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Abstract: We continue the study of the one-dimensiofg)} coset model (mass-
less spinning particle motion dfy o / K (F10)) whose dynamics at low levels is known
to coincide with the equations of motion of maximal supeviyetheories in appro-
priate truncations. We show that the coset dynamics (ttedcat level < 3) can
be consistently restricted by requiring the vanishing oétacf constraints which are
in one-to-one correspondence with the canonical conssrairsupergravity. Hence,
the resulting constrainegtmodel dynamics captures the full (constrained) supergrav
ity dynamics in this truncation. Remarkably, the bosoniastmaints are found to
be expressible in a Sugawara-like (curremurrent) form in terms of the conserved
FE1¢ Noether current, and transform covariantly under an uppealplic subgroup
E}, C E1o. We discuss the possible implications of this result, angarticular ex-
hibit a tantalising link with the usual affine Sugawara camgion in the truncation of
FEp to its affine subgrougy.
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1 Introduction

Work on the symmetry structure of maximal supergravity thesohas revealed a remark-
able link between geodesic motion of a massless spinnirticigaon an £,/ K (E)
coset manifold and the dynamics of maximal supergravitgties [1, 2, 3, 4, 5, 6, 7, 8].
In contrast to an earlier proposal [9, 10, 11] aiming for ardirhensional covariant for-
mulation of M theory exhibitingt;; invariance, the one-dimensional, coset model
corresponds, on the supergravity side, to a (10 + 1)-dirveasgauge-fixed formulation
of the supergravity dynamics, as it arises in studies of & space-like singularity limit
[12, 13, 14]. The reformulation of the dynamics as a ‘cosrgmlal billiard’ facilitates a
systematic dynamical treatment, and directly motivatescitnjecture [1] that M theory
is (holographically) equivalent to a ‘one-dimensionalnAlinear o-model living on the
infinite-dimensional coset manifold;,/ K (F1p). Ref. [1] showed that the null geodesic
motion on E,/ K (E10), when truncated to low levels, is equivalent to a truncated v
sion of the bosonic dynamical equations of maximal supeityravhere only first order
spatial gradients are retained. This equivalence was @&tkhy including the fermions
(neglecting spatial gradients) in Refs.[5, 6, 8]. Someheirtevidence for a correspon-
dence between M theory and thg, coset model came from relating M theory one-loop
corrections to certain high-level contributions to theetasction [15].

As is well known, in a canonical treatment of gravity and sgpavity, where space-
time is foliated into a sequence of spacelike hypersurfabesdynamical equations have
to be supplemented hgonstraint equation$to be imposed on the initial data). For in-
stance, in the case of pure gravity these are the Hamiltcamandiffeomorphism con-
straints. In the present contribution we study how such ttaimé equations, which are
necessary for recovering the full supergravity system, lmamonsistently incorporated
into the coset model approach of [1]. As formulated theres, tiodel already incorpo-
rates (a close analog of) the Hamiltonian constraint in dinenfof a null-motion constraint
expressing reparametrisation invariance of the worldlv& shall therefore focus here
on the other constraints, and study to which extent they anepatible with the Kac—
Moody symmetry structure of these models (not manifest exdtandard Hamiltonian
formulation of gravity). The consistency of the usual sgpavity constraints with the
dynamical equations in the context of homogeneous cosruallogplutions was already
studied long ago [16]. Here, we are interested in establigpurely within the context of
the F1y/ K (E1) coset modethe consistency of requiring the vanishing of certalimear
guantities in the coset variables, either quadratic in dsetvelocities? (for the bosonic
constraintC), or consisting of a product gP and the fermionic gravitino variables
(for the supersymmetry constrai@f). Namely, we shall show that in the same consistent
truncation employed for the dynamical equations, one céinel®osonic and fermionic
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Figure 1:Dynkin diagram off),, with numbering of nodes.

constraints of this type (on the massless spinning paytichech areweakly conserved
along the coset motion, thereby defining a constraint saiifathe coset phase space pre-
served by the geodesic motion. We will spell out the detdithis result only forD = 11
supergravity [17], but have no doubt that it carries overi® dther maximal and non-
maximal cases (some of the supergravity constraint equat@written in coset variables
were already given in [8, 18]). In this wall D = 11 supergravity equations have been
accommodated within th&,, model.

In addition to the weak conservation of the constraints wd flmat the equations
describing the time evolution of the constraints exhibitiangular structure reminiscent
of a highest weight representation, cf. (3.5). Studyingtémsor structure of the relevant
constraints reveals two further structures, namely:

e One can redefine the bosonic constraintsito an equivalent sef of explicitly
time-independent (henarongly conservedSugawara-like’ expressions bilinear
in the conserved Noether current (or chargegssociated to the rigiff;, symmetry
of the £,/ K (E1,) coset action.

e At least for the lowAy levels considered here, these ‘Sugawara-like’ consga&int
transform as a linear representation of the upper paraboligroup?;;, generated
by gl(10) and the positive-root (raising) generatorsiyf,. In addition, the latter
representation can be embedded, at least at the leveldeosdihere, and within
the restriction ta}}), into the integrable highest weight representafign, ) (to be
defined below).

A key question at this point concerns the significance angbtbper interpretation of
the constraints in the context of thg, o-model. Because the level decomposition of
E1p w.r.t. any of its regular subgroups gives rise to an expaalyigrowing spectrum
of degrees of freedom, and because this proliferation eéstaay exceed by far what

We use the word ‘weakly’ in the (constrained dynamics) seriseodulo the constraints’. In other
words, a set of constraingsis weakly conserved iffiC /d¢ vanishesnoduloC.



would be needed to account for the space-time degrees alfdire®f the various maxi-
mal supergravities, and possibly even M theory, it appdatduitable constraints may
be necessary in order to reduce their number to what is apptefor M theory. Further-
more it seems clear that the emergence of space (and tinmg) #le lines proposed in [1]
cannot possibly be explained without a proper understgafithe underlying constraints
on thes-model dynamics.

The tensor structure of the constraints [cf. egn. (3.1) Wgloincides at levels
¢ = 3,4 and 5 with the tensor structure of the so-called\;) representation of’;,
while at level/ = 6 it contains only one of the two irreducible Young tableaux-co
tained inL(A;). Let us recall that.(A,) is an integrable highest weight representation
of E;, with Dynkin labels[1000000000], where the ‘1" occurs for the over-extended,
hyperbolic node of thé’;, Dynkin diagram in Fig. £ We note that the analogous repre-
sentation fory;; had already appeared in previous work [11]. The possiblecfimence
of L(A;) in the present context might therefore be interpreted ateece for a covariant
formulation along the lines suggested there. However, vgneperly ‘contravariantised’
(in a sense to be explained in section 4.2), the constraemsform covariantly only un-
der the upper parabolic subgroify, leaving invariant the triangular gauge chosen for
the representation of the coset manifold; in particula,ghtative highest weight state of
the representation 3ot annihilated by the relevant raising operators. This is sonag
contrary to what one would expect on the basis of a covar@ntdlation, as explained in
section 4.3. However, the transformations we obtain afg fainsistent with a Sugawara-
type interpretation of the constraints.

The link between the canonical constraints obtained fropesgiravity on the one
hand, and a kind of Sugawara-like construction based'gnon the other hand, is the
most remarkable result of the present paper. It is not cldather this fact indicates
the existence of a ‘covariant’ set of equations whose gdixgé- version would give
rise to the ‘one-dimensional,,/ K (FE,q) o-model of [1] supplemented by constraints
as described in the present paper. What seems clear is ttatgoutative ‘covariant’
formulation is likely to be of a rather unconventional type:a scheme with emergent
space-time, the realisation of gauge symmetries must sadldiffer from the standard
realisation of gauge symmetries in space and time. Thisdvioaply, for instance, that
general covariance and other space-time based gauge syesmeight emerge only to-
gether with space-time itself, and thus not be fundamebtalpnly emergenproperties
of the theory?

2By definition, the fundamental weights are dual to the simple roots o, i.e. (A;|a;) = d;; [19].
3In this context we may note that in canonical quantum graiuitygeneral covariance likewise need
not necessarily exist prior to the emergence of a clasgiaalestime. In fact, no canonical quantisation of



The evidence for a Sugawara-like constructionAgy presented here is also notewor-
thy on the purely mathematical side. While the existencénef3ugawara construction
for affine Lie algebras has been known for a very long time [28, 25, 19], no ana-
log for indefinite Kac—Moody algebras has ever been foundvelbeless, our results
strongly indicate that such a generalisation does exigtoagh it will certainly exhibit
some unexpected features [as already evident from theatdritensor structure of the
pertinent expressions]. Additional evidence for this eatyre derives from the fact that
the Sugawara-like structure of the coset constraints esitecthe known one when trun-
cated to the affiné’y subalgebra oFy. As is well known, in the latter case we also have
expressions bilinear in the affine curredts o ) j%_, 7% with the current generators
J2 [23, 24, 25]. In the affine truncation @, to £y (corresponding to a dimensional re-
duction of maximal supergravity to two space-time dimensjpomost of the constraints
‘disappear’, except for the diffeomorphism constrainthatedC®, an SL(9) singlet.
This singlet will be shown to be directly related to the; Sugawara generator, which
is just the translation generatord/dz) w.r.t. the spectral parameter in a current alge-
bra realisation ofy. Via the linear system of two-dimensional (super-)gray2§] and
its hidden Virasoro symmetries [27], diffeomorphisms ie #pectral parameter can be
directly related to diffeomorphisms in the spatial cooeden

In summary, we would thus like to raise the possibility tHe Sugawara-like con-
straints£ given in section 4.2 constitute the beginnings of a gersatitin of the affine
Sugawara construction for the hyperbolic Kac—Moody algelby,, indicating the ex-
istence of a so far undiscovered new structure indige and its envelopping algebra
(and possibly other hyperbolic Kac—Moody algebras) andirfgnat the existence of a
more concrete realisation of these algebras analogoustoutient algebra realisation
of affine algebras. In addition, this generalisation migttcaenmodate 10-dimensional
spatial diffeomorphisms in a similar way as the ordinary &ugra construction realises
diffeomorphisms on the circl§!. The present work could thus open new avenues both
towards analysing the hyperbolig;, algebra and towards understanding how space (and
time) emerge out of the geodesgiemodel of [1].

