5 € CY(Tw(a))
be the canonical Hochschild cochain of Tw(a).

PROPOSITION 3.11. The canonical projection w : C(Tw(a)) — C(a) has a brace algebra section

embrs : C(a) — C(Tw(a)) : ¢ — > ¢{6¥™} (19)

m=0

For M = (M, ) € Tw(a) and ¢ € CP(a), the component ¢p; = (embrs(¢))r € Tw(a)(M, M) is
given by

oo
onr =D (=1)*om(55]") (20)
m=0

with « = m((p —m) + (m —1)/2).
Remark 3.12. If char(k) = 0, the map embr; is the Lie morphism el=9.
Proof. According to Definition 3.8, we dispose of an element ¢ = 0 §%% € BC. We define embrs
to be the restriction of the morphism

M(—,€°) : BC(a) — BC(Tw(a)) (21)

12
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which exists by §3.2. In particular, the right hand side of (19) should be read as a pointwise
series, i.e. for (fp,..., f1) € Tw(a)(My—1, My,) ® -+ @ Tw(a)(Mo, M1) where My = ®;c; 2% A; and
M, = @jejzﬁ'ij7 we have

(D 8™ D sy F))ji = D (@A™} fus -, F1))50)

and the right hand side converges for the topology of a. Next we verify that (21) is a morphism of
algebras, i.e. preserves the multiplication M. Consider ¢, 1) € BCy,.(a). We have

M(M(8,),¢") = M(é, M, %)) = M(M(¢,¢%), M(1,¢”))
where we used associativity of M, continuity of (17) and (18) and the fact that M(e®, 1)) = 1.
Finally, the statement (20) follows from Lemma 2.8. O
Combining Proposition 3.11 with Proposition 2.6, we get:
PROPOSITION 3.13. i) If p is an Ajg o[-structure on a, then embrs(u) is an Ay [-structure on
Tw(a) and
embrs : (a, ) — (Tw(a), embrs(u))
is a Boo-morphism.
ii) If p =c+ d+ m is a cdg structure on a, then
embrs(p) = (¢ + d{o} +m{d,0}) + (d+m{d}) +m
is a cdg structure on Tw(a).
iii) If u = d +m is a dg structure on a and § € C'(Tw(a)) satisfies
d{6} +m{é6,6} =0
then

embrs(p) = (d+m{d}) +m
is a dg structure on Tw(a).

From now on, quivers of twisted objects over an A o[-category (a, 1) will always be endowed
with the Ajg -structure embrs ().

Remark 3.14. A similar kind of “transport” is used in [19, §6] in order to construct A.-functor
categories.

3.4 Classical twisted complexes

We will now discuss how some classical categories of twisted complexes fit in the framework of the
previous sections.

DEFINITION 3.15. Let a = (a, 1) be an A [-category. The oo-part of a is the full subcategory
oo C a with as objects the A € a for which us € a(4, A)? is zero.

Ezample 3.16. Let a be an Ay-category and let twjiii(a) C Twipii(a) be the quiver with as objects
the (M, d)r) where M = @F_¥™i 4; is “finite”.

i) If a is a dg category , then the dg category twinii(a)s is equivalent to the classical dg category
of twisted complexes over a ([3], [5], [15]). Indeed, the co-part of twjpi(a) is its restriction to
the objects (M, dpr) with

d{éM} + m{5M, (5M} =0
13
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More generally, twini(a)s is equivalent to the Ao-category tw(a) of twisted objects over a
([19], and [8] for the algebra case).

ii) The dg category Twini(a)s is equivalent to the classical dg category of semifree complexes
over a ([5]) which is a dg-model for D(a), i.e. there is an equivalence of triangulated categories
HO(Twimil(a)oo) = D(a).

Remark 3.17. We conjecture that for an A-category a, the Aso-category Twini(a)so is an As-model
for the derived category of a, i.e. there is an equivalence of triangulated categories H°(Twinii(a)oo) &
Do (a), where for definitions of the right hand side, we refer the reader to [19]. The finite version
of this result has been obtained in [19, §7.4].

Remark 3.18. For an Ajg o[-category a, we have twipii(¢)oo = tWiinil(doo ) oo and similarly for Twin(a).
In particular, an A -algebra A with o # 0 has Twygi(a)s = 0. This illustrates the poor
“derivability”, in general, of Ajg -algebras.

