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Abstract. We stablish localization theorems for the equivariant operational
Chow rings (or equivariant Chow cohomology) of singular spherical varieties

and T -linear varieties. Our main results provide a GKM description of these
rings in the case of singular spherical varieties admitting a BB-decomposition
into algebraic rational cells. Our description extends certain topological results

to intersection theory on singular varieties.

1. Introduction and statement of the main results

Let G be a connected reductive group defined over an algebraically closed field
k of characteristic zero. Let B be a Borel subgroup of G and T ⊂ B be a maximal
torus of G. An algebraic variety X, equipped with an action of G, is spherical if it
contains a dense orbit of B. (Usually spherical varieties are assumed to be normal
but this condition is not needed here). Spherical varieties have been extensively
studied in the works of Brion [Br1], [Br2], Knop [Kn1] and Luna-Vust [L-V]. If X
is spherical, then it has a finite number of B-orbits, and thus, also a finite number
of G-orbits (see e.g. [Vin], [Kn2]). In particular, T acts on X with a finite number
of fixed points. These properties make spherical varieties particularly suited for
applying the methods of Goresky-Kottwitz-MacPherson (GKM theory) [GKM] in
the topological setup, and Brion’s extension of GKM theory [Br3] to the algebraic
setting of equivariant Chow groups, as defined by Totaro, Edidin and Graham [EG].

Examples of spherical varieties include G×G-equivariant embeddings of G (e.g.,
toric varieties are spherical) and the regular symmetric varieties of De Concini-
Procesi [DP-1]. The equivariant cohomology and equivariant Chow groups of
smooth projective spherical varieties have been studied by De Concini-Procesi
[DP-2], [BCP], De Concini-Littelmann [LP], Brion [Br3] and Brion-Joshua [BJ-2].
In these cases, there are many comparison results relating equivariant cohomology
with equivariant Chow groups. As for the study of the equivariant Chow groups of
possibly singular spherical varieties, some progress has been made by Danilov [D],
Brion [Br3], Payne [P] and the author [G2], [G3].

The problem of developing intersection theory on singular varieties comes from
the fact that the Chow groups do not admit, in general, a natural ring structure or
intersection product. But when singularities are mild, e.g. when X is a quotient of
a smooth variety Y by a finite group F , then A∗(X)⊗Q ' (A∗(Y )⊗Q)F , and so
A∗(X) ⊗ Q inherits the ring structure of A∗(Y ) ⊗ Q. This happens, for instance,
in the case of simplicial toric varieties.

* Supported by the Institut des Hautes Études Scientifiques and TÜBİTAK Project No.
112T233.
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In order to study more general singular spaces, Fulton and MacPherson [Fu]
introduced the notion of operational Chow groups or Chow cohomology. Similarly,
Edidin and Graham have defined the Equivariant Operational Chow groups [EG],
which we briefly recall. Let X be a G-variety. The G-equivariant operational Chow
groups of X, denoted Ai

G(X), are defined as operations c(Y → X) : AG
∗ (Y ) →

AG
∗−i(Y ) for every G-map Y → X. As for ordinary operational Chow groups

([Fu], Chapter 17), these operations should be compatible with the operations on
equivariant Chow groups (pull-back for l.c.i. morphisms, proper push-forward,
etc.). From this definition it is clear that for any X, A∗

G(X) has a ring structure.
The ring A∗

G(X) is graded, and Ai
G(X) can be non-zero for any i ≥ 0. Equivariant

operational Chow groups come with cap products, making AG
∗ (X) into an A∗

G(X)-
module. Moreover, the equivariant Chern classes are elements of the equivariant
operational Chow ring, see [EG] for more details. It follows from [EG] that Ai

G(X)
can be identified with the operational Chow group Ai(XG), where XG is a finite
approximation of the Borel construction. This implies, using a result of Vistoli
[Vis-2], that A∗

G(X) ' A∗
T (X)W . Throughout this paper, we consider rational

operational Chow groups A∗
G(X) ⊗ Q, so we drop Q from the notation in the

sequel.

In [FMSS], Fulton, MacPherson, Sottile and Sturmfels succeed in describing the
non-equivariant operational Chow groups of complete spherical varieties. Indeed,
they show that the Kronecker duality homomorphism

K : Ai(X) −→ Hom(Ai(X),Q), α 7→ (β 7→ deg(β ∩ α))

is an isomorphism for complete spherical varieties. Here deg is the degree homo-
morphism A0(X) → Q. Moreover, they show that A∗(X) is finitely generated by
the B-orbit closures, and with the aid of the map K, they provide a combinato-
rial description of A∗(X) and the structure constants of the cap and cup products
[FMSS]. Although we stated their result in the case of spherical varieties, it holds
more generally for complete varieties with a finite number of orbits of a solvable
group. In particular, the results of [FMSS] hold for Schubert varieties. This result
is quite marvelous in that it gives a presentation of a very abstract ring, namely
A∗(X), in a very combinatorial manner. This is the result the motivated the main
results of this article.

The aim of this paper is to extend the results of [FMSS] to the setting of equi-
variant operational Chow rings, for two natural classes of algebraic varieties with
group actions: spherical varieties and T -linear varieties: briefly, a T -linear variety
is a variety with a T -action that can be obtained by an inductive procedure starting
with a finite dimensional T -representation, in such a way that the complement of
a linear variety equivariantly embedded in affine space is also a linear variety, and
any T -variety which can be stratified as a finite disjoint union of linear varieties is
a linear variety. See Definition 2.1 for a formal definition. T -varieties have been
studied by Jannsen [J], Totaro [T], and Joshua-Krishna [J-K].

We also extend the localization techniques from equivariant Chow groups [Br3]
to equivariant Chow cohomology. Our description falls within the context of GKM
theory. The main applications of our theory are to the study of possibly singular
spherical varieties and to Schubert varieties. Our results give a large class of singular
spaces for which localization holds in equivariant Chow cohomology. Previously,
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this was known to be the case for smooth spherical varieties, by the work of Brion
[Br3], and toric varieties, by work of Payne [P].

For smooth varieties our results are not new. In fact, for smooth spherical vari-
eties they are due to Brion [Br3]. The importance of these paper resides on the fact
that it can be applied to a large class of singular spaces, e.g., rationally smooth pro-
jective embeddings of reductive groups, Schubert varieties and Q-filtrable complex
spherical varieties (Sections 3 to 6). Our results here complement Brion’s deepest
results [Br3].

This article is organized as follows. The first two sections briefly review the
results from [Br3], [Ki] and [FMSS] needed in our study. It turns out that Brion’s
localization theorem (see Proposition 2.8) can be slightly modified to serve our
purposes. From work of Kimura [Ki] we know that equivariant operational Chow
groups are more computable. We end Section 2 with a discussion as to why it
is reasonable to expect a description of A∗

T (−) as a ring of piecewise polynomial
functions.

Section 3 is the conceptual core of this article. We start by defining Equivariant
Kronecker duality spaces. These spaces are complete T -varieties X which satisfy
two conditions: (i) AT

∗ (X) is finitely generated over S = AT
∗ (pt), and (ii) the

equivariant Kronecker duality map

KT : A∗
T (X) −→ HomS(A

T
∗ (X), S) α 7→ (β 7→ pX∗(β ∩ α))

is an isomorphism of S-modules. Here pX∗ : AT
∗ (X) → S is the map induced by

pushforward to a point. As an example, we show that this class includes all T -linear
varieties (Proposition 3.5), a result that follows almost immediately from the work
of Joshua and Krishna [J-K]. Later in that section we prove our first main result,
namely, the Localization Theorem for equivariant Kronecker duality spaces.

Theorem 3.6 Let X be a complete T -variety satisfying Kronecker duality. Let
T ′ ⊂ T be a subtorus of T and let iT ′ : XT ′ → X be the inclusion of the fixed point
subvariety. If XT ′

also satisfies T -equivariant Kronecker duality, then the injective
morphism

i∗T ′ : A∗
T (X) → A∗

T (X
T ′
)

becomes an isomorphism after inverting finitely many characters of T that restrict
non-trivially to T ′.

Let X be an equivariant Kronecker duality space. We say that X satisfies the
strong version of Kronecker duality if the fixed point varieties XT and XT ′

, where
runs over all codimension one subtori T ′ of T , satisfy Kronecker duality. This notion
has indeed very important implications, in particular, there is a precise version of
the localization theorem.

Theorem 3.8. Let X be a complete T -variety satisfying the strong equivariant
Kronecker duality. If the S-module A∗

T (X) is free, then the image of the injective
map

i∗T : A∗
T (X) → A∗

T (X
T )

is the intersection of the images of the maps

i∗T,T ′ : A∗
T (X

T ′
) → A∗

T (X
T ),

where T ′ runs over all subtori of codimension one of T .
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From here we deduce GKM theory for equivariant operational Chow rings. Recall
that a T -variety is called T -skeletal if T acts with a finite number of fixed points
and invariant curves.

Theorem 3.11. Let X be a normal projective T -skeletal variety. If X satis-
fies equivariant Kronecker duality and the A∗

T (pt)-module AT
∗ (X) is free, then the

restriction mapping

A∗
T (X) −→ A∗

T (X
T ) =

⊕
xi∈XT

A∗
T

is injective, and its image is the subalgebra PP ∗
T (X) of piecewise polynomial func-

tions on the GKM-graph of X.