This article has the following structure. After introdugithe necessary notation for
the £/ K (E19) model in section 2 we propose a set of bosonic constraintéeamionic
constraints in section 3. After demonstrating their weakseovation along the geodesic
motion we show in section 3.3 that they coincide with the t@mst equations of su-
pergravity if the usual;y/supergravity dictionary is used. In section 4 we demotestra
how the bosonic constraints can be reformulated in a Sugalia form and that the

gravity is known, in which the full constraint algebra islisad off shell see e.g. [20, 21]. See also [22] for
a related discussion.



reduction toFy gives the usual Sugawara construction. In this context & discuss
the transformation properties of the constraints and sihava parabolic subgroug;
of F;, preserves the constraints. In the concluding section werréd the discussion of
the original E;, symmetry and the interpretation of our results, includimg telation to
the Sugawara construction.

2 F,, model

In this section we review the formalism of tli&,/ K (F,,) coset model and fix our no-
tations and conventions. We restrict attention here to theohic fields and treat the
fermions in section 3.2.

2.1 Coset variables and transformation

We use the conventions of [3, 8] for thilg, commutation relations and for the construc-
tion of the dynamics. Therefore, the time-dependent/ K (E;,) coset elemenvV(t)
gives rise to Lie algebra elemefit® € K (Eyy) andP € Ej, © K(F)) via the decom-
position

VYV =9+7P. (2.1)

In terms of the generators at lo(10) = A, levels the ‘coset velocityP and the ‘or-
thogonal’ K (E1,) gauge connectio® (which does not enter the coset Lagrangian, see
(2.9) below) can be expanded as

1 © ab 1 ) ajasas 1 ) ai...ag
P = 5 abS + apalagags + apal...ags
1 @) aplai...as
_‘_apao\al...ass + ... ) (22a)
1 © ab 1 M ajasas 1 @) aj...ae
Q = §Qab'] + aQalaga;;J + aQaL..a(j']
1® |
+§an|a1_“a8ﬂ“ Meas (2.2b)
where the indices, b,... = 1,...,10 are to be regarded as (‘flatyO(10) vector indices

and the bracketed superscripts indicate fgdevel. The symmetric and anti-symmetric

“We useE, (andK (E1)) to designate both the algebra and the group.



combinationsS and J of the Fy generators are respectively defined by (on levets
0,1,2,3)

S® = K% + K°, | J?® = K% — K*,, (2.3a)
Garazas _ paiazas Fa1a2a3 ’ Jaiazas _ praiazas _ Fa1a2a3 , (23b)
S48 — fj--a6 + Fa1...a6 ) JUa6 = [t — Fal...(lS ) (23C)

ag|al...ag __ ap|al...ag apl|al...ag __ apl|ai...as
Saol = Fol + Fuojar.as > J™! = pl — Fogjar.as»  (2.3d)

The elements/ generate the maximal compact subgrdiipF,,) C Ejo while the el-
ementsS span the cosel;, © K (Ey,) (which is not a subalgebra); their commutation
relations are givenin [3, 8.

The coset has the usual non-linear symmetry transformaigt)y — k(t)V(t)g!
with ¢ € FE,, a global rotation and:(¢) a local gauge transformation, field dependent
once a gauge is chosen. Under this transformation one has

P—kPk™', Q—kOQk'4+0kk!. (2.4)

Note thatP is a K'(E},)-covariant object (coset representation/ofE,)), while Q has
the typical inhomogeneous transformation law of a gaug@eciion of K (Eyy). On the
components defined in (2.2) this implies for instance thofahg transformations for

infinitesimaldk = %AS’CQCI,JQCQC3 € K(Ey)

) 1@ (1) n @

6A(1)Pab = §Ac10203Pc102c;;6ab - chganclcgv (25a)
1) (1) (0) 1M (2)
5A(1)Pa1a2a3 = 3Aca1a2Pa30 + 6A010203P010203a1a2a37 (25b)
(2) (1) 1) 1@ (3)
5A(1)Pa1...a6 = _20Aa1a2a3Pa4a5a6 + aAclcgc;;Pcﬂcgcgal...aG7 (25C)
(3) (1) (2) (1) (2
5A(1)PCL0|CL1...(18 = —56 (A(lo(ll(lzpag...ag - ACL1€L2€L3PCL4...(18(10) +.... (25d)

In these equations we have employed a notational convewtoch we will make use
of throughout the remainder of this article. Namely, thest.lof the tensor equation is
implicitly assumed to be projected onto the same symmetuctire as the |.h.s., that
is, the requisite symmetrisations and antisymmetrisatame understood without being
written out. For example, the first two lines read in expliorim

(0) 1M (1) (1) (1)

6A(1)Pab = §Ac1cg03Pc102035ab - chg(apb)qcz 5 (26a)

SWith an overall minus sign correction in thé= —3, ¢ = 3] commutator compared to [3].
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(1) (1) (0) 1@ 2)

6A(1)Pa1a2a3 = 3Ac[a1a2Pa3}c + BAclcgcgpclcgcgalaga:; . (26b)

For later use we define th€(E),) covariant derivative
DEDt:at_Qv (27)

with the connection tern@ acting in the appropriate representation, e.g. via comiorga
onP. The level zero generatorE® form anso(10) subalgebra 0§[(10) C FEy, and we
will often use theSO(10) covariant derivative

19 .
D=D;=0; — QQabJCL ) (2.8)

acting on representations 61)(10); for example, for amo(10) vectoru, the covariant
derivative evaluates tbv, = d,v, — Qfl%)vb.

2.2 Equations of motion
The equations of motion of the one-dimensioha}/ K (F1,) o-model follow from the
Lagrangian [1]
1
L= E(PWD) (2.9)

with the lapse: to ensure invariance under reparametrisatiorts dhey are given by the
geodesic equations

D/P=0,P—-1Q,P|=0, (2.10)
and the Hamiltonian constraint
H(P) = (P|P)=0 (2.11)

where for convenience we choose the gauge 1 for the affine parametrisation of the
world-line. Imposition of (2.11) requires the coset spaeedgsic (2.10) to be null.

A major simplification of (2.10) is achieved by adopting teerfost)triangular gauge
where) depends only on the levél> 0 degrees of freedom

1 1
V(t) = Vo(t) exp | gy Amnp () E™ + o Aumyng () ™ (2.12)



As for instance explained in [1, 3], the first factor on thes.hbelongs to thé& L(10)
subgroup off;, thus involving only theyl(10) generators

Vo(t) = exp (hy"(H)K™,) e = (e"),™. (2.13)

One should be careful here not to assign any special tranat@mn properties ta,,,"
appearing inside the exponential definiig whereas the exponentiated expression, that
is V), itself, does transform as a zehnbein, i), — koVog, * with ky € SO(10) and
go € GL(10). By contrast, the higher level fields appearing in the exptiakinside
(2.12) do transform as genuidel(10) tensors after the factay, has been split off. In
other words, the indices:, n,... in the second exponent of (2.12) can be thought of
as ‘world’ (GL(10)) indices in contrast to the ‘flat’'YO(10)) indicesa, b, ... in (2.2).
The fields at level one and two, respectively, correspontieéddtform field of D = 11
supergravity, and its magnetic 6-form dual. In this gauge,'tnatrix’ V(¢) belongs to a
parabolic subgroup of’;, which we designate by,. Furthermore, in this gauge, the
connection coefficient®®) appearing in (2.2b) are identified (fér> 1) with the coset
coefficientsP® of (2.2a) [3]

0 @

Q=P forall ¢ > 1. (2.14)
The commutators of [3] and the triangular gaugeWallow us to work out the following
expressions foP andQ (cf. also [1])

(0) m (0) m

Qab = 6m[bat6a] , Pab = 6m(bat6a) , (2.158.)
1) 1
Piloas = éealml €ay 2 €as 2Oy Arnymams s €1C. (2.15b)

Here, the matrix,,,* is the inverse oé,™, viz. e,;,%¢e,” = I
The level decomposition allows us to decompose (2.10) intmfinite set of equa-
tions, which furthermore can be truncated consistentlydtisy
)
P=0 for/ > 3. (2.16)
With these gauge choices, and the truncation (2.16), thelkbenian and the equations of
motion (2.10), respectively, reduce to