The following theorem, which immediately follows from Proposition 3.11, is a refinement of [21,
Theorem 4.4.1].

THEOREM 3.19. Let a be a dg category. Then Tw(a) = Twjni(a)s is a dg category which is dg
equivalent to the category of semifree dg modules over a. The canonical projection 7 : C(Tw(a)) —
C(a) has a By-section

embrs : C(a) — C(Tw(a)) : ¢ — Z P{0%™}
m=0

which is an inverse in the homotopy category of Bs.-algebras. In particular, both m and embrs are
quasi-isomorphisms.

3.5 (Pre)complexes over linear categories
Next we apply Proposition 3.11 to categories of (pre)complexes. Let (a,m) be a linear category.
Consider the quiver Twpre(a) with as objects

(M = ®iezX" Ai, Orr)

with &); € Free(a)(M, M)*. For another (N = ®;czX!B;, dn), since a is concentrated in degree zero,
we have Twpre(a)(M, N)" = [[.cz a(A;, Bi—n). If we change to cohomological notation A" = A_;,
we have

1€EZ

TWpre(a)(M, N)" = [[ a(4", B"™)
1€EZ
By Example 3.5, Twpre(a) is a quiver of locally nilpotent twisted objects over a. According to
Proposition 3.13, the corresponding Ay oo[-structure on Twpre(a) is embrs(m) = m{d, 6} +m{d}+m
with
m{6,0} = —62

and

m{d} =m(0d®1—-1®94J)
Hence Twpe(a) is precisely the cdg category PCom(a) of precomplexes of a-objects of example 2.10.
The category Tweom(a) = TWpre(@1)so is the dg category Com(a) of complexes of a-objects.

Consider the inclusions

a C Com™(a) € Com(a)

The following is implicit in [21]:

14
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PROPOSITION 3.20. The canonical projection © : C(Com™(a)) — C(a) is a Boo-quasi-isomorphism.

Proof. Consider the canonical morphisms

a” — Com™(a”") — Com™ (Mod(a”)) — Com(Mod(a™)) = Modgg(a™)

op

A complex in Com™(a””) gets mapped to a cofibrant object in Modgg(a ). Consequently, by [21,
Theorem 4.4.1], the first map induces a Boo-quasi-isomorphism. The result follows since 7 is induced
by the opposite of this map. O

THEOREM 3.21. The canonical projection 7 : C(PCom(a)) — C(a) has a B-section
embrs : C(a) — C(PCom(a)) : ¢ — > ¢n{6°™}
m=0

The restrictions of both maps to C(Com™ (a)) are inverse isomorphisms in the homotopy category
of Byo-algebras. In particular, they are both quasi-isomorphisms.

3.6 Abelian categories

The results of the previous section have an immediate application to abelian categories. Let A be
an abelian category. In [21], the Hochschild complex of A is defined to be

Cab(A) = C(Inj(Ind(A))

Let A be an abelian category with enough injectives and put i = Inj(.A). By [21, Theorem 6.6],
we have

Can(A) = C(i)
and it will be convenient to actually take this as definition of C,p(.A).

The dg category Com™ (i) of bounded below complexes of injectives is a dg model for the bounded
below derived category D (A) of A, whence the notation D;fg(.A) = Com™(i). In the spirit of [14],

put Cex(A) = C(D(J{g(A)). With a = i, Theorem 3.21 now yields:

THEOREM 3.22. The canonical projection 7 : C(Com™ (1)) — C(i) has a Buo-section

embrs : C(i) — C(Com™ (i) : ¢ — »_ {0}
m=0
which is an inverse in the homotopy category of Bs.-algebras. In particular, both m and embrs are
quasi-isomorphisms establishing C,,(A) & Cex(A).

4. Deformations

This chapter consists largely of applications of Theorem 3.21. We first recall some facts on defor-
mations and the graded centre enabling us to define, in §4.3, the characteristic dg morphism of
a linear category, and to show its relation to deformation theory in Theorem 4.8. The remainder
of the chapter is devoted to some applications to deformations of (enhanced) derived categories of
abelian categories.