Section 4 is devoted to spherical varieties. After introducing a few key structural
properties, we show that they are strong Equivariant Kronecker duality spaces and,
when T -skeletal, GKM theory holds.

Theorem 4.3, 4.9. Let X be a complete spherical G-variety. Then X satisfies
the strong Equivariant Kronecker duality. Moreover, if the S-module A∗

T (X) is free,
then the image of the injective map

i∗T : A∗
T (X) → A∗

T (X
T )

is the intersection of the images of the maps

i∗T,T ′ : A∗
T (X

T ′
) → A∗

T (X
T ),

where T ′ runs over all subtori of codimension one of T .
Hence, we describe not only the module structure of the equivariant operational

Chow groups, but also their ring structure in the case of spherical varieties and
T -linear varieties.

From our previous results, it follows that the freeness of the equivariant Chow
group AT

∗ (X), of a spherical G-varietyX, is a key condition for applying our results.
Hence, in the second part of this article we provide a way for computing A∗

T (X)
for Q-filtrable varieties: normal projective spherical varieties whose associated BB-
decomposition consists of algebraic rational cells (Definition 5.5). Concisely, an
affine T -variety X with an attractive fixed point x is called an algebraic rational
cell if the associated link

P(X) := [X \ {0}]/Gm

satisfies A∗(P(X)) ' A∗(Pn−1), where n = dim(X). The notion of algebraic ra-
tional cell is inspired from our previous work on the topology of possibly singular
group embeddings [G1]. It turns out to be very well suited for the study of Chow
groups on singular varieties. The main result of Section 5 is presented next.

Theorem 5.4, 5.14. Let X be a Q-filtrable T -variety. Then the T -equivariant
Chow group of X is a free module of rank |XT |. In fact, it is freely generated by the
classes of the closures of the cells Wi. Consequently, A∗(X) is also freely generated
by the classes of the cell closures Wi.

In Section 6, we provide some applications. We show that the equivariant oper-
ational Chow rings of Schubert varieties are, not surprisingly, piecewise polynomial
functions defined on the Bruhat graph (Theorem 6.2). Finally, in the second half
of Section 6 we compare our results here with the topological results of [G2] and
describe the Chow groups and operational Chow rings of complex rationally smooth
group embeddings (Theorem 6.3)
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The theoretical results of Section open the way for a systematic, characteristic
free, study of the equivariant Chow groups of spherical singular varieties, by using
the notion of equivariant multiplicities. This will be pursued in a subsequent paper,
in the case of projective group embeddings of reductive groups [G3].
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to IHES for its support, outstanding hospitality and excellent atmosphere. A very
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Scientific and Techonological Research Council of Turkey (TÜBİTAK) for their
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2. Preliminaries

Notation and conventions: Throughout this paper, we fix an algebraically closed
field k of characteristic zero. All algebraic varieties and algebraic groups are as-
sumed to be defined over k. An algebraic variety is a separated reduced scheme of
finite type over k. Observe that varieties need not be irreducible. We denote by
G a connected reductive algebraic group. A variety X provided with an algebraic
action of G is called a G-variety.

In this paper, group actions are assumed to be locally linear, i.e. the varieties
we consider are covered by invariant quasi-projective open subsets (and hence by
invariant affine open subsets in the case of torus actions). This assumption is
fulfilled, e.g., for G-stable subvarieties of normal G-varieties [Su].

Let X be a G-variety. We denote by AG
∗ (X) the equivariant Chow group of

X with rational coefficients. The equivariant Chow groups are defined in [EG],
using Totaro’s finite approximation to the Borel construction. When X is smooth,
AG

∗ (X) admits an intersection pairing and we denote by A∗
G(X) the corresponding

ring graded by codimension. For general X, we denote by A∗
G(X) the equivariant

operational Chow cohomology of X, as defined in [EG].

Let T be a maximal torus of G. Let W be the Weyl group of (G,T ). Denote
by pX,T : XT → BT the structural map (similarly for pX,G : XG → BG). Let
S = A∗

T (pt) and SW = A∗
G(pt) be the corresponding equivariant Chow groups of a

point. It follows from [EG], using the structural map, that AT
∗ (X) (resp. AG

∗ (X))
are modules over S (resp. SW ). We denote by pX,T∗ the proper pushforward (also
denoted by

∫
X
).

Definition 2.1. Let T be an algebraic torus and let X be a T -variety.

(1) We say that X is T -equivariantly 0-linear if it is either empty or isomorphic
to a finite-dimensional rational representation of T .

(2) For a positive integer n, we say that X is T -equivariantly n-linear if there
exists a family of T -varieties {U, Y, Z}, such that Z ⊂ Y is a T -invariant
closed subvariety with U its complement, Z and one of the varieties U or Y
are T -equivariantly (n− 1)-linear and X is the other member of the family
{U, Y, Z}.



6 RICHARD P. GONZALES

(3) We say that X is T -equivariantly linear (or simply, T -linear) if it is T -
equivariantly n-linear for some n ≥ 0.

It is immediate from the above definition that if T → T ′ is a morphism of
algebraic tori, then every T ′-equivariantly linear variety is also T -equivariantly
linear.

The following is recorded in [J-K].

Proposition 2.2. Let T be an algebraic torus and let T ′ be a quotient of T . Let
T act on T ′ via the quotient map. Then the following hold:

(1) T ′ is T -linear.
(2) A toric variety with dense torus T is T -linear.
(3) A T -cellular scheme is T -linear.
(4) Every T -variety with finitely many T -orbits is T -linear. �
It follows from the previous result and the Bruhat decomposition that flag vari-

eties, partial flag varieties and Schubert varieties are all T -linear, since they come
with a paving by affine spaces (i.e., they are T -cellular). Moreover, if X is a
smooth projective spherical G-variety, then it is T -linear. Indeed, X comes with
a BB-decomposition into affine spaces [B2] (because XT is finite and X smooth).
Since this BB-decomposition is filtrable [B1], X is T -cellular. We do not know if
all spherical varieties are T -linear.

Next we state here Brion’s description [Br3] of the equivariant Chow groups of
T -varieties.

Theorem 2.3. Let X be a T -variety. Then the S-module AT
∗ (X) is defined by

generators [Y ] where Y is an invariant subvariety of X and relations [divY (f)] −
χ[Y ] where f is a rational function on Y which is an eigenvector of T of weight
χ. Moreover, the map AT

∗ (X) → A∗(X) vanishes on MAT
∗ (X), and it induces an

isomorphism
AT

∗ (X)/MAT
∗ (X) → A∗(X).

�
The result below is due to Brion [Br3]. It is a refinement of Theorem 2.3 for

varieties with a torus action which extends to an action of a larger group.

Theorem 2.4. Let X be a variety with an action of a connected solvable linear
algebraic group Γ, and let T be a maximal torus of Γ.

(i) The equivariant Chow group AT
∗ (X) is generated as an S-module by the classes

[Y ] where Y ⊂ X is a Γ-invariant subvariety.
(ii) If moreover the S-module AT

∗ (X) is free, then the S-module of relations be-
tween these classes is generated by the [divY (f)] − χ[Y ] where Y ⊂ X is a
Γ-invariant subvariety, and where f is a rational function on Y which is an
eigenvector of Γ of weight χ.

�
Remark 2.5. It follows from Theorem 2.4 that if X has an action of a solvable
group Γ with finitely many orbits, then AT

∗ (X) is generated by the closures of the
Γ-orbits, and so AT

∗ (X) is a finitely generated S-module. In particular, if X is a
spherical G-variety, then A∗

T (X) is finitely generated over S.

As for T -linear varieties, one has the following result.
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Lemma 2.6. Let X be a T -linear variety. Then AT
∗ (X) is finitely generated S-

module.

Proof. This is a consequence of the inductive definition of T -linear varieties and
the fact that for 0-linear varieties, i.e., the T -equivariant linear representations An

of T , one has A∗
T (An) ' S (by homotopy invariance). Now we argue by induction.

Assume the result for T -equivariantly (n− 1)-linear varieties. Let X be a n-linear
variety. By definition, two localization sequences can occur:

AT
∗ (Z) → AT

∗ (X) → AT
∗ (U) → 0,

where Z and U are (n− 1)-linear. By the inductive hypothesis, the terms on both
ends are finitely generated, hence so is AT

∗ (X). In the second case

AT
∗ (Z) → AT

∗ (Y ) → AT
∗ (X) → 0,

where Z and Y are (n − 1)-linear. Clearly, in this case, it follows that AT
∗ (X) is

also finitely generated. �
The following is the localization theorem for equivariant Chow groups. See [Br3].

Theorem 2.7. Let i : XT → X be the inclusion of the fixed point variety. Then
the S-linear map i∗ : AT

∗ (X
T ) → AT

∗ (X) is an isomorphism after inverting all
non-zero elements of M . �

For later use, we record here a slightly more general version of the previous
localization theorem.

Proposition 2.8. Let X be a T -variety. Let H be a subtorus of T . Then the
induced morphism of equivariant Chow groups

i∗ : AT
∗ (X

H) → AT
∗ (X)

becomes an isomorphism after inverting finitely many characters of T that restrict
non-trivially to H.

Before proving this proposition, let us recall the following fundamental facts.

Lemma 2.9. Let T be an algebraic torus and let X be an affine T -variety. Denote
by XT the fixed point variety. Then the ideal of XT is generated by all regular
functions on X which are eigenvectors of T with a non-trivial weight.