(0) (0) (0) (0) 1@ @
<P‘P> = PabPab - Paanb + gPabcPabc +

5The ‘dictionary’ of section 3.3 associates this coset \é@itio the spatial zehnbein, (¢, xq) of D =
11 supergravity evaluated at a fixed spatial poipt Strictly speaking, we should notationally distinguish
between the coset zehnbein (considered as a 10-by-10 ‘$tikhed V(¢)), and the spatial zehnbein of
supergravity, but we will refrain from doing so in order notdutter up the notation.
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1 @ (2) 2 (3) (3)
+4 i 5| ai...ag” ai...ag + apao‘al...agpaolaln_as =0 (217)
and
(0) 1. @ 1) 1) 1)
DPab = _§5abpc10203P010203 + Paclcgpchg
4 (2) (2) 2 (2) (2)
_—3 ‘ 6!5achl"'c6P01~.~06 + gpaclmc5pbcl...05
2 (3 (3) 163) (3)
_aaabpcdcl---cs colcr...ce + a colaci...crt colber...cr
2(3) (3)
+§Pa\cl...Cng\cl...087 (218&)
1) 1) (0) 1@ (2)
DPa1a2a3 = _3Pca1agpca3 - §P010203 €1€2€3a10203
4 (2 (3)
_a c1...C¢ cl|02...06(l1(l2a3 (2.18b)
(2) (2) (0) 13) 1)
DPal...aG - 6Pca1...a5pca6 - chﬂczc:;al...aGPclchg (218C)
(3) (3) (0) (3) (0)
DPao\lllmas = _Pc\m...agpcao + 8Pa0\ca1...a7pca8 (218d)

Here, it is again understood that the r.h.s. is symmetris@agdcordance with the symme-
tries on the l.h.s. of these equations, as explained aftg).(Eor the level = 3 term in
(2.18d) this implies that the r.h.s. vanishes if antisynrisetl over all nine free indices,
as required by the Young symmetries of the level three géoreféor clarity, we write out
the contributions involving?(®) explicitly on the r.h.s., unlike in [3] where these terms
were absorbed into the derivative operator on the l.h.s. Aswil see below, however,
the constraint analysis is simplified considerably by reesbing these contributions into
the derivative of a suitably redefined I|.h.s.

3 Constraints

We next show that the bosonic dynamical equafig® = 0 (truncated at levelg < 3)

can be supplemented by certain constraihtgiadratic in theP, such that the equations
C ~ 0 are all compatible with the dynamics of thg,/ K ( E1,) c-model. Moreover, these
constraints are in one-to-one correspondence with thentealaconstraints of supergrav-
ity, as we shall see in the next section. Compatibility ofstamnts with the equations of
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motions requires that the time derivatives of the constsaianish weakly (i.e. modulo the
constraints) so that the motion preserves the constraifgcaidetermined bg(P) = 0.
In contrast to the Hamiltonian constraint (2.11) which isfag singlet, the constraints
C(P) possess a more intricate structure with regarfg which we shall now study.

3.1 Bosonic constraints and weak conservation

Motivated by the knowledge of the structure of the supeiigyaonstraints and of their
‘translation’ in coset variables [16, 8], we wish to studwurg@y from the viewpoint of
the coset dynamics, the possibility of imposing coset candgsC =~ 0 for a ‘constraint
multiplet’ of the general form

(3) 0

—
=

®3) (1) (2)

ai..ag Pcalpc\ag...ag + aPa1a2a3Pa4...a97 (sla)
(4) (1) ) () )
Corobiollaras = Parbibs Paslps..bro T BParby. s Pasbs...bros (3.1b)
(5) 2) 3)
bi...biolla1...as = Pal...a4b1b2Pa5|b3...b107 (31C)

(6) ®3) 3)

Coy..brollaolar..ar =  Paolpr...os Poolproar...ar- (3.1d)
Let us clarify once more what various antisymmetrisatiohgtvare understood here: for
instance, all expressions are antisymmetric in the 1Cetapindice$ [b1 ...b1ol, as well
asintheindices, as, ..., Whereas the index, is to be treated separately (of course, the
blocks of ten antisymmetrikindices could be eliminated by means of@asymbol, but
leaving them explicit makes some of the structure more parent). Thus, to give one
more example, the first equation in (3.1) should be read &s/fs)

(ORNG) o @ (3) (0) &) )

Pcalpc\ag...ag + aPa1a2a3Pa4...a9 = c\[ag...agpaﬂc + aP[a1a2a3Pa4...a9] . (32)
The net effect of this prescription is that the I.h.s. andrthes. of all equations have the
same symmetries, as it should be. Note also that althG{fgleoulda priori containtwo
irreducible Young tableaux (0§ L(10)) in a specific linear combination, the definition
of C9, together with the/ = 3 irreducibility condition P®)ela1--as] — ¢ implies the
algebraic constrainféf_)“bmH[ao‘al_m] = 0. The ansatz (3.1) is motivated by previous
studies of the supersymmetry constraint in [8].

As already mentioned in the introduction the tensor stmactf the flat indices ap-

pearing in (3.1) is identicdl with the one of the lowes§ L(10) levels appearing in the

"The double lineg| in the subscripts of the constraings”), ¢(®) andC(®) serve as a mnemonic to
separate the 10-tuplds .. . b1o] from the otherSO(10) indices.
8Except for the algebraic restriction ¢t just mentioned.
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L(A,) representation of;,, with 3¢ indices at eachly level ¢ [28]. In the form given in
(3.1) this is not entirely obvious: we must ‘remove’ asymbol with ten antisymmetric
indices, counting the ‘missing’ index &) as an extra (really: upper) index. In this way,
the index structure of the constraints becomes

3 @ (5) (6)
Ccm CCL1€L2 ) Cal...a5 ) Cao\al...(n PR (33)

which corresponds to the well known ‘central charge repregmns’ of maximal su-
pergravity. The above pattern illustrates that, at leastHe low level representations
displayed above, the relevat.(10) Young tableaux are obtained, up to appropriate
tensors, from the low level Young tableaux of the adjointtgf by removing one box
in all possible ways; so, for instance, the 3-fojay,as| at level one becomes a 2-form
[a1as], and so on. However, at higher levels there will appear egpeesentations. Simi-
lar representations in the context of very-extended alggebave been studied in [11, 28].
The reason for introducing the surplus antisymmetric ieglio (3.1) will be explained in
section 4.2, cf. remarks after (4.15).

We find that demanding weak conservation of the constrabmsealong the coset
motion, i.e. using the equations of motion (2.1@)jquely fixeghe numerical values of
the coefficientsy, 5 in (3.1) to be:

21

With these special values, the result for the time derieatithe constraints is, using the
SO(10)-covariant derivativeD and setting: = 1,

3) © 3 (1) (4)
Dcal...ag = _9Pcalcca2...a9 + 10P010203CCL1...(1901||0203 (35a)
7 ) (5) 1603) (6)
_% c1...c6 ¥ ai...agctl|ea...co + ? coler...ca“ar...ager||colca...c80
(4) 0 @ 0 @
ch1...b10||a1a2 - _10Pcblccb2...b1oHa1a2 - 2Pcalcb1...b10Hca2 (35b)
51) (5) 3@ (6)

_6 010203Cb1...b10\\clcgc;mlag + 5'Pcl...CSCbl...blo\\cl|02...06a1a27

(5) 0) (5 0) (5
chl...blgHal...a5 - _10Pcb1chg...bmHal...ag, - 5Pcalcb1...b1o||ca2...a5
2 (1) (6)
_1_5 01020361)1---1710”01\C2C:sa1---a57
(6) (0) (6) ©) (6
chl...bloﬂao\al...cw - _10Pcb1chg...bloHao|a1...a7 - Pcaocbl...bloHc|a1...a7

(3.5¢)
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_7Pcalcb1...b1oHa0|ca2...a7' (35d)

again with all required symmetrisations implied. Because time derivatives of the
constraints are again proportional to the constraintsgcomstraints areveakly conserved
in this truncation, hence the constraints can be imposeuktd & consistent restriction of
the dynamics as claimed.

These weak conservation equations exhibit two remarkablmtares (¢) the uni-

versal appearance of the negatlve of the zero- Ievel COQBIIWE pY b actlng (by being

on the r.h.s. |nvoIV|ng thé )’s with ¢/ dlﬁerlng from the level appearing on the l.h.s..
This triangular structure is reminiscent of a highest (evdet) weight representation in
that the time derivative®C®) involve only constraint§*) with levels¢’ > ¢, multiplied
by P9

We shall show below how these two remarkable structural etesnof the above
weak-conservation equations are connected to a Sugaikansedormulation of the con-
straints. For the time being, we only note that the consemvalf the constraints implies
that one can consistently constrain null geodesic motioA@R K (E,o) beyond the null
geodesic constraint, at least in the truncation (2.16) amgeingular gauge. Note also that
the Hamiltonian constraint is not required for the aboveseovation equations to hold.