Throughout we focus on first order deformations, i.e. deformations along kle] — k, since they
are in the most direct correspondence with Hochschild cohomology. All definitions can be given
for arbitrary deformations, and in the classical setting of an Artin local algebra R over a field k
of characteristic zero (with maximal ideal m), the deformation theory is governed by the Maurer-
Cartan equation in the Hochschild complex (tensored by m).

From now on, k& will be a field.
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4.1 Deformations of linear and abelian categories
The deformation theory of linear and abelian categories was developed in [22] as a natural extension
of Gerstenhaber’s deformation theory of algebras [9]. In this section we recall the main definitions.
For a commutative ring R, let cat(R) denote the (large) category of R-linear categories. The forgetful
functor cat(k) — cat(k[e]) has the left adjoint
k @ — cat(kle]) — cat(k)

and the right adjoint

Homy, g (k, —) : cat(k[e]) — cat(k)
where Homyq denotes the category of k[e|-linear functors. Clearly, for B € cat(k[e]), there is a

canonical inclusion functor Homy (k, B) — B identifying Homy(k, B) with the full subcategory
of objects B € B for which ¢ : B — B is equal to zero.

In [22], a notion of flatness for abelian R-linear categories is defined which is such that an R-
linear category a is flat (in the sense that it has R-flat hom-modules) if and only if the module
category Mod(a) is flat as an abelian category.

DEFINITION 4.1. i) Let a be a k-linear category. A first order linear deformation of a is a flat
k[e]-linear category b together with an isomorphism &k ®y(g b = a in cat(k).

ii) Let A be an abelian k-linear category. A first order abelian deformation of A is a flat abelian
k[e]-linear category B together with an equivalence of categories A = Homyq (k, B).

We will denote the natural groupoids of linear deformations of a and of abelian deformations of
A by Defq(k[e]) and ab — Def 4(k[e]) respectively. In [22], the notations defi and Def 4 are used and
the terminology strict deformation is used in the linear case.

The following proposition extends the well known result for algebras:
PROPOSITION 4.2. Let a be a k-linear category. There is a map
Z2C(a) — Ob(Def4(k[€]))
which induces a bijection
HH?(a) — Sk(Defq(k[e]))

Proof. Consider ¢ € Z2C(a). The cocycle ¢ describes the corresponding linear deformation of (a, m)
in the following way. Consider the quiver ale] = k[e] ® a over k[e]. The linear deformation of a is
agle] = (ale], m + ¢e). O

Finally we mention the following fundamental result of [21], where the Hochschild cohomology
of the abelian category A is as defined in §3.6.

PrOPOSITION 4.3. Let A be a k-linear abelian category. There is a bijection
HH?(A) — ab — Def 4(k[e])

4.2 The centre of a graded category
We recall the definition of the centre of a graded category (see also [4, §3]).

DEFINITION 4.4. Let a be a graded category. The centre of a is the centre of a as a category enriched
in G(k), i.e.

3(a) = Hom(14,14)
where 14 : @ — a is the identity functor and Hom denotes the graded module of graded natural

transformations.
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Remark 4.5. Explicitely, an element in 3(a) is given by an element ({a)a € [, a(4, A) with the
naturality property that for all A, A" € a, the following diagram commutes:

a(A, A) — 2 (A, A) @ a(A, A)

1®<l lm

a(A, A') ® a(A, A) a(A, A

In other words, for f € a(A, A),
Carf = (=)W1l pCy

Remark 4.6. Let T be a suspended linear category with suspension X7 : 7 — 7. There is an
associated graded category 7Ty, with Ty, (T,T')" = T (T,X%T") and the graded centre of T is the
centre of the graded category 7,,. If t is an exact dg category with associated triangulated category
T = HO, we have Tyr = Ht.

4.3 The characteristic dg morphism

It is well known that for a k-algebra A, there is a characteristic morphism of graded commutative
algebras from the Hochschild cohomology of A to the graded centre of the derived category D(A).
This morphism is determined by the maps, for M € D(A),

M @% — : HH{(A) = Exthop 4 (A, A) — Ext’y (M, M)

The characteristic morphism occurs for example in the theory of support varieties ([1], [6], [25]).
Recently, Buchweitz and Flenner proved the existence of a characteristic morphism in the context
of morphisms of schemes or analytic spaces ([4]).