Proof. Let x ∈ XT and let f be an eigenvector of T with non-trivial weight, say
χ. Then, for all t ∈ T , we have f(x) = f(tx) = χ(t)f(x). But χ is a non-trivial
character, so f(x) = 0. For the converse, simply recall that if x /∈ XT , then there
exists a function f , eigenvector of T , such that f(x) 6= 0. �

This lemma could be generalized as follows. Let H be a subtorus of T . Our aim
is to describe XH , the fixed point set of H.

Lemma 2.10. The ideal of XH is generated by all regular functions on X which
are eigenvectors of T with a weight that restricts non-trivially to H.

Proof. Let x ∈ XH and let f be an eigenvector of T with a weight χ such that
χ|H 6= 1. Then, for all h ∈ H, we have f(x) = f(hx) = χ(h)f(x). Now pick h0 ∈ H
so that χ(h0) 6= 1. Hence the identity f(x) = χ(h0)f(x) implies f(x) = 0.

Before proving the converse, let us fix some notation. Denote by J T
H the set of

all regular functions on X which are eigenvectors of T with a weight that restricts
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non-trivially to H. In contrast, write IH for the set of all regular functions on X
which are eigenvectors of H with a non-trivial weight. Clearly,

J T
H ⊂ IH .

Denote by Z(J T
H ) and Z(IH) the subvarieties of X defined by the ideals generated

by J T
H and IH respectively.

With this notation, we ought to prove that

if x ∈ Z(J T
H ), then x ∈ Z(IH)

(the consequent being equivalent to x ∈ XH by the previous lemma).
So fix x′ ∈ Z(J T

H ), and let g ∈ IH with non-trivial H-weight χg. Since T is
acting on X, we can write

g =
∑
i

fi,

where fi are eigenvectors of T of weight χi. We can further split this sum into two
parts

g =
∑
i∈N

fi +
∑
i/∈N

fi,

where i ∈ N if and only if H ⊂ ker (χi). It follows from our construction that
χi(h) = 1 for all h ∈ H and all i ∈ N . In constrast, fi(x) = 0 for all i /∈ N ; that is,
evaluating g at x′ yields g(x′) =

∑
i∈N fi(x

′).

Now let h ∈ H and let us evaluate g(hx′). We know that

g(hx′) =
∑
i∈N

fi(hx
′) +

∑
i/∈N

fi(hx
′) =

∑
i∈N

χi(h)fi(x
′) +

∑
i/∈N

χi(h)fi(x
′),

which in turn reduces to

g(hx′) =
∑
i∈N

χi(h)fi(x
′) + 0 =

∑
i∈N

fi(x
′) = g(x′)

by our earlier assumptions. Hence,

g(hx′) = g(x′).

But then,
χg(h)g(x

′) = g(hx′) = g(x′),

for all h ∈ H (recall that g is a H-eigenvector of non-trivial H-weight χg). This
readily implies g(x′) = 0. �
Proof of Proposition 2.8. By virtue of Lemma 2.10, our proof is an adaptation,
almost word for word, of Brion’s proof of Corollary 2.3.2 in [Br3]. So we provide only
a sketch of the crucial points. From Theorem 2.3 we know that AT

∗ (X) is generated
by the classes of T -invariant subvarieties Y ⊂ X. Moreover, by assumption, X is
a finite union of T -stable affine open subsets Xi. Now Lemma 2.10 implies that
the ideal of each fixed point variety XH

i is generated by all regular functions on Xi

which are eigenvectors of T with a weight that restricts non-trivially to H. We can
choose a finite set of such generators (fij), with respective weights χij .

Now let Y ⊂ X be a T -invariant subvariety of positive dimension. If Y is not
fixed pointwise by H, then one of the fij defines a non-zero rational function on Y .
Then, in the Chow group, we have χij [Y ] = [divY fij ]. So after inverting χij , we get

[Y ] = χ−1
ij [divY fij ]. Arguing by induction on the dimension of Y , we obtain that

i∗ becomes surjective after inverting the χij ’s. A similar argument, using these
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χij ’s in Brion’s proof of Corollary 2.3.2 in [Br3], shows that i∗ is injective after
localization. �

When X is projective and smooth [Br3], the localization theorem yields a GKM
description of the image of the natural map i∗T : A∗

T (X) → A∗
T (X

T ). Our purpose
is to extend this picture, as much as possible, to possibly singular varieties (Section
3). Before proceeding to the core part of this paper, we state a few results from
Kimura [Ki] and Edidin-Graham that will be useful in our task.

Recall ([Fu], Definition 18.3) that an envelope p : X̃ → X is a proper map such

that for any subvariety W ⊂ X there is a subvariety W̃ mapping birationally to W
via p. In the case of group actions, we will say that p : X̃ → X is an equivariant
envelope if p isG-equivariant, and if we can take W̃ to beG-invariant forG-invariant
W . If there is an open set X0 ⊂ X over which p is an isomorphism, then we say
that p : X̃ → X is a birational envelope. This properties are compatible with
Totaro’s algebraic approximation to the Borel construction. For details see [EG],
Section 2.6.

Lemma 2.11. Let G be a connected linear algebraic group. Let X be a G-variety.
Then there exists a G-equivariant smooth envelope p : X̃ → X.

Proof. By equivariant resolution of singularities, there is a resolution π : X ′ → X
such that π is an isomorphism outside some invariant subvariety S ⊂ X. By
Noetherian induction, we may assume that we have constructed an equivariant
envelope S̃ → S. Now set X̃ = X ′ t S̃ (disjoint union). The claim follows. �

Kimura’s computation of Chow cohomology implies that A∗
T (X) of a singular

variety X injects into A∗
T (X̃) of a smooth resolution (which is the usual Chow ring

of a smooth variety) with an explicit cokernel.

Theorem 2.12. [Ki] Let p : X̃ → X be a smooth equivariant envelope. Then the

induced map p∗ : A∗
G(X) → A∗

G(X̃) is injective. �
Lemma 2.13. Let X be a complete T -variety and let i : XT → X be the inclusion
of the fixed point set. Then the induced map i∗T : A∗

T (X) → A∗
T (X

T ) is injective.

Proof. By the previous lemma, there exists a T -equivariant smooth envelope p :
X̃ → X. It follows that p∗ : A∗

T (X) → A∗
T (X̃) is injective [Ki]. Now notice that X̃

is smooth projective, and so the induced map i∗ : A∗
T (X̃) → A∗

T (X̃
T ) is injective.

Thus, the commutative diagram below

A∗
T (X)

p∗
//

i∗

��

A∗
T (X̃)

i∗

��
A∗

T (X
T )

p∗
// A∗

T (p
−1(XT )).

renders i∗ : A∗
T (X) → A∗

T (X
T ) injective. Indeed, because p−1(XT ) contains X̃T

and X̃ is smooth, then the vertical map on the right is injective. Also, p∗ is injective
by [Ki]. Thus, we conclude that i∗ on the left is also an injection. �
Corollary 2.14. Let X be a complete T -variety. Let Y be a T -invariant subvariety
containing XT . Denote by j : Y → X the natural inclusion. Then the induced map
j∗ : A∗

T (X) → A∗
T (Y ) is injective.
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Proof. Simply notice that j : Z → X fits into the commutative triangle

Y
j

��@
@@

@@
@@

@

XT
iT //

iT,Y

==||||||||
X

Thus the induced map i∗T : A∗
T (X) → A∗

T (X
T ) factors as j∗ : A∗

T (X) → A∗
T (Y )

followed by i∗T,Y : A∗
T (Y ) → A∗

T (X
T ). By Lemma 2.13, i∗T is injective. Hence, j∗ is

also injective. �

We wish to describe the image of the restriction map

i∗T : A∗
T (X) → AT

∗ (X
T ).

For this, let T ′ ⊂ T be a subtorus of codimension one. Observe that iT : XT → X
factors as iT,T ′ : XT → XT ′

followed by iT ′ : XT ′ → XT . Thus, the image of i∗T is
contained in the image of i∗T,T ′ . In symbols,

Im[i∗T : A∗
T (X) → A∗

T (X
T )] j

∩
T ′⊂T

Im[i∗T,T ′ : A∗
T (X

T ′
) → A∗

T (X
T )],

where the intersection runs over all codimension-one subtori of T . This observation
will lead, as in the classical case, to a complete description of the image of i∗T , if
the A∗

T -module A∗
T (X) is free.

3. Equivariant Kronecker duality, localization and GKM theory for
equivariant Chow cohomology

3.1. Equivariant Kronecker duality spaces.

Definition 3.1. Let X be a complete T -variety. We say that X satisfies T -
equivariant Kronecker duality (or Kronecker duality for short) if the following
hold:

(i) AT
∗ (X) is a finitely generated S-module.

(ii) The equivariant Kronecker duality map

KT : A∗
T (X) −→ HomS(A

T
∗ (X), S) α 7→ (β 7→ pX∗(β ∩ α))

is an isomorphism of S-modules.