3.2 The supersymmetry constraint

The results of the preceding sections can be generalisdttoaise where spin degrees
of freedom are added, supplementing the bosonic constrayjna supersymmetry con-
straint corresponding to local supersymmetry. The inolusif the fermionic fields of
supergravity has already been studied fronfanpoint of view in [5, 6, 29, 8].

K (E,) possesses an unfaithful spinor representatiprof dimension320 which
transforms as a vector-spinor unde®(10) C K(Fyg) [5, 6]. The K(E,() covariant
equation of motion for this representation is tki€F) Dirac equation

1(1) b1b2b3 2(1) b1 b2 1(1) b1b2 b3
Db = Ditpa = 75Quipans 17 Y0 = 5@, 7' +—leb2bt,1“a (G

1 (@
180Qb1 bl L, b5¢b6+ Qab1 bsrbl Dagbs

<Qb0|b1 PRV b8¢b()+8Qa|b1 PRl

b ..b
2 6'le bg v 6¢a

2
3-8l

2(3) [br-br —28(3) I breboq)br 3.6
+ Qc\cbl...b7 ¢a Qc\cbl...b7 a ¢ . ( . )
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The I'-matrices are real32 x 32)-matrices ofSO(10). In the triangular gauge (2.14),
which we use throughout, we can replace the connection cisefts Q) appearing in
this K (Ey) covariant derivative by the coset coefficied$). Using the dictionary (3.12)
one can then verify that — modulo higher order gradientsveays — the above equation
coincides with the Rarita Schwinger equation of maximaksgpavity [5, 6].

Because one can supplement the bosonic coset dynamic$ (¥.118e weakly con-
served constraints (3.1) it is natural to ask if similarlyugparsymmetry constraint exists
in the combined bosonic and fermionic system which is weaklyserved. A candidate
constraint was described in [8] where it was derived fromesgravity. It has the form
S ~ 0, with

1/ () » 1<1> e e 1@ crocs
1—‘06 = 3 Pabr 1—‘b ?/) c1CQC5F ! 2¢ s — —Pc1 C@F v "?/) o
2 25!
1 ®) C1...C6,/,C 1 3) c1...cg /b
+mpb\bc1...07r POt — mpb\cl...czgr by (3.7)

This expression was shown in [8] to coincide with the appedply truncated supersym-
metry constraint of supergravity upon use of (3.12) (andaat, can be used to re-derive
the dictionary).

We can work out the time derivative of (3.7) using solely thé/;,) covariant Dirac
equation (3.6) to obtain

1@ a1 anas 1 @ a1 4 3 a1
Dt6 - EPWQ%F + 2 6 Pa1 %F —|— 3 8 Pb|ba1 a7F . 6
3 ) 0 1 O1by...b
+ Cal (lgF Fal a8¢a9 - _Cbl b10||a1a2F F 1 IOFalwaﬂ

5 @) 01b1...bg aias,/,bio 5 ) 01 b1...bg a1 ...as5,/,b1o

3. 8lcb1 b10||a1a2F r [ + 8. glcbl buollar...as T r (&
15 ®) ai...aq,/a

— 1691 bl g LOT 1 bropat-aagas (3.8)

Consequently, the supersymmetry constraint is also ceaden the constraint surface
where one imposes both the bosonic constraints (3.1) ansuersymmetry constraint
(3.7) itself. This result does not depend on the Hamiltoc@mstraint, and thus provides
no extra consistency checks on the latter.

Remarkably, the above conservation equation can be retdstms of ak (E)
covariant derivative acting o&, suggesting that the supersymmetry constraint behaves
as aK (Eo) Dirac spinor. This is achieved by shifting the first threerteion the r.h.s. of
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(3.8) to the I.h.s. In triangular gauge we can then repfaéeby Q) to obtain

_ 1M ajasas [a1--as 4 ® ai...ar
D6 = Dy — 12Qa1a2agr - 2 6|Qa1 a6 o 3. SIQb|bal ll7F +- S
3 (3) 01aji...as, /a9 01b1...b10 01, /02
= gC'al.__agl—‘ r P* — _Cb1...b1olla1a2r r '
) ) ala ) ®) ai...a
3 8'Cb1 bloH(llagrorbl bQF ! 2¢b10 8 . 9'Cbl...blo||a1...a5rorb1mbgr e 5¢b10
15 ) ai...aq, ) as
16 9'Cb1 .biollat.. adFOFb1 blor 1 41/) 7 ) (39)

where the dots indicate possible higher level contribwtidn this respect the supersym-
metry constraint thus behaves like a Dirac spinor represient of i (E1y) (defined in
[29, 5, 8]). However, as already noted in [8] the supersymyrainstraint does not trans-
form properly undef<( E4) (this observation is analogous to the one which will be made
in section 4.3 for the bosonic constraints), so the sigmfieaof the appearance of the
K (E,o) covariant derivative in the above equation remains to béfield.

3.3 Translation to supergravity

In the previous section we have worked entirely within thestanodel, except for the fact
that wemotivatedhe general algebraic structure (without using precisermétion about
the numerical coefficients andj in (3.1)) of possible constraints by previous knowledge
from the supergravity side of the coset/supergravity gmoadence. In this section we
shall use the ‘dictionary’ relating the unconstrairedhodel to the dynamical equations
of supergravity [1] to compare the constraints (3.1) to thevikn canonical constraints
of supergravity in detail. It is therefore gratifying thaewghall re-obtain the uniquely
determined coset values (3.4) by matching the supergraxjyessions to the coset ones
in this way.

All bosonic equations are displayed in table 1. Both the dyisal equations and
the constraint equations can be obtained by the standard pfkedure from the field
equations ofD = 11 supergravity [17], namely the Einstein equatiohg; and the matter
(4-form field strength) equations12¢?; in the present conventions the latter read

1 1
Gap = Rap— gFACDEFBCDE + %WABFCDEFFCDEF7 (3.10a)
1
MBCD _ DAFABCD + %EBCDEl“-E4F1“.F4FE1...E4FF1...F4 ’ (310b)
where indices are flat space-time indicesB =0, 1, .. ., 10.
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| Supergravity | Coset | Name |

G =0 D(ngb =0 Einstein dynamical eq|
Maazas — ) D%)mm =0 Matter dynamical eq.
DyFa,..ap =0 eal...a4bl..,b6D(J§;mb6 =0 F-Bianchi |
Ripane =0 Ebcdl...dgp(lglul...dg =0 R-Bianchi |
Goo =0 (PIP)=0 Hamiltonian constraint
Go, =0 eacl___cg(g)cl__cg =0 Momentum constraint
MOaraz — () Gbl...blo(éll...blo||a1a2 =0 Gauss constraint
D, Fey..c5i =0 €b1...bweal...am...cs6gll...blo||al,,,a5 =0 | F-Bianchill
Rieies eslap = 0 €b1...b106a1...achcS(Ci,l,,,bm||a0\a1,,,a7 = 0 | R-Bianchi Il

Table 1:Complete list of all (bosonic) coset equations and theiresponding (bosonic)
supergravity equations.

In order to make the comparison of the supergravity equatiorthe coset equations
we need to gauge-fix and truncate the supergravity model.e pecifically, using the
conventions of ref. [8], the ‘dictionary’ is specified by assing a zero-shift gauge of the
vielbein,viz.

N 0
EMA=<O a); (3.11)

€m

we will write e = det(e,,*) for the determinant of the spatial zehnbein. All indices
a,b, ... here and in (3.12) below are fla(10) indices. Furthermore, all supergravity
fields are evaluated at a fixed spatial potgt and are truncated by setting spatial frame
derivatives of the spin connection, the field strengths &edlapse to zerod,wy.q =

04 Foped = OuFreqe = 9, N = 0. The coefficients of anholononty,, . are assumed to be
tracefree, i.e),,;, = 0. The dictionary is then given by

n(t) «— Ne *(t,%q), (3.12a)
(0)
Qu(t) +— —Nwoa(t,x0) = e Oemp(t,%o) , (3.12b)
0)
Pab(t) — _Nwab0<t7 XO) = _e(am8t6m|b) (tu XO) ) (3120)
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1

—
N

Pa1a2a3 (t) — NFOa1a2a3 (tv XO) ; (312d)
(2) 1
Pal...ag (t) A— _ENE(M...a6b1...b4Fb1...b4 (tu XO) ) (312e)
(3) 3 -
Pao‘al...as (t) — _N€a1...a8b1b2 lebg ag (tv XO) 3 (312f)

4
wherea, b, . .. are now to be interpreted #at spatial indices in ten spatial dimensions.
Substituting the above expressions into the constraint$ ¢ath the values (3.4), and
contracting with ar-tensor we arrive at

3) 1 ~

N%4 a0aCay oy = 5 8! <3Qabcwbco + Fab1b2b3F0b1b2b3> (3.13a)
5 (4) 3 -
N €bl~~~b10Cbl---bl()HalaQ 5 8! F0a1b252leb2 a2 (313b)
1
+%Ea1a2b1...b461...C4Fb1...b4F01...C4 3
_2 (%) )

N €b1...b10€a1...a5cl...C5Cbl...bloHal...a5 = _6' : 8' chcz dFdCSC4C57 (313C)

(6) - -
N_2€b1...bmeal...a7c1c203Cbl...bloHao|a1...a7 = 9 7' . 7' . 3' chcg dchdao- (313d)

These expressions correspond to the truncated versiore cfupergravity constraints
with the truncation as specified above. In the order give8ih3) the supergravity con-
straint equations are: the momentum (diffeomorphism) waim, the Gauss constraint,
the F-Bianchi constraint and the R-Bianchi constraint lfcyidentity Ry ., c,j0, = 0)-
The truncation here amounts to ignoring spatial gradiehtd@ spin connection and
field strength terms (for instance, the full momentum caistiwould have an extra term
o Opwpao, @and the Gauss constraint an exré,,.,.). It is a non-trivial fact that the same
numerical values (3.4) far and 3 ensure the weak conservation of the constraints both
w.r.t. the coset dynamics and the supergravity one, be¢has$e/o Hamiltonians do differ
at level 3 (even within the truncation we use on both sides) t&ym that could have mod-
ified the weak conservation condition (but did not). [Seef8]the precise mismatches
in PG terms.]