In [21], it is observed that a characteristic morphism also exists for abelian categories. Let A be
an abelian category with enough injectives, i = Inj(A) and Com(i) the dg category of complexes of
injectives. As asserted in Proposition 2.7, there is a morphism of differential graded objects

7o : C(Com(i)) — H Com(i)(E, E)
EecCom(i)

Taking cohomology of my (where we restrict to Com™(i)) and composing with the isomorphisms
HHY (A) =2 HH} (A) of Theorem 3.22, we obtain the characteristic morphism

XA+ HH,(A) — 3"D7(A)

Using the Bso-section of Proposition 3.21, we can actually lift the characteristic morphism to the
level of dg objects. In fact we can construct this lifted characteristic morphism for an arbitrary
k-linear category a instead of i.

DEFINITION 4.7. Let a be a k-linear category. The characteristic dg morphism

C(a) — [ Com(a)(C,C)
CeCom(a)

is the composition of the By-morphism C(a) — C(Com(a)) of Theorem 3.21 and the projection
on the zero part of Proposition 2.7. Taking cohomology, we obtain the characteristic morphism

HH*(a) — 3*K(a)

where K (a) is the homotopy category of complexes of a-objects.

In the next section we will interpret the characteristic morphism in terms of deformation theory.
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4.4 The characteristic morphism and obstructions

Let a be a k-linear category. In [20], an obstruction theory is established for deforming objects of
the homotopy category K (a). Let ¢ € Z2C(a) be a Hochschild cocycle and a.[e] the corresponding
linear deformation. Consider the functor

k @i — : K(acle]) — K(a)

and consider C' € K (a). We will say that a (homotopy) c-deformation of C'is a lift of C' along k®¢—-
According to [20, Theorem 5.2], first order c-deformations of C' are governed by an obstruction theory
involving K (a)(C,C[2]) and K (a)(C,C[1]). In particular, the obstruction against c-deforming C' is
an element o, € K(a)(C, C[2]) depending on ¢, whereas K (a)(C, C[2]) itself is independent of c. In
the remainder of this section we show that the way in which the obstruction o. depends on c is
encoded in the characteristic morphism.

THEOREM 4.8. Let a be a linear category and consider the characteristic morphism
Xa: HH?(a) — 3%K(a)
We have
Xa(c) = (00)cek(a)

where oc € K(a)(C, C|2]) is the obstruction to c-deforming C' into an object of K (a.[e]).

Proof. Let Xq be the characteristic dg morphism C?(a) — [eecom(a Com(a)?(C,C) enhancing
Xa- Consider C = (C,5¢) € Com(a) and ¢ € C?(a). According to Theorem 3.21, we have

(Xa(®))c = —(0c, dc)
According to [20, Theorems 3.8, 4.1], [¢(dc, d¢c)] is the obstruction to c-deforming C. O

COROLLARY 4.9. Let A be an abelian category with enough injectives. The characteristic morphism
xa: HH3,(A) — 3°D*(A)
satisfies

xa(e) = (oc)cep+(a)
where oc € Ext%(C, C) is the obstruction to deforming C' into an object of DT (A,). For C € D°(A),
this is equally the obstruction to deforming C' into an object of D(A.).

Proof. This easily follows from Theorem 4.8 since D (A) = K+ (Inj(A)). The last statement follows
from [20, §6.3]. O

4.5 A oo-deformations

In this section, we discuss the sense in which the Hochschild cohomology of an Ay ,-category a
describes its first order A oo[-deformations. The easiest (though not necessarily the best, see Remark
4.17 and §4.7) deformations to handle are those with fixed set of objects. Note that the “flatness”
automatically imposed in this definition is graded freeness, which does not imply cofibrancy in the
dg-case!