Remark 3.2. Notice that the equivariant Kronecker duality map is functorial for
morphisms between complete varieties. Indeed, let p : X̃ → X be an equivariant
(proper) morphism of complete varieties. It is important to notice that∫

X̃

p∗(ξ) ∩ z =

∫
X

p∗(p
∗(ξ) ∩ z) =

∫
X

(ξ ∩ p∗(z)),

due to the projection formula [Fu]. This formula implies the commutativity of the
diagram

A∗
T (X)

p∗
//

KT

��

A∗
T (X̃)

KT

��
HomS(A

T
∗ (X), S)

(p∗)
t

// HomS(A
T
∗ (X̃), S),

where (p∗)
t is the transpose of p∗ : AT

∗ (X̃) → AT
∗ (X).
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Not all smooth varieties with a torus action satisfy Equivariant Kronecker du-
ality. For instance, by taking the trivial action of T on a projective smooth curve,
one sees that KT is an extension of the usual non-equivariant Kronecker duality
map K. As pointed out in [FMSS], the kernel of K in degree one is the Jacobian of
the curve.

Lemma 3.3. Let X be a smooth projective T -variety. Then X satisfies equivariant
Kronecker duality if and only if it satisfies the non-equivariant Kronecker duality,
i.e. K : Ai(X) → Hom(Ai(X),Q) is an isomorphism for all i.

Proof. Since X is smooth and projective, then both A∗
T (X) and AT

∗ (X) are free
S-modules. The claim now follows from the Graded Nakayama lemma and the
commutativity of the diagram below:

A∗
T (X)

KT //

��

HomS(A
T
∗ (X), S)

��
A∗(X) = A∗

T (X)/MA∗
T (X)

K // Hom(AT
∗ (X)/MAT

∗ (X),Q) = Hom(A∗(X),Q).

�
Next we show that equivariant Kronecker duality is satisfied for a large class of

varieties, namely, T -linear varieties. The main ingredient is the following result,
due to Joshua and Krishna [J-K] in the equivariant setting, and to Totaro [T] and
Jannsen [J] in the non-equivariant setting.

Proposition 3.4. [J-K] If X is a T -linear variety and Y is any T -variety, then

AT
∗ (X)⊗S AT

∗ (Y ) ' AT
∗ (X × Y ).

�
In other words, T -linear varieties satisfy the Equivariant Künneth Decomposi-

tion. Next we state a result due essentially to Joshua and Krishna (though it is not
stated in [J-K]). Its proof can be derived formally from the previous Proposition,
as it is done in [FMSS], Theorem 3.

Proposition 3.5. If X is a complete T -variety such that

AT
∗ (X)⊗S AT

∗ (Y ) ' AT
∗ (X × Y )

for all T -varieties Y , then the equivariant Kronecker map

KT : A∗
T (X) → HomS(A

T
∗ (X), S)

is an isomorphism.

We only outline the proof of Proposition 3.5, which is based on one of the main
results of Fulton, MacPherson, Sottile, and Sturmfels [FMSS]. It suffices to con-
struct a formal inverse to KT . Thus, for every T -map f : Y → X and m ≥ i, we
have to construct a homomorphism from AT

m(Y ) to AT
m−i(Y ). This homomorphism

is defined to be the composite

AT
m(Y ) −→ AT

m(X × Y ) =
⊕

(AT
j (X)⊗AT

m−j(Y )) −→ AT
i (X)⊗AT

m−i(Y )

−→ S ⊗AT
m−i(Y ) −→ AT

m−i(Y ).
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The maps here are clear except for the first one, which is induced by the inclusion
of Y into X × Y via the graph of f : Y → X. One checks that these maps (for
different Y ’s) satisfy the compatibility conditions of [Fu], Chapter 17, to give an
element of Ai

T (X), and that every element of Ai
T (X) is so obtained. We refer the

reader to [FMSS] for the details.

The main feature of equivariant Kronecker duality spaces, from the viewpoint
of algebraic torus actions on varieties, is that they supply a theoretical background
for stablishing Localization Theorems on the equivariant operational Chow groups.

Theorem 3.6. Let X be a complete T -variety satisfying Kronecker duality. Let
T ′ ⊂ T be a subtorus of T and let iT ′ : XT ′ → X be the inclusion of the fixed point
subvariety. If XT ′

also satisfies T -equivariant Kronecker duality, then the injective
morphism

i∗T ′ : A∗
T (X) → A∗

T (X
T ′
)

becomes an isomorphism after inverting finitely many characters of T that restrict
non-trivially to T ′.

Proof. Because of the (usual) localization theorem for equivariant Chow groups

(Proposition 2.8) we know that the localized map (iT ′∗)F : AT
∗ (X

T ′
)F → AT

∗ (X)F
is an isomorphism, where F is a finite family of characters of T that restrict non-
trivially to T ′.

Now consider the commutative diagram

A∗
T (X)

i∗
T ′ //

��

A∗
T (X

T ′
)

��
HomS (AT

∗ (X), S)
(iT ′∗)

t

// HomS (AT
∗ (X

T ′
), S),

where (iT ′∗)
t represents the transpose of iT ′∗ : AT

∗ (X
T ′
) → AT

∗ (X) (commutativity
follows from Remark 3.2, because iT ′ is proper). By our assumptions on X and

XT ′
, both vertical maps are isomorphisms. Moreover, after localization at F , the

above commutative diagram becomes

A∗
T (X)F

(i∗
T ′ )F //

��

A∗
T (X

T ′
)F

��
(HomS (AT

∗ (X), S))F
((iT ′∗)

t)F // HomSF (AT
∗ (X

T ′
)F , SF ),

Since AT
∗ (X) is a finitely generated S-module (Remark 2.5), localization com-

mutes with formation of Hom (see [Ei], Prop. 2.10, p. 69), and so

A∗
T (X)F ' (HomS (AT

∗ (X), A∗
T ))F ' HomSF (A

T
∗ (X)F , SF ).

Similarly, for XT ′
we obtain

A∗
T (X

T ′
)F ' HomSF (A

T
∗ (X

T ′
)F , SF ).
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In other words, the bottom map in the diagram above fits in the square diagram

(HomS (AT
∗ (X), S))F

((iT ′∗)
t)F //

��

HomSF (AT
∗ (X

T ′
)F , SF )

��
HomSF (A

T
∗ (X)F , SF )

((iT ′∗)F )t // HomSF (A
T
∗ (X

T ′
)F , SF ),

where the vertical maps are natural isomorphisms ([Ei], Prop. 2.10, p. 69). But
we already know that (iT ′∗)F is an isomorphism, hence so are ((iT ′∗)F )

t, ((iT ′∗)
t)F

and (i∗T ′)F . We are done. �
Let X be T -variety. We know from Lemma 2.13 that i∗T : A∗

T (X) → A∗
T (X

T ) is
injective. We wish to describe the image of the restriction map

i∗T : A∗
T (X) → AT

∗ (X
T ).

For this, let T ′ ⊂ T be a subtorus of codimension one. Observe that iT : XT → X
factors as iT,T ′ : XT → XT ′

followed by iT ′ : XT ′ → XT . Thus, the image of i∗T is
contained in the image of i∗T,T ′ . This observation will lead, as in the classical case,

to a complete description of the image of i∗T , if the A∗
T -module A∗

T (X) is free and
X is an equivariant Kronecker duality space.

Definition 3.7. Let X be a T -variety. We say that X satisfies the strong equi-
variant Kronecker duality if X as well as XT and XT ′

, for all codimension one
subtori T ′ ⊂ T , satisfy T -equivariant Kronecker duality.

Notice that there is only finitely many codimension one subtori T ′ of T for which
XT ′ 6= XT . This can be seen by linearizing the action around a fixed point x ∈ XT .

We now state a precise version of the Localization Theorem for T -varieties sat-
isfying the strong equivariant Kronecker duality.

Theorem 3.8. Let X be a complete T -variety satisfying the strong equivariant
Kronecker duality. If the S-module A∗

T (X) is free, then the image of the injective
map

i∗T : A∗
T (X) → A∗

T (X
T )

is the intersection of the images of the maps

i∗T,T ′ : A∗
T (X

T ′
) → A∗

T (X
T ),

where T ′ runs over all subtori of codimension one of T .

Proof. We follow Brion’s proof of Theorem 6 in [Br4] almost verbatim, interchang-
ing equivariant cohomology with equivariant Chow cohomology in virtue of Theo-
rem 3.6. We already know that i∗T is injective. Moreover, it becomes an isomor-
phism after inverting a finite family F of non-trivial characters of T (by Theorem
3.6 applied to X and XT ). It remains to show that the intersection of the images
of the i∗T,T ′ is contained in the image of i∗T .

Choose a basis (ej)j∈J of the free S-module A∗
T (X). For any j ∈ J , let

e∗j : A∗
T (X) → S

be the corresponding coordinate function. Then there exists a S-linear map

fj : A
∗
T (X

T ) → S[1/χ]χ∈F

such that fj ◦ i∗T = e∗j .
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We may assume that each χ ∈ F is primitive, i.e., not divisible in Ξ(T ). Then
its kernel Ker(χ) ⊂ T is a subtorus of codimension one. Let u be in the image of
i∗T,Ker(χ); write

u = i∗T,ker(χ)(v)

where v ∈ A∗
T (X

ker(χ)). By Theorem 3.6 applied to Γ = ker(χ), there exists a
product Pχ of weights of T which are not multiples of χ, such that Pχv is in the
image of i∗ker(χ). It follows that Pχu is in the image of i∗T . Applying fj , we obtain

Pχfj(u) ∈ S. Thus, the denominator of fj(u) is not divisible by χ.
If u ∈ A∗

T (X
T ) is in the intersection of the images of the i∗T,ker(χ) for all χ ∈ F ,

then fj(u) ∈ S[1/χ]χ∈F , but the denominator of fj(u) is not divisible by any
element of F ; whence fj(u) ∈ S. It follows that u = i∗T (

∑
j∈J fj(u)ej) is in the

image of i∗T . �

From the inductive definition of T -linear varieties it follows that the fixed point
set XH of any subtorus H ⊂ T is T -equivariantly n-linear if X is T -equivariantly
n-linear. Hence we are led to the following.