The equations given in table 1 exhaust all bosonic equatibtie D = 11 supergrav-
ity system and we have found appropriatg counterparts in the present truncatfon.

9The Riemann Bianchi componeny, 5o and R, .o Vanish identically in our truncation. In the full
gravity theory the relatiom ;o = —Rjo. 4 holds which seems to be inconsistent with R-Bianchi I. The
resolution is that such a relation no longer holds in thedation appropriate for the-model (£ does
not know about the Riemann tensor).
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4 A Sugawara-like construction for E(?

In this section we investigate in more detail the structuré properties of the bosonic
constraints (3.1) and show that they can be equivalentlyesged in a Sugawara-like
form J ® J in terms of theE;, Noether current7. In the level-3 truncation we will
see that the constraints, when written in this form, tramsfoovariantly under a Borel
subgroupEy; C Ej. In the last subsection, we will establish the link with therm
familiar affine Sugawara construction by considering théeddingFy C Ep.

4.1 TheFE;, Noether Current

By Noether’s theorem, th&, global symmetry of the coset action implies the existence
of an infinite number of exactly conserved quantitiés, 1°

J =n"typy. (4.1)

Henceforth (as elsewhere in this paper) we will use the gauge 1. The currenty
takes values in the Lie algebra bf,, and is time-independent, that is, ihanodel equa-
tions of motion (2.10) are equivalent to current conseovatl, 7 = 0. Expanding the
current according to level and making use of the triangutargg (2.12) fon/(t), it is
straightforward to see that the level truncation condi{@A6) is equivalent to

JO =0  forl=—4,-5-6,... (4.2)

Consequently, we have the expansion

1 (=3) | 1(=2) 1 (=1
j = g J o mlmmSFmo|m1...mg + 6 J mlmm(}le...mg + 5 J monmnp +
(0) 1M 1@ .
+ J anmn + gjmanmnp + @Jml...ngmlmm() + e (43)

where the ellipses on the right stand for infinitely many wanishing positive-level com-
ponents of7. Expressing the current components in terms of (contramgrivelocities
and fields, we obtain at the lowest levels

(=3)
J mo|mi...mg — P(3)mo\m1...mg

7 (4.4a)
(_2)m m (2)ym1...m 1 (3)plgrmi..m
Jomeme = PRI g o Ay, PTG (4.4b)

0By abuse of language, we usually referfoas the (conserved) curreitalthough one should more
properly speak of a conserved charge.
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1
J mnp P(l)mnp—f—?Ath(Q)thnp{—

2 1
+ <§Ar1...r6 + ﬁATlrgT’gAhﬂ’{)T’G) P(3)r1\r2...r6mnp . (44C)

Three important features here should be noted:

e J is ankE, object, transforming agy — J’' = ¢J ¢! under rigidE;, transfor-
mationsg € Ejo. This implies in particular that all indices in eq. (4.3) &&(10)
(‘world") indices, which are covariant or contravariantacding to their position,
as indicated in the above formula.

e 7 is manifestly inert undek ( F1g). This means that the truncation condition (4.2)
is gauge invarianthence doesotrely on any particular choice of gauge (such as
the triangular gauge). In contrast, the truncation coadiR.16) orP is not gauge
invariant.

e Unlike the velocities”®, of which there are only four non-vanishing components
(for¢ = 0, 1, 2, 3) with the truncation (2.16), there ardinitely manynon-vanishing
components/\¥) at positive level. As shown in [14] and explicitly exhibitad(4.4)
the most negative level component gf is purely velocity (or momentunjlike,
while the positive level components contain an increasemeddence on the coset
coordinates (omositiony = {A..p, Ay mes Amolma..mss - - - - An Euclidean-
group analog of this situation would be to consider geodesition on Euclidean
space: the conserved quantities would(pg L;;), where the linear momentupm
is pure velocity, whereas the angular momentlinvolves both velocities and
positions.

Clearly, the truncation condition (4.2) is preserved onyythe parabolic subgroup
Ef; C Ey, which is generated by the levél> 0 generators of,, that is, bygl((10)
and the positive level generatak®™?, ™ --™¢ . This is the part ofz';, which trans-
forms the coordinates, but leaves unchanged the cosetovéésc(or momenta). This
property of £} is one of the reasons why the (presently known) coset contstraill
transform only undeF;; indeed, any negative level transformations will autoowly
violate (4.3). Under such a (strictly upper triangularpgrmation

g = exp (iA(l) Emme éA@) Ermams ) c Ei’b (4.5)

3| mnp mi...meg

the lowest components of the current transform as
59)7” - — igmA(l) (}l)pqr _ lA(l) (_Jl)mpq
" 2

18 n pgr npq Y

(4.6a)
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-1)

mnp 1 (1) ( )qrsmnp
6J = 6Aq J (4.6b)
5 7 mems = Ly e (4.6¢)
6 ’ '
(-3)
§ J molmi.ms — (4.6d)

Here, we have shown the infinitesimal result when amﬁjyr is non-zero. The trunca-
tion (4.2) implies that/(=?) is invariant. Infinitesimally we have in general thiatl¥) =
S A J(en),

We shall next investigate the relation of the conservedgd®g to the constraints
derived in the foregoing section. Before doing so, howeiteg useful to recall that
there is already one constraint which can be expressed iifesatsugawara form’, the
Hamiltonian constraint. Namely, from (4.1) it is evidenath

(P|P) =0 = (J|T)=0. 4.7)

Furthermore this constraint is obviously &k singlet.

4.2 Sugawara-like construction of the constraints

As mentioned at the end of section 3.1 above, the weak caxtsmmof the constraints
exhibits two remarkable structural features. The first esthis the universal action of
the zero-level coset veIocityPa(g) on the r.h.s. of the weak conservation equations (3.5).
Namely, as already observed in [3], this action can be coethvith the similar universal
action of theSO(10) C K(Eyo) gauge connectior—erl%) on the l.h.s. by using the
formulas (3.12)}*

) (0)

Py — Q= —€" 0tlma = +€maOiep™ (4.8)
whence
©  © .,
Opvg + ( b — Qab)v = €ma O™ . (4.9)

Here, v™ = ¢,v® is the contravariant‘world’ version of the tangent space vector
v® = v,. The (inverse) coset zehnbeip® = (¢7"),,* is obtained from, as in (2.13).

Therefore, the universal structure of tﬁg) anng?)) contributions in the weak conserva-
tion equation (3.5) above is precisely such that they cabealliminated if one replaces

Wwe always adhere to the conventions and notations of [8].
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all the SO(10) ‘flat’ indices a, b, . . . by contravariant'world’ GL(10) indicesm,n, . ..
Accordingly, we can now convert the constraints of the pasisection (written in terms
of ‘flat’ indices) tocontravariant formby means of the coset zehnbein defining

(—3) (3)
¢ mi...mg = 6a17TL1 . 6(1977196

etc. (4.10)

ai...ag

In this ‘contravariant’ form the constrainsare nowG L(10) tensors rather thafiO(10)
(‘flat’ or ‘Lorentz’) tensors. The reasons for switching tabelling withnegativentegers
will become apparent shortly. The conversion (4.10) i6tb(10) world indices only
changes the transformation under the |eizet 0; below we will see that converting all
K (Ey) indices intoF, indices is more natural and gives a more unified structure.

The second noteworthy feature was the triangular evolginrcture of (3.5), which
becomesstrictly upper triangularwith the above redefinitions; that is, the weak conser-
vation equations now take the form, foK 6,

—L k —l—k
3t(€ )ml,,,m;,g - Z (Pll.“n%( e )ml_._m:,[m...ngk’ (4.11)

k>1

with thecovariantvelocitiesP.¥) ... (t) = €n, - - - €y, “* P 0y = 01 Apyomy+- - - - IN-
dex contractions here are only schematic; we do not indtbatgarious (anti-)symmetri-
sations required for the pertinent Young tableaux. The g feature of (4.11) is the
distinction of contravariant and covariant world indices.