DEFINITION 4.10. Let a be a k-linear Ajg o -category where, in the entire definition, Ajg .- can be
replaced by Aso-, cdg, dg or blanc.

i) A first order Ay oo[-deformation of a is a structure of k[e]-linear Ay . -category on a kl[e]-quiver
b = k[e] ®% a, such that its reduction to a coincides with the A [-structure of a (in other
words, the canonical k ®jq b = a is an Ajg [-isomorphism).
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ii) A partial first order Ajg o[-deformation of a is an A -deformation of a’ for some full Af -
subcategory o' C a.

iii) Let b and b’ be (partial) deformations of a. An isomorphism of (partial) deformations is an
isomorphism ¢g : b — b’ of Afo,o0[-categories, of which the reduction to a (resp. a’ in case
of partial deformations) is the identity morphism. A morphism of partial deformations is an
isomorphism of deformations between b and a full A [-subcategory of b'.

iv) A partial deformation b of a is called mazimal if every morphism b — b’ of partial deforma-
tions is an isomorphism.

v) The groupoid A o[ — Defq(k[e]) has as objects first order Ay ,-deformations of a. Its mor-
phisms are isomorphisms of deformations.

vi) The category Ajg | — pDef,(k[e]) has as objects first order partial Ajy -deformations of a.
Its morphisms are morphisms of partial deformations.

vii) The groupoid A [ — mpDef,(k[¢]) has as objects maximal partial A o[-deformations of a.
Its morphisms are isomorphisms of partial deformations.

viii) The groupoid M Cy(k[e]) has as objects ZC?(a). For ¢,c € ZC?(a), a morphism ¢ — ¢’ is an
element h € C!(a) with d(h) = ¢ —c.
PROPOSITION 4.11. Let a be a k-linear Apg [-category.
i) There is an equivalence of categories
MColkle]) — App o~ Defa(k[e])
ii) Consequently, there is a bijection
HH?(a) — Sk(A[g oo[—Defa(k[e]))

Proof. Let p be the Ajg [-structure on a and consider ¢ € Z2C(a). The image of ¢ is the A0,00[
category Ayle] = (ale], u + ¢e). To see that p + ¢e is an Ay [-structure, it suffices to compute
p+ de{p + g} = p{p} + [p{o} + ¢{u}le which is zero since p is an Ay f-structure and ¢ is
a Hochschild cocycle. Next consider a morphism of cocycles h : ¢ — ¢'. The image of h is the
morphism 1+ he : Bagy[e] — Bagy[e]. The identity d(h) = ¢’ — ¢ easily implies the compatibility of
1 + he with the respective A o [-structures. O

DEFINITION 4.12. Consider a k-linear As-category a and ¢ € HH?(a). The ¢ — co-part of a is the
full subcategory ag_o C a with

Ob(ag-os) = {A € a | 0= H*(m)(¢) € H*(a(A, A))}
where 7 is as in §2.5.

Ezample 4.13. Consider a linear category a and ¢ € HH?(a). Put ¢/ = [embrs](¢) € HH?(Com(a)).
We have

Ob(Com(a)ys ) = {C € Com(a) | 0 = xa(@)c € K(a)(C,C[2])}
PROPOSITION 4.14. Let a be a k-linear A..-category.
i) There is a morphism
Afg,00] — Defq(k[e]) — Aoc — pDef (k[e]) : b — b

where by is as in Definition 3.15.

ii) There is a morphism
HH?*(a) — Sk(As — pDef4(k[e]))
mapping ¢ € HH?(a) to an Ax-deformation of as_o C a.
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Proof. For (ii), let ¢ € Z2C(a) be a Hochschild cocycle with [¢] = ¢ and let ¢’ be its restric-
tion to Z2C(ay_o). Then (¢')o € HAE%,OO a?(A, A) is a coboundary, hence there exists h €
HAE%,OO al (A, A) with dq(h) = (¢')o. If we consider h as an element of C!(a), then ¢" = ¢’ —d(h) is
a representative of ¢ with (¢' 4+ d(h))o = 0. Consequently, (Ag_o0) (€] is a partial A,o-deformation
of a corresponding to ¢. O

4.6 Deformations of categories of (pre)complexes

Let a be a k-linear category. In this section we use Theorem 3.21 to associate to a linear deformation
of a, a cdg deformation of the cdg category PCom(a) of precomplexes of a-objects, and a partial dg
deformation of the dg category Com(a) of complexes of a-objects.