Corollary 3.9. Let X be a complete T -linear variety. Then X satisfies the strong
equivariant Kronecker duality. If moreover AT

∗ (X) is a free S-module, then then
the image of the injective map

i∗T : A∗
T (X) → A∗

T (X
T )

is the intersection of the images of the maps

i∗T,T ′ : A∗
T (X

T ′
) → A∗

T (X
T ),

where T ′ runs over all subtori of codimension one of T . �

3.2. GKM theory. GKM theory is a relatively recent tool that owes its name
to the work of Goresky, Kottwitz and MacPherson [GKM]. This theory encom-
passes techniques that date back to the early works of Atiyah, Segal, Borel and
Chang-Skjelbred. It has been extremely useful in the description of the equivari-
ant cohomology of singular spherical varieties (e.g. [G2]). This theory has been
extended to the equivariant Chow groups in the work of Brion [Br3].

Here we propose yet another generalization of GKM theory to the study of
possibly singular Kronecker duality spaces and their equivariant operational Chow
rings. Our motto is that equivariant Kronecker duality spaces are the analogue of
the equivariantly formal spaces of Goresky, Kottwitz, MacPherson in the setting of
operational Chow cohomology.

We start by recalling a few definitions from [GKM] and [G1].

Definition 3.10. Let X be a projective T -variety. Let µ : T × X → X be the
action map. We say that µ is a T -skeletal action if

(1) XT is finite, and
(2) The number of one-dimensional orbits of T on X is finite.

In this context, X is called a T -skeletal variety.

Let X be a normal projective T -skeletal variety. Then X has an equivariant
embedding into a projective space with a linear action of T ([Su], Theorem 1).
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Moreover, it is possible to define a ring PP ∗
T (X) of piecewise polynomial func-

tions. Indeed, let R =
⊕

x∈XT Rx, where Rx is a copy of the polynomial algebra
A∗

T . We then define PP ∗
T (X) as the subalgebra of R defined by

PP ∗
T (X) = {(f1, ..., fn) ∈

⊕
x∈XT

Rx | fi ≡ fj mod(χi,j)}

where xi and xj are the two distinct fixed points in the closure of the one-dimensional
T -orbit Ci,j , and χi,j is the character of T associated with Ci,j . The character χi,j

is uniquely determined up to sign (permuting the two fixed points changes χi,j to
its opposite).

Theorem 3.11. Let X be a normal projective T -skeletal variety. If X satisfies
equivariant Kronecker duality and the S-module AT

∗ (X) is free, then the restriction
mapping

A∗
T (X) −→ A∗

T (X
T ) =

⊕
xi∈XT

A∗
T

is injective, and its image is the subalgebra PP ∗
T (X).

To derive our GKM theorem from Theorem 3.8 we need a few technical lemmas.

Lemma 3.12. Let X be a normal projective T -skeletal variety. If X satisfies
equivariant Kronecker duality, then it also satisfies the strong version of equivariant
Kronecker duality.

Proof. Since XT is finite, it obviously satisfies Kronecker duality. Thus, we only
need to check that, for any subtorus T ′ ⊂ T , XT ′

satisfies Kronecker duality. For
this we argue as follows. First, notice that if XT ′ 6= XT , then XT ′

is a finite union
of fixed points and T -invariant curves. Moreover, because the action of T on X is
linearizable, each irreducible component Y of XT ′

is either a point or a T -invariant
curve with exactly two fixed points. Notice that the normalization of each one of
these curves is isomorphic to P1. Moreover, T acts on each irreducible component
with a dense orbit. It follows that XT ′

is a union of one-dimensional projective toric
varieties with at most quotient singularities. Now Theorem 4.3 yields the assertion
of the lemma. �

Proof of Theorem 3.11. Observe that a codimension one subtorus of T is the kernel
of a primitive (i.e. indivisible) character of T . Such character is uniquely defined
up to sign.

Let π be a primitive character of T . Notice Xker(π) is a union of fixed points
x1, . . . , xm and T -invariant curves C1, . . . , Cp with exactly two fixed points. If this
is a disjoint union, then arguing on each curve Ci separately we get that

A∗
T (Ci) = {(f, g) ∈ S × S | f ∼= g mod χ},

where T acts on Ci through the weight χ (a multiple of π), see [Br3], Theorem 3.4.
If it is the case that we have two curves C and C ′ intersecting at a fixed point,

the following sequence ([Ki] Proposition 3.4)

0 → A∗
T (C ∪ C ′) → A∗

T (C)⊕A∗
T (C

′) → A∗
T (C ∩ C ′)

yields the statement. Now arguing by induction on the length of the connected
component of C in Xker(π) concludes the proof, in view of Theorem 3.8. �
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Example 3.13. The following are examples of smooth T -skeletal varieties satis-
fying equivariant Kronecker duality: smooth projective embeddings of reductive
groups [BCP], [LP]. More generally, smooth wonderful symmetric varieties of min-
imal rank and regular compactifications of symmetric varieties of minimal rank.
The Chow rings of the latter class have been computed in [BJ-2].

Example 3.14. Examples of singular T -skeletal varieties are Schubert varieties
and rationally smooth group embeddings of reductive groups. The former class are
T -linear varieties (as they come with a paving by affine cells), and their equivariant
cohomology is described in [C]. The latter class are singular spherical varieties and
their equivariant cohomology has been described by the author in [G2]. In Section
6 we extend both descriptions to their corresponding equivariant operational Chow
rings.

Remark 3.15. It was proved in [P], that for a toric variety X, one can take XT to
be a toric variety for a larger torus T ′. In that case, Theorem 4.3 follows directly
from [FMSS]. For a general spherical G-variety X, we do not know if we can choose
XG so that it is G′-spherical, for a larger G′.

4. Equivariant Kronecker duality for spherical varieties

In this section we show that spherical varieties form a natural class of varieties
for which Equivariant Kronecker duality holds. We start by stating a few crucial
properties from the theory of spherical varieties that will be relevant to our study.
For a complete treatment of the subject, the reader is cordially invited to consult
[Br1], [Kn1], [L-V] and [BLV].

Let G be a connected reductive group, with Borel subgroup B and maximal
torus T ⊂ B. A G-variety X is called spherical if it contains a dense orbit of B.
We say that X is simply-connected spherical (or scs for short) if, in addition, the
B-isotropy group of this dense orbit is connected.

Any spherical G-variety contains only finitely many G-orbits; as a consequence,
it contains only finitely many fixed points of a maximal torus T of G.

Next we recall that any spherical G-variety X admits an equivariant resolution
of singularities, i.e., there exists a smooth G-variety X̃ together with a proper
birational G-equivariant morphism π : X̃ → X. Then the G-variety X̃ is also
spherical; if moreover X is complete, we may arrange so that X̃ is projective.

Notice that a resolution of singularities need not be an equivariant envelope. The
following is an important class of spherical varieties for which equivariant resolutions
are equivariant envelopes. We thank M. Brion for leading us to the following proof.

Proposition 4.1. Let X be a normal simply-connected spherical G-variety. Let
f : X̃ → X be a proper birational morphism. Then f is an equivariant envelope.

Proof. Let p : X̃ → X be a toroidal resolution ofX. It suffices to show that every B-
orbit inX is the isomorphic image via p of aB-orbit in X̃. So letO = (B)·x = B/Bx

be an orbit in X. It follows from [BJ] that O has a connected isotropy group. The

preimage p−1(O) ⊂ X̃ is of the form B ×Bx F , where F denotes the fiber p−1(x).
Since F is connected and complete (by Zariski’s main theorem), it contains a fixed

point y of the connected solvable group Bx. Then the orbit B · y in X̃ is mapped
isomorphically to B · x. �
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Remark 4.2. Examples of scs varieties include all normal G×G-equivariant em-
beddings of G. In particular, all toric varieties are scs. This fact is used crucially
in Payne’s proof that the equivariant operational Chow ring of any toric variety is
isomorphic to the ring of piecewise polynomial functions defined on the associated
fan [P].

As before, set S := A∗
T (pt) and SW := A∗

G(pt).

Theorem 4.3. Let X be a complete G-variety with a finite number of B-orbits.
Then the equivariant Kronecker map

KT : A∗
T (X) −→ HomS(A

T
∗ (X), S) α 7→ (β 7→ pX∗(β ∩ α))

is an S-module isomorphism. Furthermore, the G-equivariant Kronecker duality
map KG is also an isomorphism.

Proof. First, we consider the case when X is projective and smooth. Then, be-
cause T acts on X with finitely many fixed points, X has a cellular decomposi-
tion (see [B1]). It follows that AT

∗ (X) is a free S-module ([Br3], Corollary 3.2.1).
Moreover, AT

∗ (X) carries an intersection product making it into a graded ring
A∗

T (X) (graded by codimension). Let M be the character group of T . Observe
that A∗

T (X)/MA∗
T (X) ' A∗(X) ([Br3], Corollary 2.3). Moreover, the freeness of

AT
∗ (X) yields the identifications

HomS(A
T
∗ (X), S)/M ·HomS(A

T
∗ (X), S) ' HomQ(A∗(X),Q).