This triangular evolution system can be recursively irdiéenl, in the present trunca-
tion starting fron¥ = 6. Indeed, the above procedure eliminates all the terms onttlse
of the last equation in (3.5), implying that the contravatieonstraint®(-% is actually
constant and not only weakly constant. Due to the identity (4.4) =/ (~% and the
contravariant”?® we can also rewrit€(=% in current< current form and define

(-3) (=3)
J no|m1...m8 J mg\m1on1---"7 . (412)

- (=6)
Iy mi...miol|no|n1...n7 = ¢ m1...miol|no|n1...n7 —

Here, and in similar formulas below, the same symmetrisatas in (3.1) are understood.
This way of writing the constraints makes it plainly evidémat £(- is strongly con-
served since the current components are. The nota&timnchosen in anticipation of a
Sugawara-like construction.

Examining then the weak conservation law for the penult@r{abntravariant) con-
straint¢(~%), one finds that it, too, can be integrated explicitly. Moredfically, it is
easy to check that the time derivative of

(_5)m1...m10Hn1...n5 _ (_5)m1...m10Hn1...n5 1
£ = + EAmmm

(=6)
¢ mi-miollpilp2psni...ns (4.13)
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is identically zero by virtue of (3.5¢c) and (2.15). After &le algebra, we find that,
remarkably, we can again rewrite this exactly conservedtjyan current x current
form as

(=5) (=2) (=3)
Iy mi...miol|n1...ns _ J m-namimz g ns|ms...mio (414)

by using (4.4).

The recursive integration can be continued, in princigletie other constraints—
and¢(=%) and we anticipate that the so obtainefl,(; covariantised’) constraintg§(—*
and£(-=3) can also be expressed as bilinears in current components via

(=) 21(=2) (=2) (=1 (=3)

£ ml...m10||n1n2 g J nimi...ms J nome...1mM10 + J nimimsa J ng‘mg...ml()’ (4.15a)
(

(-3 (-1)

) (-2) © (-3
@ nieng 9 7 minang n4...n9_'_Jn1p J P|n2...n9_ (415b)

where we have substituted from (3.4) feand3. We will show that these are the correct
expressions below in section 4.3 by obtaining them from ansgtry transformation. The
above Sugawara-like, i.e. currextcurrent, form of the redefined constraints now renders
manifest their strong conservatiéhThe reason for switching to a labelling by negative
levels for the redefined constraints is now obvious: it fsBammediately from the level
structure on the current components, and is such ghet = > J4 ) in a
fashion very similar to the Sugawara construction of theasro generators for affine
algebras. This connection will be made more explicit inisecd.4. As is evident already
from the few terms in (4.15) a Sugawara constructionHgy will be far more intricate
than the usual construction for affine algebras since theotel structure on the various
terms is different whereas in the affine case only the leveblias. Without truncation we
also expect formally infinite sums as extensions of (41%5).

The above expressions (4.15) at last furnish an explanatlonwe need to intro-
duce so many indices to parametrise the constraints in, (8v&én though inspection of
(3.13) might suggest that a more economical form of the caimés could be obtained

12In geometrical terms, strongly conserved (under geodestiom) quantities which are linear in the
velocities (such agr) define ‘Killing vectors’, while strongly conserved qudigs which are quadratic in
the velocities define ‘Killing tensors’. It is a priori quitgossible to have Killing tensors which cannot be
expressed in Sugawara form, i.e. as a combination of temedupts of Killing vectors (this is for instance
the case for the Carter Killing tensor on a Kerr spacetimd)ough we should leave open the possible
existence of such non-trivial Killing tensors at higherdbsy it seems that ‘Sugawara-like’, geometrically
trivial Killing tensors are sufficient in our problem.

BIn a quantum version these infinite sums presumably needrnoteal ordered such that they become
well-defined operators on any finite occupation number state
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by dualizing and contracting out seemingly superfluousciesli Namely, when written in
contravariant form (4.15), it is obvious that we would neeuetric g,,,,,(t) (rather than
merely a Kronecker symbé),;) to contract away indices. However, the latter metric is not
a properkE, object, and therefore a contracted version of (4.15) capossibly trans-
form underEy, (or rather, as we will seef};)) in the proper way; besides, contraction
with a time-dependent quantity would spoil strong consaoma

As is evident from the above construction, at the orifjin= 1 in coset space the
Sugawara-like constraints (4.15) agree with the weaklyseored ones in (3.1), since the
coset zehnbein,,* = ¢,,* and the additional coordinates,, ,,m; = Amy.mg = - -- = 0.
Away from the origin the identity/ = P no longer holds and the constraints (3.1) and
(4.15) also start to differ. This is captured by the contravgisation bye,,?, turningC®
into €=, and the additional terms proportional £0,,,,.,., €tc., turninge—* into the
Sugawara-like2(=%.

4.3 Transformation of the constraints

We now examine the transformation properties of the comgésrander the basi&’;, sym-
metry. This question can be addressed both for the stromglyerved constraints (4.15)
quadratic in the charges as well as for the equivalent weakly conserved constrailg (
guadratic in the velocitie®.

As already mentioned, the tensor structure of the low legaktraints is identical to
that of the so-called integrable(A;) representation of/;,. The highest weight of this
E, representation id; with Dynkin labels[10000000 00}, The ‘1" here occurs for the
over-extended, hyperbolic node of tlig, Dynkin diagram as shown in Fig. 1 and the
definition of the fundamental weights was given in footnatelBe low level content of
the L(A;) representation (sometimes also referred to as ‘centrageh@presentation’)
w.r.t. the Ay subgroup ofFE;, was given in an appendix of [28]. Note however, that
the constraintt(~% contains only one of the tw6'L(10) tensors appearing in the level
decomposition of L (A;) due to the algebraic restriction that it should vanish upati a
symmetrisation in the indices, ny, . .., n;. The possible occurrence 6fA;) of Eq in
the present context might be interpreted as evidence fovariemt formulation involving
E11. In this case, gauge-fixing and a canonical analysis shealdi o the replacement of
a (presently unknown, and hypothetically; invariant) set of ‘covariant’ equations by an
Ep invariant set of dynamical equations augmented by comsteguations transforming

14The analogue of (A, ) for E1; was proposed in [11] to be responsible for the emergenceaatspme.
We will here take a different view on emergent space by theldirfg of constraint equations, but note that
just like in (4.16) below furtheF; representations beyordd A;) may be required there as well.
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in a representation af’;y, whose structure should follow from any, decomposition of
E4;. Indeed the.(A,) representation is the first in an infinite sequence of intagraigh-
est weight representations bf, arising in the decomposition df;; w.r.t. its naturalF; o
subalgebra [30]:

Ey=®LA3)*® L) @ (Eig®Rr) ® L(A) @ L(A3) -+,  (4.16)

where we have also indicated the dual lowest weight reptasens corresponding to
the positive step operators (the fundamental weightdierare defined in a completely
analogous fashion as fdr;). « is a ‘level counting operator’ which commutes with
E1y (and is analogous to the central charge in the decomposifidi, under Ey). If
(4.16) were indeed the correct way of splitting the lookedH;; -covariant equations into
dynamicalE;, equations and constraints, one would accordingly expettfanite set of
(separately infinite) towers of constraints, of which thewn supergravity constraints
would just be the lowest lying members. The piece associateds F,, invariant and
would correspond to the Hamiltonian constraint.

In order to verify theF,, transformation properties of the constraints it is better t
work with the strongly conserved versidi— since the constituent charges transform
directly underE;, according to (4.6). In contrast the weakly conserved cairgsC®)
of (3.1) only transform under the inducéd £,) transformation and we will study them
below as a second step.

The truncation condition (4.2) is only maintained by thegbalic subgroug®},. Let
us start then by considering the effect of &p), transformation on the contravariantised
constraints. Using the transformation (4.6) in (4.12)143.and (4.15) we obtain under
an infinitesimalA) transformation of&

(—S)m o (1) (—4)m mopl|gr
§ g mme _5qur £ mi.-mopliq , (417&)
5(54)m1...m10||n1n2 — ix) (E?)ml...mlollpqrmm 4.17b
S : (4.17b)

(—5) 1@ (=6)
5 ¢ miemillni.ns EAW £ ’”1--.m1o||10|q?“n1---7157 (4.17¢)
(=6)

62 mi...miol||no|n1...n7 — 07 (417d)

where the last relation is again due to the truncation camdi4.2). The result (4.17)
exhibits two remarkable feature@:) the contravariantised constraints transform as a lin-
ear representation (which was not at all guaranteed by dieéinition), andii) the linear
transformations exhibited in (4.17) are the same as onedidimd for theL(A;) represen-
tation of £ restricted toF};. We have already mentioned thét, contains only one of
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the two possible Young tableaux. The set of constra@its), ..., £-% here furnish an
unfaithful representation of’;, contained inL(A;) of E1y. However, it is not clear that
this relation betweerd(A;) and the constraints continues to hold when the truncation is
relaxed. We stress that the nice transformation laws (4la@ptmean that the constraints
constitute a highest weight representation of the fiylf. In fact one can show that the
combination off,,,, 1yms ® Finy..me] @NAE |y . ms @ K™ g) Of £ gENETators underlying
£(=3) is not annihilated by the raising operat6t’". This suggests that the tensor product
of two adjoint representationg of F;, does not contaiii.(A;) as a subrepresentation. A
similar result is known in the affine cagg [33].1°