Combining Theorem 3.21 and Proposition 4.11 we obtain a functor
MCq(k[é]) - MCPCom(a) (k‘[E]) I A[O,oo[ - DefPCom(a)(k[e])
factoring through a “realization” functor
R: Mca(k[e]) — cdg — DefPCom(a)(k[e])

whose restriction to cdg—Def ¢+ (4 (k[€]) is an equivalence. Similarly, using Proposition 4.14(2),
there is a map

¢« HH?(a) — HH(Com™ (a)) — Sk(dg — pDef o (o) (k[e]))

THEOREM 4.15. Consider ¢ € Z?C(a) and the corresponding linear deformation agle].

i) The cdg deformation R(¢) of PCom(a) is (isomorphic to) the subcategory PComy,;,(age]) C
PCom(age]) consisting of the “trivial” precomplexes C = k[e] @) C for C € PCom(a) .

ii) For every collection of precomplexes I' = {C’}Cepcom(a) where k ®jq C = C, the subcate-
gory PComr(agle]) C PCom(ayle]) spanned by T' is a cdg deformation of PCom(a) which is
isomorphic to R(¢).

iii) For every collection of complexes T' = {C}C’ECom"'(a) where k @y C = C, the subcategory

p—o0
Comi (age]) € Com™(agle]) spanned by I' is a maximal partial dg deformation of Com™ (a)

representing p'([¢]).

Consequently, p' factors over an injection
p+ HH2(a) — Sk(dg — mpDefcor+ g ([e])

The image consists of those maximal partial dg deformations that are dg deformations of some o
with a C o/ C Com™ (a).

Remark 4.16. According to Theorem 4.15 iii), the part of Com™(a) that “dg-deforms” with respect
to ¢ € HH?(a) is spanned by the objects

{C € Com™(a) | 0= xa(¢)c € K(a)(C,C[2])}

Remark 4.17. Morally, Theorem 4.15 ii) suggests that we may consider PCom(ag[e]) as a represen-
tative of the class of cdg deformations of PCom(a) corresponding to the element [¢] € HH?(a). To
make this statement mathematically true, one needs a somewhat more relaxed notion of deforma-
tion (and isomorphism) in which the object set is not necessarily preserved. Clearly, the statement
is true for any such notion of which Definition 4.10 with the isomorphisms relaxed to fully faithful
morphisms that are surjective on objects is a special case. In the same spirit, iii) suggests that we
may consider Com™ (ay[e]) as a representative of the class of maximal partial dg deformations of
Com™(a) corresponding to [4)].
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Proof. There is a canonical morphism of k[e]-quivers

F : PCom(age]) — kle] @ PCom(a)
defined in the following manner. A precomplex C' of as[e]-objects gets mapped to C' = k Qk[q Cc
PCom(a). For two precomplexes C' and D, PCom(ay[e])"(C, D) = [[;cz asle](CY, D7) = kle] ®

PCom(a)™(C, D). This defines F. From now on we will tacitly use F' to identify the left and the
right hand side.

Let us denote the composition of a by m. By definition, the composition of ay[e] is m 4 ¢e. Write
§ for the predifferentials in PCom(a) and § = & + 8¢ for the predifferentials in (a full subcategory
of) PCom(agle]). By Examples 2.10, 3.5, the cdg structure on PCom(a) is given by p = m{d,d} +
m{d} +m and the cdg structure on PCom(ayle]) is given by i = (m + ¢e){d + §'¢,d + 8’} + (m +
¢€){0 + 8'€e} + m. This expression can be rewritten as

fio = mid,8} + [m{5,8"} + m{d',0} + ¢{0,d}]e

fin = m{6} + [m{0'} + p{0})e

f2 =m + ge
On the other hand, we have embrs(¢) = ¢{4, 6} +@{} +¢ so the cdg structure on PCom(a)emprs () (€]
is pn with

Ho = m{57 5} + d){&a 5}6
i = m{d} + ¢{d}e

flo = m+ g€
Comparing i and fi, it becomes clear that on trivial precomplexes (where ¢’ = 0), they coincide.
This already proves i). To produce a deformation isomorphic to fi, it is, by Proposition 4.11, allowed
to change embrs(¢) up to a Hochschild coboundary. For a collection I' as in (2), consider the cor-
responding &' € C*(PCom(a)). Using Definition 2.1 and the definition of the Hochschild differential
d (§2.3), it becomes clear that

fi = [i+d(d)e
thus proving ii).