Now, consider the commutative diagram

A∗
T (X)

KT //

��

HomS(A
T
∗ (X), S)

��
A∗(X)

K // HomQ(A∗(X),Q).

In order to prove that KT is an isomorphism, it suffices, by the graded Nakayama
lemma, to show that the non-equivariant Kronecker duality map K is an isomor-
phism, but this has already been stablished in [FMSS].

In the general case, we start by constructing a G-equivariant smooth envelope p :
X̃ → X, where X̃ is projective. For this, we proceed as follows. Let π : X ′ → X be
an equivariant resolution of X, i.e. X ′ is a disjoint union of equivariant resolutions
of the irreducible components of X. By our previous remarks, X ′ is projective.
Bear in mind that this map is not necessarily a G-equivariant envelope, but π is an
isomorphism outside some G-invariant subvariety S ⊂ X. By Noetherian induction,
we may assume that we have constructed an equivariant smooth envelope S̃ → S,
where both S̃ and S have a finite number of B-orbits. Now set X̃ = X ′ t S̃. It
follows that p : X̃ → X is an equivariant smooth envelope ([EG]).

Therefore, we have a fibre square

E //

��

X̃

p

��
S

i
// X,
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where i is the inclusion of S into X and E = p−1(S). Kimura [Ki] assigns to
this fibre sequence an exact sequence of operational Chow rings, which, in the
equivariant case, yields

0 → A∗
G(X) → A∗

G(S)⊕A∗
G(X̃) → A∗

G(E).

Notice that S has codimension at least one. Hence, arguing by induction on the
dimension of X, and using the fact that X̃ is smooth and that the Kronecker duality
map KT is functorial for proper morphisms (Remark 3.2) we obtain the result. It
is clear that replacing T by G in the statement of the Theorem does not alter the
argument, for AG

∗ (X)/SW
+ AG

∗ (X) ' A∗(X) by [Br3], Corollary 6.7.1. �

Corollary 4.4. Under the hypothesis of the Theorem 4.3,

A∗
T (X) ' A∗

G(X)⊗SW S.

Proof. Simply notice that

HomS(A
G
∗ (X)⊗SW S, SW ⊗SW S) ' S ⊗SW HomSW (AG

∗ (X), SW ),

because S is free over SW and A∗
G(X) is finitely generated. Now observe that the

term on the left hand side identifies in turn to A∗
T (X), due to our previous result

and the fact that AT
∗ (X) ' AG

∗ (X) ⊗SW S ([Br3]). Finally, notice that the right
hand side corresponds to S ⊗SW A∗

G(X) by the previous theorem too. �

Corollary 4.5. Under the assumptions of Theorem 4.3, if AT
∗ (X) is S-free, then

restriction to the fiber is surjective and A∗(X) ' A∗
T (X)/MA∗

T (X).

Proof. Theorem 4.3 together with freeness of AT
∗ (X) yield

A∗
T (X)/MA∗

T (X) ' HomQ(A
T
∗ (X)/MAT

∗ (X),Q).

Furthermore, by Theorem 2.3, the term on the right hand side above corresponds
to HomQ(A∗(X),Q), which, in turn, is isomorphic to A∗(X), due to the non-
equivariant version of Kronecker duality ([FMSS], Theorem 3). �

Remark 4.6. It is worth noting that unlike the case of equivariant Chow groups
(Theorem 2.3), the map i∗ : A∗

T (X) → A∗(X) is not surjective in general. Even
worse, its kernel is not necessarily generated in degree one, see e.g. [PK]. In
Section 6 we provide the theory with a large class of singular spherical varieties
satisfying Corollary 4.5, namely Q-filtrable spherical varieties. This class includes
all rationally smooth projective equivariant embeddings of reductive groups [G2].

In light of Theorem 4.3, it is natural to ask whether spherical varieties actually
satisfy the strong version of equivariant Kronecker duality. If so, it would be possible
to apply GKM theory in various situations of interest (Theorem 3.8). We will show
that this is in fact the case.

Recall that a subtorus T ′ ⊂ T is regular if its centralizer CG(T
′) is equal to T ;

otherwise T ′ is singular. A subtorus of codimension one is singular if and only if it
is the kernel of some positive root α. Then α is unique, and the group CG(T

′) is
the product of T ′ with a subgroup Γ isomorphic to SL2 or to PSL2. Notice that
the fixed point set of T ′ in any G-variety inherits an action of the group CG(T

′)/T ′,
a quotient of Γ. The following is an important structural result due to Brion and
Luna [Br3].
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Proposition 4.7. Let X be a spherical G-variety. Let T ′ ⊂ T be a subtorus of
codimension one. Then each irreducible component of XT ′

is a spherical CG(T
′)-

variety. Moreover,

(1) If T ′ is regular, then XT ′
is at most one-dimensional.

(2) If T ′ is singular, then XT ′
is at most two-dimensional. If moreover X is

complete and nonsingular, then any two-dimensional connected component
of XT ′

is (up to a finite, purely inseparable equivariant morphism) either
a rational ruled surface

Fn = P(OP1 ⊕OP1(n))

where CG(T
′) acts through the natural action of SL(2), or the projective

plane where CG(T
′) acts through the projectivization of a non-trivial SL(2)-

module of dimension three. �

Corollary 4.8. Let X be a complete spherical G-variety. Let H ⊂ T be a subtorus
of codimension at most one and let iH : XH → X be the inclusion of the fixed point
set. Then the S-linear map i∗H : A∗

T (X) → A∗
T (X

H) is injective and it becomes an
isomorphism after inverting finitely many characters of T that restrict non-trivially
to H.

Proof. This follows directly from Proposition 4.7, Theorem 4.3 and Theorem 3.6.
�

Corollary 4.9. Let X be a complete spherical G-variety. Then X satisfies the
strong Equivariant Kronecker duality. Moreover, if the S-module A∗

T (X) is free,
then the image of the injective map

i∗T : A∗
T (X) → A∗

T (X
T )

is the intersection of the images of the maps

i∗T,T ′ : A∗
T (X

T ′
) → A∗

T (X
T ),

where T ′ runs over all subtori of codimension one of T .

Proof. Immediate from the fact that XT is finite, Proposition 4.7 and Theorem
3.8. �

Hence, if X is a T -skeletal spherical variety such that AT
∗ (X) is free, then

A∗
T (X) ' PP ∗

T (X) (Theorem 3.11).

For smooth projective spherical varieties, the results above are due to Brion [Br3].
It is also worth noting in such case, Proposition 4.7 yields a complete description
of A∗

T (X) in terms of congruences involving pairs, triples or quadruples of T -fixed
points. For more details, see Theorem 7.3 of [Br3].

The importance of the theoretical results of this sections is their applicability to
the study of singular spherical varieties and singular T -linear varieties. This is the
topic of our next section.

5. Equivariant Chow groups of Q-filtrable spherical varieties

It is clear from the previous sections that we need to find conditions under which
the equivariant Chow group of singular varieties is free. But first, we recall a few
notions from [Br3].
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Definition 5.1. Let X be a T -variety with a fixed point x.

(1) We say that x is a non-degenerate fixed point if all weights of T in the
tangent space TxX are non-zero.

(2) We say that x is an attractive fixed point if there exists a one-parameter
subgroup λ : Gm → T and a Zariski neighborhood U of x, such that
lim
t→0

λ(t) · y = x for all points y in U .

To study possibly singular varieties (e.g. Schubert varieties), Brion [Br3] de-
velop a notion of equivariant multiplicity at non-degenerate fixed points. The main
features of this notion are as follows.

Theorem 5.2 ([Br3]). Let X be a T -variety with an action of T , let x ∈ X be a
non-degenerate fixed point and let χ1, . . . , χn be the weights of TxX.

(i) There exists a unique S-linear map

ex,X : AT
∗ (X) −→ 1

χ1 · · ·χn
S

such that ex,X [x] = 1 and that ex,X [Y ] = 0 for any T -invariant subvariety
Y ⊂ X which does not contain x.

(ii) For any T -invariant subvariety Y ⊂ X, the rational function ex,X [Y ] is ho-
mogeneous of degree −dim(Y ) and it coincides with ex,Y [Y ].

(iii) The point is nonsingular in X if and only if

ex[X] =
1

χ1 · · ·χn
.

�

For any T -invariant subvariety Y ⊂ X, we set ex,X [Y ] := ex[Y ], and we call
ex[Y ] the equivariant multiplicity of Y at x.

Remark 5.3. It follows from [Br6] that ifX is an affine T -variety with an attractive
fixed point x, then

X = {y ∈ X | lim
t→0

λ(t) y = x0},

for a suitable one-parameter subgroup λ. Notably, {x0} is the unique closed T -orbit
in X, and X admits a closed T -equivariant embedding into TxX. For convenience,
we say that (X,x) is an attractive cell in this situation.

The technical result on attractive cells will be of importance in the sequel. Let
Q be the quotient field of S.

Lemma 5.4. Let (X,x) be an attractive cell of dimension n. If AT
∗ (X) is free,

then the equivariant multiplicity morphism ex : AT
∗ (X) → Q is injective.