The difficulties with the transformation under full;, also become apparent when
studying the way the weakly conserved constraints (3.1nghainder the action af;,.
The infinitesimal variation is determined by the indudédE,,) transformation, involv-
ing both positive and negative step operatorstpf. For simplicity we restrict to the
transformations (2.5) (with paramet&f!); the action of this transformation on the con-
straintCt? ., is

®3) (1) (4) 1 (1) ®3)

6A(1)Ca1...ag = cicac3Var...aget||eacs T §Aalclcgpc1cgcgch\ag...ag
(1) 0) (2 (1) 0) (2
+28Aa1agcpca3Pa4...a9 + 56Aa1a2a3Pca4Pca5...a9 . (418)

In general, to have covariance under the bdsidr,,) transformations,,,C“) would
need to be equal to the sum of two terrd®C“+) and AW C=1, In the case = 3, as
C® does not (seem to) exist, we would therefore like to hayeC® o ACH. The
first term on the r.h.s. of (4.18} A(VCW) is thus the expected covariant transformation
of constraint into constraint and naturally agrees with¢beesponding one in (4.17).
However, the other three terms (containiRg) P4 or P P(?)) do not rearrange into
combinations of constraints. It is not inconceivable thaten relaxing the truncation
to levels/ < 3 and considering a non-zero value BfY, the term containing®") P®)
might cancel against a term coming from the variationP6f in a possible additional
contribution~ P P® to the definition ofC®). However, this type of argument does not
seem to apply for the two last offending terms, of the typ€ P, in (4.18) which arise
because of thé,,,, piece in the{( E;,) transformation. Concerning the latter problematic
terms we note, however, that they arise because of theatestiYoung symmetry of(®)

— if there was an additional anti-symmetric piece on Iével 3, equivalent to an additive
modification of P®), these terms could superficially be made to vanish. Thisreowald

be indicative of a possible Borcherds extensiofvgf. We will discuss this idea further in

SHowever, in this case one can formally construct somethikegd highest weight vector.
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the conclusions. Evidently, the constraiGtare invariant undey € E7, transformations
since these do not induce any non-trivia( £;) transformations of®.

Even though the transformation properties are identicaitiner form used for the
constraints (strongly conserved or weakly conserved)gdwnetrical status of the con-
straints is somewhat clearer when considering them in Sagaiike form£. The para-
bolic subgroupEj; has a transitive action on the codet,/ K (Eo) (this action is even
essentially simply transitive, if we neglect the minor agwty linked to the negative-
root part ofGL(10)). Therefore we can usg;; as a group of ‘translations’ over the coset
Ey/K(Ey). Similarly to the notion of ‘Clifford translations’ and ‘@ford parallelism’
in 3-dimensional elliptic space, we can uBg, to translate, ‘in a parallel manner’, the
bundle of geodesics issued from the origin (i.e. the uninelet) to a different (and ar-
bitrary) point in coset space. This symmetry argument alow to complete the proof
(given in section 4.2 only fo£(~% and£(~%) that the Sugawara-like~* constraints are
equivalent to th€® ones. Indeed it suffices to parallelly transport #1e”) back to the
origin where they agree with the weakly conser@d. The £}, covariance of the con-
straints means that this translation operation maps ‘gaa’ satisfying the constraints)
geodesics stemming from a point to other good geodesicstagrirom a different (and
arbitrary) point in coset space. On the other hand, the appaon-covariance under the
full E,y of the constraints means that the set of good geodesics stgnfirmm (say) the
origin is not invariant under the isotropy group leaving higjin fixed (which is the group
K (E1p)). We will comment on this (unresolved) puzzle of partiadas symmetry in the
concluding section.

4.4 Affine Eq truncation and standard Sugawara construction

We now show how the Sugawara-like form of the constraints5yrelates to the well-
known Sugawara construction of an associated Virasordoedgehich exists for any
affine Kac-Moody (current) algebra [23, 24, 25]. This is ddayereducing to the affine
Ey C Ey. If the Fourier modes of the (left or right) curreht are denoted? (wherea
Is an E Lie algebra index), the Fourier modes of the associatedsvimagenerators are
of the formL,, ~ > jo_ jo.

Let us consider the reduction of thg, conserved current/, and of theF;, con-
straints, toFy. We discussed above the covariance of Buy Sugawara construction un-
der ‘translations’ by the transitive parabolic subgrdijp. We can exploit this translation-
covariance to limit ourselves to considering a null geodetarting (say at = 0) from
the coset origin (i.e. the unit element of the group). In taise we have (at= 0) 7 = P
and.7 is therefore symmetric.
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The reduction ofF, to its natural affine subalgebig, (as visible on their Dynkin
diagrams fig. 1 by separating out the first, leftmost nodelle¢bd) corresponds to letting
all indices only range ove, 3, . . ., 10. Then the number dfs is related to the affine level
in Ey, see [31] and below. In this truncation all of the constm({i3t 1) identically vanish
due to the presence of the antisymmetric 10-tufles. . bo|, exceptfor the lowest one,
Cé‘?,,ag, which becomes a§L(9) singlet. Using the notation of [31] for th&, current
algebra, we find®

3) 3-8

3 i
J = 9_Pi\k1...k8€k1"'k8(z(o) +20) + Tpl\kl...kﬂ@kl (Gl + G] 1i)
3-80) ; ; 12 it
tor Pajogy. i € (27 + Z(_y) + @Pil...ia(z oyt Zl(lo io)
1 @ (1) 11121 1 11121 (0)
_‘_ﬂpzkj...k{)Ekl---k5i1i2ii(lelzlg + Z( 12)5) + §PZ411'2Z43(Z(0)2 °+ 2212213)
2 6' 2k1koCk1koil.. 16 21 26 —
(0) (0) (0) (0

The notation here is such that, . .. are SL(8) vector indices and tak& 4, . . ., 10; the
index value2 corresponds to the affiney extension ofEz, and at the same time labels
the remaining spatial coordinaté in the dimensional reduction. The bracketed sub- and
superscripts on thé; generators” give the affine level.Es itself is written in SL(8)
level decomposition as

Es = 8 @ 28 @ 56 ¢ (63d1) @ 56 @& 28 @ 8
Zi Zil...ig Zi1i2i3 Gz’j Ziligig Zil...ig Zz

Using the current algebra basis, we expandihe&alued conserved current (4.19) as

J = Z [Ji Z(m) + J(m)ZZ + 6[‘]l1 Z6Z(71n) ¢+ 6|‘](rln 6221 Jig
meZ

1 1
4= J 2212223 + = JZMQHZ J] —|— Jdd + J C} (420)

3 i1i2i3 " (m) 3! (m) Z11223

18The additional factor o$ for the level3 terms comes from changing to canonical normalisatiofpf
The central extension is= —K ', and the derivatiod = K?2,, see [31] for details. Since we are working
with the identity vielbein, the distinction between flat anwtved E1/ K (F1) indices is not necessary
here.
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In the present situation (4.19) only components up to afemellm| < 2 are non-zero.
The naive Sugawara constructtéof the Virasoro generatdi_; gives with the stan-
dard normalisations (in terms of charges and up to an oviabr)

L, = J?‘2>ng + Tl + Ty T + T

1)j+(0)4 )i (0)5
(=1) yiyigi 21...1
3|']z11225'] 0 + 6'J21 26‘](6 ¢ L) (421)

where the dots vanish identically in the present truncation
Substituting the above expansion (4.19) into expressid@ij4yives

1 1(0) (3) 80 (3 8©0) (3)
gekl...kgL—l = §P2iPi|k:1...ks + §P2/<;1P2\k2...k82 + §Pk1iPi\k2...lc82 (4.22)
8(0) ( 62 1) 31 @

9PmP2\k1 ke T 28 9P2k1 ks Prghrig T 28 9P2k1k2Pk3 ks -

This is to be compared with the reduction®f? to Ey which gives

o, 10 3O ® 3O ® 10) ©
£ e = 9 2 ik kg T §P2klp2|kz2...k82 + §Pk1iPi|k:2...k82 + §P22P2|k:1...k8
61 (2) 3@ (2)
+28 - 9Pk1k2k3Pk4 kg2 + 28 - 9P2k1k2Pk3...kg . (423)

where the normalisation is the same as in (3.1). Remarké#idycoefficients of most
terms in (4.22) and (4.23) are identical, so that at leaghéoorder considered, the mo-
mentum constrainf® (generating translations along the residual spatial doatelz?
[32]) appears to be related to tie ; generator (generating translations in the spectral
parameter in a current algebra realisatiorgf. The term which does not agree involves
the contributionPg) which in 7 of (4.19) is only multiplied byd and therefore cannot
occurinl_;.