Now consider a collection I' of complexes as in iii). Obviously Comi: (as[e]) defines a dg de-
formation of Com™(a)s_o hence a partial deformation of Com™(a). By the reasoning above, dg
deformations of a’ C Com™(a) isomorphic to fi|y are precisely given by fi, = fils + d(n)e for some
n € Cl(a’). The existence of an 1 for which (fi,)o = 0 (and hence for which the deformation is dg)

is equivalent to the existence of &' € [Joey '(C,C)* with (d(8"))o = ¢(,6), in other words to the
fact that

0 = xa(¢)c € H*Com™(a)(C, C)
for every C € d’. Clearly, @’ = Com™ (a)4_oo is maximal with this property.

Finally, the statement concerning p easily follows from the observation that for every [¢] €
HH?(a), a C Com™(a)—co- O

4.7 Deformations of derived categories

Let A be an abelian category with enough injectives. Putting a = Inj(.A) in the previous section, we
obtain a bijection

Sk(R) : HHZ,(A) — Sk(cdg — Def - (1) (K[e]))
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and the morphism p’ translates into
p s HH,(A) — Sk(dg — pDef e (4 (k[e]))
The following now immediately follows from Theorem 4.15:

THEOREM 4.18. Consider ¢ € Z2C,p,(A) and the corresponding abelian deformation Ay of A.
Consider the subcategory Dgfg (A)p—oo C D;{g(A) spanned by the complexes C' with

0= xa(¢)c € DT (A)(C,C[2])
For every collection T = {C} CeDnt (A)y of bounded below complexes of Ag-injectives with k ®jq
— g -
C = C, the subcategory D:fg,r(Aaﬁ) C D:{g(Aqs) spanned by T' is a dg deformation of D;{g(A)qs,oo
and a maximal partial dg deformation of Dgg(A) representing p'([¢]). Consequently, p’ factors over
an injection
p: HHZ (A) — Sk(dg — mpDefD:g(Aqb)(k[e]))

The image consists of those maximal partial dg deformations that are dg deformations of some a
with Inj(A) C a C Dy, (A).

Remark 4.19. Theorem 4.18 suggests that we may consider D:{g(.A¢) as a representative of the class
of maximal partial dg deformations of Dc'fg(A) corresponding to [¢] (see also Remark 4.17).

Remark 4.20. A “bounded” version of Theorem 4.18 also holds true: simply replace every dg category
D:{g in the theorem by its bounded version Dgg - szg spanned by the complexes with bounded
cohomology (see also [20, §6.3]).

As the maps Sk(R) and p are not entirely satisfactory, we propose another sense in which to
deform (exact) dg categories, that seems more adapted to (models of) derived categories of abelian
categories.

For a commutative ring R, let dgcat(R) denote the (large) category of R-linear dg categories.
In [28], Tabuada defined a model structure on dgcat(R) for which the weak equivalences are the
quasi-equivalences of dg categories. Let hodgcat(R) denote the homotopy category for this model
structure. In [29], Toén showed that hodgcat(R) is a closed tensor category, with the derived tensor
product ®f{ of dg categories, and with an internal hom between dg categories a and b, which we
will denote RHompg(a,b), but which is not a derived version of the internal hom of dgcat(R) for
the above model structure (in fact it does have a derived interpretation for another model structure
defined in [27]). The forgetful functor hodgcat(k) — hodgcat(k[e]) has the left adjoint

k ®£M — : hodgcat(k[e]) — hodgcat(k)
and the right adjoint
RHomyq(k, —) : hodgcat(kle]) — hodgcat(k)
DEFINITION 4.21. Let a be a k-linear dg category.

i) A first order homotopy dg deformation of a is a kle|-linear dg category b together with an
isomorphism k ®£H b = a in hodgcat(k).

ii) If a is exact, a first order ezact homotopy dg deformation of a is a k[e]-linear exact dg category
b together with an isomorphism a = RHomy(k,b) in hodgcat(k).

Using the techniques of [29], it is not hard to show the following

PROPOSITION 4.22. Let A be an abelian k-linear category and suppose B is a flat abelian deforma-
tion of A. Then Dg,(B) is an exact homotopy dg deformation of Dgg(.A).
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The further investigation of Definition 4.21 (and its variations with respect to other model
structures on dg categories ([26, 27, 28]) is part of a work in progress.
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