Proof. It follows from [Br3], Prop. 4.1 that the map i∗ : AT
∗ (x) → AT

∗ (X) is
injective. Moreover, the image of i∗ contains χ1 · · ·χnA

T
∗ (X), where χi are the T -

weights of TxX. Now recall that ex is defined as follows: given α ∈ AT
∗ (X), we can

form the product χ1 · · ·χnα. Thus, there exists β ∈ S such that i∗(β) = χ1 · · ·χnα.

Now let ex(α) = β
χ1···χn

. It is clear from the construction that if AT
∗ (X) is free,

then ex is injective. �
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Let (X,x) be an attractive cell. In this case, the geometric quotient

P(X) := [X \ {x}]/Gm

exists and we call it the link at x. This is a projective variety since X is assumed
to be affine.

In [G1] we studied the links of complex rationally smooth cells. Recall that a
complex algebraic variety X, of dimension n, is called rationally smooth if

Hm(X,X − {y}) = (0) if m 6= 2n, and H2n(X,X − {y}) = Q.

for all x ∈ X. Such varieties satisfy Poincaré duality with rational coefficients.
If (X,x) is a complex rational cell, then P(X) is a rational cohomology complex
projective space. Many important results on the equivariant cohomology of T -
varieties admitting a paving by rational cells are provided in [G1], for instance, such
varieties have no cohomology in odd degrees and their equivariant cohomology is a
free S-module. Our goal in this section is to provide analogues of these notions in
the context of Chow groups. To do so, we give need an extra ingredient.

We thank M. Brion for leading us to the following definition.

Definition 5.5. Let (X,x) be an attractive cell of dimension n. We say that X is
an algebraic rational cell if and only if

A∗(P(X)) ' A∗(Pn−1).

Some consequences of this definition appear next.

Lemma 5.6. Let (X,x) be an algebraic rational cell. Then

Ak(X) =

{
Q if k = n
0 if k 6= n

Moreover, AGm
∗ (X) ' AGm

∗ (pt).

Proof. Recall that we have a short exact sequence

0 → AGm
∗ (x) → AGm

∗ (X) → AGm
∗ (X \ {x}) → 0,

which steems from the fact that the T -fixed point x is non-degenerate ([Br3],
Proposition 4.1). Moreover, there exists a Gm-equivariant finite surjective map
π : X → An such that π−1(0) = x ([Br6], Proposition A3). This map induces the
commutative diagram:

0 // AGm
∗ (x)

i∗ //

π∗

��

AGm
∗ (X)

j∗ //

π∗

��

AGm
∗ (X − \{x})

π∗

��

// 0

0 // AGm
∗ (0)

i∗ // AGm
∗ (An)

j∗ // AGm
∗ (An − \{0}) // 0

By [EG], the vertical map on the right represents

π∗ : A∗(P(X)) → A∗(Pn−1),

because AGm
∗ (X \ {x}) ' A∗(P(X)) and we are working with rational coefficients.

This fact, together with our assumptions on P(X), imply that both the right and left
vertical maps are isomorphisms; hence, so is the middle one. Therefore, AGm

∗ (X) '
AGm

∗ (An). Finally, Theorem 2.3 gives A∗(X) ' AGm
∗ (An)/MAGm

∗ (An) ' Q, where
M is the maximal graded ideal generated by homogeneous elements of positive
degree. This amounts to An(X) = Q and Ak(X) = 0, for k 6= n. �
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The previous lemmas hint to a more general structural property of (algebraic)
rational cells with respect to the T -action.

Proposition 5.7. Let (X,x) be an attractive cell. Set n = dimX. Then the
following conditions are equivalent.

(i) A∗(P(X)) ' A∗(Pn−1).

(ii) A∗(X) ' A∗(An).

(iii) AT
∗ (X) ' AT

∗ (pt) = S.

Proof. (i) =⇒ (ii) follows from Lemma 5.6.
(ii) =⇒ (i) By the graded Nakayama lemma (which can be applied because the

degrees in AS
∗ (X) are at most the dimension of X) and the assumption on the usual

Chow group of X, we have that A∗
Gm

(X) is a AGm
∗ (pt)-module generated by one

element, i.e. there is a surjective module map r : AGm
∗ (pt) � AGm

∗ (X). Moreover,
using the surjective map π∗ : AGm

∗ (X) � AGm(An) from the proof of Lemma 5.6,
we get a commutative triangle

AGm
∗ (pt)

r

xxxxrrrrrrrrrr

π∗◦r

��

AGm
∗ (X)

π∗

&& &&LLLLLLLLLL

AGm
∗ (An),

hence π∗ ◦ r is surjective map of free AGm
∗ -modules of rank one, and thus it is an

isomorphism, which implies that both r and π∗ are isomorphisms (since they are
already surjective).

(ii) =⇒ (iii) If (X,x) satisfies A∗(X) ' A∗(Cn), then, by the Graded Nakayama
Lemma, there is a surjective S-module morphism ϕ : S � AT

∗ (X). This map
descends to a surjective map of localized modules ϕ̃ : Q → AT

∗ (X)⊗Q. But, by the
localization theorem, the latter is isomorphic to Q, and hence ϕ is an isomorphism.
Now, in the commutative diagram

S
ϕ //

��

AT
∗ (X)

��
Q

ϕ̃ // AT
∗ (X)⊗Q,

the first vertical map is injective and thus ϕ is injective as well.
(iii) =⇒ Clear from Theorem 2.3. This concludes the proof. �

Combining Lemma 5.4 with the previous Proposition yields

Corollary 5.8. Let X be a T -variety with an attractive fixed point x. Suppose that
(X,x) is an algebraic rational cell. Then the equivariant multiplicity morphism
eX,x : AT

∗ (X) → Q is injective. �

Before introducing the notion ofQ-filtrable varieties, we recall here the Bialynicki-
Birula decomposition. Let X be a projective algebraic variety with a Gm-action
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and a finite number of fixed points x1, . . . , xm. Consider the associated BB-
decomposition X =

⊔
i Wi, where each cell is defined as follows

Wi = {x ∈ X | lim
t→0

t · x = xi}.

Remark 5.9. In general, the BB-decomposition of a projective variety is not a
stratification; that is, it may happen that the closure of a cell is not the union of
cells, even if we assume our variety to be smooth. For a justification of this claim,
see [B2].

Definition 5.10. Let X be an algebraic variety endowed with a Gm-action and a
finite number of fixed points. A BB-decomposition {Wi} is said to be filtrable if
there exists a finite increasing sequence X0 ⊂ X1 ⊂ . . . ⊂ Xm of closed invariant
subvarieties of X such that:

a) X0 = ∅, Xm = X,

b) For each j = 1, . . . ,m, the “stratum” Xj \Xj−1 is a cell of the decomposition
{Wi}.

The following result is due to Bialynicki-Birula ([B2]).

Theorem 5.11. Let X be a normal projective variety with Gm-action and a finite
number of fixed points. Then the BB-decomposition is filtrable. �

In the present section, we show that algebraic rational cells are a good substitute
for the notion of affine space in the study of equivariant Chow groups of singular
varieties. We aim at an inductive description of the equivariant Chow groups of
filtrable T -varieties in the case when the cells are all rational. Our results provide
purely algebraic analogues of the topological results in our earlier paper [G1].

Let T be an algebraic torus acting on a variety X. A one-parameter subgroup
λ : Gm → T is called generic if XGm = XT , where Gm acts on X via λ. Generic
one-parameter subgroups always exist. Note that the BB-cells of X, obtained using
λ, are T -invariant. Our results in this section suggest the following definition.

Definition 5.12. Let X be a variety equipped with a T -action. We say that X is
Q-filtrable if the following hold:

(1) X is normal,
(2) the fixed point set XT is finite, and
(3) there exists a generic one-parameter subgroup λ : Gm → T for which the

associated BB-decomposition of X is filtrable and consists of T -invariant
algebraic rational cells.

If, moreover, the algebraic rational cells are isomorphic to affine spaces, then X is
called T -cellular.

Let X be a Q-filtrable algebraic variety with a T -action. Then, by assumption,
there is a closed cell F = (X1, x1) (using the induced order of the fixed points),
and moreover U = X \ F is filtrable. We describe AT

∗ (X) in terms of AT
∗ (F ) and

AT
∗ (U).

Proposition 5.13. Let X be a Q-filtrable T -variety. Let F be the closed cell and
U = X \F be the filtrable open complement. Then the maps jF∗ : AT

∗ (F ) → AT
∗ (X)

and j∗U : AT
∗ (X) → AT

∗ (U) fit into the exact sequence

0 → AT
∗ (F ) → AT

∗ (X) → AT
∗ (U) → 0.
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Proof. The proof reduces to show that jF∗ is injective. But this follows from the
fact that ex,F = ex,X ◦ jF∗. Because ex,F is injective (Corollary 5.8), then jF∗ is
injective. �

Arguing by induction on the length of the filtration leads to the following result.

Corollary 5.14. Let X be a Q-filtrable T -variety. Then the T -equivariant Chow
group of X is a free module of rank |XT |. In fact, it is freely generated by the
classes of the closures of the cells Wi. Consequently, A∗(X) is also freely generated
by the classes of the cell closures Wi. �

Hence, by Theorem 3.6, Theorem 3.11 and Corollary 5.14, if X is a Q-filtrable
spherical G-variety with a finite number of T -invariant curves, then

A∗
T (X) ' PP ∗

T (X).

This remark will be applied in the next subsection to complex projective rationally
smooth group embeddings.