This near-perfect agreement between the highest-leveliaang-like F;, coset con-
straints (4.15), and the standard Sugawara constructidn pin the affine subalgebra
Ey suggests that the hyperbolic Sugawara-like definition efthy coset constraints (ob-
tained above only when assuming a truncation to level3) should extend to the ex-
act, untruncated coset model, and that the expected infaviter of L(A,)-like E;q con-
straints (of levels-3, —4, —5, .. .), possibly with additional towers, should be somehow

" Naive’ here means without normal ordering although tlisuperfluous anyway for the symmetric
expansion used here. Ignoring normal ordering also maleaffine Sugawara generators invariant under
the action of the affine group, in agreement with the obsemvan footnote 15.
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analogous to the infinite tower of Virasoro generatihys In other words, the gauge sym-
metry of M-theory in itsF;, formulation would be contained in a vast generalization of
the Sugawara construction of the Virasoro constraintsa@ing the conformal symmetry
of a gauge-fixed string action). Moreover, we expect thatstifgersymmetry constraint
(3.7) arises as the part of the construction of the fermionicentG/( z) as in string theory.

5 Discussion

In this concluding chapter we summarise our findings andraugome interesting av-
enues of further research suggested by our results.

In this paper we have shown that it is possible to further tairsthe coset motion on
Ey0/K(Ey) by a set of weakly conserved constraints (3.1) which précisgrespond to
the appropriate truncations of the supergravity canomieastraints. We have also shown
that these constraints can be equivalently re-expresse&ugawara-like manner (4.15),
which is interestingly linked to the standard Sugawara taotgon of a Virasoro algebra
for the natural affine subalgebfgy of E;,. We have investigated these coset constraints
under the assumption of a (consistent) dynamical truncatibere the coset velocities
P (in triangular gauge) of levels and higher, or more invariantly the conserved charges
J of levels—4 and below, vanish. We conjecture that if one relaxes thiscttion by
admitting non-zero coset charges down to levé will be possible to extend both the
definition of the existing constraints (e.g. by adding nesntg with total grading-3, to
£3) up to 3R 7(=F) etc.), and the number of constraints (by including lovesel
constraints, down to the leve(=2*)). In the limit k — +oo where the truncation is
removed, one would end up with (at least) one infinite towezasfstraintst(—3-"), with
n € N. Such aninfinite number of constraints might be conjecttod® needed to reduce
the potentially problematic ‘exponentially infinite’ numibof degrees of freedom in the
hyperbolic o/ K (FE1¢) coset model to a more manageable size, hopefully compatible
with the physically expected M-theory degrees of freedom.tl@ other hand, this also
means that the set of constraints should not grow in sizerf@sten the level increases)
than the number of generatorsiig, .8

However, it seems that the (say Sugawara-defined) cosetamns are only covariant
under a parabolic subgrougy, of E1o. The constraint surface therefore seems to partially
break the originaF;, symmetry of the coset model. By contrast, let us remark that,
the Ey-invariant (two-dimensional) reduction of supergravityhich is closely related to

18From this point of view, one hopes that the apparent coimddetween the algebraic structure of the
low-level constraints and thi,, highest-weight representatidiA,) does not persist to all levels, because
this representation grows in size faster thgf.
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the Ey reduction of theE;, coset model),Fy doesmap solutions to solutions and so
respects the constraint surface. This point deserveseiunirestigation, as well as the
relation between the hyperbolic and affine Sugawara cortgins, which might open a

new perspective on the,, structure.

We see several possible ‘resolutions’ of this partial Idss/eaxmetry. First, one might
think of keeping the fullE;, Kac-Moody symmetry by enlarging the set of constraints,
l.e. by treating the offensive terms in the transformatibthe constraints (4.18) as ad-
ditional constraints that need to be imposed. Whereas walhachecked that this will
lead to new consistent conditions (of leve? in Sugawara form) on the geodesic motion,
the transformation of these new constraints again doeslosg covariantly but necessi-
tates yet again new terms (of levell), etc.. Anticipating that this phenomenon persists
indefinitely it is not clear to us whether any non-trivialstbns to the geodesic equations
remain in this process, given the apparently very large,raagbe infinité®, total set of
constraints. In addition, the new constraints do not apfiehave a good interpretation
in supergravity.

A second possible resolution of the symmetry problem mighit but to be tha¥,
is only an auxiliary symmetry of the theory, which is brokgntbe constraints. An anal-
ogy with, say, bosonic string theory, might suggest how tligld be the case. Indeed,
the usual, conformal-gauge-fixed dynamics of bosonicgtiieory consists of two sep-
arate elementgi) the conformal-gauge-fixed actidf) ;[ X* (7, )], and(ii) the Virasoro
constraintsL,, = 0. The symmetry ofS,;[X*(7, ¢)] include both conformal transfor-
mations of worldsheet coordinatés, o), and the following (active) transformations of
the target fieldX*: 0.X* = e exp(—in(r £+ o)), for arbitraryn (and arbitrary choice
of sign =+ if one discusses the closed string; for the open string on& pambine terms
of the two signs). The Noether conserved current associatdte second symmetry of
Sy X*(,0)] is the worldsheet current'(7 £+ o) = d. X*. The Fourier modes of this
Noether current are the usugl = «o#. The current algebra is abelian (w.r.t. the ‘Lie
algebra index’;) and contains only the (level-1) anomaly tefg,, j#| = mn* 0 1n-
The Virasoro constraints are obtained by the standard Sargaeonstruction from the
Noether currentZ,, = % > n gk . Now, the crucial point we wish to make is that
the constraintd,,, = 0 arenot covariantunder the current symmetryf = o/ of the
gauge-fixed actioy, ;[ X* (7, 0)]. Indeed, the commutation relatidyf,, L,] = mjh, ..,
expresses the covariance of the current under confornmedftramations, but exhibits the
non-covariance of the constraints under the symmetry &gsoddo the current (only the

®There is, however, the possibility that, under our usuaidation, the above-defined set of new con-
straints at levels-2, —1, ... does terminate at levet3. Actually, the fact that, at levet6, £(- seems
already to contain only one of the two independent corredjpgobjects ofZ. (A1) might be the first sign
of such a reduction of (A;) to a smaller (possibly irreducible) representatiorgf.
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Poincaré symmetry under the zero-mgglds present). Let us also recall that the string
gauge-fixed Hamiltonian is proportional to the level-0 ¥weo constrainL, (or Lo + Ly

in the closed string case), and that this dissymetric role,of.r.t. the otherl,,’s reflects
the specific gauge used to fix the worldsheet diffeomorphigmnsetry. By analogy, it
might happen that thé&’;, coset action is a gauge-fixed version of an underlying gauge-
invariant action, and that the gauge fixing has the effecbofh, selecting one specific
constraint (, = (P|P) = (J|J)) as Hamiltonian, and introducing an auxiliary sym-
metry which does not preserve the constraints. We might.elew expect that (as in
the string case where the symmetry generatfiss o generate the full spectrum) the
auxiliary symmetry be a spectrum generating symmetry. Artie¢ case where the anal-
ogy should be taken with the light-cone-gauge-fixed stretga, the auxiliary symmetry
might be similar to a DDF algebra.

An alternative explanation of the apparent restrictiori’fg, one might need to mod-
ify the underlyingE;, Kac-Moody symmetry (e.g. into a related Borcherds symmetry
see previous subsection). We finally come back to the pdisgibf a Borcherds ex-
tension mentioned in section 4.3 in connection with the &mg’ full £,y covariance
of the constraint transformations. Supposing that thisliesghat £, may not be the
correct full symmetry structure of the complete superdyasystem (and of M-theory)
one should look for a modification df;, preserving the remarkable features of fiig
model. Arguably the simplest modification &f, is an extension of2;, by additional
simple generators. Adjoining neimnaginary simple roots¢eads to aBorcherds exten-
sion of Fyo. (For introductory literature to Borcherds algebras seeef@mmple [34].)
Introducing a new anti-symmetric nine index generator egponding to salvaging the
transformation properties of (4.18) can be achieved by sedradding a single null
imaginary simple root which attaches with a single line athlyperbolic node of thé&
Dynkin diagram. (In supergravity terms such a new generafates to the spatial trace
of the spin connection.) However, the transformation ofdlksociated component &f
under an infinitesimal,, .., transformation as in (2.5) does not give rise (as would be
needed to cancel the offending termsP(®) P(?)) to a new contribution t6 P in (2.5d)
precisely since the new root is simple and not compositerefbee such a new root does
not appear to correct the transformation properties of trmsiraints. Another possible
Borcherds extension is the vertex operator algebra olatdinen a lattice construction on
the E/1 root lattice (see for example [35]). This Borcherds algedism containgr,, as
a proper subalgebra but has additional imaginary simplesrothe first such imaginary
simple root is time-like and as a root vector identical\tpand therefore occurs at level
¢ = 6, much too high a level than needed to correct the constrainstormation (4.18).
We note, however, that a Borcherds modificatiornEf (maybe involving several inde-
pendent copies of the null imaginary root mentioned abowe)ccalso help to produce
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additional negative definite terms in the Hamiltonian coaist (P|P) = 0 in order to
improve agreement with supergravity [3].

To further investigate the situation, it will be importantédompute the algebra gen-
erated by the constraints. This should give access to theriyim gauge symmetry of
the full model. From the supergravity correspondence @maat low levels only), we
expect that the bosonic coset constraints will contain @geization of both diffeomor-
phism invariance, and the gauge invariance of the 3-formuolild be interesting to see
whether a richer algebraic structure, maybe appropriagetb@ory in which both space-
time and its general covariance are expected to be emerggperties, comes out of a
group-theoretical analysis of the constraint algebra.
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