Analogously, if X is a T -cellular projective variety, then each filtered piece Xi is
also T -cellular. Thus, Corollary 5.14 together with Corollary 3.9 and Theorem 3.11
yield the applicability of GKM theory, in its Chow cohomology version, at each
step of the filtration

∅ = X0 ⊂ X1 ⊂ . . . ⊂ Xm = X.

Notice that the filtered pieces Xi need not be smooth (e.g. Schubert varieties).

6. Examples

6.1. Schubert varieties. Let G be a connected reductive group with Borel sub-
group B and maximal torus T ⊂ B. Denote by W the Weyl group. Recall that
there is a natural order on W , the Bruhat order. The homogeneous space G/B
is called the flag variety of G. It is a projective variety. Notice that T acts on
G/B with a finite number of fixed points, namely (G/B)T ' W . It follows from
the Bruhat decomposition, G = tw∈WBwB, that the flag variety G/B admits a
paving by affine cells of the form B[w] = BwB/B, indexed over w ∈ W . Each
one of these cells is isomorphic to an affine space A`(w), where `(w) is the length
of w. Moreover, G/B is a smooth T -skeletal variety, so to describe A∗

T (G/B), it
suffices to collect the necessary GKM -data [Br3]. Here we do more, by showing
that the usual GKM picture holds for the operational Chow rings A∗

T (X(w)), where

X(w) = BwB/B is a Schubert variety.

T -invariant curves and the Bruhat graph. The Weyl group is generated by
reflections {sα}α∈Φ, where sα corresponds to reflection with respect to the hyper-
plane defined by α. Let Gsα denote the copy of SL(2) in G generated by Uα and
U−α. The following is a result of Carrell ([C]).

Proposition 6.1. The flag variety G/B is a GKM -variety. In fact, every closed
T -invariant curve in G/B has the form Gsαw, for some w in W and reflection
sα. Consequently, every T -invariant curve is non-singular. Moreover, (Gsαw)

T =
{w, sαw}, so Gsαx ⊂ X(w) if and only if x, sαx ≤ w. �

What follows is an extension of the usual picture of A∗
T (G/B) to the operational

Chow ring of the Schubert varieties X(w). Denote by Iw the Bruhat interval
[1, w] = {x ∈ W |x ≤ w}. Notice that X(w)T = Iw. Let i : (X(w))T → X(w)
be the inclusion of the fixed point set. Let S = A∗

T (pt). Then, A∗
T (X(w)T ) =
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⊕x∈IwS, a subalgebra of S[W ]. Since X(w) is T -cellular, Corollary 5.14 together
with Theorem 3.11 yield the next result.

Theorem 6.2. If X(w) = BwB/B is a Schubert variety, then X(w) satisfies the
strong Equivariant Kronecker duality and A∗

T (X(w)) is S-free. Moreover, the image
of

i∗ : A∗
T (X(w)) → ⊕x∈IwS

consists of all
∑

x∈Iw
fxx such that fx ∼= fsαx(modα), whenever (i) sα is a reflec-

tion of W and (ii) x, sαx ∈ Iw. �
6.2. Rationally smooth group embeddings. In this subsection we work over
the complex numbers. Our purpose is to contrast the results of this paper with
those of [G1] and [G2]. In those articles, a projective T -variety is called topologically
Q-filtrable if X is normal, XT is finite, and there exists a generic one-parameter
subgroup λ : C∗ → T for which the associated BB-decomposition of X consists of
T -invariant rationally smooth cells. Our purpose is to compare this definition with
Definition 5.12 in the case of spherical varieties.

Let G be a connected reductive group with Borel subgroup B and maximal
torus T . Let X be a projective spherical G-variety. We say that X is compatibly
Q-filtrable if the generic-one parameter subgroup λ above can be chosen so that
G(λ) = B. Recall that

G(λ) = {g ∈ G |λ(t)gλ(t)−1 has a limit as t → 0}.
It is well-known that G(λ) is a parabolic subgroup of G. Moreover, if we choose λ
inside the Weyl chamber of T , then both Xλ = XT and G(λ) = B. From now on,
we assume such λ to be fixed.

Let X be a compatibly Q-filtable spherical variety. It follows from our assump-
tions that the associated cells

Wi = {x ∈ X | lim
t→0

t · x = xi}.

are also B-invariant. Because B acts on X with finitely many orbits, so it does on
Wi. The following was proved by Totato [T] in the general setup of linear varieties.

Theorem 6.3. For any B-variety Y with a finite number of orbits, the natural
map

Ai(Y )⊗Q −→ W−2iH
BM
2i (Y,Q),

from the Chow groups into the smallest subspace of Borel-Moore homology with
respect to the weight filtration is an isomorphism. �

Since B-acts on each cell Wi with a finite number of orbits, we conclude that

Ai(Y ) ' W−2iH
BM
2i (Wi,Q) ' H2i

c (Y,Q) ' Q
where the latter identification steems from the fact that each Wi is a rational cell.
Induction on the length of the filtration yields

Theorem 6.4. Let X be a spherical G-variety with a compatible Q-filtration. Then
both cycle maps,

clX : A∗(X) → H∗(X)

and
clTX : AT

∗ (X)⊗Q → HT
∗ (X)
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are isomorphisms. In particular, A∗
T (X) is a free S-module and the operational

Chow ring A∗
T (X) is isomorphic to H∗

T (X). If moreover X is T -skeletal, then
A∗

T (X) ' PP ∗
T (X).

Proof. It only remains to show the statement about the operational Chow rings
A∗

T (X). But this easily follows from the fact that X satisfies equivariant Kronecker
duality, by Theorem 4.3. If X is T -skeletal, then Theorem 3.11 implies the last
assertion and finishes the proof. �

Theorem 5.8 is compatible with our earlier results on equivariant cohomology
[G1]. Moreover, it follows from Theorem 5.18 that the Q-filtrable varieties of Def-
inition 5.12 are yet a larger class of varieties where one can obtain the freeness
of the equivariant Chow groups, without using equivariant cohomology, and apply
the results of this paper (for T -varieties satisfying the strong version of equivariant
Kronecker duality).

Question: Are all rationally smooth spherical varieties Q-filtrable? If X is
smooth, then [B2] implies that each cell Ci is isomorphic to some affine space
Ani . If X is a rationally smooth projective group embedding, then it is Q-filtrable,
by [G2]. But it would be interesting to know the answer to this question in full
generality.

Let X be a projective group embedding of G. That is, X is a G×G-variety with
an open orbit isomorphic to G ' (G × G)/∆(G). It follows from the Bruhat de-
composition that X is G×G-spherical. Moreover, all projective group embeddings
X can be obtained as projectivizations of linear algebraic monoids (see [R1], [Ti]),
i.e. X = [M \ {0}]/Gm, for some affine reductive monoid M . In [G1] and [G2]
we show that rationally smooth projective group embeddings are Q-filtrable and
T -skeletal. Moreover, we obtain explicitly all the GKM data needed to describe
their equivariant cohomology as a ring of piecewise polynomial functions on the
associated Renner monoid of M . Theorem 5.8 above shows that, over the complex
numbers, our earlier findings translate verbatim to the operational Chow rings of
rationally smooth group embeddings. But this is just a sample of a more general
phenomenon that occurs in arbitrary characteristic. In a forthcoming paper [G3],
we study algebraic Q-filtrations on group embeddings in a purely algebraic way,
using the richer structure of Chow groups and the finer combinatorial structure of
algebraic monoids. The results of [G3] are independent of Totaro’s topological The-
orem 5.17. Furthermore, we characterize algebraic rational cells (Definition 5.5) in
very combinatorial terms in the case of algebraic monoids. This characterization
is inspired in Renner’s classification of rationally smooth algebraic monoids [R2].
The results will appear elsewhere.

7. Further remarks

1. The results of Section 3 are clearly extendable to Kronecker duality spaces
(e.g. T -linear varieties and spherical varieties) in any equivariant operational theory
opH∗

T (−) (à la Fulton-MacPherson). It would be interesting to characterize all Q-
filtrable, T -skeletal, spherical varieties. This class includes all projective group
embeddings with mild singularities ([R2], [G2], [G3]) and all projective embeddings
of spherical varieties of minimal rank [BJ-2].
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2. Description of the image of restriction to the fiber i∗ : A∗
T (X) → A∗(X)

by using equivariant multiplicities. This has been carried out for toric varieties
by Payne and Katz [PK]. Unlike the case of Chow groups, i∗ is in general not
surjective and its kernel is not necessarily generated in degree one. See [PK] for an
illustration of these claims.

3. Understand the action of PP ∗
T (X) on AT

∗ (X) for T -skeletal spherical varieties,
in view of Brion’s description of the intersection pairing between curves and divisors
on spherical varieties [Br2]. This will be pursued in a subsequent paper.

4. Vistoli’s Alexander schemes. Let (X,x) be an algebraic rational cell. If P(X)
is smooth, then it follows from [Ki] that X is an Alexander scheme, i.e. the natural
map

Ak(X) → An−k(X),

given by the cap product with the fundamental class [X], is an isomorphism.
Alexander schemes have been studied by Vistoli [Vis]. They are the most natural
class of schemes that behave like smooth schemes from the viewpoint of intersec-
tion theory with rational coefficients. Indeed, any Alexander scheme X carries an
intersection product on A∗(X), derived formally from the ring structure on its op-
erational Chow ring A∗(X). From a conceptual viewpoint, it would be interesting
to determine which singular Q-filtrable spherical varieties are Alexander schemes.
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